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2 Outline

1. Turbulent flows with reactions.

◦ Relevance.

◦ Exascale computing.

◦ Statistical analyses and learning.

2. Tensor decompositions.

◦ Types & applications.

◦ Use case 1: Data compression.

◦ Use case 2: Rare event detection.
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New generation systems: alternative fuels, 
nonconventional combustion regimes.

Energy & Transportation Aerospace

Understanding/Modelling interactions of turbulence and chemical reactions critical to design, operation, predictions.

Hypersonic vehicles: thermal and 
structural integrity under extreme 

environments.

Earth Systems:  Atmosphere

Climate/Weather predictions: influence of 
natural and anthropogenic activity.

Pfeister et al., 2020, Bulletin of AMS, vol. 101  

Many Applications Involve Turbulent Reacting Flows

https://journals.ametsoc.org/view/journals/bams/101/10/bamsD190331.xml


4 Turbulence Cascade: A Foundational View

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

- Lewis Richardson

Kolmogorov Theory for Large Reynolds Number (Re)
• Energy transfer is unidirectional: only from large to smaller scales.

• Only large scales “know” geometry. Small scales are agnostic.

• Small scale behaviour is statistically universal; governed only by energy 
dissipation rate (𝜺) and viscosity (𝝂).

• Intermediate scale (inertial range) statistics also universal; governed by 𝜺. 
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Kolmogorov Theory for Large Reynolds Number (Re)
• Energy transfer is unidirectional: only from large to smaller scales.

• Only large scales “know” geometry. Small scales are agnostic.

• Small scale behaviour is statistically universal; governed only by energy 
dissipation rate (𝜺) and viscosity (𝝂).

• Intermediate scale (inertial range) statistics also universal; governed by 𝜺. 
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6 Simulating Turbulent Flows

L/η ≈ Re3/4

τL/τη ≈ Re1/2

cost ≈ Re11/4

= −(𝑢 % ∇𝝓) − (∇ % j𝝓)
𝜕𝝓
𝜕𝑡

Direct Numerical Simulations (DNS): Resolve all scales.
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7 Simulating Turbulent Flows

L/η ≈ Re3/4

τL/τη ≈ Re1/2

cost ≈ Re11/4

= − 𝑢 % ∇ 𝝓 − ∇ % j𝝓 + (… )
𝜕 𝝓
𝜕𝑡

Direct Numerical Simulations (DNS): Resolve all scales.

Reynolds Averaged Navier Stokes (RANS): Model statistics of 
all scales (solve averaged form of NS equations).

Large Eddy Simulations (LES): Resolve ‘energy containing’ 
scales, model (statistics) of smaller scales.
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8 Simulating Turbulent Flows with reactions

L/η ≈ Re3/4

τL/τη ≈ Re1/2

cost ≈ Re11/4 × (η/δ)3

= − 𝑢 % ∇𝝓 − ∇ % j𝝓 +𝜔𝝓
𝜕𝝓
𝜕𝑡

Direct Numerical Simulations (DNS): Resolve all scales.

Reynolds Averaged Navier Stokes (RANS): Model statistics of 
all scales (solve averaged form of NS equations).

Large Eddy Simulations (LES): Resolve ‘energy containing’ 
scales, model (statistics) of smaller scales.

Chemical reactions compound the difficulties:

Introduce finer space-time scales.

Additional physics to compute.

Increase the PDE dimensionality; 𝝓 ~ O(100).



9 Turbulent Combustion DNS is an Exascale (+) Problem

• Conditions achieved at petascale: Re ≈ 104.

•Typical device-relevant conditions: 

• IC engines, Re ≈ 105.

• Gas-turbine engines, Re ≈ 106.

• DNS cost scaling* ~ Re11/4

•An order of magnitude increase in Re requires 
560x more computing resources
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•Typical device-relevant conditions: 

• IC engines, Re ≈ 105.

• Gas-turbine engines, Re ≈ 106.

• DNS cost scaling* ~ Re11/4

•An order of magnitude increase in Re requires 
560x more computing resources

• Combustion-Pele part of 

• PI, Jackie Chen (SNL, 08351). Co-PIs at LBL, 
NREL, ORNL, ANL, MIT.

•Advances on multiple fronts to attain a target 
problem: (1) performance portability to exascale
architectures, (2) new load balancing and 
communication strategies, (3) communication 
avoiding linear solvers, (4) asynchronous 
execution, (5) in-situ analytics

Pele ExascaleTarget Problem
First-principles (DNS) and near-first principles (DNS/LES hybrids) simulations of the relevant processes in a low temperature
reactivity controlled compression ignition (RCCI) internal combustion engine. The relevant processes include turbulence,
mixing, spray vaporization, low-temperature ignition, flame propagation, and soot/radiation. As part of 10yr roadmap perform
a hybrid LES/DNS simulation of a sector from a gas turbine for power generation burning hydrogen enriched natural gas.



11 Role of Statistical Analyses and Learning

Needs/Requirements

• Data management and organization.

• Surrogates, Reduced-order-models:

• For unresolved scales.

• For unresolved physics.

• Low-dimensional manifolds: identification, 
parametrization.

• Statistical inference (distributions, 
joint/conditional moments).

• Event/phenomena detection.

• Uncertainty quantification.
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• Data management and organization.

• Surrogates, Reduced-order-models:

• For unresolved scales.

• For unresolved physics.

• Low-dimensional manifolds: identification, 
parametrization.

• Statistical inference (distributions, 
joint/conditional moments).

• Event/phenomena detection.

• Uncertainty quantification.

Needs/Requirements Challenges

•Wide range of scales: observables span ~ 10 decades.

• Large dimensionality of state space (100s of features).

• Non-Gaussian multi-variate statistics; not always 
parametrizable.

• Robustness and Stability of reduced representations.

• Boundary conditions are integral part of the physics.
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•Tensors are multidimensional (multiway) arrays; higher-order generalizations of vectors/matrices.

• Order: Number of dimensions (e.g. a matrix is order-2 tensor).

• Mode:  A specific dimension (e.g. in a matrix rows are mode-1, columns are mode-2). 

•Tensor decompositions – linear algebra in dimensions > 2.

• Many formats in literature (Kolda & Bader, 2009, “Tensor Decompositions and Applications”, SIAM Review, vol.51).

• Not all concepts of matrix linear algebra generalize (e.g. rank, existence, uniqueness).

•Versatile for learning in high-dimensional settings: 

• Pattern identification.

• Parameter importance.

• Surrogates/Reduced representations…..

•Long history (~20yrs) of foundational math research at Sandia (lead by Tammy Kolda, others). 

•Successful in applying to national security domains; recently extended for scientific data and HPC.

Tensors Are Versatile For High-Dimensional Learning

https://epubs.siam.org/doi/10.1137/07070111X


15 Canonical Polyadic (CP) Decomposition

Higher Order Tensors for Combustion Data Analysis and Compression 3

large multi-dimensional data sets. Readers are urged to read the excellent review
by Kolda & Bader [22], whose notation and terminology we adopt in this chapter.
While tensor factorisations may be thought of as higher order analogues of matrix
factorisations, some of the key concepts do not generalise well. For example, the
concept of rank of a tensor is not a straightforward extension of the matrix rank,
and has many peculiarities. A tensor rank has been defined by various authors in
terms of rank-one tensors (c.f. § 3 in [22], § 2.2 in [26] and references therein). A
rank-one tensor is a tensor that can be simply expressed as an outer product (tensor
product) of vectors. For example a tensor X 2 RI1⇥I2⇥I3 , can be expressed using
vectors u 2 RI1 , v 2 RI2 , w 2 RI3 as

X = u � v � w. (1)

In index notation,
xi jk = uiv jwk , (2)

for indices i = 1, ..., I1, j = 1, ..., I2, k = 1, ..., I3. This is significant because a rank-
one tensor can be represented (stored) using far fewer numbers, (I1 + I2 + I3), than
an otherwise full tensor, (I1 ⇥ I2 ⇥ I3). Figure 1 illustrates the rank-one tensor, X, of
order three.

Fig. 1 An example of a rank-one tensor of order three.

A tensor rank, accordingly, is defined as the number of rank-one tensors that the
original tensor can be expressed in a summation. For the previous example, tensor
X is of rank R if there exist, for r = 1, ...,R, vectors ur

2 RI1 , vr 2 RI2 , wr
2 RI3 ,

such that

X =
RX

r=1

ur � vr � wr . (3)

Kolda & Bader [22] discuss various peculiarities of the tensor rank concept. In
general finding the rank is an NP-hard problem and no straightforward algorithm
to determine a tensor rank exists. Other peculiarities include maximum and typical
ranks, which could be di↵erent, and the fact that the rank could be di↵erent over the
real and complex spaces. De Lathauwer et al., [26] introduce the concept of n-rank,
defined as the rank of the matrix resulting from ‘mode-n unfolding’ of the tensor.
They show that the di↵erent n-ranks of a tensor may not be equal and further the n-

4 Hemanth Kolla and Konduri Aditya and Jacqueline H. Chen

Fig. 2 Tensor rank defined in terms of sum of rank-one tensors.

ranks may not be equal to the tensor rank. In the rest of this section we will present
a brief summary of the two most widely used tensor decompositions. The following
sections will present applications specific to combustion DNS.

2.1 Canonical Decomposition

Historically, the most widely studied tensor decomposition is the canonical decom-
position (CANDECOMP), which has also been referred to as “Polyadic form of a
tensor”, “Parallel Factors” (PARAFAC) and “Topographic components”. Kolda and
Bader [22] unify the various names and suggest the use of the term “CP” decom-
position. The canonical decomposition is closely tied to the definition of the tensor
rank. Mathematically, the decomposition is nothing but expressing a tensor, approx-
imately, as a sum of rank-one tensors. For an order three tensor, similar to Eq. 3,

X ⇡
RX

r=1

ur � vr � wr . (4)

The decomposition would be exact if the exact rank of the tensor were known,
which, as stated previously, is not straightforward. Accordingly, the decomposition
seeks the best approximation for a specified rank. The vectors could be chosen to
have a unit norm, in which case the decomposition, illustrated in Fig. 3 could include
weights for each rank-one component,

X ⇡
RX

r=1

�r ur � vr � wr , (5)

which, in index notation can be written as

xi jk ⇡
RX

r=1

�r uir v jrwkr . (6)

• Tensor approximated as “sum of R outer product of vectors”.

• Compact, interpretable, computationally inexpensive. Complexity ~ O(Rd).

• Recently generalized to different underlying distributions, loss functions (Hong, Kolda, Duersch, 2020, SIAM Rev).

https://epubs.siam.org/doi/10.1137/18M1203626


•SOLSTICE: DoD Advanced Computing Initiative.
• GCP for decompositions of geographically distributed 

sensor data (algorithms and HPC software).

• Sandia: Eric Phipps(PI), Drew Lewis, Rich Field, Richard 
Barrett, Kyle Gilman, Tammy Kolda (former PI). 
GeorgiaTech: Rich Vuduc, Koby Hayashi, ChunxingYin.

•ExaLearn: Co-design Center for Machine Learning 
Technologies.
• Tensor decompositions for scientific data (algorithms and 

HPC software).

• Sandia: Michael Wolf (PI), Eric Phipps, Hemanth Kolla, Ben 
Cobb (intern, GaTech), Zitong Li (intern, Wake Forest). 

•Example: CP surrogate of epidemiological data

16
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Applications of CP Decomposition
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17 Higher-order Singular Value Decomposition (HOSVD)

• Multilinear generalization of matrix SVD (De Lathauwer, De Moor, Vandewalle, 2000, SIAM J. Matrix Anal. Appl., 21(4)).

• 𝐔, 𝐕,𝐖: ortho-normal bases of corresponding mode-spaces (left singular vectors of matricized tensor).

• Computed as matrix SVD by unfolding along each mode.

6 Hemanth Kolla and Konduri Aditya and Jacqueline H. Chen

2.2 Higher Order Singular Value Decomposition (HOSVD)

As the name suggests, Higher-Order Singular Value Decomposition (HOSVD) is
the higher order extension to matrix singular value decomposition (SVD). De Lath-
auwer et al., [26] establish HOSVD as a generalisation of the SVD to arbitrary order
tensors and examine various similarities and points of departure between properties
of matrix SVD and HOSVD. This decomposition was originally proposed by Tucker
[35] for order three tensors and has been known as Tucker decomposition in the psy-
chometrics community. To present the decomposition, it is necessary to introduce
the concept of an n-mode product of a tensor by a matrix and the notation for a
mode-n tensor unfolding (matricising). For an order N tensor, A 2 RI1⇥I2⇥· · ·⇥IN ,
a mode-n unfolding yields a matrix, denoted by A(n) 2 RIn⇥(In+1 In+2 · ·IN I1 I2 · ·In�1) .
The n-mode product of tensor, A, by a matrix, U 2 RJ⇥In , denoted by A⇥nU, is
tantamount to premultiplying the mode-n unfolded matrix A(n) by U, and refolding
the resulting matrix back into an order N tensor. The result is a tensor of dimensions
I1 ⇥ I2 ⇥ · · · ⇥ In�1 ⇥ J ⇥ In+1 ⇥ · · · ⇥ IN . For the definition in index notation, as
well as visual illustration of this product, see § 2.4 of De Lathauwer et al., [26] and
§ 2.5 of Kolda and Bader [22].

For simplicity we present the concept for an order three tensor, although the
definition generalises for any arbitrary order tensor. Formally, the HOSVD of the
order three tensor X 2 RI1⇥I2⇥I3 , is a decomposition of form

X = G⇥1U⇥2V⇥3W, (8)

where G 2 RI1⇥I2⇥I3 is the core tensor and U 2 RI1⇥I1 , V 2 RI2⇥I2 and W 2

RI3⇥I3 are orthonormal factor matrices. Although presented for the real space, the
analogous properties hold if X,G,U,V,W are complex tensors and matrices. The

Fig. 4 The full-rank Higher-Order Singular Value Decomposition for an order three tensor.

key properties of the HOSVD are:

• The column vectors of U are the 1-mode singular vectors ofX, i.e., the left singu-
lar vectors of X(1) , the matrix resulting from mode-1 unfolding of X. Similarly,

https://doi.org/10.1137/S0895479896305696


18 Tucker Decomposition: Truncated HOSVD

• Approximation that exploits low-rank structure along each mode.

• 𝐔, 𝐕,𝐖: orthogonal matrices spanning high variance subspaces (leading left singular vectors).

• Model complexity ~ O(Rd). But still provides large compression ~ O((N/R)d).

Tucker Compression (3-way) 

11/17/2016 Kolda @  SIAM SC16 5 

= “Core Tensor” = Reduced representation, determined by factor matrices 

= “Factor Matrices” = Orthogonal matrices spanning high-variance subspaces 

= Tensor-times-matrix in mode k 

𝑁1 × 𝑁2 × 𝑁3 

𝑅1 × 𝑅2 × 𝑅3 

𝑁1 × 𝑅1 

𝑁2 × 𝑅2 

𝑁3 × 𝑅3 

Detail:  
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Choosing Tucker Ranks  
to Retain Accuracy 
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Find orthogonal matrices U, V, W 
that reduce the size of  tensor but 

retain its “mass” 

For a given relative error ², choose projection ranks R1, R2, and R3 such that: 

Core tensor satisfies: 

Multi-linear 
manifold 
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Figure 2: Temporal evolution of normalized species
concentrations (left axis), temperature and heat re-
lease rate (right axis) for the 3-D RCCI simulation.
The overbar (̄.) denotes an average over the domain.
The dashed line represents heat release rate.

ported to the Legion application code. The existing For-
tran code served as an excellent reference, as it succinctly
described the necessary functionality without being obfus-
cated by directives and/or manual code transformations for
optimization reasons. Since Legion tasks are also unencum-
bered by mapping considerations, the porting was a simple
matter of translating Fortran code into the corresponding
C++ or, in the case of the main CEMA calculation, simply
copying over the Fortran code and adding a C++ wrapper
around it. The porting (and verification) e↵ort required less
than a programmer-week of work. Once the desired func-
tionality was achieved, adding mapping policies for the new
tasks required less than 10 lines of code in the Legion S3D
mapper and was tuned in less than an hour. In particular,
the mapper was able to fit the CEMA tasks into idle periods
on the CPU cores, limiting the overhead of CEMA in the
S3D version to less than 1%.

We explored the use of the OpenACC version for this
simulation as well. This required the OpenACC code to
be updated for both the PRF mechanism and the addi-
tional features described above. A programmer-week of ef-
fort (the same as was required to update the Legion version
of S3D) was invested into trying to incorporate the necessary
changes into the OpenACC version of S3D, with little suc-
cess. The complexity of the PRF chemistry and transport
kernels caused numerous issues with the compiler. Addi-
tionally, the divergence between the Fortran and OpenACC
source trees presented a much larger challenge for imple-
menting the additional features. We estimate that at least
another month of implementation work as well as an un-
known amount of debugging and tuning would be required
to reach a production version of the OpenACC code. These
issues and previous results demonstrating that the Legion
version outperforms the OpenACC version by 2-3X on the
smaller DME and heptane mechanisms [11] led us to aban-
don the e↵ort and collect performance data for the MPI and
Legion version of S3D. We performed our simulation entirely
using the Legion version of S3D.

6. COMBUSTION RESULTS
Figure 2 shows the temporal evolution of normalized do-

main average species mass fractions of several key species
along with temperature and heat release for the three dimen-
sional simulation. It can be seen that n-heptane (n-C7H16)

Figure 3: Volume rendering of the heat release rate
at the time corresponding to 50% of total heat re-
lease. Values are in J/m3/s.

is consumed significantly earlier in the cycle than iso-octane.
After the low temperature heat release stage marked by the
first peak in the heat release rate (HRR in Figure 2) profile,
the original n-heptane is almost entirely consumed, most
of it having decomposed to CH2O, C2H4 and other smaller
molecules. Consumption of CH2O and production of OH
appear to coincide with the consumption of all remaining
iso-octane (i-C8H18). This period of time also coincides with
the oxidation of CO. The generation of intermediate species
such as CH2O and CO occurs primarily through the break-
down of n-heptane. Since most heat release later in the
simulation (i.e. the high temperature heat release) is driven
by the oxidation of these intermediates, it follows that com-
bustion is driven by the staged consumption and oxidation
of n-heptane and its intermediates followed by a rapid de-
composition and oxidation of iso-octane.

Compression ignition configurations generally ignite by
generating a series of ignition fronts. One of the most inter-
esting aspects of the RCCI configuration is the appearance of
flame fronts in conjunction with spontaneous ignition fronts.
Ignition fronts are completely reaction driven: individual lo-
cations in the domain react and spontaneously ignite inde-
pendently of their neighbors, down a gradient of ignition de-
lay imposed by spatial variations in reactivity, temperature,
or composition. In contrast, a flame front is di↵usion driven:
individual locations in the domain react and propagate only
when heat and reactants di↵use into them from neighbor-
ing locations. Visually, flame fronts appear as thin, spindly
structures whereas ignition fronts appear as thick, blob-like
structures. Figure 3 shows the overall heat release rate in
the simulation volume at the time corresponding to approxi-
mately 50% of the total heat release. Figure 4 shows slices of
the heat release rate in the simulation domain taken at one
of the midplanes. The three images correspond to time in-

[5]
1.8x1011

[1] T. Echekki, J.H. Chen, Comb. Flame, 1996, vol.106.
[2] T. Echekki, J.H, Chen, Proc. Comb. Inst., 2002, vol. 29.
[3] R. Sankaran, E.R. Hawkes, J.H. Chen, Proc. Comb. Inst., 2007, vol. 31.
[4] E.R. Hawkes, O. Chatakonda, H. Kolla,  A.R. Kerstein, J.H. Chen, Comb. Flame, 2012 (online).
[5] Gordon Bell submission, 2015

Ngrid ≈ 1.8T

Scientific Data Volumes are Untenable

Trends in S3D simulations



21 Tucker Compression of Combustion DataConvenient Implementation 
Assumption: Small Dimensions 

11/17/2016 Kolda @  SIAM SC16 11 
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22 TuckerMPI: Scalable Parallel Implementation

• C++/MPI library for distributed data compression (Ballard, Klinvex, 
Kolda, 2020, ACM Trans. Math. Soft., 46(2))

• Optimizing data layouts and communication for key kernels: 
modewise unfolding (matricization), Gram matrix computation, 
Eigensolve, Tensor×Matrix

• Open repository https://gitlab.com/tensors/TuckerMPI. 

•Two algorithm variants:

• Sequentially Truncated HOSVD: MatricizeàSVDàTruncate/Reduce 
(backup slide)

• Higher Order Orthogonal Iteration (HOOI): Iterate with ST-HOSVD as 
initial guess, until convergence (Austin, Ballard, Kolda, IPDPS, 2016).

• Partial reconstruction of tensor subset. Effective for data 
dissemination.

200 400 600 800 1000
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20
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50
Gram(0)
Eigensolve(0)
TTM(0)
Gram(1)
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TTM(1)
Gram(2)
Eigensolve(2)
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Gram(3)
Eigensolve(3)
TTM(3)
Gram(4)
Eigensolve(4)
TTM(4)
Total

TuckerMPI timing profiles

• HCCI data set, 4.4TBà10GB (410X).

• 1100 processors.

• Total time of 55s.

Image Courtesy: Alicia Klinvex

https://doi.org/10.1145/3378445
https://gitlab.com/tensors/TuckerMPI
https://doi.org/10.1109/IPDPS.2016.67
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Tucker Compression: Error Distribution

Temperature

OH

Original 𝝐 = 𝟏𝟎!𝟒
(14X)

𝝐 = 𝟏𝟎!𝟐
(760X)
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Original

𝝐 = 𝟏𝟎!𝟒
(110X)

𝝐 = 𝟏𝟎!𝟐
(40000X)

Temperature OH
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Fig. 11 Stacked histograms of logarithm of absolute error of individual tensor elements from the
compressed HCCI data are shown for two variables: OH mass fraction (left), and temperature
(right). The top row plots are for error threshold ✏ = 10�4, and the bottom row for ✏ = 10�2. The
bars are further colored by bins representing various ranges of the original element magnitudes
(after normalising).

metric higher order tensors (e.g., co-skewness is an order three tensor, co-kurtosis
is an order four tensor). Recently, we proposed a method for detecting anomalous
events in distributed scientific data by decomposing and examining the fourth order
co-kurtosis tensor [2]. The principles underpinning the anomaly detection method
are as follows:

• Scientific simulation data may contain anomalous, but physically valid, events
which manifest in the state of a collection of points being di↵erent from a
“normal”. Examples could be ignition kernels in combustion data, hurricanes
in weather simulations, cracks in fracture mechanics.

• The signature of such anomalous events is discernible from higher joint mo-
ments. The fourth moment, kurtosis, is a reliable measure of existing outliers or
propensity to produce outliers, according to Westfall [37].

• For multi-variate data the joint moments, i.e. the co-kurtosis tensor, rather than
the marginal moments, contain the signature of anomalous events.

• One way to extract this signature is to construct, by analogy to PCA and co-
variance, “principal vectors of kurtosis” from the co-kurtosis tensor. A larger

Tucker Compression: Error Distribution

• Elementwise error guarantees are 
difficult.

• Elements with small absolute values 
have large relative errors.

• “Minor” variables are bound to be more 
erroneous.
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1. Turbulent flows with reactions.

◦ Relevance.

◦ Exascale computing.

◦ Statistical analyses and learning.

2. Tensor decompositions.

◦ Types & applications.

◦ Use case 1: Data compression.

◦ Use case 2: Rare/Anomalous event detection.
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Robust in-situ detection of rare events in distributed scientific simulations 

§ Scientific data: continuous smoothly varying multi-variate non-Gaussian data.

§ Rare events: group of physically valid extreme valued samples; hard to 
specify universal thresholds.

§ In-situ, distributed: computational expense, scalability are important.

Problem Statement & Proposed Solution

Intermediate species 

Temperature

Challenge

§ Information of rare events is present in higher order joint moments, e.g. co-
kurtosis. 

§ Identify rare events based on a “distinct” signature of joint moments.

Key Idea

Image Courtesy: Martin Rieth, Marco 
Arienti, Matt Larsen

Identification currently based 
on ad-hoc thresholds
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For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Information In Higher-Order Statistical Moments
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For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor.

Information In Higher-Order Statistical Moments
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PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor. (backup: connection to ICA)

Information In Higher-Order Statistical Moments



31 Formalizing Distributed Rare Event Detection

• Compute Principal Kurtosis Vectors on each data partition (e.g.  
processor).

• Compare the vectors amongst partitions in space and/or time:

• Proposed Feature moment metrics (fraction of the kurtosis attributable to 
each variable) to quantify orientation of Kurtosis vectors.

• FMMs sum to unity, akin to discrete distribution. 

• Divergence metric (Hellinger distance) to compare across partitions.

• Most computation (cokurtosis tensor and principal vectors) is local.

• Communication only of a small vector of numbers (FMMs).

0 0.1 0.2 0.3
0

0.1

0.2

0.3

“Anomaly detection in scientific data using joint statistical moments.”  K.  Aditya, H. Kolla, W.P. Kegelmeyer, 
T.M. Shead, J. Ling, W.L. Davis IV, Journal of Computational Physics, 2019.

Heat release rate

Anomalous partitions

https://doi.org/10.1016/j.jcp.2019.03.003
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Intermediate species 

Temperature

Anomaly 
metric

Ignition kernel (temperature 
iso-surface colored by CH2O 

density)

Identification currently based 
on ad-hoc thresholds

Validation: co-kurtosis tensor-based 
unsupervised anomaly detection

Contributors: Martin Rieth, Jackie Chen (Pele), Marco Arienti, Matt Larsen, Janine Bennett (ALPINE), Hemanth Kolla (ExaLearn)

• ExaLearn: GenTen, Software for 
generalized Tensor 
Decompositions. 

•ALPINE:Ascent, flyweight in situ 
visualization and analysis 
infrastructure.

• Pele: PeleLM, adaptive-mesh low 
Mach number hydrodynamics 
code for reacting flows

In-situ Deployment as ECP Cross-Cut Effort



33 Ongoing Performance Optimizations

• Higher-order joint moment/cumulant tensors can be expensive:

• For a data set with N vars, co-kurtosis tensor is N4 elements.

• Each element is reduction over large number of samples.

• Idea: Leverage symmetry

• Number of unique elements is "#$
%

• Efficient computation of hyper-triangular elements in sub-blocks: Domino, 

Gawron, Pawela, 2018, SIAM J. Sci. Comp., 40(3). 

• We have identified further optimizations that are cache friendly, give ~5x
speedup (work by summer intern Zitong Li, Wake Forest).

SAND2021-XXXX

E�cient Computation of Higher Order Moment Tensor
Intern: Zitong Li, Wake Forest University, Virtual at: Winston Salem, NC

Mentor: Hemanth Kolla, 8753 Department of Scalable Modeling & Analysis

The following experiment is ran with synthetic random

matrices (1000x30 with a block size of 2). Controlling

other parameters, we varied the number of columns and

rows of the input matrix and the block size. Our

performance is in blue while the red lines represent that

of the existing approach by Domino et al.1.

As we can see, the speedup is consistent around 5x across

the di↵erent number of columns and rows. The block size

also has an impact on the performance. Our approach

prefers a larger block size, which results in less saving in

terms of memory. However, we are outperforming the

existing approach even with smaller block sizes.

30 40 50 60 70 80 90
10�2

10�1

100

Number of columns of input matrix

S
ec
on

d
s

Improved
Domino et al. [1]

102 103 104

10�2

10�1

100

Number of rows of input matrix

S
ec
on

d
s

Improved
Domino et al. [1]

2 2.5 3 3.5 4 4.5 5

0

5 · 10�2

0.1

0.15

0.2

Block size

S
ec
on

d
s

Improved
Domino et al. [1]

1K. Domino, P. Gawron, and  L. Pawela, “E�cient Computation of Higher-Order Cumulant Tensors,” SIAM J. Sci. Comput., vol. 40,
no. 3, pp. A1590–A1610, Jan. 2018, doi: 10.1137/17M1149365.
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Algorithm: ST-HOSVD

1. Choose U with projection rank R1 such that: 
a) Compute gram matrix: X(1)X(1)’ 
b) Use eigendecomposition of N1 x N1 matrix to choose R1 
c) Set U = R1 leading eigenvectors of gram matrix 

2. Shrink to size R1 x N2 x N3:  
3. Choose V with projection rank R2 such that: 

a) Compute gram matrix: Y(2)Y(2)’ 
b) Use eigendecomposition of N2 x N2 matrix to choose R2 
c) Set V = R2 leading eigenvectors of gram matrix 

4. Shrink to size R1 x R2 x N3:  
5. Choose W with projection rank R3 such that: 

a) Compute gram matrix: Z(3)Z(3)’ 
b) Use eigendecomposition of N3 x N3 matrix to choose R3 
c) Set W = R3 leading eigenvectors of gram matrix 

6. Shrink to size R1 x R2 x R3:  
 

Algorithm: ST-HOSVD (3-way) 
 

11/17/2016 Kolda @  SIAM SC16 12 

Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012) 

Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012)
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36 Formalizing anomaly detection

§ Define Feature Moment (Kurtosis) Metric, FMM:

§ Quantifies contribution of feature, i, to the overall moment. 

§ FMMs sum to unity (over i): a.k.a, a distribution.

§ Anomalous events result in change the FMM distribution.

§ Use f-divergence metrics to quantify the change, signal an 
anomaly.

Anomaly detection in scientific data using joint statistical moments KDD 2018, August 2018, London, UK

principal kurtosis vectors (blue) for the data with outliers are also
shown. In comparison to the left panel, it is evident that the PCA
vectors remain nearly unchanged. However, the principal kurtosis
vectors are di�erent from the PCA vectors, and clearly align with
the direction the outliers lie. The results from both test datasets
illustrate that principal kurtosis vectors need not be the same as
PCA vectors, and are better at identifying directions of outliers.

3 ANOMALY DETECTION ALGORITHM
In the previous section, we have shown that the variance or the
kurtosis in data can be characterized in terms of the principal values
and vectors of the joint moment tensors. Anomalies, as they occur,
result in a change in the distribution of the data re�ecting a change
in the magnitude of the principal values and the orientation of the
principal vectors. We base our anomaly detection algorithm for
smoothly varying scienti�c data on this concept, as explained in
this section.

As mentioned earlier, anomalous events in scienti�c phenomena
can appear locally in space and/or time. We choose to decompose
the data into several spatial sub-domains and time steps to explicitly
�ag the locality of these events. For distributed streaming data, e.g.
data from massively parallel simulations, such a decomposition is
inherently present by way of domain decomposition. Let Nd and
Nt be the number of spatial sub-domains and the number of time
steps, respectively. In regard to the feature space, depending on
the nature of anomaly and guidance from the scienti�c domain,
not all the features may be relevant to identify its occurrence. Let
Nf be the number of relevant features to be used in the anomaly
detection algorithm. The �rst step in the algorithm involves a data
preprocessing stage, where we scale the data from each feature by
subtracting its mean and dividing by the absolute spatial maximum.
It is quite common in multi-scale simulations that value ranges of
di�erent features are decades apart. Hence, scaling the data ensures
an equitable contribution to the joint moments from all the features.

Once the data is preprocessed, for each sub-domain j at a given
time step n, the joint moment tensor T j,n is constructed. This
symmetric tensor is decomposed using the two-step (matricize and
perform SVD) method described in section 2.3, to obtain the princi-
pal values �j and the principal vectors �̂j . For a given phenomena,
in the absence of anomalous events, the principal values and vectors
would remain nearly the same in all the sub-domains. As mentioned
above, the occurrence of an anomalous event will result in a sig-
ni�cant change in the magnitude of the principal values and the
orientation of the principal vectors. We, now, de�ne a feature mo-
ment metric F j,ni for each feature i in a given sub-domain j and time
step n, which can be used to quantify the changes in the principal
values and vectors.

F j,ni =

NfP
k=1

�k (êi · �̂k )2

NfP
k=1

�k

(8)

It should be noted that êi · �̂k is e�ectively the i-th entry in the
k-th vector �̂k . Since the set of vectors �̂k are all unit vectors, by
construction, the set of feature moment metrics in every spatial (j)
and temporal (n) sub-domain sum to unity, i.e.

PNf
i=1 F

j,n
i = 1, 8 j,n.

Accordingly, the moment metric for a given i can be interpreted as
a measure of the fraction of the overall moment (variance or excess-
kurtosis as case may be) contained in feature i , in other words a
distribution of the moment in the feature space. This distribution
interpretation allows comparing the feature moment metrics be-
tween di�erent sub-domains in space and di�erent steps in time,
and �ag the occurrence of anomalous events in space and/or time.

If, as hypothesized, the statistical signature of anomalies is such
that the distribution of featuremomentmetrics measurably changes,
then distribution divergence metrics, such as f -divergence, can
be used to quantify the change. We use the Hellinger distance, a
symmetric measure of di�erence between two discrete distributions
P and Q :

DPQ =
1p
2

sX

i
(
p
pi �

p
qi )2 . (9)

The Hellinger distance lies between 0 and 1, and for a discrete
distribution the distance is 1 when the two distributions being
compared are exact complements of each other i.e. if 8 i when
pi , 0 and qi = 0, and vice–versa. Intuitively, for the anomaly
containing spatial/temporal sub-domain, the Hellinger distance of
the pi ⌘ F j,ni from a nominal distribution qi would be large, and a
suitable threshold of this distance can be used as an anomaly metric.
The nominal set,qi , can be chosen to be the spatial average such that
the distance quanti�es a spatial anomaly (at every time instance),
whereas, setting qi to be the previous time distribution quanti�es a
temporal anomaly (in each spatial sub-domain). Accordingly, we
de�ne a spatial anomaly metric

Mn
1 (j ) =

1p
2

vuut NfX

i=1

 q
F j,ni �

q
F
n
i

!2
, (10)

where Fni denotes the spatial (over j) average of F j,ni . A correspond-
ing temporal anomaly metric can be de�ned as

M j
2 (n) =

1p
2

vuut NfX

i=1

 q
F j,ni �

q
F j,n�1i

!2
. (11)

We, now, proceed to describe the implementation of the anomaly
detection algorithm, which is outline in Algorithm 1. The line 1
decomposes the data into di�erent sub-domains and time steps.
The relevant features for the algorithm are selected in line 2. Once
these initialization steps are complete, the computations enter the
time step loop in line 3. For each time step, the data is accessed
with a sub-domain loop which begins in line 4. For a given time
step and sub-domain, the data is scales in line 5 before computing
the joint moment tensor in line 6. The tensor is then matricized
in line 7 to perform SVD in line 8 to obtain the principal values
�j and principal vectors �̂j . The feature moment metrics and the
anomaly metrics are computed in line 9 and 10, respectively. After
these computations are performed over all the sub-domains, the
anomaly metrics are compared with a threshold value in line 12 to
�ag the occurrence of any anomalous event.



37 Independent Component Analysis (ICA)

§ Identifies non-Gaussian independent random variables that are linearly mixed:

§ x ∶= As + n .   (x-observed vector; s-independent sources, n-Gaussian i.i.d noise)

§ Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010, 
Anandkumar et al. 2014)

§ ℳ4 ≔ 𝔼[𝒙 ⨂ 𝒙⨂ 𝒙 ⨂ 𝒙] - 𝔼[𝑥i1𝑥i2] 𝔼[𝑥i3𝑥i4] - 𝔼[𝑥i1𝑥i3] 𝔼[𝑥i2𝑥i4] - 𝔼[𝑥i1𝑥i4] 𝔼[𝑥i2𝑥i3]

§ ℳ4 = ∑! 𝜅"! 𝑎𝑖 ⨂ 𝑎𝑖⨂ 𝑎𝑖⨂ 𝑎𝑖 (𝜅'!-excess Kurtosis of ith source; ai – columns of A)

§ A simpler way to decompose ℳ4 : matricize and SVD (Anandkumar et al. 2014):

§ mat(ℳ4)  = M= ∑! 𝜅"! 𝑎𝑖 ⨂ 𝑣𝑒𝑐(𝑎𝑖⨂ 𝑎𝑖⨂ 𝑎𝑖)

§ Caveats: repeated or close eigenvalues.



Algorithm Design: Accelerate Key Kernels

•Focus on emerging hardware:
• Breadth of  hardware spanning HPC (multi-core, heterogeneous).

• Design for extreme heterogeneity (memory, compute, 
communication).

• Explore algorithmic tradeoffs w.r.t. concurrency, parallelism, 
asynchrony, memory locality, latency. 

•Directly engage driver application(s) to define design 
space:
• Combustion Pele (ECP) is a direct customer, interested in 

anomaly detection and dimensionality reduction.

• Exploring new customers e.g., Hardware-Software co-design, 
remote sensing, climate.

•Leverage complementary capabilities within Sandia:
• ASCR Base Math funded research (PI: Tammy Kolda).

• Kokkos (PI: Christian Trott).

• Kokkos-Kernels (PI: Siva Rajamanickam).
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of dimension sizes. We once again focus our attention on the internal dimensions 1 and 2 (0-
indexed) as the external dimensions 0 and 3 constitute special instances that consist of a single
GEMM/DSYRK call. Thus the internal modes represent the batched matrix multiplicaton and
reduction that we are primarily interested in. We present the CPU versions of the Serial-For,
Parallel-For (Parfor) and Reduce implementations. These variants all use the BLAS installation
linked to the GenTen build to faciliate the submatrix multiplications. Thus, at the time of
writing, the KokkosKernels’ TeamGEMM is not used in this set of experiments. Results on
the Gram kernel for the implementations utilizing the KokkosKernels’ TeamGEMM function
will be added in the future. It is also worth noting that, the GenTen configuration utilizes
Kokkos for its parallel-for/reduce loops, which in turn relies upon OpenMP. Thread counts were
controlled by modifying the OMP NUM THREADS environemnt variable. For each run, the
OMP PROC BIND was left to its default value of false. Depending on the system, di↵erent
OMP PROC BIND settings resulted in the benchmarks not scaling for di↵erent thread counts.
In addition, the Parfor implementation’s ”number of chunks” input was left at its default value
of 4. This was done for consistency across runs, but can be tuned depending on the problem
size. As the Gram kernel is still under active development, these benchmark timings are still
considered preliminary.

(a) (16⇥ 16⇥ 16⇥ 16) mode-1 (b) (16⇥ 16⇥ 16⇥ 16) mode-2

(c) (32⇥ 8⇥ 1024⇥ 128) mode-1 (d) (32⇥ 8⇥ 1024⇥ 128) mode-2

Figure 11: Gram timings generated on Intel Xeon-2683

Similar to the TTM kernel, the Intel CPU timing results in Figure 11 were generated on
Kahuna, the heterogeneous Sandia testbed with 120 dual-socket, 28 Intel E5-2683v3 2 GHz core
heterogenous nodes, wherein each core has access to a 32K L1, 256K L2 and 35840K L3 cache.
Once again, MKL was the BLAS function linked to GenTen to faciliate the DSYRK function used
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Multi-threaded performance of Gram kernel of the 
HOSVD algorithm on Intel Xeon E5-2683

Image courtesy: Ben Cobb

• Three variants of exposing parallelism in the 
Gram matrix computation were investigated.

• The variants differ w.r.t. parallelism width, 
memory access patterns, extra storage.


