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Background

• Laser Power Bed Fusion (LPBF) is seeing increasing use as a technology for 
producing functional parts

• Wanted: End-to-end modeling of LPBF process to predict part performance
• Reduce experimental workload
• Inform process design and qualification
• Stand up new materials/machines/processes

• Fully resolved build predictions remain largely intractable, causing reliance on 
phenomenological models
• Inherent strain
• Agglomeration

• Presented here: Green’s function technique for fully time-resolved part-scale thermal 
predictions 

2



Green’s Function

• Analytical Green’s function solution exists 
for linear, 3D, time-dependent heat 
equation

• Analytical spatial integral 

• Solution via 1D numerical integral

• Embarrassingly parallel!

• Previous AM applications:
• Wolfer et al (Add. Manuf. 2019)
• Farwell et al (FEF 2019)

• Full part thermal histories achieved here 
through use of 4D adaptive grids
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Methodology

• Piecewise linear discretization of laser 
source

• Numerical integration via adaptive 
Clenshaw-Curtis quadrature
• Nested quadrature orders with adaptive 

interval splitting
• Efficient integration of highly localized 

integrand over long time intervals

• Time-parallel computation of each layer

• Fully time resolved laser action

• Implemented on CPU and GPU using 
Kokkos
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Adaptive Space-Time Grid

• Independent T evaluations decouple 
resolution and accuracy
• Initial coarse sampling on uniform grid
• Refine each space-time cell
• Cell-by-cell evaluation of interpolated and 

actual fine solution
• Further refine cells where interpolant is 

inaccurate

• CPU/GPU mesh adaptivity

• Compact(ish) solution representation

• Decomposition with no communication 
across ranks
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Adaptive 4D Grid projected onto 3D mesh



Comparison to FEM

• Benchmark problem: square scan pattern
• 0.6s of simulated time
• 10µm x 100µs resolution

• 12x/72x speedup on CPU/GPU
• CPU comparison is equal # of procs
• Green’s function method effectively 

scales to many more procs

• 84GB vs 4.5TB (uncompressed) to 
represent solution on adaptive space-
time grid vs fixed resolution
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Solver Platform # Procs Time
FEM CPU 360 6 hrs
Green CPU 360 33 mins
Green GPU 16 4.3 mins



Full Build

• Full size (big) part
• 5x5x10cm
• 3086 layers

• Time resolved solution intractable with 
FEM

• ~3 days on 2400 CPU processes
• No large enough GPU cluster!

• Approx. 100TB of data (compressed)
• File writes/compression significant cost
• More compact representation needed
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Temperature history of a full layer scan

Photo of simulated part



Calibration/Temperature Comparisons

• Linear model can be calibrated to match 
desired melt pool dimensions
• Non-linear conduction models, 

thermal/fluid models, experimental data

• L1/L2 temperature norm calibration

• Differences in temperature history 
regardless of method
• Non-linear heat capacity effects in trailing 

edge of melt pool

• Multi-grid Jacobi-type methods to iterate 
out non-linearities and complex BCs

• Model form uncertainty quantification
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Normalized temperature difference 
between calibrated linear and non-

linear models

Melt pool simulated using mesoscale 
thermal/fluid model



Microstructure Comparisons

• Both models show fine grain structures
• Small melt pool w/limited remelting

• Linear Green’s results show shift towards 
larger grain sizes
• Differences in thermal gradients due to 

latent heat/variable specific heat
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Comparison of microstructures computed for 
single layer using (a) non-linear and (b) linear 

thermal models

Equivalent spherical radius grain populations for non-
linear (blue) vs linear (brown) temperature histories



Residual Stress Comparisons

• Agreement in part interior is good

• Biggest differences at edges
• Different applied BCs

• Temperature differences don’t always 
translate to large stress or microstructure 
differences
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Location of residual stress line contours
Comparisons of XX residual stress perpendicular to 

scan direction at three different depths
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Conclusions

• Green’s function solver implemented
• Highly parallel
• CPU/GPU capable
• CPU/GPU adaptive 4D grid
• 12x/72x CPU/GPU speedup vs FEM

• Fully time resolved large (5x5x10cm) 
part build in ~3 days

• Future work
• Compact data representation
• Resolve non-linearities, complex BCs
• Uncertainty estimation
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