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Many Applications Involve Turbulent Reacting Flows

Energy & Transportation Aerospace Earth Systems: Atmosphere
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Pfeister et al., 2020, Bulletin of AMS, vol. 101

Hypersonic vehicles: thermal and  Climate/Weather predictions: influence of

structural integrity under extreme natural and anthropogenic activity.
environments.
New generation systems: alternative fuels,

nonconventional combustion regimes.

Understanding/Modelling interactions of turbulence and chemical reactions critical to design, operation, predictions.



https://journals.ametsoc.org/view/journals/bams/101/10/bamsD190331.xml

4 | Turbulence Cascade: A Foundational View

Er.mrgy
Big whorlis have little whovls, ?euon
Which feed on their velocity, . . ‘
Energy
transfer
And little whorls have lesser whorls, . . . ‘ .
aep0QDQa
-@ddaga
And so on to viscosity. 00000 008a9090 \
Dissipation

- Lewis Richardson

Kolmogorov Theory for Large Reynolds Number (Re)

Energy transfer is unidirectional: only from large to smaller scales.

Only large scales “know” geometry. Small scales are agnostic.

Small scale behaviour is statistically universal; governed only by energy
dissipation rate (&) and viscosity (V).

Intermediate scale (inertial range) statistics also universal; governed by &.



s | Turbulence Cascade: A Foundational View

Energy
injection

Big whorlis have little whovls, /
Which feed on their velocity, ‘ . ‘
ransio
And little whorls have lesser whorls, ® . . . .
Sep0QlQa
-0adaga
And so on to viscosity. AR \

. . Dissipation
- Lewis Richardson

Kolmogorov Theory for Large Reynolds Number (Re)

Energy transfer is unidirectional: only from large to smaller scales.

Only large scales “know” geometry. Small scales are agnostic.

Small scale behaviour is statistically universal; governed only by energy
dissipation rate (&) and viscosity (V).

Intermediate scale (inertial range) statistics also universal; governed by &.
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Length scales, L/n = Re3/4
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¢ I Simulating Turbulent Flows

P =) - (Vi)

Direct Numerical Simulations (DNS): Resolve all scales.
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7 ‘ Simulating Turbulent Flows

() —
=~ (@) v(@) = (V- i) + ()

Direct Numerical Simulations (DNS): Resolve all scales.

log(E)

Reynolds Averaged Navier Stokes (RANS): Model statistics of
all scales (solve averaged form of NS equations).

Large Eddy Simulations (LES): Resolve ‘energy containing’
scales, model (statistics) of smaller scales.
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s | Simulating Turbulent Flows with reactions

Direct Numerical Simulations (DNS): Resolve all scales.

Reynolds Averaged Navier Stokes (RANS): Model statistics of

all scales (solve averaged form of NS equations).

Large Eddy Simulations (LES): Resolve ‘energy containing’

scales, model (statistics) of smaller scales.

Chemical reactions compound the difficulties:
Introduce finer space-time scales.

Additional physics to compute.

Increase the PDE dimensionality; ¢p ~ O(100).
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9 I Turbulent Combustion DNS is an Exascale (+) Problem

* Conditions achieved at petascale: Re = [0,

* Typical device-relevant conditions:
* IC engines, Re = 10°,

* Gas-turbine engines, Re = 10°.
* DNS cost scaling” ~ Re!!

* An order of magnitude increase in Re requires
560x more computing resources



0 | Turbulent Combustion DNS is an Exascale (+) Problem

. ”» , ‘Re =~ |04 p=X
Conditions achieved at petascale: Re = |0% + Combustion-Pele part of E\(\C\)I:’ ooene

* Typical device-relevant conditions: * PI, Jackie Chen (SNL, 08351). Co-PIs at LBL,

+ IC engines, Re = |05, NREL, ORNL, ANL, MIT.

° 1 1 ~ 6 . .
Gas-turbine engines, Re = 10°. * Advances on multiple fronts to attain a target

problem: (1) performance portability to exascale
architectures, (2) new load balancing and
communication strategies, (3) communication
avoiding linear solvers, (4) asynchronous
execution, (5) in-situ analytics

* DNS cost scaling” ~ Re! !/

* An order of magnitude increase in Re requires
560x more computing resources

Pele Exascale Target Problem
First-principles (DNS) and near-first principles (DNS/LES hybrids) simulations of the relevant processes in a low temperature
reactivity controlled compression ignition (RCCI) internal combustion engine. The relevant processes include turbulence,
mixing, spray vaporization, low-temperature ignition, flame propagation, and soot/radiation. As part of |0Oyr roadmap perform
a hybrid LES/IDNS simulation of a sector from a gas turbine for power generation burning hydrogen enriched natural gas.



11 | Role of Statistical Analyses and Learning

Needs/Requirements
* Data management and organization.

* Surrogates, Reduced-order-models:
* For unresolved scales.

* For unresolved physics.

* Low-dimensional manifolds: identification,
parametrization.

» Statistical inference (distributions,
joint/conditional moments).

* Event/phenomena detection.

* Uncertainty quantification.



12 I Role of Statistical Analyses and Learning

Needs/Requirements Challenges
* Data management and organization. * Wide range of scales: observables span ~ 10 decades.
* Surrogates, Reduced-order-models: * Large dimensionality of state space (100s of features).

* For unresolved scales. : : : .
* Non-Gaussian multi-variate statistics; not always

* For unresolved physics. parametrizable.

* Low-dimensional manifolds: identification, * Robustness and Stability of reduced representations.
parametrization.

* Boundary conditions are integral part of the physics.
» Statistical inference (distributions,
joint/conditional moments).

* Event/phenomena detection.

* Uncertainty quantification.
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14 | Tensors Are Versatile For High-Dimensional Learning

*Tensors are multidimensional (multiway) arrays; higher-order generalizations of vectors/matrices.
* Order: Number of dimensions (e.g. a matrix is order-2 tensor).

* Mode: A specific dimension (e.g. in a matrix rows are mode-|, columns are mode-2).

*Tensor decompositions — linear algebra in dimensions > 2.

* Many formats in literature (Kolda & Bader, 2009, “Tensor Decompositions and Applications”, SIAM Review, vol.51).

* Not all concepts of matrix linear algebra generalize (e.g. rank, existence, uniqueness).

*Versatile for learning in high-dimensional settings:
* Pattern identification.
* Parameter importance.

* Surrogates/Reduced representations.....
*Long history (~20yrs) of foundational math research at Sandia (lead by Tammy Kolda, others).

*Successful in applying to national security domains; recently extended for scientific data and HPC.


https://epubs.siam.org/doi/10.1137/07070111X

15 I Canonical Polyadic (CP) Decomposition
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* Tensor approximated as “sum of R outer product of vectors”.
* Compact, interpretable, computationally inexpensive. Complexity ~ O(Rd).

* Recently generalized to different underlying distributions, loss functions (Hong, Kolda, Duersch, 2020, SIAM Rev).



https://epubs.siam.org/doi/10.1137/18M1203626

Applications of CP Decomposition

*SOLSTICE: DoD Advanced Computing Initiative. o meerw o eume
* GCP for decompositions of geographically distributed ” | aaof M‘M
sensor data (algorithms and HPC software). m B f} \\ﬂ
“H‘ 1000 - f !
* Sandia: Eric Phipps(Pl), Drew Lewis, Rich Field, Richard MJ I ﬁ"l \-\
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17 I Higher-order Singular Value Decomposition (HOSVD)

wW
(I3X13)

X U G (I;xI3)
(I; xI,X15) (I;x1) (I; XI,x13)

X = QxlszVx3W

 Multilinear generalization of matrix SVD (De Lathauwer, De Moor,Vandewalle, 2000, SIAM |. Matrix Anal. Appl., 21 (4)).

* U, V, W: ortho-normal bases of corresponding mode-spaces (left singular vectors of matricized tensor).

* Computed as matrix SVD by unfolding along each mode.


https://doi.org/10.1137/S0895479896305696

Tucker Decomposition: Truncated HOSVD
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* Approximation that exploits low-rank structure along each mode.

Z 9(J1, J2,J3)
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* U, V, W: orthogonal matrices spanning high variance subspaces (leading left singular vectors).

* Model complexity ~ O(RY). But still provides large compression ~ O((N/R)9).



19 ‘ Outline

|. Turbulent flows with reactions.

(¢]

Relevance.

(¢]

Exascale computing.

(¢]

Statistical analyses and learning.

2. Tensor decompositions.

(¢]

Types & applications.
o Use case |:Data compression.

o Use case 2: Rare event detection.



20 ‘ Scientific Data Volumes are Untenable
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.| Tucker Compression of Combustion Data

Spatial
Grid

=

Variables

=

Time

Original e=10"* € =102
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X X X
32 1 22
HCCl 3
X X X
626 199 46
(14 X) (760 X)
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X X X
11 7
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22 | TuckerMPI: Scalable Parallel Implementation

* C++/MPI library for distributed data compression (Ballard, Klinvex,
Kolda, 2020, ACM Trans. Math. Soft., 46(2))

* Optimizing data layouts and communication for key kernels:
modewise unfolding (matricization), Gram matrix computation,
Eigensolve, TensorxMatrix

* Open repository https://gitlab.com/tensors/TuckerMPI.

* Two algorithm variants:

* Sequentially Truncated HOSVD: Matricize—>SVD-> Truncate/Reduce
(backup slide)

* Higher Order Orthogonal Iteration (HOOI): Iterate with ST-HOSVD as
initial guess, until convergence (Austin, Ballard, Kolda, IPDPS, 2016).

* Partial reconstruction of tensor subset. Effective for data
dissemination.

TuckerMPI timing profiles

200 400

600

I Gram(0)
I Eigensolve(0)
I TTM(0)
I Gram(1)
I Eigensolve(1)
I TTM(1)
B Gram(2)
I Eigensolve(2)
I TTV(2)
I Gram(3)
I Eigensolve(3)

I TTMv(3)
I Gram(4)
I Eigensolve(4)
I TTM(4)

Total

800 1000

Image Courtesy: Alicia Klinvex

« HCCI data set,4.4TB—> 0GB (410X).

* 1100 processors.

* Total time of 55s.


https://doi.org/10.1145/3378445
https://gitlab.com/tensors/TuckerMPI
https://doi.org/10.1109/IPDPS.2016.67

Tucker Compression: Error Distribution
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* Elementwise error guarantees are

difficult.

* Elements with small absolute values

have large relative errors.

* “Minor” variables are bound to be more

erroneous.

" .t

. 10—2 L

<1072 1

Tucker Compression: Error Distribution
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27 | Problem Statement & Proposed Solution

Robust in-situ detection of rare events in distributed scientific simulations

Challenge

= Scientific data: continuous smoothly varying multi-variate non-Gaussian data.

= Rare events: group of physically valid extreme valued samples; hard to
specify universal thresholds.

" [n-situ, distributed: computational expense, scalability are important.

Key ldea

* Information of rare events is present in higher order joint moments, e.g. co-
kurtosis.

= |dentify rare events based on a “distinct” signature of joint moments.

|dentification currently based
on ad-hoc thresholds

Intermediate species

Temperature

Image Courtesy: Martin Rieth, Marco
Arienti, Matt Larsen



28 | Information In Higher-Order Statistical Moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4t"-order tensor)

Vi
Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance



29 | Information In Higher-Order Statistical Moments

For non-Gaussian multi-variate statistical processes higher-order joint moments are informative
(co-skewness is 3rd-order tensor, co-kurtosis is 4t"-order tensor)

V] Vl
Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor.




30 | Information In Higher-Order Statistical Moments

PCA vectors not sensitive to outliers, Principal Kurtosis Vectors are.

Vl Vl V1
Red: Eigenvectors of Covariance (Principal Component Analysis). Denote directions of maximal variance

Blue: ‘Principal Kurtosis Vectors’. Obtained through HOSVD of co-kurtosis tensor. (backup: connection to ICA)



Formalizing Distributed Rare Event Detection

* Compute Principal Kurtosis Vectors on each data partition (e.g.
processor).

* Compare the vectors amongst partitions in space and/or time:

* Proposed Feature moment metrics (fraction of the kurtosis attributable to

each variable) to quantify orientation of Kurtosis vectors.
* FMMs sum to unity, akin to discrete distribution.
* Divergence metric (Hellinger distance) to compare across partitions.
* Most computation (cokurtosis tensor and principal vectors) is local.

* Communication only of a small vector of numbers (FMMs).

y ”” K. Aditya, H. Kolla, W.P. Kegelmeyer,

T.M. Shead, J. Ling, W.L. Davis IV, Journal of Computational Physics, 2019.

Heat release rate

AN
- EENIEE A
IVIII-IIII
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0.1
— | | ] .
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i, Saxt
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https://doi.org/10.1016/j.jcp.2019.03.003

22 | In-situ Deployment as ECP Cross-Cut Effort

* Exalearn: GenTen, Software for
generalized Tensor
Decompositions.

* ALPINE: Ascent, flyweight in situ
visualization and analysis
infrastructure.

* Pele: PeleLM, adaptive-mesh low

Mach number hydrodynamics
code for reacting flows

|dentification currently based
on ad-hoc thresholds

Intermediate species

Temperature

Validation: co-kurtosis tensor-based
unsupervised anomaly detection

Anomaly
] metric
| 0.5710
N | Ignition kernel (temperature
] —0.3841 iso-surface colored by CH,0
. density)
| B 0.2572 =

—0.1303

] 0.003408
| Max: 05110
Min: 0.003408 v

Contributors: Martin Rieth, Jackie Chen (Pele), Marco Arienti, Matt Larsen, Janine Bennett (ALPINE), Hemanth Kolla (ExalLearn)



33 ‘ Ongoing Performance Optimizations

T T T
Fl—  Improved
| | — Domino et al. [1]

100 b

[ ]
Seconds

Higher-order joint moment/cumulant tensors can be expensive:

1071 F

* For a data set with N vars, co-kurtosis tensor is N* elements.

10—2 - L L L L L L L

30 40 50 60 70 80 90

* Each element is reduction over large number of samples. Number of columns of input matrix

—
100 -|—  Improved

|dea: Leverage symmetry | — pomino et al. [

10~ F

Seconds

. . (N+3
* Number of unique elements is ( 4 )

1072 1

Efficient computation of hyper-triangular elements in sub-blocks: Domino

I 1 Lol 1 TR B i
102 103 104

GaWI’On. PaWela. 20 I 8. SIAM J. SCi. Comp.. 40(3). Number of rows of input matrix

We have identified further optimizations that are cache friendly, give ~5x 02 T e 1

speedup (work by summer intern Zitong Li,Wake Forest). 015

Seconds

5-1072 1

L
2 2.5 3 3.5 4 4.5 5

Block size


http://www.siam.org/journals/sisc/40-3/M114936.html

34

Thank You




Algorithm: ST-HOSVD

35

1. Choose U with projection rank R, such that: || Xy||” — [[U'Xy||* < €*[|X||*/3
a) Compute gram matrix: X ;X ,’
b) Use eigendecomposition of N, x N, matrix to choose R,
c) Set U= R, leading eigenvectors of gram matrix

2. Shrinktosize Ry x N,x N3t Y=X x; U’

3. Choose V with projection rank R, such that: Y| — V'Y (9 []” < €*[|X]|?/3
a) Compute gram matrix: Y ;)Y
b) Use eigendecomposition of IV, x N, matrix to choose R,
c) SetV = R, leading eigenvectors of gram matrix

4. Shrinktosize Ry x R, x N3t Z=Y xo V'

5. Choose W with projection rank R;such that: || Z[|* — [W'Z3)||” < €| X]|]?/3
a) Compute gram matrix: Z 323y’
b) Use eigendecomposition of IN; x IN; matrix to choose R,
c) Set W = R, leading eigenvectors of gram matrix

6. Shrinktosize Ry x R,x R;: G =2 x3 W'

Vannieuwenhoven, Vandebril, Meerbergen (SISC 2012)



% | Formalizing anomaly detection

= Define Feature Moment (Kurtosis) Metric, FMM:

= Quantifies contribution of feature, i, to the overall moment.

Ng

kZ N CREIE
J,n =1
Fi N,

2 Ak

k=1

= FMMs sum to unity (overi): a.k.a, a distribution.
= Anomalous events result in change the FMM distribution.

= Use f-divergence metrics to quantify the change, signal an
anomaly.



37

Independent Component Analysis (1ICA)

|ldentifies non-Gaussian independent random variables that are linearly mixed:

" X :=As+ n. (x-observed vector;s-independent sources, n-Gaussian i.i.d noise)

Specifically deals with fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010,
Anandkumar et al. 2014)

" My=Elx @ x@ x ® x] - E[xinxi2] E[xisxia] - E[xi1xi3] E[xi2x14] - E[Xi1214] E[xi213]

= My= ) Ks 0 @ 0, a;Q q; (s -excess Kurtosis of it source; a; — columns of A)
A simpler way to decompose M, : matricize and SVD (Anandkumar et al. 2014):

" mat(M,) =M= }; ks a; ® vec(a;® a;® ;)

= Caveats: repeated or close eigenvalues.



s | Algorithm Design: Accelerate Key Kernels

°F 1 hard .
OcCus on emerging hardware Multi-threaded performance of Gram kernel of the

* Breadth of hardware spanning HPC (multi-core, heterogeneous). HOSVD algorithm on Intel Xeon E5-2683

* Design for extreme heterogeneity (memory, compute, Image courtesy: Ben Cobb

communication).
2.00

1.80
1.60
1.40
1.20
1.00

* Explore algorithmic tradeoffs w.r.t. concurrency, parallelism,
asynchrony, memory locality, latency.

*Directly engage driver application(s) to define design
space:

0.80
. . . . . G.ED I
* Combustion Pele (ECP) 1s a direct customer, interested 1n 0.40
anomaly detection and dimensionality reduction. 0.20 . I I L l
0.00
1 2 4 8 16 28 32 56

* Exploring new customers e.g., Hardware-Software co-design,

Runtime (Seconds)

remote sensing, climate. Threads
. e oy . ]
Leverage complementary capabilities within Sandia: * Three variants of exposing parallelism in the
* ASCR Base Math funded research (PI: Tammy Kolda). Gram matrix computation were investigated.
* Kokkos (PI: Christian Trott). * The variants differ w.r.t. parallelism width,

* Kokkos-Kernels (PI: Siva Rajamanickam). memory access patterns, extra storage.



