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Our Approach

Background and Motivation

Deep learning has achieved state of the art performance on the task of object
detection. However,

Our SMILE algorithm trains an object detector f by computing a supervised loss over
the labeled set and a novel MIL loss over the unlabeled set. For each batch of
unlabeled images:

1. Construct MIL targets representing the classes present in the image

2. Apply data augmentation to the unlabeled images

3. Pass the augmented images through the network and compute unsupervised loss

A common framework for SSL is known as pseudo-labeling
where confident model predictions are used as “pseudo”

e Training a deep learning model requires large annotated datasets on the order of ground-truth for unlabeled data.

thousands to millions of labeled examples
e C(Collecting these annotations can be very time consuming and require expert
knowledge while unlabeled data is often abundant

Pseudo-labels may be generated by a pre-trained “teacher”
model (fixed) or the object detector as we train it

(dynamic). between the class probabilities and the MIL targets.
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Semi-supervised learning (SSL) operates with a small labeled dataset and a much larger
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We compare the concepts of “weak” vs. “strong” semi- AN —
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Figure 1: Increasing levels of supervision strength from left to right , L.
Figure 2: SMILE pipeline

ODD-MNIST Key Results Next Steps

We synthesize our own dataset, Object Detection Table 1: Test mean absolute precision (mAP) results for supervised baseline, STAC (strong semi-supervision To Strengthen a conference
with Distractors on MNIST (ODD-MNIST) to act as an baseline), and our SMILE method on ODD-MNIST. Each column gives the percent of training data that is labeled.

approachable benchmark for object detection submission, we plan to:
algorithms. 0.1% 0.2% 0.4% 1% 2% e Conduct experiments with a popular

To construct an image, we: Supervised 13.82+ 1.70 23.204+1.45 34.53 £0.52 48.50+0.03 56.46 £+ 0.16 two-stage object detector, e.g.
randomly sample an image from the CIFAR-10 STAC " 19.38 +2.44 31.78 +1.64 4298 +£0.39 55.02+0.18 60.99 £ 0.06 Faster R-CNN

dataset to use as the background SMILE 15.68 +4.04 33.91 +2.49 44.47 4+ 0.60 53.08 +0.23 57.67 4+ 0.07
sample digits from the MNIST dataset and paste

them as target objects . STAC witeadher 4

—— STAC wjfo Teacher I S el S CTTee—ll ®
sample letters from the E-MNIST dataset and 10 f — SwLE wrreacher — o f B==72222 = t‘_ !Senchmark SMILF on popular natural
paste them as distractor objects T e GNY [ B image datasets like PASCAL and

The targets are the bounding box coordinates and _ | ‘ -
class labels for the MNIST digits. ¥ i
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i e e Compile further ablation studies
---------------------------------------------------- regarding quality and quantity of
M g o weak vs. strong semi-supervision
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Figure 4: Validation mAP during training for SMILE and Figure 5: Validation mAP of SMILE against different choices
STAC with and without a teacher model. of pseudo-labeling thresholds 7, and z,.
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