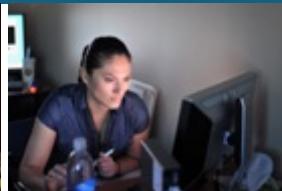
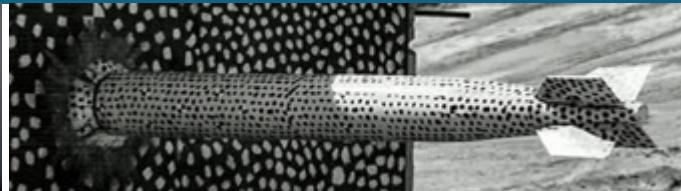


Tensors for Statistical Analyses of Scientific Data: A Turbulent Combustion Perspective



PRESENTED BY

Hemanth Kolla, 08753

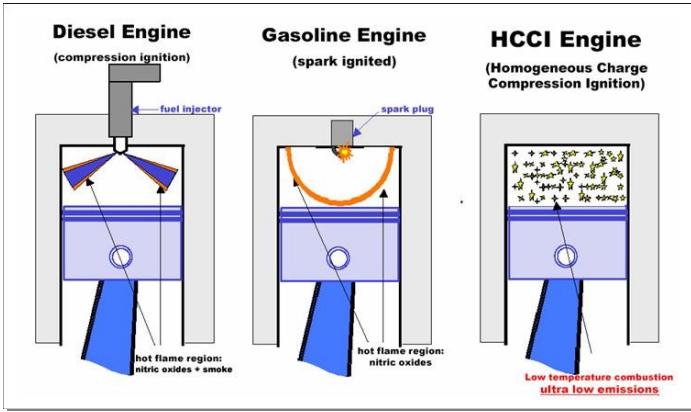
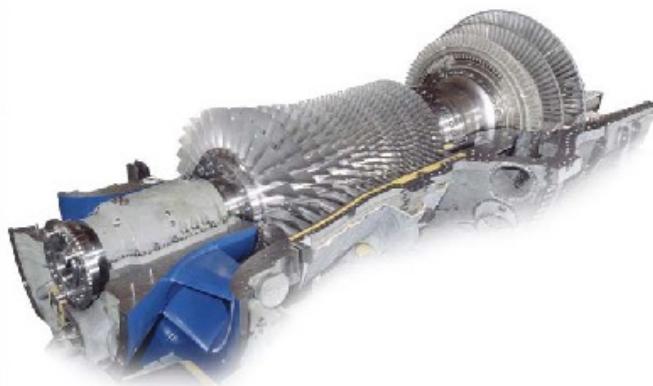
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

1. Turbulent flows with reactions.
 - Relevance.
 - Exascale computing.
 - Statistical analyses and learning.
2. Tensor decompositions.
 - Types & applications.
 - Use case 1: Data compression.
 - Use case 2: Rare event detection.

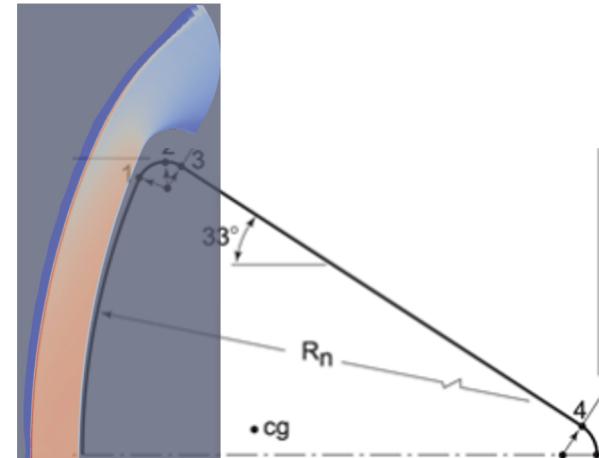
Many Applications Involve Turbulent Reacting Flows

Energy & Transportation



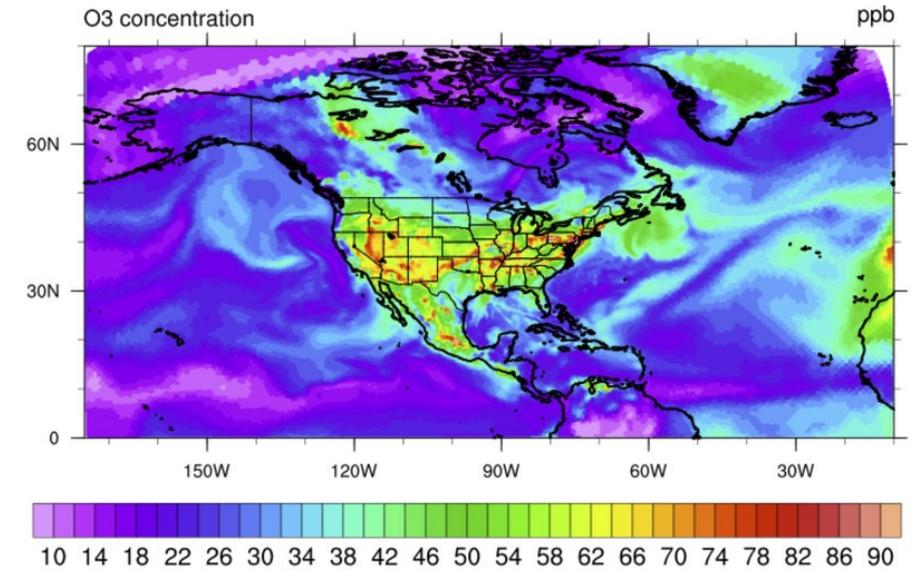
New generation systems: alternative fuels, nonconventional combustion regimes.

Aerospace



Hypersonic vehicles: thermal and structural integrity under extreme environments.

Earth Systems: Atmosphere



[Pfeister et al., 2020, Bulletin of AMS, vol. 101](#)

Climate/Weather predictions: influence of natural and anthropogenic activity.

Understanding/Modelling interactions of turbulence and chemical reactions critical to design, operation, predictions.

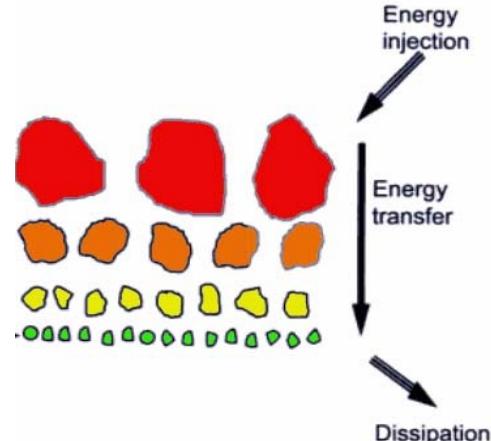
Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

- Lewis Richardson



Kolmogorov Theory for Large Reynolds Number (Re)

- Energy transfer is unidirectional: only from large to smaller scales.
- Only large scales “know” geometry. Small scales are agnostic.
- Small scale behaviour is statistically universal; governed only by energy dissipation rate (ε) and viscosity (ν).
- Intermediate scale (inertial range) statistics also universal; governed by ε .

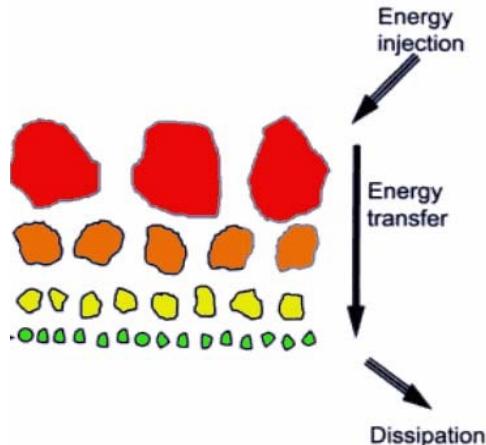
Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

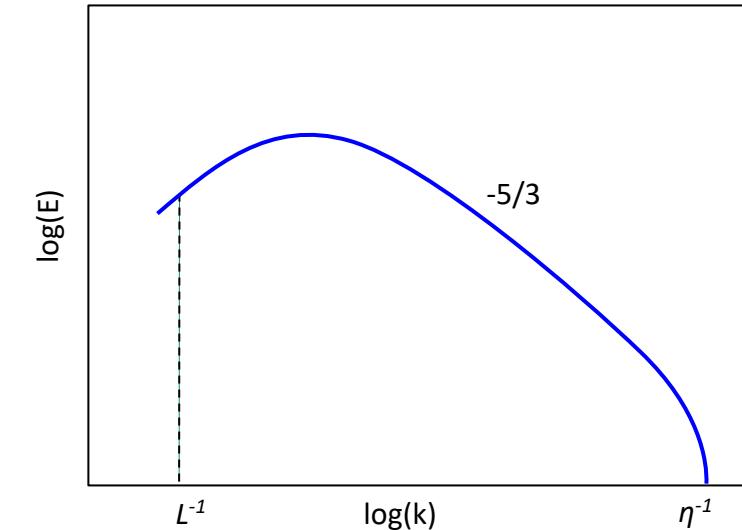
- Lewis Richardson



Kolmogorov Theory for Large Reynolds Number (Re)

- Energy transfer is unidirectional: only from large to smaller scales.
- Only large scales “know” geometry. Small scales are agnostic.
- Small scale behaviour is statistically universal; governed only by energy dissipation rate (ε) and viscosity (ν).
- Intermediate scale (inertial range) statistics also universal; governed by ε .

Kinetic Energy Spectrum

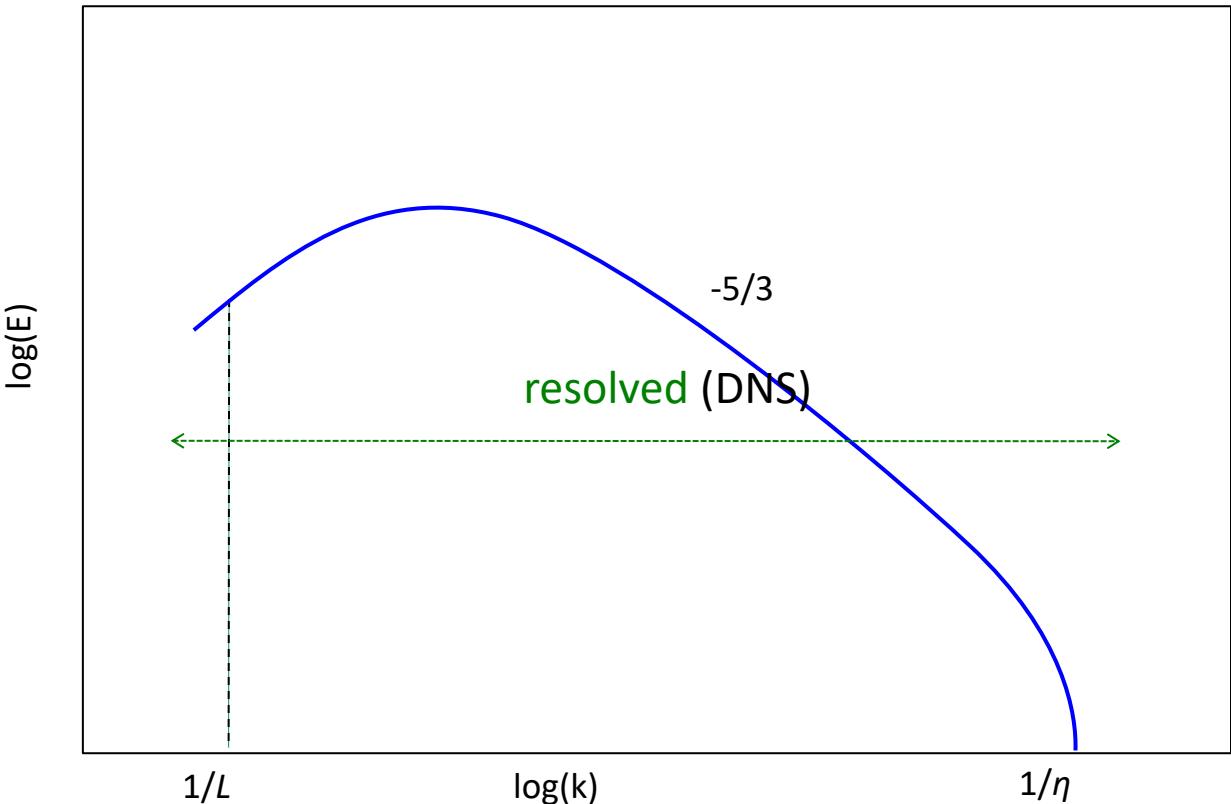


Length scales, $L/\eta \approx Re^{3/4}$

Time scales, $\tau_L/\tau_\eta \approx Re^{1/2}$

$$\frac{\partial \phi}{\partial t} = -(\vec{u} \cdot \nabla \phi) - (\nabla \cdot j_\phi)$$

Direct Numerical Simulations (DNS): Resolve all scales.



$$L/\eta \approx \text{Re}^{3/4}$$

$$\tau_L/\tau_\eta \approx \text{Re}^{1/2}$$

$$\text{cost} \approx \text{Re}^{11/4}$$

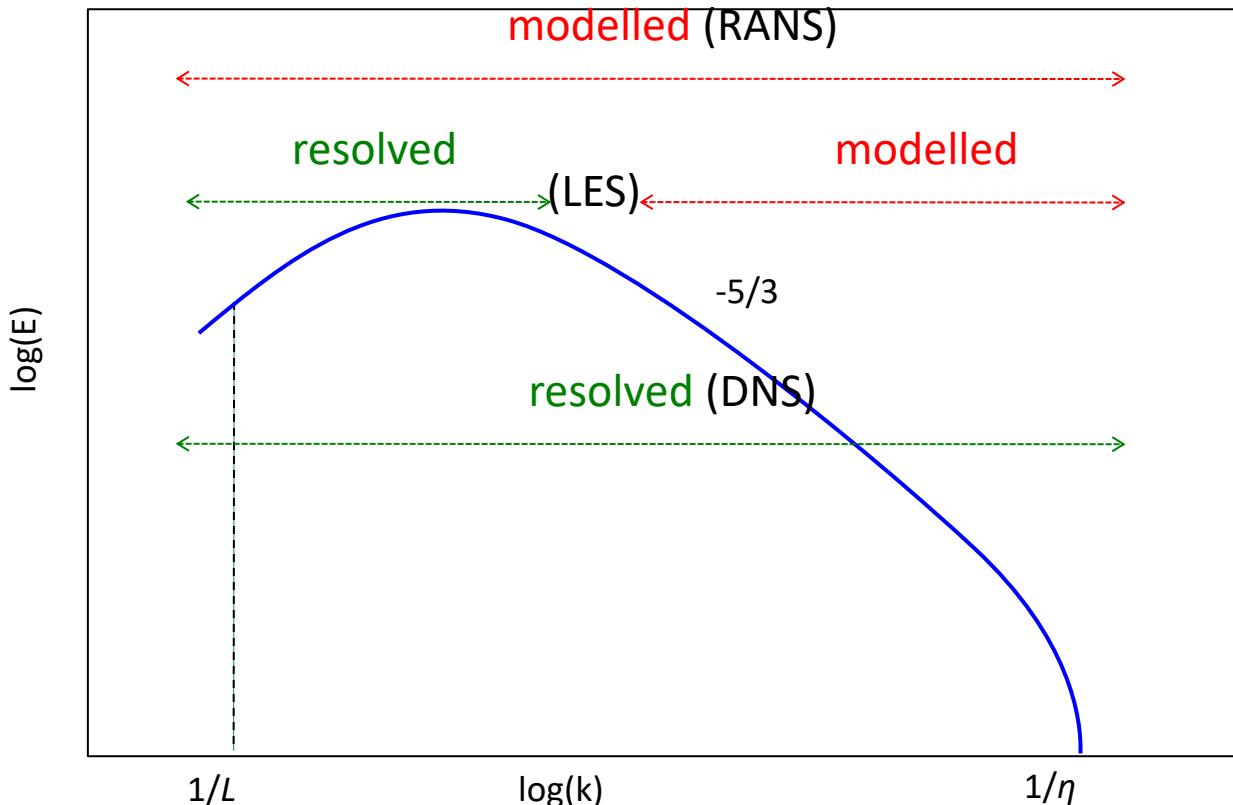
Simulating Turbulent Flows

$$\frac{\partial \langle \phi \rangle}{\partial t} = - \left(\overrightarrow{\langle u \rangle} \cdot \nabla \langle \phi \rangle \right) - (\nabla \cdot \langle j_\phi \rangle) + \dots$$

Direct Numerical Simulations (DNS): Resolve all scales.

Reynolds Averaged Navier Stokes (RANS): Model statistics of all scales (solve averaged form of NS equations).

Large Eddy Simulations (LES): Resolve 'energy containing' scales, model (statistics) of smaller scales.



$$L/\eta \approx Re^{3/4}$$

$$\tau_L/\tau_\eta \approx Re^{1/2}$$

$$cost \approx Re^{11/4}$$

Simulating Turbulent Flows with reactions

$$\frac{\partial \phi}{\partial t} = -(\vec{u} \cdot \nabla \phi) - (\nabla \cdot j_\phi) + \omega_\phi$$

Direct Numerical Simulations (DNS): Resolve all scales.

Reynolds Averaged Navier Stokes (RANS): Model statistics of all scales (solve averaged form of NS equations).

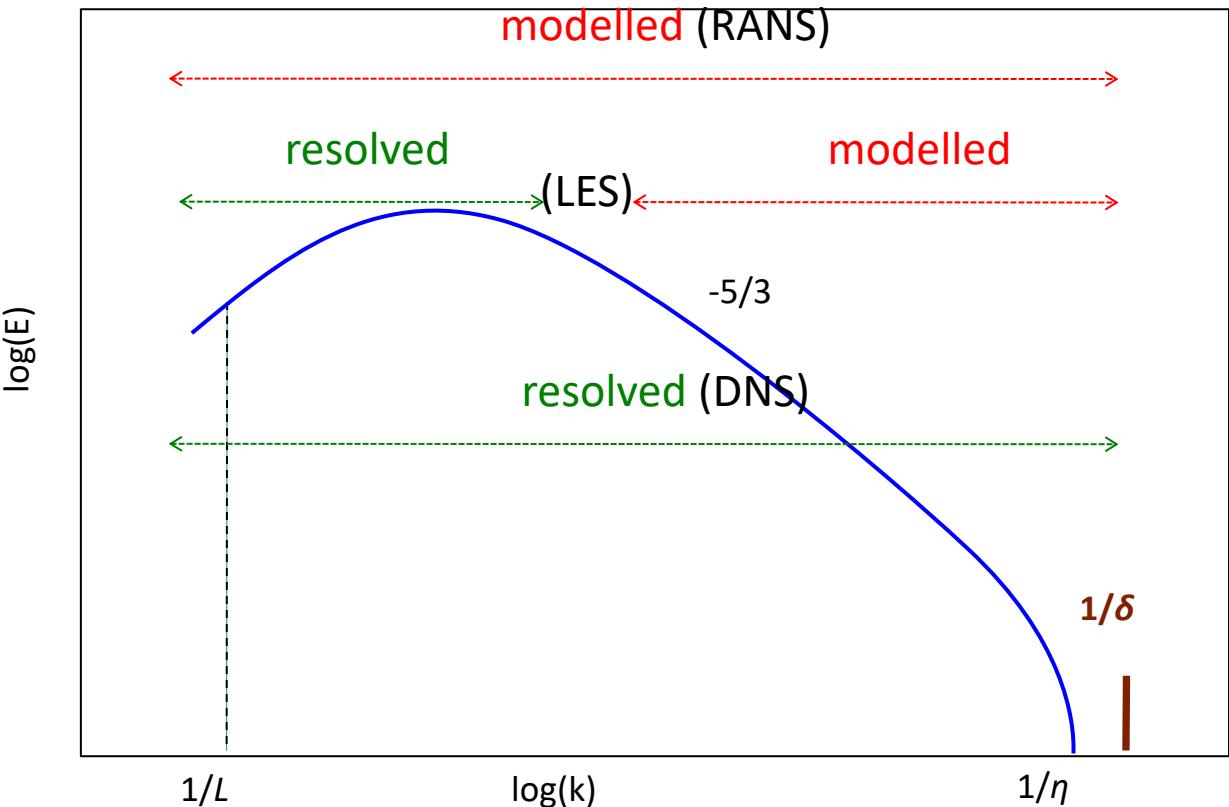
Large Eddy Simulations (LES): Resolve 'energy containing' scales, model (statistics) of smaller scales.

Chemical reactions compound the difficulties:

Introduce finer space-time scales.

Additional physics to compute.

Increase the PDE dimensionality; $\phi \sim O(100)$.



$$L/\eta \approx Re^{3/4}$$

$$\tau_L/\tau_\eta \approx Re^{1/2}$$

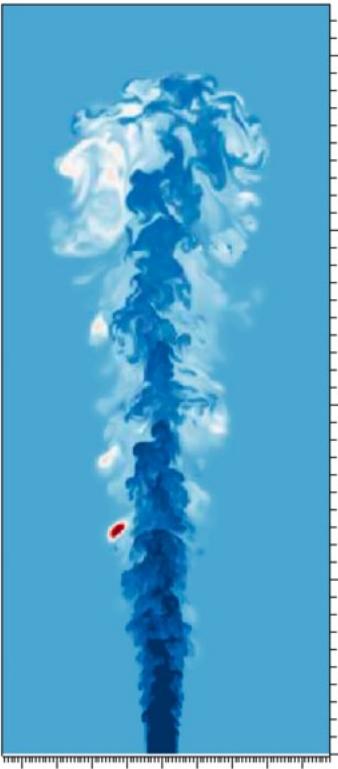
$$\text{cost} \approx Re^{11/4} \times (\eta/\delta)^3$$

Turbulent Combustion DNS is an Exascale (+) Problem

- Conditions achieved at petascale: $Re \approx 10^4$.
- Typical device-relevant conditions:
 - IC engines, $Re \approx 10^5$.
 - Gas-turbine engines, $Re \approx 10^6$.
- DNS cost scaling* $\sim Re^{11/4}$
- An order of magnitude increase in Re requires 560x more computing resources

Turbulent Combustion DNS is an Exascale (+) Problem

- Conditions achieved at petascale: $Re \approx 10^4$.
- Typical device-relevant conditions:
 - IC engines, $Re \approx 10^5$.
 - Gas-turbine engines, $Re \approx 10^6$.
- DNS cost scaling* $\sim Re^{11/4}$
- An order of magnitude increase in Re requires 560x more computing resources



- Combustion-Pele part of EXASCALE COMPUTING PROJECT
- PI, Jackie Chen (SNL, 08351). Co-PIs at LBL, NREL, ORNL, ANL, MIT.
- Advances on multiple fronts to attain a target problem: (1) performance portability to exascale architectures, (2) new load balancing and communication strategies, (3) communication avoiding linear solvers, (4) asynchronous execution, (5) in-situ analytics

Pele Exascale Target Problem

First-principles (DNS) and near-first principles (DNS/LES hybrids) simulations of the relevant processes in a low temperature reactivity controlled compression ignition (RCCI) internal combustion engine. The relevant processes include turbulence, mixing, spray vaporization, low-temperature ignition, flame propagation, and soot/radiation. As part of 10yr roadmap perform a hybrid LES/DNS simulation of a sector from a gas turbine for power generation burning hydrogen enriched natural gas.

Needs/Requirements

- Data management and organization.
- Surrogates, Reduced-order-models:
 - For unresolved scales.
 - For unresolved physics.
- Low-dimensional manifolds: identification, parametrization.
- Statistical inference (distributions, joint/conditional moments).
- Event/phenomena detection.
- Uncertainty quantification.

Role of Statistical Analyses and Learning

Needs/Requirements

- Data management and organization.
- Surrogates, Reduced-order-models:
 - For unresolved scales.
 - For unresolved physics.
- Low-dimensional manifolds: identification, parametrization.
- Statistical inference (distributions, joint/conditional moments).
- Event/phenomena detection.
- Uncertainty quantification.

Challenges

- Wide range of scales: observables span ~ 10 decades.
- Large dimensionality of state space (100s of features).
- Non-Gaussian multi-variate statistics; not always parametrizable.
- Robustness and Stability of reduced representations.
- Boundary conditions are integral part of the physics.

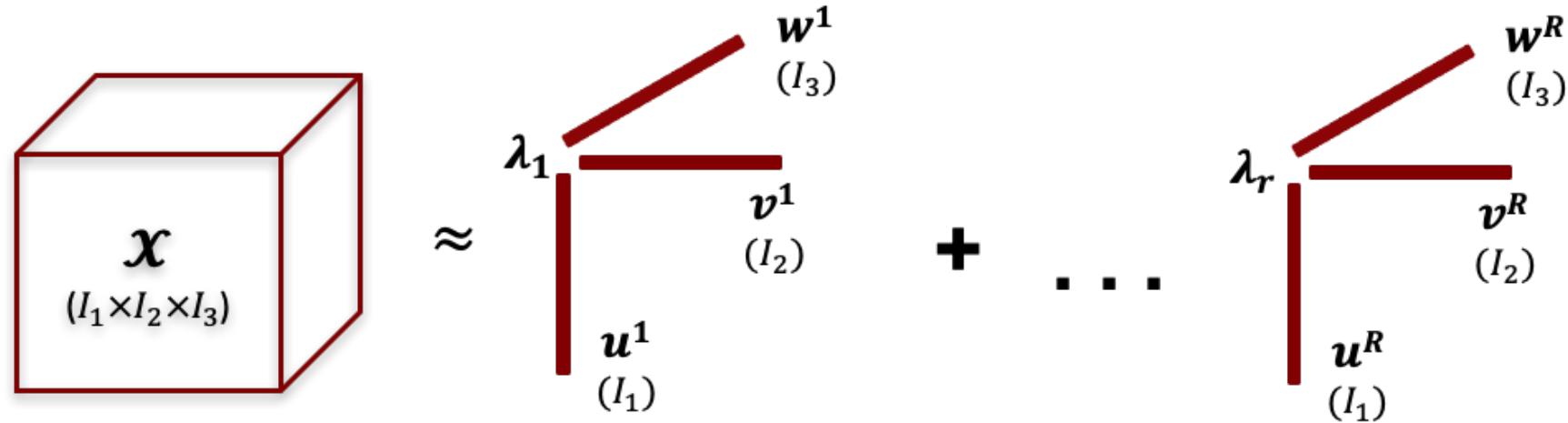
Outline

- 1. Turbulent flows with reactions.**
 - Relevance.
 - Exascale computing.
 - Statistical analyses and learning.
- 2. Tensor decompositions.**
 - Types & applications.
 - Use case 1: Data compression.
 - Use case 2: Rare event detection.

Tensors Are Versatile For High-Dimensional Learning

- Tensors are multidimensional (multiway) arrays; higher-order generalizations of vectors/matrices.
 - Order: Number of dimensions (e.g. a matrix is order-2 tensor).
 - Mode: A specific dimension (e.g. in a matrix rows are mode-1, columns are mode-2).
- Tensor decompositions – linear algebra in dimensions > 2 .
 - Many formats in literature ([Kolda & Bader, 2009, “Tensor Decompositions and Applications”, SIAM Review, vol.51](#)).
 - Not all concepts of matrix linear algebra generalize (e.g. rank, existence, uniqueness).
- Versatile for learning in high-dimensional settings:
 - Pattern identification.
 - Parameter importance.
 - Surrogates/Reduced representations.....
- Long history (~20yrs) of foundational math research at Sandia (lead by Tammy Kolda, others).
- Successful in applying to national security domains; recently extended for scientific data and HPC.

Canonical Polyadic (CP) Decomposition



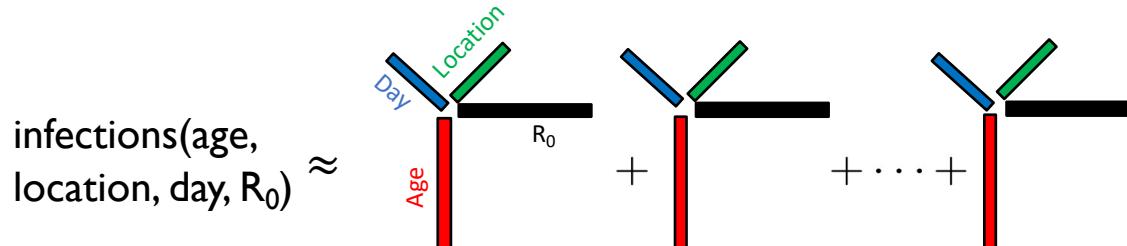
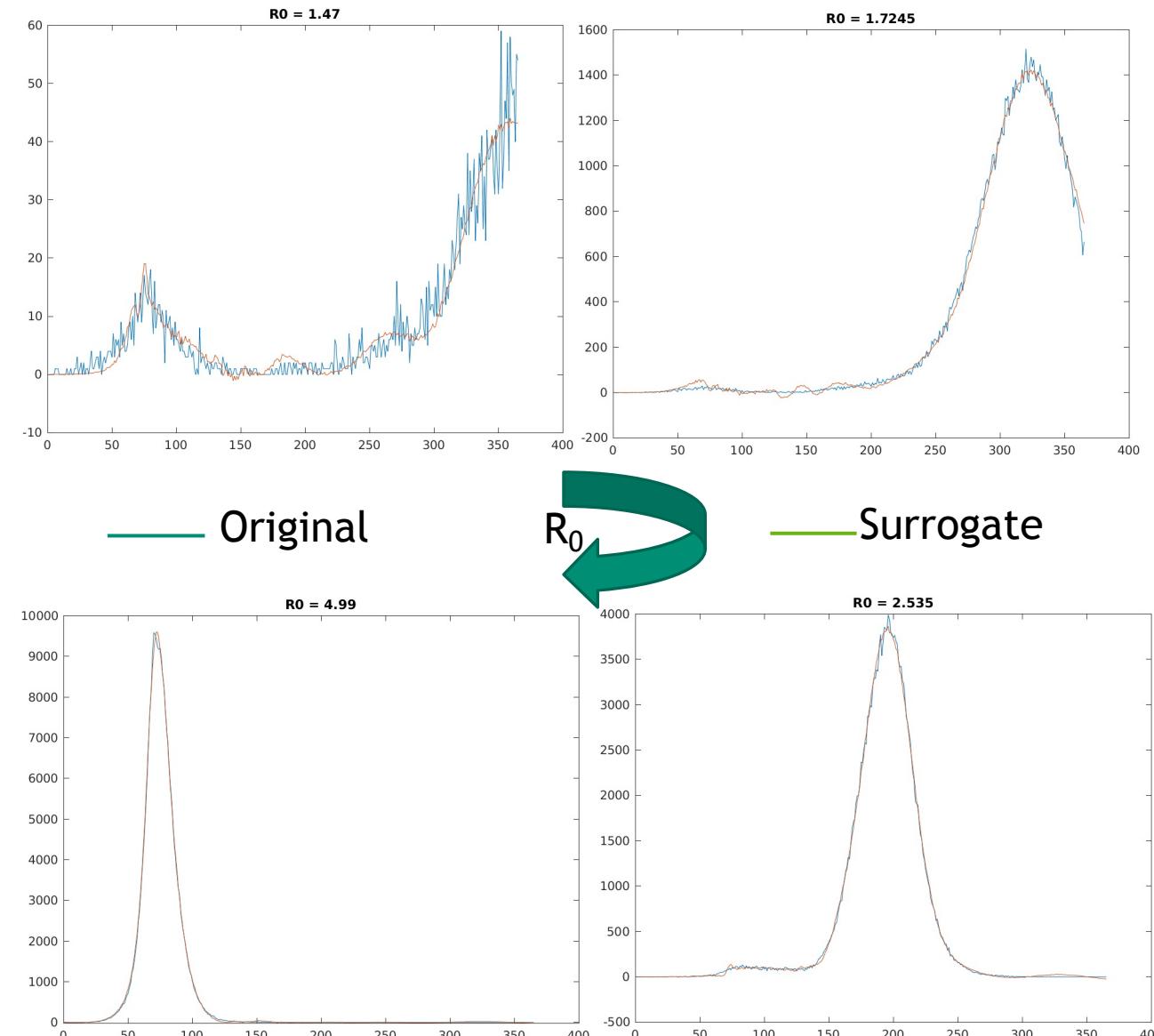
$$\mathcal{X} = \sum_{r=1}^R \mathbf{u}_r \odot \mathbf{v}_r \odot \mathbf{w}_r$$

$$x_{ijk} \approx \sum_{r=1}^R \lambda_r u_{ir} v_{jr} w_{kr}$$

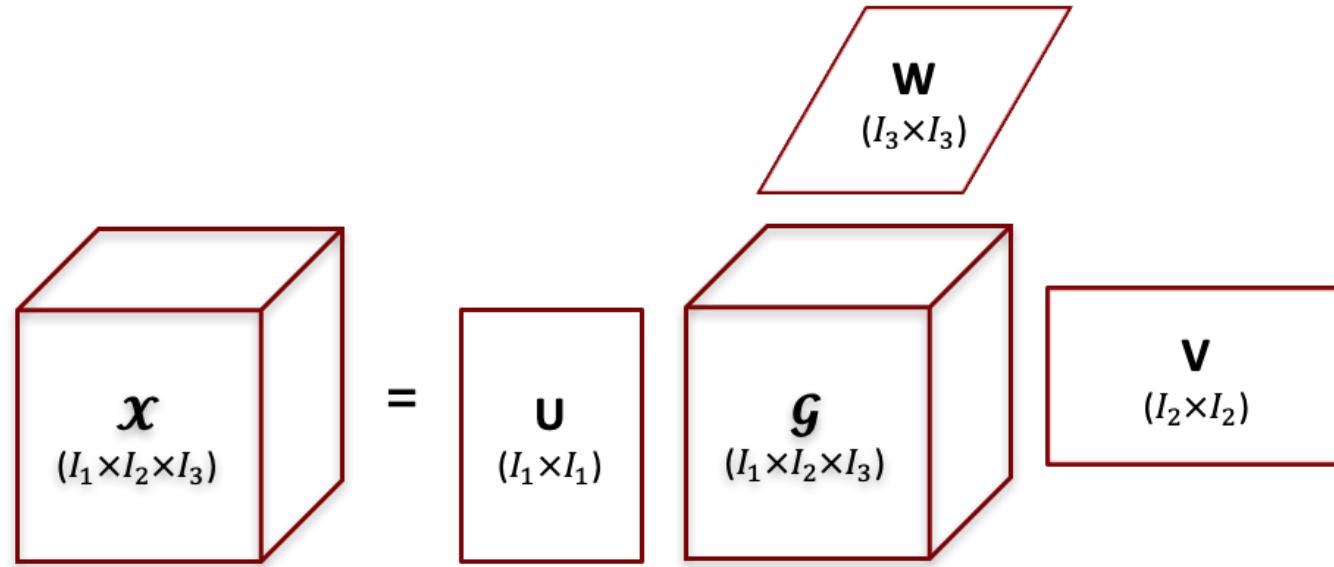
- Tensor approximated as “sum of R outer product of vectors”.
- Compact, interpretable, computationally inexpensive. Complexity $\sim O(Rd)$.
- Recently generalized to different underlying distributions, loss functions ([Hong, Kolda, Duersch, 2020, SIAM Rev](#)).

Applications of CP Decomposition

- SOLSTICE: DoD Advanced Computing Initiative.
 - GCP for decompositions of geographically distributed sensor data (algorithms and HPC software).
 - Sandia: Eric Phipps(PI), Drew Lewis, Rich Field, Richard Barrett, Kyle Gilman, Tammy Kolda (former PI).
GeorgiaTech: Rich Vuduc, Koby Hayashi, Chunxing Yin.
- ExaLearn: Co-design Center for Machine Learning Technologies.
 - Tensor decompositions for scientific data (algorithms and HPC software).
 - Sandia: Michael Wolf (PI), Eric Phipps, Hemanth Kolla, Ben Cobb (intern, GaTech), Zitong Li (intern, Wake Forest).
- Example: CP surrogate of epidemiological data



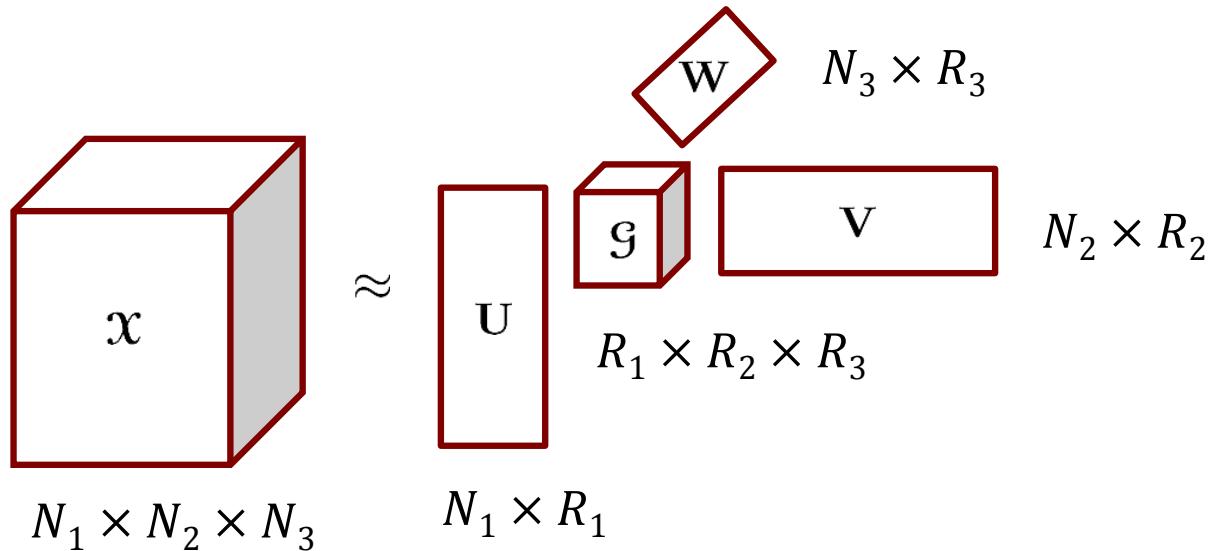
Higher-order Singular Value Decomposition (HOSVD)



$$\mathcal{X} = \mathbf{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W}$$

- Multilinear generalization of matrix SVD ([De Lathauwer, De Moor, Vandewalle, 2000, SIAM J. Matrix Anal. Appl., 21\(4\)](#)).
- \mathbf{U} , \mathbf{V} , \mathbf{W} : ortho-normal bases of corresponding mode-spaces (left singular vectors of matricized tensor).
- Computed as matrix SVD by unfolding along each mode.

Tucker Decomposition: Truncated HOSVD



$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W}$$

$$\|\mathcal{X} - (\mathcal{G} \times_1 \mathbf{U} \times_2 \mathbf{V} \times_3 \mathbf{W})\| \leq \epsilon \|\mathcal{X}\|$$

$$\|\mathcal{X}\|^2 - \|\mathcal{G}\|^2 \leq \epsilon^2 \|\mathcal{X}\|^2$$

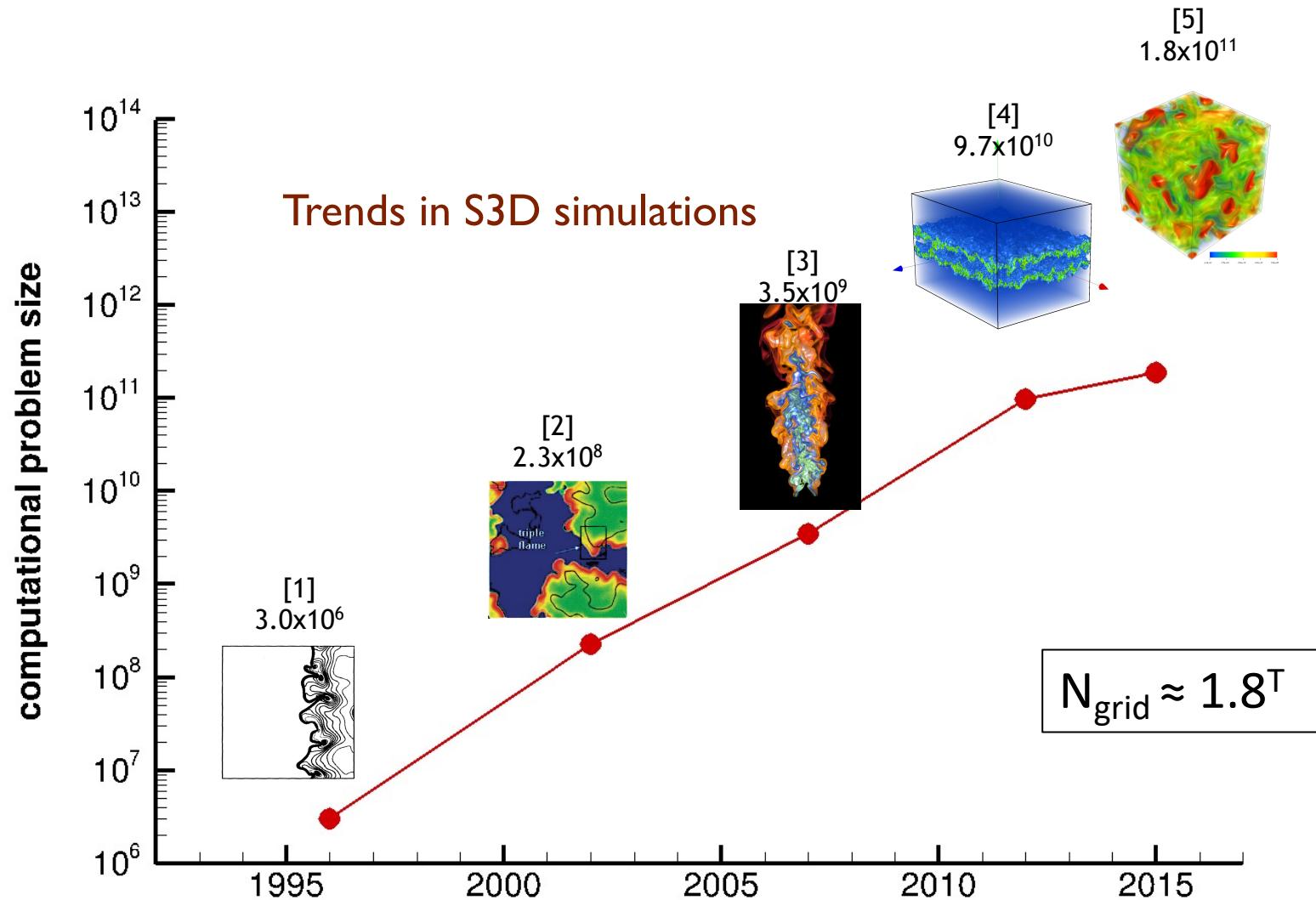
$$x(i_1, i_2, i_3) \approx \sum_{j_1, j_2, j_3} g(j_1, j_2, j_3) u(i_1, j_1) v(i_2, j_2) w(i_3, j_3)$$

- Approximation that exploits low-rank structure along each mode.
- $\mathbf{U}, \mathbf{V}, \mathbf{W}$: orthogonal matrices spanning high variance subspaces (leading left singular vectors).
- Model complexity $\sim O(R^d)$. But still provides large compression $\sim O((N/R)^d)$.

Outline

- I. Turbulent flows with reactions.**
 - Relevance.
 - Exascale computing.
 - Statistical analyses and learning.
- 2. Tensor decompositions.**
 - Types & applications.
 - **Use case 1: Data compression.**
 - **Use case 2: Rare event detection.**

Scientific Data Volumes are Untenable



[1] T. Echekki, J.H. Chen, *Comb. Flame*, 1996, vol. 106.

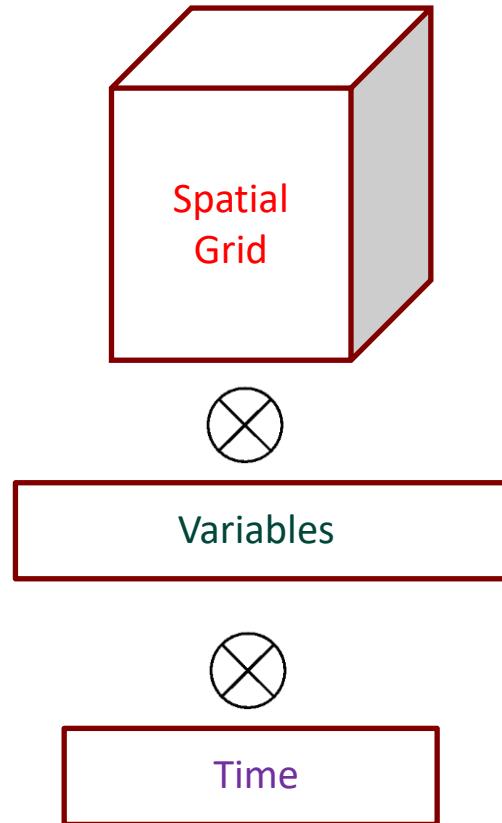
[2] T. Echekki, J.H. Chen, *Proc. Comb. Inst.*, 2002, vol. 29.

[3] R. Sankaran, E.R. Hawkes, J.H. Chen, *Proc. Comb. Inst.*, 2007, vol. 31.

[4] E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, *Comb. Flame*, 2012 (online).

[5] Gordon Bell submission, 2015

Tucker Compression of Combustion Data



	Original	$\epsilon = 10^{-4}$	$\epsilon = 10^{-2}$
HCCI	672×672 x 32 x 626	330×310 x 31 x 199 (14 X)	111×105 x 22 x 46 (760 X)
SP	$500 \times 500 \times 500$ x 11 x 400	$95 \times 129 \times 125$ x 7 x 125 (410 X)	$30 \times 38 \times 35$ x 6 x 11 (20000 X)
JICF	$1500 \times 2080 \times 1500$ x 18 x 10	$424 \times 387 \times 261$ x 18 x 10 (110 X)	$90 \times 61 \times 48$ x 13 x 6 (40000 X)

TuckerMPI: Scalable Parallel Implementation

- C++/MPI library for distributed data compression ([Ballard, Klinvex, Kolda, 2020, ACM Trans. Math. Soft., 46\(2\)](#))
- Optimizing data layouts and communication for key kernels: modewise unfolding (matricization), Gram matrix computation, Eigensolve, Tensor×Matrix
- Open repository <https://gitlab.com/tensors/TuckerMPI>.
- Two algorithm variants:
 - Sequentially Truncated HOSVD: Matricize→SVD→Truncate/Reduce (backup slide)
 - Higher Order Orthogonal Iteration (HOOI): Iterate with ST-HOSVD as initial guess, until convergence ([Austin, Ballard, Kolda, IPDPS, 2016](#)).
- Partial reconstruction of tensor subset. Effective for data dissemination.

TuckerMPI timing profiles

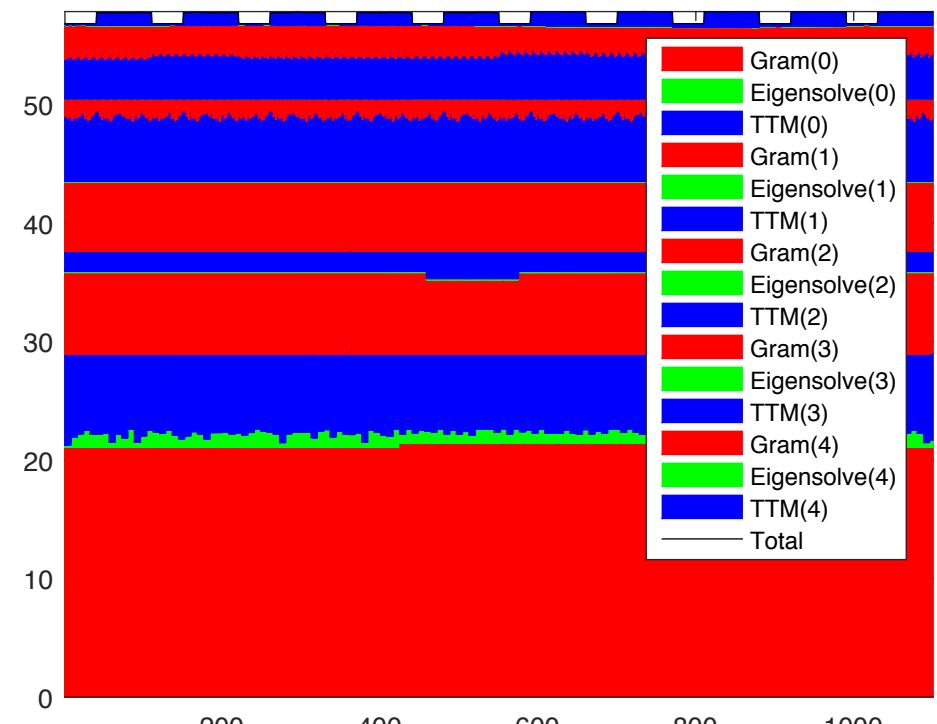


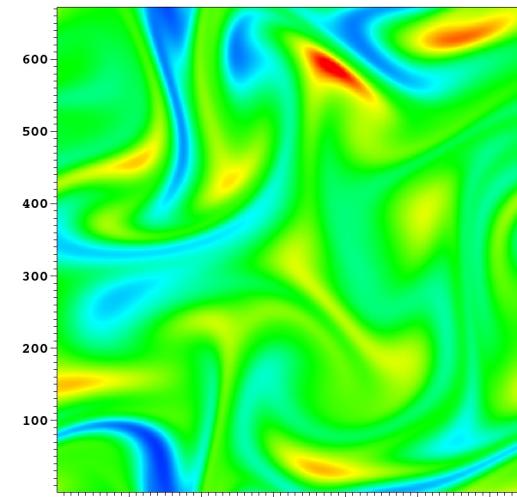
Image Courtesy: Alicia Klinvex

- HCCI data set, 4.4TB→10GB (410X).
- 1100 processors.
- Total time of 55s.

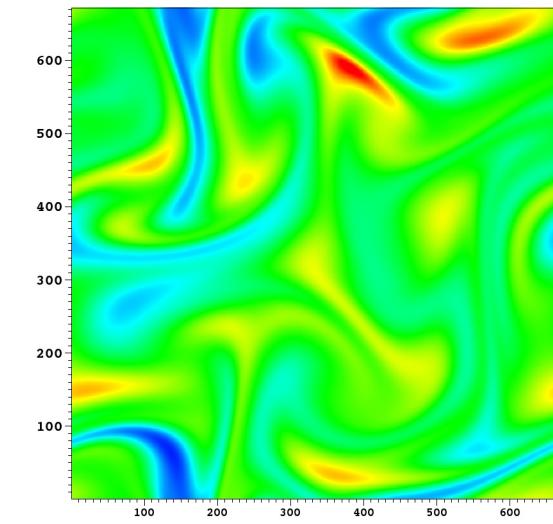
Tucker Compression: Error Distribution



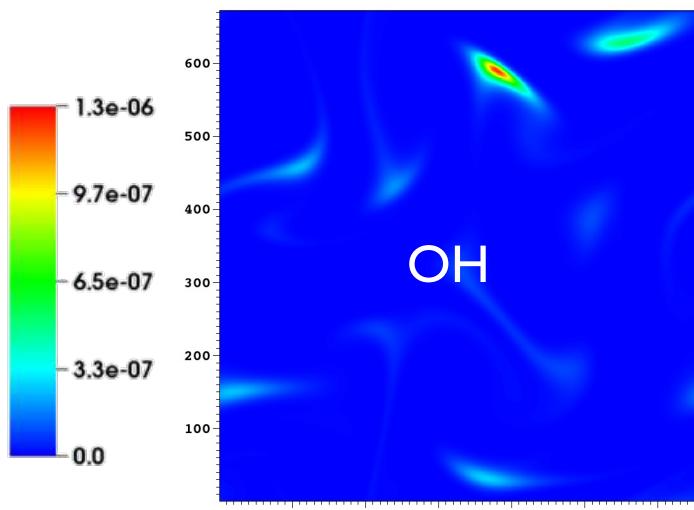
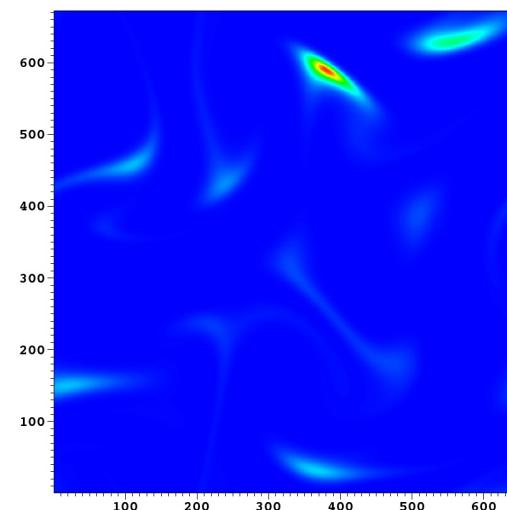
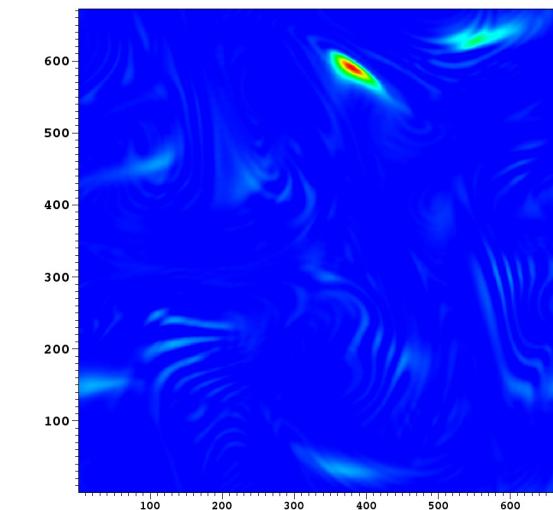
Original

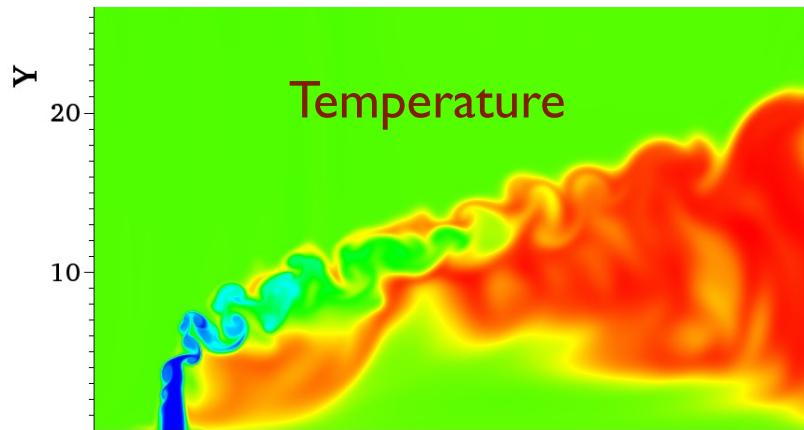
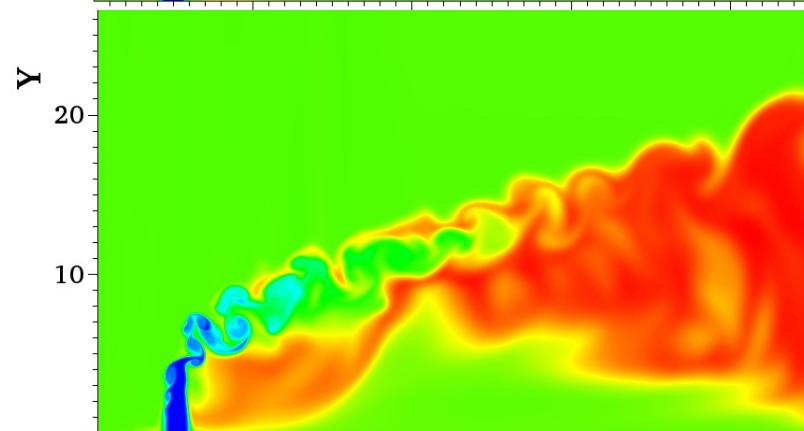
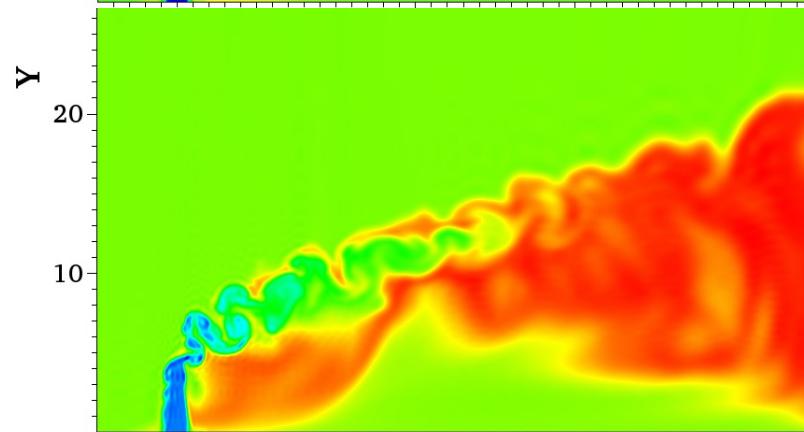


$\epsilon = 10^{-4}$
(14X)



$\epsilon = 10^{-2}$
(760X)





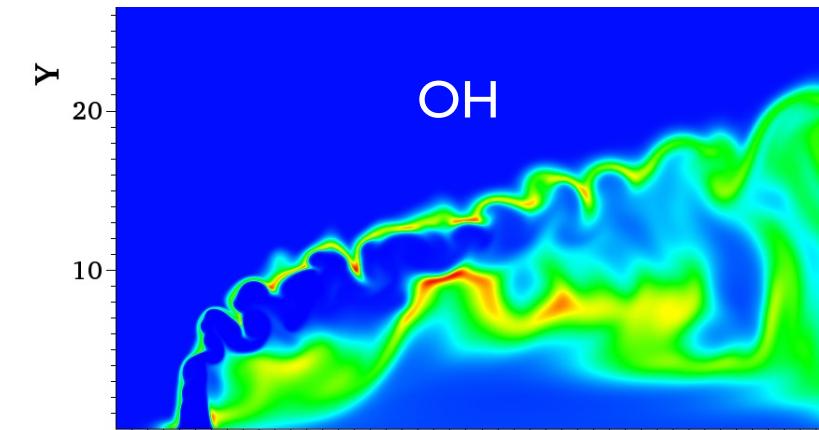
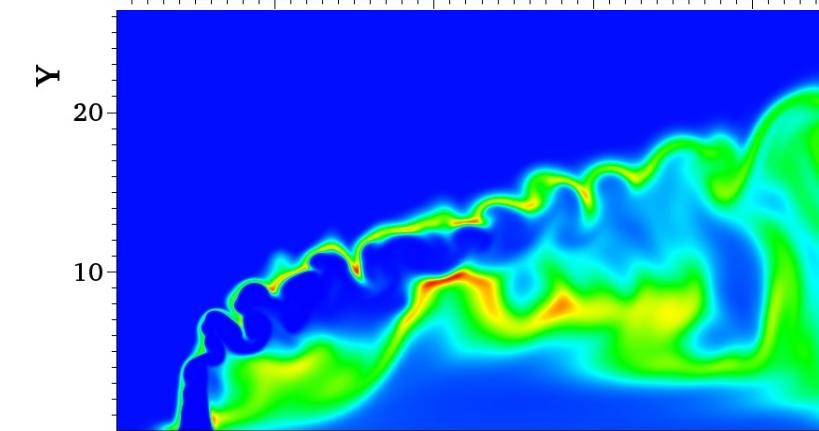
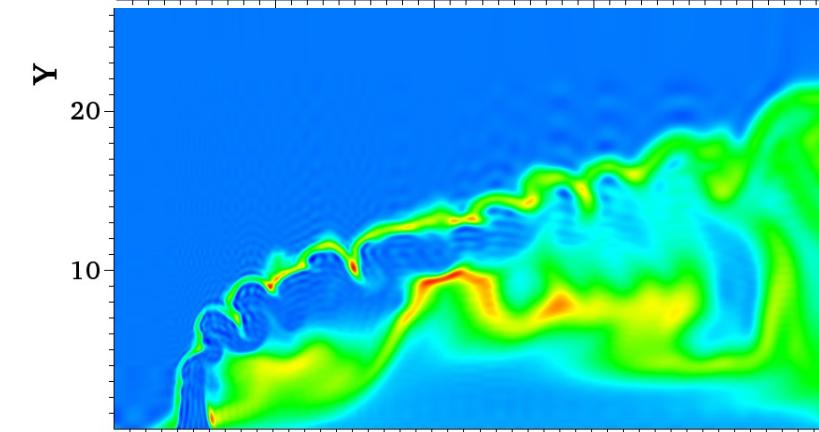
Original

$$\epsilon = 10^{-4}$$

(110X)

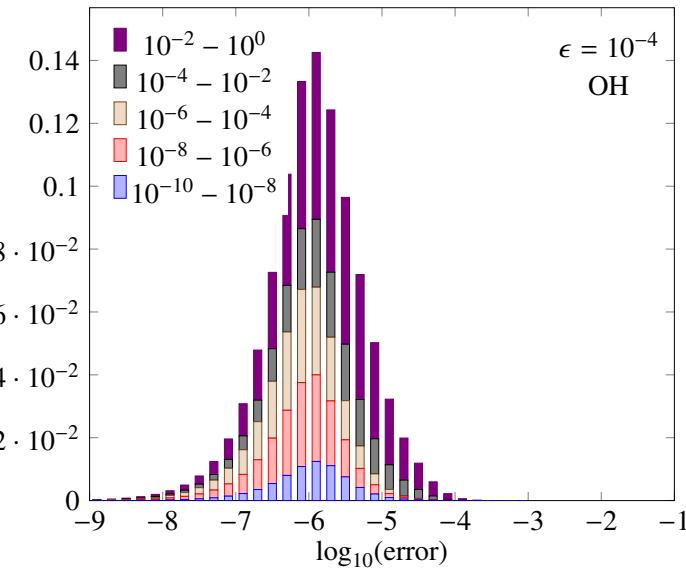
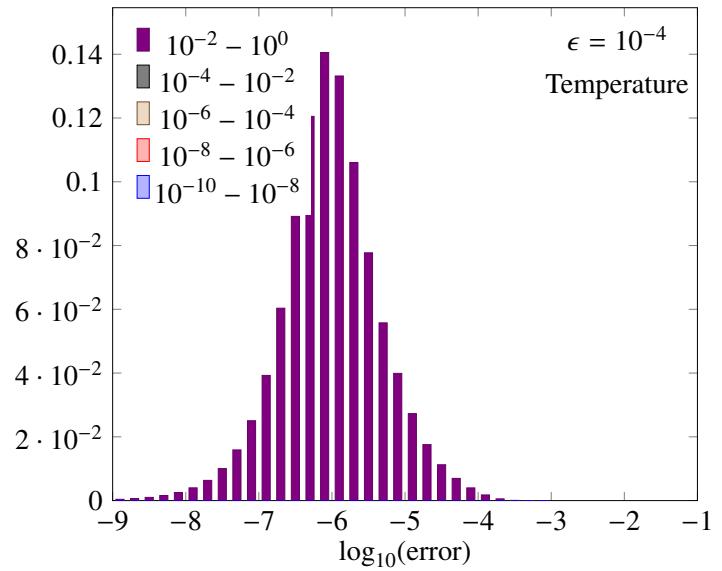
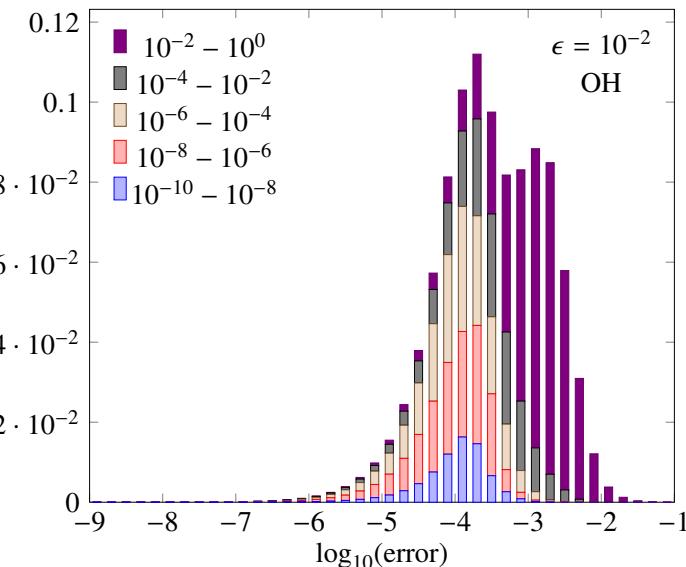
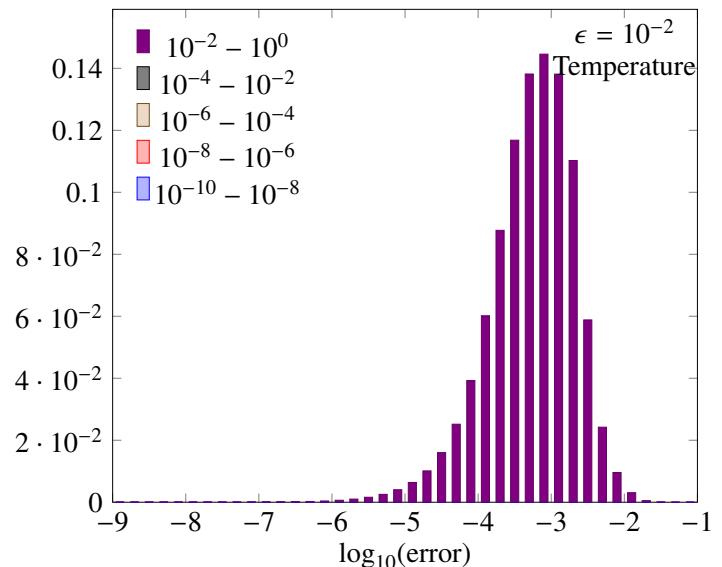
$$\epsilon = 10^{-2}$$

(40000X)



Tucker Compression: Error Distribution

- Elementwise error guarantees are difficult.
- Elements with small absolute values have large relative errors.
- “Minor” variables are bound to be more erroneous.



1. Turbulent flows with reactions.

- Relevance.
- Exascale computing.
- Statistical analyses and learning.

2. Tensor decompositions.

- Types & applications.
- Use case 1: Data compression.
- Use case 2: Rare/Anomalous event detection.

Problem Statement & Proposed Solution

Robust in-situ detection of rare events in distributed scientific simulations

Challenge

- Scientific data: continuous smoothly varying multi-variate non-Gaussian data.
- Rare events: group of physically valid extreme valued samples; hard to specify universal thresholds.
- In-situ, distributed: computational expense, scalability are important.

Key Idea

- Information of rare events is present in higher order joint moments, e.g. co-kurtosis.
- Identify rare events based on a “distinct” signature of joint moments.

Identification currently based on ad-hoc thresholds

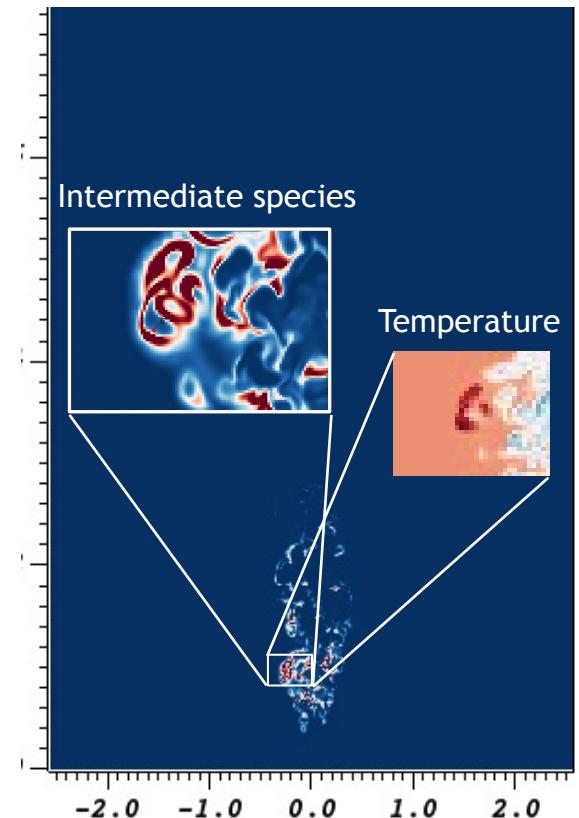


Image Courtesy: Martin Rieth, Marco Arienti, Matt Larsen

Information In Higher-Order Statistical Moments

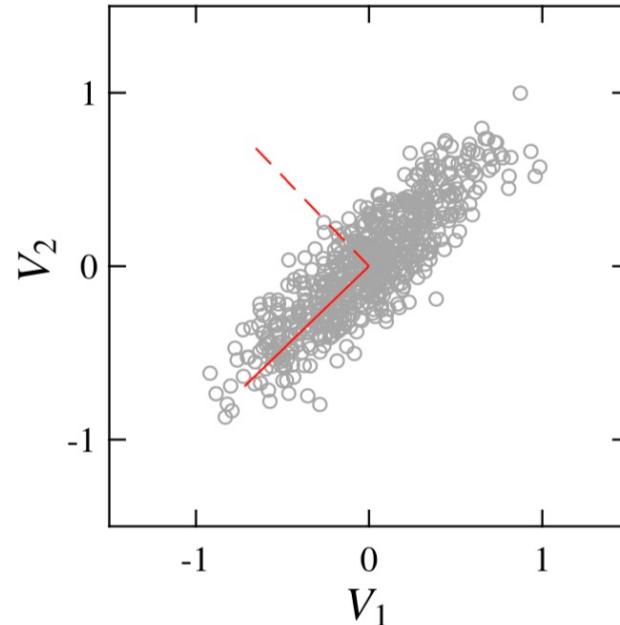
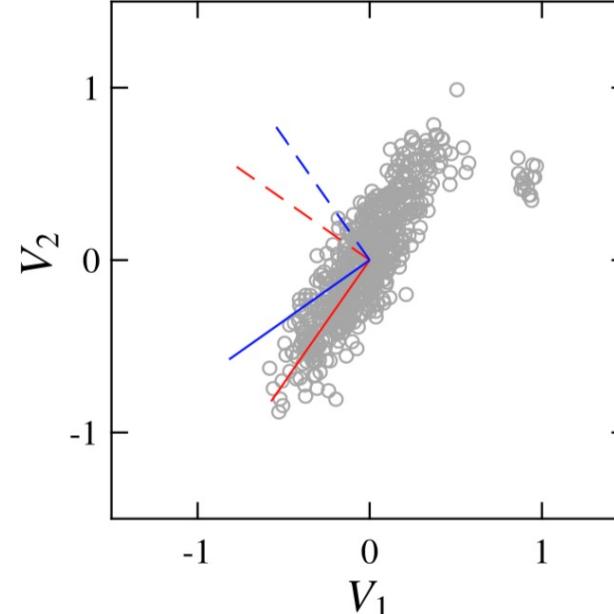
For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)



Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Information In Higher-Order Statistical Moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4th-order tensor)

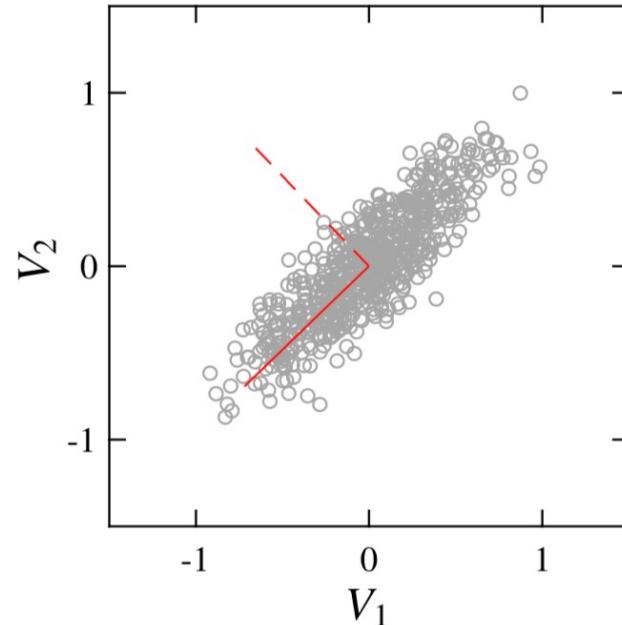
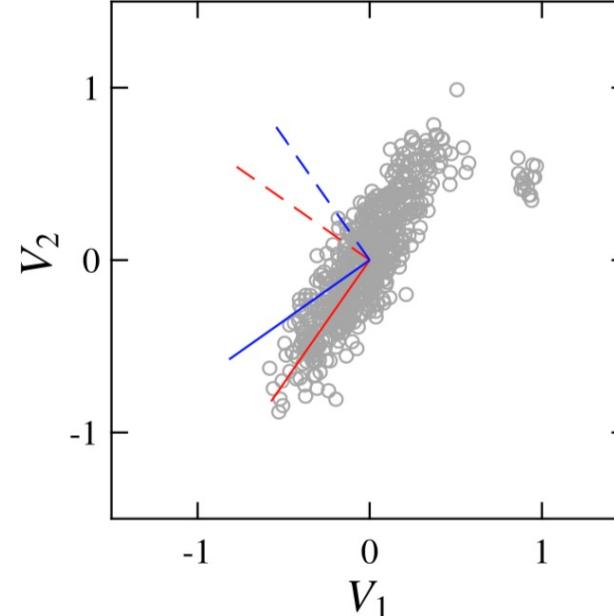
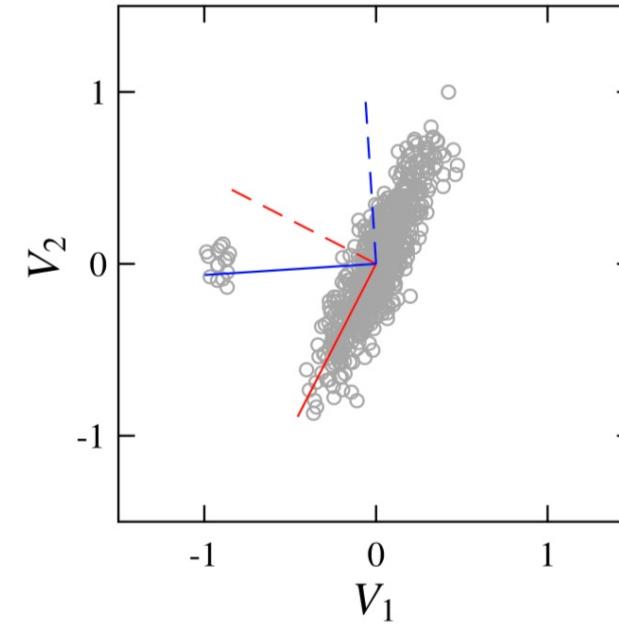


Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: 'Principal Kurtosis Vectors'. Obtained through HOSVD of co-kurtosis tensor.

Information In Higher-Order Statistical Moments

PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

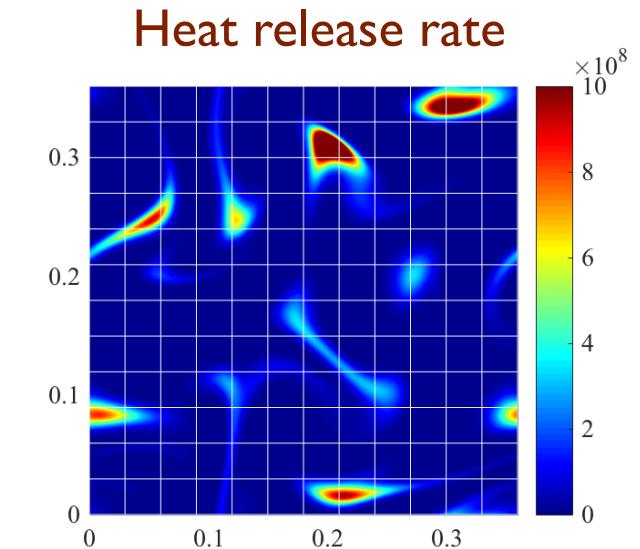


Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

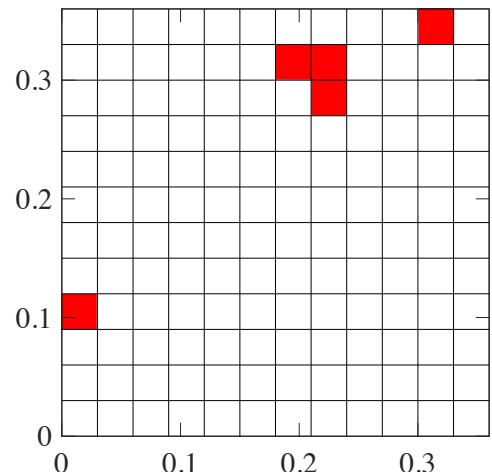
Blue: 'Principal Kurtosis Vectors'. Obtained through HOSVD of co-kurtosis tensor. (backup: connection to ICA)

Formalizing Distributed Rare Event Detection

- Compute Principal Kurtosis Vectors on each data partition (e.g. processor).
- Compare the vectors amongst partitions in space and/or time:
 - Proposed Feature moment metrics (fraction of the kurtosis attributable to each variable) to quantify orientation of Kurtosis vectors.
 - FMMs sum to unity, akin to discrete distribution.
 - Divergence metric (Hellinger distance) to compare across partitions.
- Most computation (cokurtosis tensor and principal vectors) is local.
- Communication only of a small vector of numbers (FMMs).



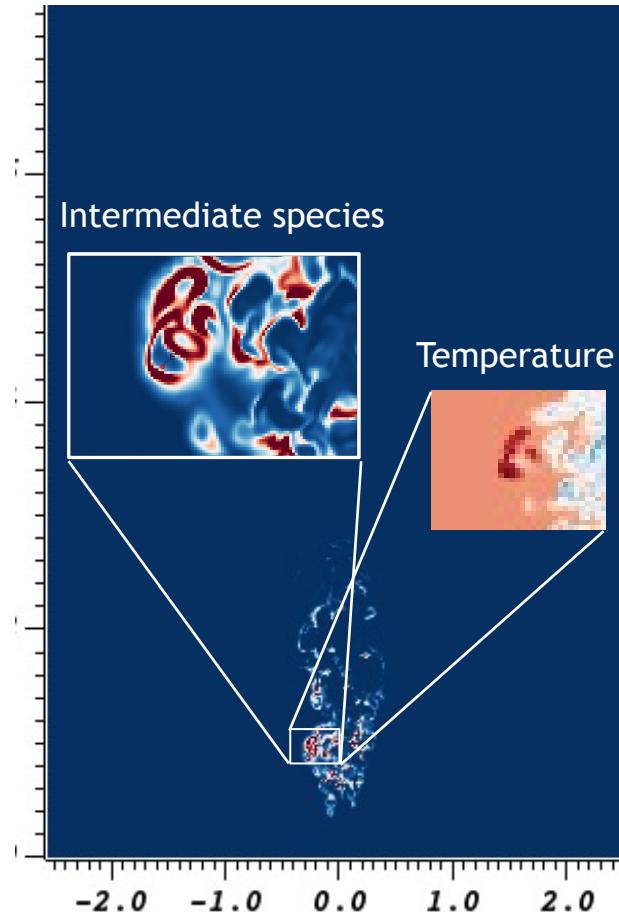
Anomalous partitions



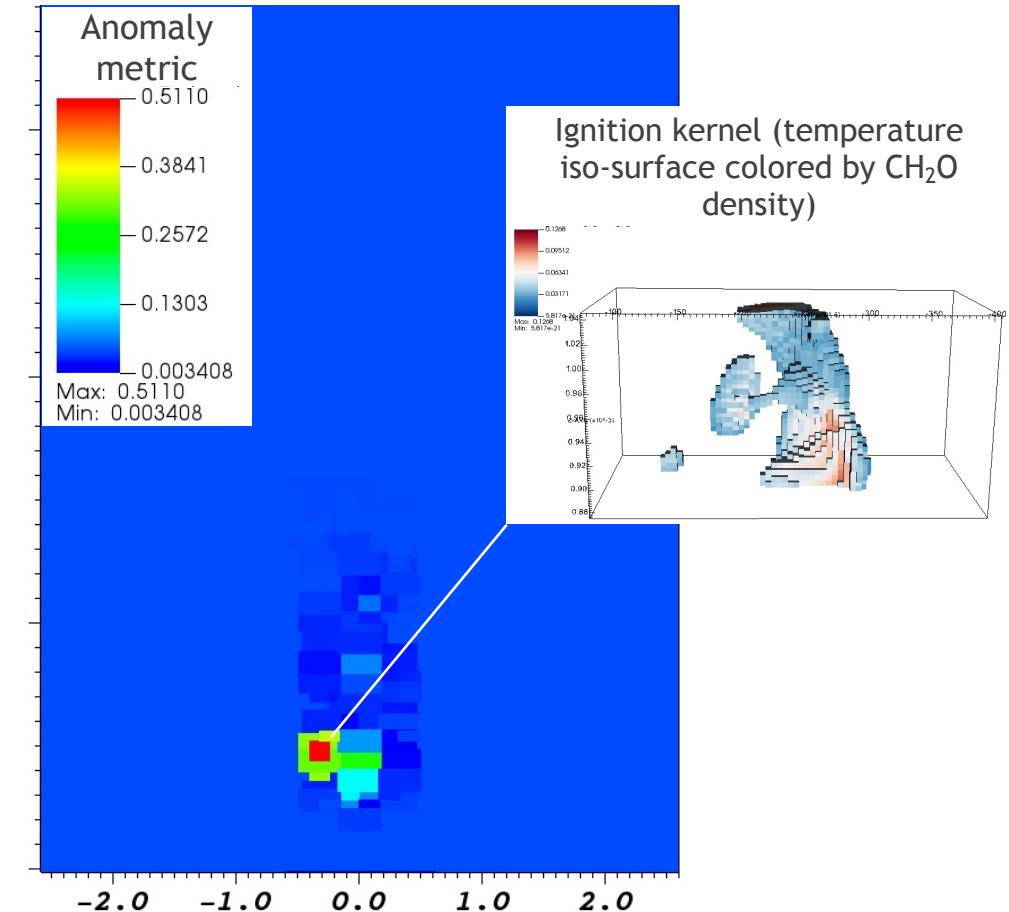
In-situ Deployment as ECP Cross-Cut Effort

- ExaLearn: GenTen, Software for generalized Tensor Decompositions.
- ALPINE: Ascent, flyweight in situ visualization and analysis infrastructure.
- Pele: PeleLM, adaptive-mesh low Mach number hydrodynamics code for reacting flows

Identification currently based on ad-hoc thresholds

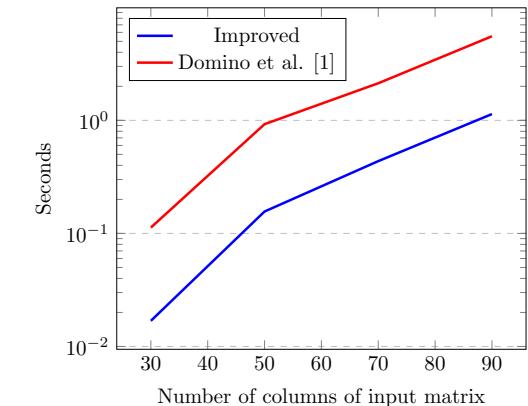
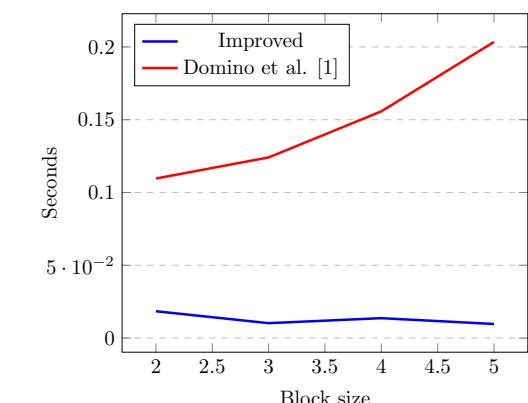


Validation: co-kurtosis tensor-based unsupervised anomaly detection



Ongoing Performance Optimizations

- Higher-order joint moment/cumulant tensors can be expensive:
 - For a data set with N vars, co-kurtosis tensor is N^4 elements.
 - Each element is reduction over large number of samples.
- Idea: Leverage symmetry
 - Number of unique elements is $\binom{N+3}{4}$
 - Efficient computation of hyper-triangular elements in sub-blocks: [Domino, Gawron, Pawela, 2018, SIAM J. Sci. Comp., 40\(3\)](#).
 - We have identified further optimizations that are cache friendly, give $\sim 5\times$ speedup (work by summer intern Zitong Li, Wake Forest).



Thank You

Algorithm: ST-HOSVD

1. Choose \mathbf{U} with projection rank R_1 such that: $\|\mathbf{X}_{(1)}\|^2 - \|\mathbf{U}'\mathbf{X}_{(1)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{X}_{(1)}\mathbf{X}_{(1)}'$
 - b) Use eigendecomposition of $N_1 \times N_1$ matrix to choose R_1
 - c) Set $\mathbf{U} = R_1$ leading eigenvectors of gram matrix
2. Shrink to size $R_1 \times N_2 \times N_3$: $\mathbf{Y} = \mathbf{X} \times_1 \mathbf{U}'$
3. Choose \mathbf{V} with projection rank R_2 such that: $\|\mathbf{Y}_{(2)}\|^2 - \|\mathbf{V}'\mathbf{Y}_{(2)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{Y}_{(2)}\mathbf{Y}_{(2)}'$
 - b) Use eigendecomposition of $N_2 \times N_2$ matrix to choose R_2
 - c) Set $\mathbf{V} = R_2$ leading eigenvectors of gram matrix
4. Shrink to size $R_1 \times R_2 \times N_3$: $\mathbf{Z} = \mathbf{Y} \times_2 \mathbf{V}'$
5. Choose \mathbf{W} with projection rank R_3 such that: $\|\mathbf{Z}_{(3)}\|^2 - \|\mathbf{W}'\mathbf{Z}_{(3)}\|^2 \leq \epsilon^2 \|\mathbf{X}\|^2/3$
 - a) Compute gram matrix: $\mathbf{Z}_{(3)}\mathbf{Z}_{(3)}'$
 - b) Use eigendecomposition of $N_3 \times N_3$ matrix to choose R_3
 - c) Set $\mathbf{W} = R_3$ leading eigenvectors of gram matrix
6. Shrink to size $R_1 \times R_2 \times R_3$: $\mathbf{G} = \mathbf{Z} \times_3 \mathbf{W}'$

Formalizing anomaly detection

- Define Feature Moment (Kurtosis) Metric, FMM:
 - Quantifies contribution of feature, i , to the overall moment.

$$F_i^{j,n} = \frac{\sum_{k=1}^{N_f} \lambda_k (\hat{e}_i \cdot \hat{v}_k)^2}{\sum_{k=1}^{N_f} \lambda_k}$$

- FMMs sum to unity (over i): a.k.a, a distribution.
- *Anomalous events result in change the FMM distribution.*
- Use f -divergence metrics to quantify the change, signal an anomaly.

Independent Component Analysis (ICA)

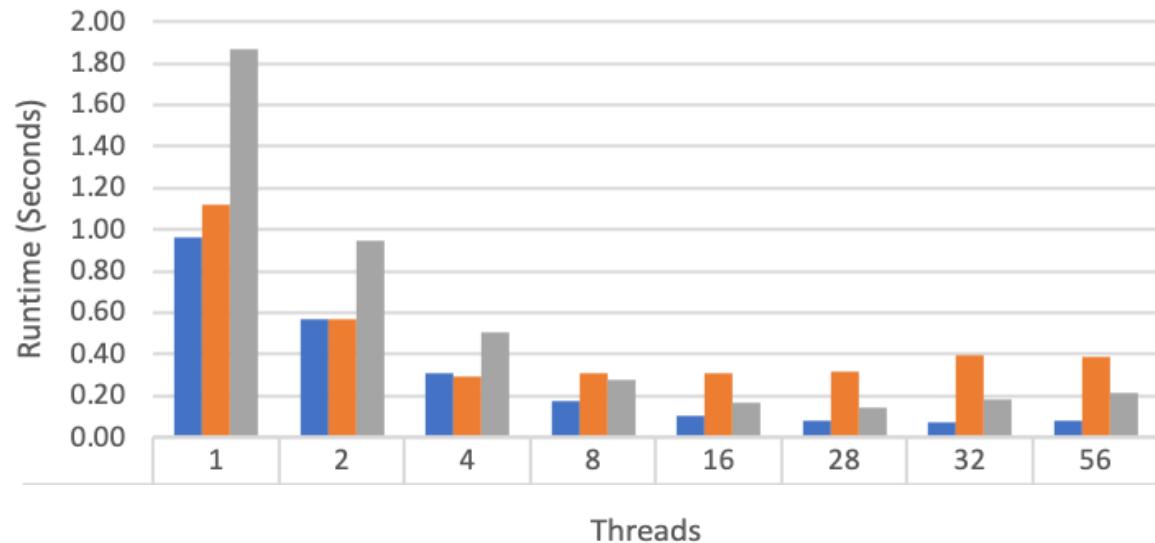
- Identifies non-Gaussian independent random variables that are linearly mixed:
 - $\mathbf{x} := \mathbf{As} + \mathbf{n}$. (\mathbf{x} -observed vector; \mathbf{s} -independent sources, \mathbf{n} -Gaussian i.i.d noise)
- Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010, Anandkumar *et al.* 2014)
 - $\mathcal{M}_4 := \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] - \mathbb{E}[\mathbf{x}_{i1}\mathbf{x}_{i2}] \mathbb{E}[\mathbf{x}_{i3}\mathbf{x}_{i4}] - \mathbb{E}[\mathbf{x}_{i1}\mathbf{x}_{i3}] \mathbb{E}[\mathbf{x}_{i2}\mathbf{x}_{i4}] - \mathbb{E}[\mathbf{x}_{i1}\mathbf{x}_{i4}] \mathbb{E}[\mathbf{x}_{i2}\mathbf{x}_{i3}]$
 - $\mathcal{M}_4 = \sum_i \kappa_{s_i} a_i \otimes a_i \otimes a_i \otimes a_i$ (κ_{s_i} -excess Kurtosis of i^{th} source; a_i – columns of \mathbf{A})
- A simpler way to decompose \mathcal{M}_4 : matricize and SVD (Anandkumar *et al.* 2014):
 - $\text{mat}(\mathcal{M}_4) = \mathbf{M} = \sum_i \kappa_{s_i} a_i \otimes \text{vec}(a_i \otimes a_i \otimes a_i)$
 - Caveats: repeated or close eigenvalues.

Algorithm Design: Accelerate Key Kernels

- Focus on emerging hardware:
 - Breadth of hardware spanning HPC (multi-core, heterogeneous).
 - Design for extreme heterogeneity (memory, compute, communication).
 - Explore algorithmic tradeoffs w.r.t. concurrency, parallelism, asynchrony, memory locality, latency.
- Directly engage driver application(s) to define design space:
 - Combustion Pele (ECP) is a direct customer, interested in anomaly detection and dimensionality reduction.
 - Exploring new customers e.g., Hardware-Software co-design, remote sensing, climate.
- Leverage complementary capabilities within Sandia:
 - ASCR Base Math funded research (PI: Tammy Kolda).
 - Kokkos (PI: Christian Trott).
 - Kokkos-Kernels (PI: Siva Rajamanickam).

Multi-threaded performance of Gram kernel of the HOSVD algorithm on Intel Xeon E5-2683

Image courtesy: Ben Cobb



- Three variants of exposing parallelism in the Gram matrix computation were investigated.
- The variants differ w.r.t. parallelism width, memory access patterns, extra storage.