EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-838677

INGRID: An interactive grid
generator for 2D edge plasma
modeling

B. M. Garcia, M. V. Umansky, J. Watkins, J.
Guterl, O. Izacard

August 10, 2022

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

INGRID: an interactive grid generator for 2D edge plasma modeling

B. M. Garcia,!"® M. V. Umansky,>® J. Watkins,>© J. Guterl,> % and O. lzacard® ®
DLawrence Livermore National Laboratory, Livermore, California,

USA

2 Brigham Young University, Idaho, USA

NGeneral Atomics, San Diego, California, USA

(Dated: February 6, 2022)

A fusion boundary-plasma domain is defined by axisymmetric magnetic surfaces where
the geometry is often complicated by the presence of one or more X-points; and model-
ing boundary plasmas usually relies on computational grids that account for the magnetic
field geometry. The new grid generator INGRID (Interactive Grid Generator) presented
here is a Python-based code for calculating grids for fusion boundary plasma modeling,
for a variety of configurations with one or two X-points in the domain. INGRID first
performs partitioning over the domain consisting of a small number of patches conform-
ing to the magnetic field and wall geometry; then it generates a subgrid on each of the
patches and joins them into a global grid. This domain partitioning strategy makes possi-
ble a uniform treatment of various configurations with one or two X-points in the domain.
This includes single-null, double-null, and other configurations with two X-points in the
domain. The INGRID design allows generating grids either interactively, via a parameter-
file driven GUI, or using a non-interactive script-controlled workflow. Results of testing
demonstrate that INGRID is a flexible, robust, and user-friendly grid-generation tool for

fusion boundary-plasma modeling.

¥Electronic mail: garcia299@lInl.gov
®Electronic mail: umansky 1 @lInl.gov
9Electronic mail: joeymwatkins @ gmail.com
DElectronic mail: guterlj@fusion.gat.com

®Electronic mail: izacardl @lInl.gov

Program Summary

Program Title: INGRID: Interactive Grid Generator for Tokamak Boundary Region
CPC Library link to program files: (to be added by Technical Editor)

Developer’s repository link: https://github.com/LLNL/INGRID

Code Ocean capsule: (to be added by Technical Editor)

Licensing provisions: MIT

Programming language: Python

Supplementary material:

Nature of problem: Modeling of tokamak boundary edge plasma physics is essential for the design and
optimization of future fusion reactors. A crucial component of certain edge transport modeling codes is
the computational grid representing the magnetic topology and plasma facing components within a toka-
mak. Generation of grids can be a tedious process that requires frequent intervention from the user of
the grid generator. Despite their importance, robust simple-to-use grid-generation tools are nonexistent.
The creation of a grid generator capable of both modeling and automatically identifying advanced divertor

configurations is of great importance.

Solution method: INGRID utilizes user-provided MHD equilibrium data and the target plates and limiter
geometry to automatically identify magnetic topology, and generate the appropriate computational grid in
block structured manner. First, the magnetic topology identification algorithm decides how the computa-
tional domain is partitioned. Within each partition, a local subgrid is generated which is used to construct

the global grid ready for export.

I. INTRODUCTION

A. Tokamak boundary and magnetic divertors

Research in tokamak edge plasma physics is critical for realizing practical fusion energy and
designing future fusion reactors. One of the greatest challenges that tokamak edge plasma re-
searchers face today is determining effective methods for controlling particle and heat fluxes on

tokamak plasma-facing components (PFC) while maintaining good core-plasma performance.

Early on in the tokamak research, controlling plasma interaction with the material wall was
carried out with a toroidal or poloidal limiter, i.e., a material surface projected a short distance
from the wall into the boundary plasma and thus limiting its extent. However, since the 1980s
it was recognized that using the so-called magnetic divertor configuration is superior for control-
ling interaction of plasma with material wall, and since then a magnetic divertor has become an
essential feature of virtually all high-performance tokamaks. The magnetic divertor is a device
that creates a certain configuration of the magnetic field that allows redirecting plasma fluxes to a

remote location in the tokamak vacuum chamber.

Due to severity of plasma-material interactions expected in next-generation tokamaks, in the
last 10-20 years the tokamak boundary plasma community developed strong interest in advanced

divertor configurations'

. The traditional divertor configuration uses a first-order null point (X-
point) for the poloidal magnetic field. This null point is usually placed at either the bottom or
the top of the core plasma. The traditional double-null configuration uses two first-order X-points
with one at the bottom and one at the top of the core plasma. In contrast, several advanced divertor
configurations have been proposed where a secondary X-point is included in the divertor region.
These include snowflake-like configurations and the X-point Target configuration. Snowflake-
like configurations approximate a configuration with an exact second-order null of the poloidal
field dubbed “snowflake?. In practice, instead of an exact second-order null, a configuration
is used where two regular X-points are brought close together, which leads to snowflake-plus
and snowflake-minus configurations’. On the other hand, for an X-Point Target configuration®, a
secondary X-point is introduced in the divertor far away from the primary X-point in the divertor
leg near the target plate. Each of these divertor configurations is characterized by the locations of

the primary and secondary X-points in the domain. The primary X-point is the most significant as

it separates the plasma into the hot core region and colder scrape-off layer (SOL) region. However,

3

a secondary X-point helps redirect and distribute the flux of plasma particles and energy over
multiple locations (i.e. strike points) on the material surface. Furthermore, a secondary X-point
may also help increase plasma radiation in the divertor, potentially causing other interesting and

important effects in divertor plasma.

B. Tokamak edge plasma modeling

Due to complexity of physics and geometry, modeling of tokamak edge plasmas relies heav-
ily on numerical simulations. An earlier approach to tokamak boundary modeling, pioneered in’
is based on a 2D axisymmetric collisional fluid plasma model with ad-hoc perpendicular trans-
port coefficients. A more recent approach started, among others, by®? attempts to reproduce
edge plasma turbulent transport by direct simulation, solving 3D time-evolution equations for col-
lisional fluid plasma. These days modeling of tokamak boundary plasma turbulence is getting
increasingly sophisticated and mature, with several major boundary plasma codes making great

strides in fluid turbulence modeling, e. g.,9‘12; and in kinetic turbulence modeling, e.g.,

13-15

Still, the traditional axisymmetric 2D fluid modeling remains an important area of research,
with several major codes in use, e.g.,'0-18. Clearly it has its limitations: using ad-hoc anomalous
transport coefficients instead of calculating the anomalous transport from a first principles based
theory or simulation, using toroidal symmetry assumption while some non-axisymmetric pertur-
bations are certainly present in the plasma, and using collisional fluid closure while the collisional
mean-free-path is not necessarily much smaller than the system spatial scales. On the other hand,
a comprehensive first principles based calculation of the anomalous transport is not yet available
for tokamak boundary plasma, and the toroidal symmetry and high collisionality assumptions are
not unreasonable for the edge region in a typical tokamak. So, with all its limitations, the tradi-
tional 2D modeling approach has its place, and it produces many useful insights that help solidify
interpretation of tokamak boundary plasma experimental data. In particular, it remains the pri-
mary modeling approach used in the area of tokamak divertor modeling. The interest to advanced
divertors raises new demands to computational tools used for axisymmetric tokamak edge plasma
transport modeling. In particular, snowflake-like configurations are producing new data on plasma
transport and radiation, which needs modeling for interpreting experimental data. To help model-
ing advanced divertors, tokamak edge plasma transport codes are extended to include more than a

single X-point in the divertor volume'®?°. Computational grid generation for such configurations

4

has its subtleties, and in this manuscript we are presenting a new grid generation tool INGRID for

dealing with configurations with either one or two X-points in the domain.

C. Grid generation for tokamak axisymmetric edge plasma simulations

Tokamak boundary and divertor plasma modeling relies heavily on edge transport model-
ing codes such as UEDGE!'®, SOLPS!”, EDGE2D'®, just to mention a few major ones. These
codes are similar in many ways; they all solve the time-evolution fluid equations for toroidally-
symmetric, collisional plasma based on the Braginskii equations, using ad-hoc radial transport co-
efficients. The simulations are typically carried out in the actual geometry of a modeled tokamak in
order to account for details pertaining to magnetic field geometry and plasma-facing components.

Computational grids for tokamak boundary plasma transport modeling are usually chosen to
follow the magnetic flux surfaces; a choice made to avoid numerical pollution caused by the ex-
treme anisotropy of plasma transport along and across the magnetic field>!. As a result of this, the
grid topology can become highly nontrivial with one or several X-points present in the simulation
domain.

There are several grid generators for tokamak edge plasma region currently in use. Among
those, the UEDGE code uses a grid generator that is a part of the UEDGE package, SOLPS nor-
mally uses grid generator CARRE??, and EDGE2D usually relies on grid generator GRID2D?3.
These are sufficient in most cases for modeling single-null and double-null configurations. How-
ever, modeling of advanced divertors may require incorporating secondary X-points in the divertor
region that yield nontrivial snowflake-like grid topologies. Additionally, grid generators currently
in use for major edge transport codes are not inherently designed to produce computational grids
for general configurations containing more than one X-point at arbitrary locations in the domain.

To increment grid generation capabilities for tokamak boundary plasma transport modeling, in
particular for advanced divertors, a new grid generator INGRID has been developed, as described
in the present report. INGRID (Interactive Grid Generator) is a Python based, interactive, grid
generator for edge plasma transport modeling that is capable of modeling configurations with up
to two X-points anywhere in the computational domain. The INGRID package provides a robust
set of tools and an easy to use GUI. Internally, INGRID automatically identifies the appropriate
divertor configuration to model, and thus removes challenges that typically arise when generat-

ing grids. The result is tool that can be easily incorporated and benefit a user’s workflow for

5

edge plasma modeling. The INGRID algorithm’s inspiration was drawn from the older IDL-based
project Gingred®* where a “divide and conquer”, domain partitioning approach for grid genera-
tion was first attempted. Although Gingred provided grid generation capabilities, an important
motivation for implementing INGRID was to leverage an open-source, modern language such as

Python.

D. Paper outline

The aim of this section is to provide a short introduction to tokamak edge plasma modeling,
the state of grid generation for tokamak edge plasma simulations, and motivate the development
of INGRID. Section II discusses the classification of equilibria found within a plasma device and
defines the magnetic topologies that INGRID has been designed to model. Following our discus-
sion on classification, section III discusses the computational methodology INGRID adopts. In
particular, the interpolation scheme, topology analysis algorithm, Patch Map construction algo-
rithm, and grid construction methodology is discussed. In section IV, results of INGRID testing
are presented. From there, section V discusses our software design choices made for the INGRID
package. Finally, section VI summarize our results and point the reader to where INGRID can be

obtained.

II. CLASSIFICATION OF EQUILIBRIA

The geometry of a tokamak (or a similar toroidally axisymmetric plasma device, such as a
spheromak or a reversed-field pinch) is defined by the flux function ¥(R,Z), where R,Z are the
cylindrical coordinates, such that V¥ - B =0%. The poloidal magnetic field components Bgr, Bz

can be expressed as

1 0¥
BR:_Eﬁ (D)

1 0¥
Z=RR ()

Surfaces W(R,Z)=const form a set of nested magnetic flux surfaces confining the plasma, where
the magnetic field is tangential to the flux surfaces. The nulls of the poloidal magnetic field,

Bg = Bz = 0 correspond to extrema or saddle points of the flux function W(R,Z). The “magnetic

6

axis” corresponds to an extremum of W at the innermost flux surface. Furthermore, we consider
first-order saddle points of ¥ where the first derivatives vanish; these points are “X-points”.

To understand the range of geometric possibilities with the presence of one and two X-points
in the domain, consider the diagrams in Fig.(1). If there is a single X-point in the region it de-
fines a separatrix which is a flux surface containing the X-point (Fig. 1a). The X-point is a
self-intersection point of the separatrix that divides the plane into three topologically distinct re-
gions: the “core”, “private-flux", and “scrape-off-layer". First, the core is the region containing
the magnetic axis. Next, the region lying opposite to the core plasma region across the X-point
is the private-flux (PF) region. Finally, the remaining region is the “common flux region”, or
"scrape-off-layer" (SOL) region.

Further we will be using normalized flux and “compass” notation. The normalized poloidal
flux is defined in the standard way,

G r (3)

‘Psepx - \Pmagx

where W,,,40¢ and Wi, are the values of the poloidal flux at the magnetic axis and at the primary
separatrix.

Now we define the compass directions North-South-East-West that are associated with an X-
point, as illustrated in Fig. 1a. The North direction (N) is defined to point into the core plasma
along the VW direction, whereas the South direction (S) is defined to point into the private-flux
along the VW direction. East (E) and West (W) are then defined orthogonal to the N and S di-
rections. Then, as shown in Fig. the midplane points are labeled Mg and My according to the
compass direction at the primary X-point. The advantage of the compass notation is that it is
independent of the location of the primary X-point; even if it is near the inner or outer midplane.

As shown in Fig. 1b and 1c, a second X-point can be added outside of the core plasma region.
Ignoring the degenerate case when the secondary X-point is on the primary-separatrix, there are
two topologically distinct possibilities with respect to the primary separatrix: either the second
X-point can be in the common flux region, (Fig. 1b), or the second X-point can be in the private
flux region, (Fig. 1c). The former case is called “snowflake-minus” and the latter case is called
“snowflake-plus™?.

From the grid generation perspective, there are further variations of “snowflake-like” config-
urations. In original analysis of near-snowflake configurations by Ryutov et al.?®, based on local

expansion of the flux function, the angle 0 pointing from the primary X-point to the secondary

7

one was used to distinguish topologically different configurations?®. Further, the notation based
on the O angle was adopted to describe the mapping of orthogonal flux coordinates to the grid
index space, for different snowflake-like configurations labeled by 0=15°, 45°, 75°, 105°, 135°,
and 165° in*’,

In INGRID, for a given W(R,Z), the first step of the calculation is producing a Patch-map by
partitioning the domain by W=const lines and orthogonal to them ®=const lines. That is similar to
orthogonal grids considered in?’, and constructing those Patch-maps we recover the six topologi-
cally distinct cases considered in?’. Therefore, here we also adopt the 6 notation for snowflake-like
configurations, e.g., using SF15 for the case labeled 6=15° in?’.

With the compass notation used here, the six cases introduced in?’ are defined by the locations

of the secondary X-point X and its orthogonal projection on the primary separatrix X,

UDN: SF—, Xé S [ME,Mw]

SF15: SF—,Xé € [ME,Xl]

SF165: SF—, X} € [My,Xi]

SF45: SF —, Xé S [SE,Xl]

SF135: SF—, X}, € [Sw, X|]

SF75: SF+, X} € [Sg, X1]

SF105: SF+, X} € [Sw,X)]

The orthogonal projection of the secondary point on the primary separatrix is illustrated in Fig.
(1), and the range of magnetic configurations is illustrated in Figs. (3-10).

All in all, with the single-null (SNL) configuration included, for either one and two X-points
in the domain, there are eight possible configurations. We do not consider here degenerate cases
where the secondary X-point is exactly on the primary separatrix, the projected point X} is exactly
on the primary X-point X;, or when X} is exactly on a midplane point Mg or My ; the assumption
is that a practical, experiment-relevant configuration would always have some finite degree of

asymmetry to fall into one of the eight considered categories.

8

III. COMPUTATIONAL ALGORITHM METHODOLOGY
A. Domain partitioning strategy

The INGRID workflow consists of two main steps: (i) partitioning the domain into a collection
of zones/patches that we call a “Patch Map”, and (ii) generating a subgrid for each of the patches
in the Patch Map. This idea illustrated in Fig. (2) where a Patch Map is shown with one of the
patches covered with a subgrid.

An INGRID Patch Map is a template of the grid to be generated since the geometry of magnetic
flux surfaces, in particular the X-points and the magnetic axis, and the geometry of plasma facing
material surfaces all together are used to define the Patch Map. For calculating a subgrid, the code
divides each four-sided Patch object into a number of radial and poloidal zones according to user
specification. Finally, a post-processing step is performed in which all subgrids are joined together

to finalize the global grid.

B. Magnetic field interpolation

Input data for grid generation are expected in the form of the poloidal magnetic flux W sampled
on a rectilinear grid in R, Z, from an MHD reconstruction code such as EFIT28. INGRID utilizes
a bicubic interpolation implementation®” for obtaining the values of the poloidal magnetic flux ¥

and its derivatives between data points of the provided magnetic equilibrium. This functionality is

provided by class RectBivariateSpline belonging to the scipy.interpolate®’3! package.
Poloidal flux surfaces are calculated in INGRID by integrating the ODEs,
. 1 0¥
R=——— 4
Rz *
1 0¥
=—— 5

R 9R ©)

whereas surfaces orthogonal to poloidal flux surfaces are calculated by integrating the ODEs,

. 10¥
R=%Ror ©
. 10¥
‘TRz @

9

The bicubic interpolation guarantees continuity of first derivatives of ¥ at the edges of cells of

the original R, Z grid, so the resulting flux surfaces are smooth.

C. Calculation of reference points

The topology of magnetic flux surfaces in tokamak edge plasmas is defined by relative positions
of X-points and the magnetic axis. These key reference points are calculated in INGRID by finding

nulls of the poloidal field, solving the equation

oP\? [ow\?
(5) +(52) = ®

INGRID utilizes method scipy.optimize.root3%3 for this purpose. For finding the correct
root of this equation the solver needs an accurate initial guess; the initial guesses are provided by
the user upon inspection of the MHD data. These guesses are the approximate coordinates of the
magnetic axis and for up to two X-points that are expected to be included in the computational

domain.

D. Topology analysis

INGRID conducts an analysis and classification of the magnetic topology based on the user
specification of one or two X-points in the domain. We first consider the case of a single X-
point. The tokamak edge plasma community often classifies single X-point configurations as
“upper single null” or “lower single null." However, for INGRID there is no distinction. If one X-
point is specified, then INGRID considers the aforementioned configurations as a general single-
null (SNL) configuration. Instead of using “lower” and “upper” for the divertor, and “inner” and
“outer” for target plates, INGRID defines compass directions North-South-East-West associated
with the primary X-point. The North direction is defined to point into the core plasma along
the VW direction, whereas the South direction is defined to point into the private-flux along the
VY direction. East and West are then defined orthogonal to the North and South directions. For
example, the inner target plate of an LSN configuration is in the south-west direction of an SNL
configuration, as illustrated in Fig. (3). Similarly, the inner target plate of a USN configuration is
in the south-east direction. Determining the North-South-East-West directions associated with the

primary X-point is the extent of the analysis performed in the SNL case.

10

If there are two X-points in the domain, INGRID first executes the compass analysis from the
SNL case on the primary X-point. Next, INGRID determines whether the secondary X-point is
in the private-flux (PF) region or in the common-flux region (SOL) with respect to the primary
separatrix. If the secondary X-point resides in the private-flux, the configuration is of type SF+.
If not, the configuration is of type SF-. This determination is conducted by representing the PF as
a generalized polygon and determining whether a 2D point representing the X-point is contained
within the polygon or not. The vertices of the polygon correspond to the points obtained from
the portion of the limiter contained between points Sy and Sg (denoted as [Sw,Sg|) and line
tracing (detailed in section E) the two arcs [X;,Sw]|, [X1,Sg]. INGRID implements the point-in-
polygon test with the help of class matplotlib.path. Representing the polygon boundary as a
matplotlib.path object, the method matplotlib.path.contains_point can then determine
whether the area enclosed by the path contains the given point or not. With the point-in-polygon
test completed, an orthogonal projection is constructed from the secondary X-point to the primary
separatrix. This is done by line tracing equations (3) and (4) where the termination criteria is
intersection with the primary separatrix. Finally, the specific magnetic topology is determined by

the criteria outlined in Section II for classification of equilibria.

E. Patch Map construction

After the magnetic geometry analysis for a given magnetic field is completed, INGRID creates a
Patch Map corresponding to the identified topology. A Patch Map is a collection of Patch objects
that are defined by four vertices and generally non-straight edges. All together, the Patch Map
provides a template of the finalized global grid. Internal to the code, the Patch Map is represented
as a 2D array of Patch objects with the dimensions of the array corresponding to the radial and
poloidal directions respectively. The 2D layout of a Patch Map establishes the underlying block
structure of the mesh, and allows for the identification of Patch neighbors in index space.

A Patch Map is constructed via numerical integration along ¥ =const and VW directions
through the X-points and other reference points in order to represent the user specified radi-
al/poloidal surfaces used to define the domain boundaries. INGRID utilizes the solve_ivp
method from the scipy.integrate’® package for all numerical integration purposes. In par-
ticular, LSODA3? was selected as the solve_ivp method of integration. Equations 4 provide

INGRID the capability to trace out poloidal flux surfaces, whereas equations 6 provide INGRID

11

the capability to trace out surfaces orthogonal to poloidal flux surfaces.

In a Patch Map, radial domain boundaries are flux surfaces corresponding to maximum/min-
imum values of the poloidal flux function W that are specified by the user in the parameter file.
The poloidal domain boundaries are defined by user with their provided geometry files (e.g target
plates). For each of the divertor configurations that INGRID can use - which includes a single-
null, unbalanced double-null, and six snowflake-like configurations - there is a specific type of
Patch Map that defines the topology of this configuration. For example, for the SNL configuration
shown in Fig. (3), its Patch Map includes two radial zones, two poloidal zones defining divertor
legs, and four poloidal zones defining the edge plasma domain around the last closed flux surface.
Such a Patch Map that contains these twelve Patches is sufficient to represent a general single-null
geometry, albeit in a basic and crude way. Note that one could use only ten Patches to represent the
single-null topology, but using twelve Patches allows matching the general shape of a single-null
configuration. more accurately. Furthermore, a finer grid representing a single-null geometry can
be always represented as this Patch Map with local refinement applied to one or several of these
twelve patches. For the more complicated unbalanced double null (UDN) geometry shown in Fig.
(4), the Patch Map must include three radial zones because there are two separatrices. Here there
are also four poloidal zones to represent four divertor legs. With four poloidal zones covering the
core domain, there is a total of eight poloidal zones. All in all, there are twenty four patches in
the UDN case. For each of the snowflake-like configurations there are twenty seven patches, as il-
lustrated in Figs. (5-10). INGRID enforces the consistency of radial boundaries between adjacent
Patches by defining the interface between Patch boundaries in terms of each other. For Patches
adjacent to target plates (no neighboring Patch object), INGRID will copy and paste a segment of
the target plate in order to create a radial Patch boundary that conforms exactly to the provided
geometry. Poloidal consistency of Patch boundaries is attained by simply ensuring line tracing
continues from the end point of the adjacent Patch. It should be noted that the continuation pro-
cess cannot guarantee the consistency of Patch boundaries along the upper core. The size of this
boundary mismatch is proportional to the line tracing tolerance, and can be controlled by the tol

attribute found within the integrator settings of the parameter file.

12

F. Grid construction

For the magnetic configuration in question, a Patch Map is created in order to serve as the
template of the final grid. Consider an arbitrary Patch within the Patch Map. The radial sides
of this Patch are defined by two flux surfaces, ¥(R,Z) = ¥; and ¥(R,Z) = W¥,. The poloidal
sides of a Patch are usually constructed to be aligned with V¥, thus making the Patch Map locally
orthogonal. The poloidal sides of a Patch, however, can deviate from the VW direction. For
example, for those Patches that contain the poloidal boundaries of the domain, given by the target
plates, one of the sides is defined by the target plate shape. The curve describing the target plate
can be arbitrary, as long as it does not form “shadow regions”, i.e., ¥ is a monotonic function of
the length along the plate.

A Patch can be divided into a number of radial and poloidal zones, thus forming a subgrid
local to this Patch. The radial zones are constructed to be aligned with flux surfaces, so the global
grid remains aligned with the poloidal magnetic field. For the poloidal zones, the main algorithm
is based on dividing the Patch poloidally into uniform length line segments. That said, there are
user options in the code for controlling the radial and poloidal distribution of the subgrid within a
Patch.

The radial/poloidal dimensions and distributions of a subgrid can be dependent on subgrids of
other Patches in the Patch Map. This results from the global grid being Cartesian in the index
space. Thus, the poloidal dimension of a grid has to be consistent for Patches that are stacked on
top of each other radially, and the radial dimension of a grid has to be consistent for those patches

stacked on top of each other poloidally.

G. Grid customization

INGRID provides users a number of tools which can be controlled via the parameter file for
refinement of the soon to be generated grid. These controls allow users to modify the default
behavior that takes place in two stages of the grid generation process: the Patch Map creation
stage, and the subgrid generation stage.

First we describe some controls that take effect during the Patch Map generation stage. Internal
to the Patch Map generation scripts, the default algorithm for constructing a Patch Map relies

on the horizontal plane through the magnetic axis (commonly referred to as the midplane) in

13

order to define the radial boundaries for certain Patches. To modify the resulting Patch Map,
INGRID allows shifting the reference location representing the “effective magnetic axis” for the
grid generation purposes vertically and horizontally. This shifting can be used to compress Patch
objects in order to increase the subgrid density without increasing the number of grid cells within a
Patch subgrid. In addition to simple translations of the effective magnetic axis, the user can set two
angles defining a “generalized midplane” rather than using the default horizontal directions for the
midplane. Since the midplane can be thought of as two rays emanating from the magnetic axis
with angles 0 and 7 radians, a “generalized midplane" is defined similarly but with user-defined
“effective magnetic axis” location, and with user-specified angles for both rays. Also, for those
Patches that include an X-point as one of their vertices, the default radial boundaries use the East
and West directions from the X-point along the VW direction. However, the user has the capability

to replace the curves with straight lines that are oriented in a desired direction.

Next, the subgrid generation within a Patch can be adjusted as well. By default, during Patch
refinement, grid seed-points are distributed uniformly along the length of radial boundaries and
uniformly along the length of poloidal boundaries in locally-normalized Y. This default behavior
can be changed so that grid seed-point placement obeys a user specified distribution function.
Another powerful customization feature that can be enabled during the subgrid generation stage is
the “skewness_correction"” tool for mitigating grid shearing. This tool allows the user to bound
the angles found within the interior of a grid cell in order to generate nearly orthogonal subgrids in
patches. The implementation is as follows. Let a quadrilateral cell of a subgrid be defined by four
nodes A, B,C, and D where AB is the top-face, BC is the right-face, CD is the bottom-face, and DA
is the left-face of the cell. The angle £DAB := ¢ is measured. If o is not within a user-defined
range |Qmin, Cmax|, then the node D is translated along the poloidal flux surface until o is within
the range. The direction of translation is determined by whether & > Ognax or & < Qyip. During
the translation of D, we must also avoid collision with a neighboring node on the poloidal flux
surface. To ensure collision does not occur, the translation stops when the moving node D comes
within € of a neighboring node. Upon termination, the current value of o is used to define the
transformed cell. An example of the skewness_correction feature applied to a grid can be seen
in Fig.(11). The cells of the local mesh in a Patch are modified one at a time in row-major order
when skewness_correction is applied. This sequential nature of application means that after
the cells of row i have been modified, the nodes of the adjacent cells in row i 4+ 1 must be updated.

This updating operation is applied to neighboring Patches when row i+ 1 is outside the local mesh

14

within a Patch. Thus, the order in which skewness_correction is applied to cells matters and is

taken into account by the algorithm itself.

IV. PERFORMANCE

A. Scaling of calculation time

The results of INGRID timing tests are shown in Table (I) and in Fig. (12). These tests were
run on an Apple Mac Mini (2020 model) housing an Apple M1 chip (3.2 GHz processor). The
scaling appears sublinear for small grids; for larger grids it asymptotes to linear. Note that the
cost of grid generation is not significant in a typical edge plasma modeling workflow; running the
simulation takes orders of magnitude more computing time. This scaling makes INGRID practical

for constructing large grids.

15

SNL SF75

Cells Per Patch | Total Cells| Time (s)||Cells Per Patch|Total Cells|Time (s)
9 108 8.02 9 243 21.32
16 192 11.44 16 432 27.69
25 300 14.79 25 675 34.45
36 432 18.29 36 972 41.10
49 588 21.58 49 1323 48.31
64 768 25.02 64 1728 54.82
81 972 28.49 81 2187 62.24
100 1200 32.27 100 2700 68.69
121 1452 35.32 121 3267 75.44
144 1728 38.61 144 3888 82.63
169 2028 41.98 169 4563 89.97
196 2352 45.46 196 5292 96.21
225 2700 49.08 225 6075 103.71

Table I: Results of a performance test for grid generation for both an SNL and SF75 configuration.
Grids were generated with n x n many cells per Patch withn = {3,4,5,...,15}. With n x n subgrid
dimensions, SNL configurations contain 121> many cells, whereas SF75 configurations contain

27n% many cells.

B. Grid testing

To assess the performance of grids calculated by INGRID, several tests have been performed
with the UEDGE code.

In these tests, UEDGE solutions were compared, using grids from INGRID and grids pro-
duced with the UEDGE internal grid generator; for the same physics problem statement, the same
boundary conditions, using the same (or very close) domain geometry.

In one of these test problems, a snowflake-like SF75 configuration was used, based on magnetic
reconstruction data from the TCV tokamak. The UEDGE grid generator cannot deal with the

SF75 configuration directly; but it can be set up to treat each X-point as a part of a separate SN

16

configuration, and then joining two such SN grids together one can produce a grid for the full
SF75 domain.
The UEDGE code was set up to solve to the steady state the time-evolution equations for plasma

density, plasma parallel momentum, ion thermal energy, and electron thermal energy.

d -,
Sni+ V- [nV] =i ©)
d o .
3; [Mnivi) | +V- [MnTViy = A9V, | = S (10)
d [3 5 o .
o {EnTi} +V- {EniTiVi‘FQi] =SE,i (11)
d [3 5 -
E {EnTej| +V. |:§neTeVe+Qe} =S8E. (12)

Here we use the standard notation: n; is the plasma density, V; is the plasma fluid velocity, T, ;is
the electron and ion temperature, g, ; is the electron and ion heat flux, S;, Sm,H’ SE e,i are sources of
plasma density, parallel momentum, and electron and ion thermal energy; full details of the model
are given in'®.

The grids used for the calculation are shown in Fig. (13). The grid generated with the UEDGE
grid generator is constructed to be strictly locally orthogonal; the grid from INGRID is not orthog-
onal. Also, there is slight difference in the domain shape; the grid from INGRID uses flat target
plates while the grid from UEDGE uses curved target plates orthogonal to . Still, the steady
state solutions exhibit essentially the same distributions of plasma density, temperature, and paral-
lel flow velocity, as can be seen in Fig. (14). A quantitative comparison of radial plasma profiles at
the outer midplane was carried out, indicating agreement within 2%; that level of agreement was
considered convincing enough to indicate absence of any major issue in INGRID grids.

Note that grid convergence of a numerical solution may be complicated by the presence of X-
points in the domain. Previously, convergence tests using grids similar to those discussed in this
manuscript were conducted with the linear stability code 2DX, in the context of linear analysis
of ideal-ballooning and resisitive-ballooning instabilities in X-point divertor geometry4, and in a
circular geometry>>. It is important to note that in those tests the convergence rate in the X-point
geometry was found to be close to the 1st order, while in the circular geometry the convergence rate

h37,38

was close to the 2nd order. This is consistent with the analysis in*®, and also wit pointing out

17

that the X-point metric singularity for a flux-aligned coordinate system degrades grid convergence
for a numerical solution. That general result should apply to INGRID generated grids that contain

X-points, but the details will be problem specific and will depend on the numerical methods used.

V. SOFTWARE DESIGN AND USER INTERACTION
A. INGRID package

INGRID has been exclusively developed in the Python programming language due to the
increasing popularity in major tokamak plasma modeling projects such as OMFIT%40 and
PyUEDGE*!, as well as to take advantage of the free, community supported graphical and nu-
merical libraries. The Ingrid class contained within the ingrid module provides the primary
API for users. This Ingrid class is used to activate INGRID’s GUI mode and also contains high-
level methods for importing data, visualizing data, analyzing data, grid-generation, and exporting
of data; all of which can be utilized noninteractively in Python scripts. Class IngridUtils is
contained within the utils module and serves as the base class for Ingrid. IngridUtils class
methods encapsulate much of the lower-level software details used to implement the methods in
the Ingrid class. Because of this, IngridUtils is encouraged for use by advanced users and de-
velopers of INGRID. In addition to IngridUtils, class TopologyUtils can be found within the
utils module. In a manner similar to IngridUtils, the TopologyUtils class serves as a base
class for each magnetic-topology class within the topologies subpackage. TopologyUtils
contains key methods for generating Patch Maps, visualizing data, generating grids, and ex-
porting grids. Eight magnetic-topology classes are contained within their own modules within
the topologies subpackage: SNL, UDN, SF15, SF45, SF75, SF105, SF135, and SF165. Each
magnetic-topology class contains configuration specific line-tracing instructions for construction
of Patch Maps, Patch Map layout information, and exported grid file formatting information.
Ingrid and IngridUtils conduct analysis of MHD equilibrium data in order to decide which
magnetic-topology class to instantiate from the topologies subpackage. The IngridUtils
class always maintains a reference to the instantiated object in order to effectively manage grid-
generation.

All GUI operation is managed by class ingrid_gui within the guis subpackage. INGRID’s
GUI front-end was developed with the Tkinter package; a Python interface to the Tk GUI toolkit

18

that is available within the Python Standard Library. Class ingrid_gui is simply responsible for
managing event handling, and managing an Ingrid object that is used to drive the GUI with direct
calls to the available high-level methods.

Beyond modules ingrid and utils, modules geometry, interpol, and line_tracing
form the computation and modeling foundation of INGRID. Class EfitData can be found
within the interpol module. Class EfitData is used to provide an interpolated represen-
tation of provided MHD equilibrium data. EfitData computes partial derivative information
of MHD equilibrium data, provides interpolated ¥ function values by interfacing with class
scipy.interpolate.RectBivariateSpline, and contains methods for visualization of inter-
polated MHD equilibrium data. Module geometry contains classes Point, Line, Patch, and

Cell. These classes are the building-blocks for creation of Patch Maps and generation of grids.

B. INGRID geometry object hierarchy

We adopted an object-oriented approach to grid generation, which calls for the development of
a set of tools that can be utilized throughout our project. Here we discuss how INGRID defines a
collection of geometric classes in order to make the grid generating process as simple as possible
for all magnetic topologies of interest. To do so, INGRID defines the following collection of
geometric abstractions: the Point class, the Line class, the Cell class, and the Patch class. All
together, these classes arm INGRID with the ability to represent any magnetic topology of interest.
We provide a very brief description of the classes here. Figure 2 illustrates the geometry collection
described below. A Point object simply represents an arbitrary (R,Z) spatial coordinate in the
computational domain. Along with (R,Z), coordinates, ¥ values can be returned from the Point
object. A Line object is defined by a list of two or more Point objects. This Line object definition
allows for the representation of any arbitrary curve we may encounter (e.g. constant ¥ surface,
target plate, limiter geometry). This can be done since the collection of Point objects correspond
to segments that are the discretization of the curve of interest. A Patch object represents a closed
region of the domain, and a block of the block-structured mesh INGRID computes. Patches are
defined by four Line objects. The “North" Line (top), “East" Line (right), “South" Line (bottom),
and “West" Line (left) define the Patch borders which form a closed, clockwise-oriented loop.
Methods of the Patch class assist with visualization and computation. For example, Patch method

make_subgrid directly handles grid generation for the local region of interest. A Cell object

19

resides within a Patch and represents a quadrilateral grid cell. Cells are defined by five Point
objects: four corners (NW, NE, SW, SE) and a center. These Cell objects provide the spatial and

experimental data that are written to exported grid files.

From these definitions, we have the building blocks for modeling any of the magnetic topolo-
gies of interest we mentioned in the previous section. In particular, we aim to construct a collection
of Patch objects representing the divertor configuration of interest. We call this collection of Patch
objects a Patch Map. This Patch Map allows us to create a grid of Cell objects within each Patch,
thus providing the final grid. Patch Map creation and grid generation is managed by a magnetic
topology class of modeling interest. As of the current INGRID release, we have defined magnetic
topology classes SNL, UDN, SF15, SF45, SF75, SF105, SF135, and SF165. These are contained
within a dedicated topologies subpackage within the INGRID code.

C. INGRID parameter file

We have selected YAML*? formatted files for our parameter file structure. A YAML file is
similar to the familiar Fortran namelist files due to the key-value structure it employs, and is in an
easy to read format that has extensive support within Python. Internal to each INGRID instance, a
Python dictionary is used to store grid generation settings and data dependencies that are needed
for all aspects of the algorithm. The YAML parameter file acts as an interface to this core dictio-
nary since YAML entries are used to override the default INGRID settings. This YAML parameter
file interface provides users the flexibility to model cases with the INGRID GUI and later reuse
the same parameter file in scripts after loading the data as a dictionary. Some key controls within
the parameter file include: EFIT file specification, specification of number of X-points, approxi-
mate coordinates of X-point(s) of interest, approximate magnetic-axis coordinates, ¥ level values,
and target plate settings (files, transformations). Other controls in the parameter file include: path
specification for data files, grid cell np/nr values, poloidal and radial grid transformation settings,
limiter specific settings, saving/loading of Patch Maps, exported grid file settings, and debug set-
tings. This is not an exhaustive list. Further details can be found in INGRID’s Read The Docs

online documentation.

20

D. INGRID target plate file

INGRID users must specify the geometry of the limiter (i.e., the entire first-wall contour sur-
rounding the plasma) and/or target plates, to represent the shape of material walls in a modeled
device. The limiter and target plates are represented in INGRID by a piecewise-linear model
defined by a set of nodes; the (R,Z) coordinates of those nodes are expected to be provided in
separate data files. There is one data file for the limiter and one for each target plate, either in the
text format or as a NumPy binary. The names of those data files are set in the INGRID parameter
file. In the case that the limiter and target plate data are provided in text format, the user must
specify the (R,Z) coordinates for each point defining the surface sequentially on a separate line
in the corresponding data file; and Python-formatted single- line comments can be included, as
shown in the Appendix.

For use of NumPy binary files, users must also adhere to a particular internal file structure.
Given two NumPy arrays of shape (n,) that represent R and Z coordinate values respectively, one
can define a NumPy array of shape (2,n) representing the n-many points required to model the
piecewise-linear model of interest. This NumPy array of shape (2,n) can be saved into a NumPy
binary file in order to be loaded into INGRID. In addition to the requirements above, INGRID
asserts that strike-point geometry files used for Patch Maps are monotonic in ¥ along the length
of the target plates (i.e. no shadow regions). The requirement of target plates to be monotonic in
Y allows INGRID to parameterize the (R,Z) coordinates of the geometry with the ¥ values. With
a unique mapping of ¥ to (R, Z) target plate coordinates, INGRID can generate Patch objects that
conform exactly to the plate or limiter geometry. While operating INGRID in GUI mode, users

will be warned if the loaded geometry file is not monotonic in ¥ along the target plate length.

E. INGRID workflow

INGRID can be operated via GUI or utilizing the INGRID library directly in Python scripts.
The GUI workflow highlights the interactive nature of INGRID by allowing users to visually
inspect MHD equilibrium data, configure geometry, and adjust parameter file values on the fly.
Figure 15 shows the simple GUI with both MHD equilibrium data, and the corresponding grid
plotted (text editor not pictured, see the Appendix for parameter file). For both GUI operation
and scripting with INGRID, the high-level INGRID workflow is: (i) Parameter file visualization

21

and editing, (ii) Analysis of MHD equilibrium data and creation of Patch Map, (iii) Patch Map

refinement and grid export.

INGRID internally handles step (i1) and leaves the user to with steps (1) and (ii1). These steps

are where the user is able to customize the Patch Map and grid to meet their modeling needs.

Step (1) in the INGRID workflow allows users to visually inspect MHD equilibrium data, target-
plates and limiter geometry, and ¥-level contours that are specified within a loaded parameter file.
Since creation of grids is tied directly to MHD equilibrium analysis and Patch Map creation, step
(1) is crucial for successful grid generation. To simplify this step, the INGRID GUI provides an
easy to use environment for preparation of a parameter file for the subsequent analysis of MHD
equilibrium data and Patch Map creation. Examples of common operations at this step include
modifications to strike-point geometry and W-level boundaries for subsequent Patch Maps. Once
a user is satisfied with parameter file settings, step (ii) can be immediately executed with no further
user intervention. Should any errors in Patch Map creation occur (e.g. misplaced target-plates, V-
boundaries that do not conform to configuration specific requirements), INGRID will prompt the
user and allow for appropriate edits to be made. Upon completion of step (ii), the created Patch
Map will be provided to users as a new matplotlib figure. From here the user can decide to proceed

with Patch Map refinement or start over at step (i) to make edits to the Patch Map.

In order to streamline grid generation and skip directly to step (iii), INGRID supports Patch
Map reconstruction. This feature allows users to bypass line-tracing routines by reloading a saved
Patch Map from a previous INGRID session. To do so, INGRID encodes essential geometry and
topology analysis data in a specially formatted dictionary that is then saved as a NumPy binary file.
Class IngridUtils handles the encoding and reconstruction of Patch Maps. These reconstruction

features can be configured by the user within the INGRID parameter file.

After a Patch Map has been generated or reconstructed, users can configure grid generation
specific settings that will be utilized during Patch Map refinement. Similar to Patch Map gener-
ation, once all local subgrids have been created within Patch objects, a new matplotlib figure is
presented with the generated grid. From here, users can make grid generation setting edits in the

INGRID parameter file, or proceed to exporting a grid file.

22

VI. SUMMARY

INGRID is a new grid generator for a tokamak boundary region, it is capable of producing
grids for single-null (SNL), unbalanced double-null (UDN), and snowflake-like (SF) configura-
tions. Currently, exported grids are in the format of the UEDGE code, as detailed in Ref. (27);
future development may include addition of grid formats used by other codes if INGRID is adopted
in the broader edge-plasma community, beyond UEDGE. INGRID can be utilized via the INGRID
Python package, or through a parameter file driven GUI mode. Source code as well as documenta-
tion is publicly available on GitHub*} and Read the Docs** respectively. The internal equilibrium
topology analysis algorithm provides the ability to automatically identify the divertor configuration
embedded within experimental data with minimal user interaction. The geometry class hierarchy
approach to domain partitioning and Patch Map abstraction is an essential component of INGRID
and results in a modular approach to grid generation. These localized grids are combined into a
global grid that is then ready for export. Current computational scaling of grid generation algo-
rithm follows a sublinear trend independent of the magnetic topology modeled. Comparison of
INGRID against the internal grid generator in UEDGE is demonstrated for an SF75 snowflake-like
configuration. These tests illustrate INGRID’s ability to produce practical grids for tokamak edge
modeling, for complex magnetic flux function with one or two X-points in the domain, and for

nontrivial target plate geometry.

VII. ACKNOWLEDGMENTS

The authors would like to thank M.E.Rensink for his help with grid generation in UEDGE, and
L.L.LoDestro for many critical comments on the manuscript. This work was performed for U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-ACS52-
07NA27344, and General Atomics under Contract DE-FG02-95ER54309.

VIII. APPENDIX: PARAMETER FILE

An example INGRID parameter file is shown below. In the file, the user is supposed to provide
settings relevant to grid and Patch generation: 1) For the magnetic field geometry, the name (with
path) of data file, in the commonly used neqdsk format; 2) For radial boundaries, the values of the

normalized poloidal flux W for each of the radial boundaries; 3) For poloidal boundaries, the code

23

has options to use one of these: a) limiter data embedded in the eqdsk file b) limiter data provided
in a separate file (the file name and path must be included) c) target plates geometry in separate
files, one per each plate (the file names and paths must be included); 4) How many X-points to
include in the domain, 1 or 2; 5) Approximate R,Z coordinates for each of the included X-points
and for the magnetic axis, to provide initial guess for the solver; 6) Dimensions of sub-grids; 7)

Options related to grid customization; 8) Options related to integrator settings.

#

User data directories

#

dir_settings:
eqdsk: ../ data/SNL/DIII-D/ # dir containing eqdsk
limiter: . # dir containing limiter
patch_data: ../ data/SNL/DIII-D/ # dir containing patch data
target_plates: ../ data/SNL/DIII-D/ # dir containing target plates
#

eqdsk file name
#

eqdsk: neqdsk

#
General grid settings
#

grid_settings:

——

Settings for grid generation

#
(num cells , transforms, skewness_correction)
#

grid_generation:
skewness_correction :
all :

active: True # true, 1 also valid.

24

resolution: 1000

theta_max: 120.0

theta_min: 80.0
np_default: 3
nr_default: 3
poloidal_f_default: x, x
radial _f_default: x, x

——

guard cell size

——

guard_cell_eps: 0.001

——

num levels in efit plot

nlevs: 30

patch_generation:
strike_pt_loc: target_plates # ’limiter’ or
rmagx_shift: 0.0
zmagx_shift: 0.0

——

“target_plates

>

Psi levels

——

psi_l: 1.066

psi_core: 0.95
psi_pf_1: 0.975
-

25

magx coordinates

-
rmagx: 1.75785604
zmagx: —0.0292478683

xpt coordinates

rxpt: 1.300094032687
zxpt: —=1.133159375302

Filled contours vs contour lines

——
view_mode: filled

#

Saved patch settings
#

patch_data:
file: LSN_patches_1597099640.npy
preferences:
new_file: true
new_fname: LSN_patches_1597099640 .npy
use_file: false

#

Integrator

#
integrator_settings:
dt: 0.01
eps: 5.0e-06
first_step: 5.0e-05

max_step: 0.064

26

step_ratio: 0.02
tol: 0.005

—

Limiter settings

—
limiter :
file: °°

use_efit_bounds: false

-

target plate settings

-
target_plates:
plate_E1:
file: d3d_otp.txt
zshift: -1.6
plate_W1:
file: d3d_itp.txt
zshift: -1.6

Listing 1: The YAML formatted configuration file. YAML files utilize Python formatted com-

ments, keyword-value mappings, and nesting of structures via indentation.

REFERENCES

I'M. Kotschenreuther, Physics of Plasmas 14, 072502 (2007).
’D. D. Ryutov, Physics of Plasmas 14, 064502 (2007).

3D. D. Ryutov, Physics of Plasmas 15, 092501 (2008).

4B. LaBombard, Nuclear Fusion 55, 053020 (2015).

°B. J. Braams, Ph.D. thesis, Rijksuniversitet Utrech (1986).

6P. N. Guzdar, J. F. Drake, D. McCarthy, A. B. Hassam, and C. S. Liu, “Three-dimensional fluid

simulations of the nonlinear drift-resistive ballooning modes in tokamak edge plasmas,” Physics

of Fluids B: Plasma Physics 5, 3712-3727 (1993), https://doi.org/10.1063/1.860842.

"B. Scott, “Three-dimensional computation of drift alfvén turbulence,” Plasma Physics and Con-
trolled Fusion 39, 1635-1668 (1997).

8X. Q. Xu and R. H. Cohen, “Scrap-off layer turbulence theory and simulations,” Contributions
To Plasma Physics 38, 158—170 (1997).

9B. Dudson, M. Umansky, X. Xu, P. Snyder, and H. Wilson, “Bout++: A framework for parallel
plasma fluid simulations,” Computer Physics Communications 180, 1467 — 1480 (2009).

10F, Halpern, P. Ricci, S. Jolliet, J. Loizu, J. Morales, A. Mosetto, F. Musil, F. Riva, T. Tran, and
C. Wersal, “The gbs code for tokamak scrape-off layer simulations,” Journal of Computational
Physics 315, 388-408 (2016).

P Tamain, H. Bufferand, G. Ciraolo, C. Colin, D. Galassi, P. Ghendrih, F. Schwander, and
E. Serre, “The tokam3x code for edge turbulence fluid simulations of tokamak plasmas in ver-
satile magnetic geometries,” Journal of Computational Physics 321, 606623 (2016).

124, Stegmeir, D. Coster, A. Ross, O. Maj, K. Lackner, and E. Poli, “GRILLIX: a 3d turbulence
code based on the flux-coordinate independent approach,” Plasma Physics and Controlled Fusion
60, 035005 (2018).

135, Ku, R. Hager, C. Chang, J. Kwon, and S. Parker, “A new hybrid-lagrangian numerical scheme
for gyrokinetic simulation of tokamak edge plasma,” Journal of Computational Physics 3185,
467475 (2016).

14M. Dorf and M. Dorr, “Progress with the 5d full-f continuum gyrokinetic code cogent,” Contri-
butions to Plasma Physics 10.1002/ctpp.201900113.

I5A. H. Hakim, N. R. Mandell, T. N. Bernard, M. Francisquez, G. W. Hammett, and
E. L. Shi, “Continuum electromagnetic gyrokinetic simulations of turbulence in the toka-
mak scrape-off layer and laboratory devices,” Physics of Plasmas 27, 042304 (2020),
https://doi.org/10.1063/1.5141157.

16T D, Rognlien, D. D. Ryutov, N. Mattor, and G. D. Porter, Physics of Plasmas 6, 1851 (1999).

17S. Wiesen, Journal of Nuclear Materials 463, 480 (2015).

I8R. Simonini, Journal of Nuclear Materials 34, 368 (1994).

190, Pan, T. Lunt, M. Wischmeier, D. Coster, and U. S. and, “SOLPS-ITER modeling with acti-
vated drifts for a snowflake divertor in ASDEX upgrade,” Plasma Physics and Controlled Fusion
62, 045005 (2020).

204, Khrabry, V. Soukhanovskii, T. Rognlien, M. Umansky, D. Moulton, and J. Harrison, “Mod-

eling snowflake divertors in mast-u tokamak using uedge code,” Nuclear Materials and Energy

28

26, 100896 (2021).

2IM. V. Umansky, M. S. Day, and T. D. Rognlien, Numerical Heat Transfer, Part B 47, 533 (2005).

22R. Marchand and M. Dumberry, “CARRE: a quasi-orthogonal mesh generator for 2d edge
plasma modelling,” Computer Physics Communications 96, 232 — 246 (1996).

23A. Taroni, “The multi-fluid codes Edgeid and Edge2D: Models and results,” Contribution to
Plasma Physics 34, 448 (1992).

240. Izacard and M. Umansky, “Gingred, a general grid generator for 2d edge plasma modeling,”
(2017), arXiv:1705.05717 [physics.plasm-ph].

23], P. Freidberg, Ideal MHD (Cambridge University Press, New York, 2014).

26D, D. Ryutov, M. A. Makowski, and M. V. Umansky, “Local properties of the magnetic field in
a snowflake divertor,” Plasma Physics and Controlled Fusion 52, 105001 (2010).

2’M. E. Rensink and T. D. Rognlien, “Mapping of orthogonal 2d flux coordinates for two nearby
magnetic x-points to logically rectangular domains,” Tech. Rep. LLNL-TR-731515 (Lawrence
Livermore National Laboratory, Livermore, California, 2017).

281, Lao, H. S. John, R. Stambaugh, A. Kellman, and W. Pfeiffer, “Reconstruction of current
profile parameters and plasma shapes in tokamaks,” Nuclear Fusion 25, 1611-1622 (1985).

29W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd
ed. (Cambridge University Press, Cambridge, USA, 1992).

30P, Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, lhan Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, 1. Henriksen, E. A. Quin-
tero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors, “Scipy 1.0—fundamental algorithms for scientific computing in python,” (2019),
arXiv:1907.10121 [cs.MS].

1. Enthought, “SciPy Interpolate GitHub repository,” https://github.com/scipy/scipy/
tree/master/scipy/interpolate.

32¢scipy.optimize.root documentation,” https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.root.html.

33 A. Hindmarsh, “Odepack. a collection of ode system solvers,” (1992).

34D. Baver, J. Myra, and M. Umansky, “Linear eigenvalue code for edge plasma in full tokamak

x-point geometry,” Computer Physics Communications 182, 1610-1620 (2011).

29

3D. A. Baver, J. R. Myra, and M. Umansky, “ELM benchmark of the 2DX code,” Tech. Rep.
(Lodestar Research Corporation, 2010).

36M. Wiesenberger, M. Held, L. Einkemmer, and A. Kendl, “Streamline integration as a method
for structured grid generation in x-point geometry,” Journal of Computational Physics 373, 370-
384 (2018).

3’M. Dorf et al., Bulletin of the American Physical Society 59 (2014), TP8.00027.

3¥M. A. Dorf, M. R. Dorr, J. A. Hittinger, R. H. Cohen, and T. D. Rognlien, “Contin-
uum kinetic modeling of the tokamak plasma edge,” Physics of Plasmas 23, 056102 (2016),
https://doi.org/10.1063/1.4943106.

390. Meneghini, S. Smith, L. Lao, O. Izacard, Q. Ren, J. Park, J. Candy, Z. Wang, C. Luna,
V. 1zzo, B. Grierson, P. Snyder, C. Holland, J. Penna, G. Lu, P. Raum, A. McCubbin, D. Orlov,
E. Belli, N. Ferraro, R. Prater, T. Osborne, A. Turnbull, and G. Staebler, “Integrated modeling
applications for tokamak experiments with OMFIT,” Nuclear Fusion 55, 083008 (2015).

400. Meneghini and L. Lao, “Integrated modeling of tokamak experiments with omfit,” Plasma
and Fusion Research 8, 2403009-2403009 (2013).

41“UEDGE code GitHub repository,” https:/github.com/LLNL/UEDGE, accessed: 2021-01-18.

42K. Simonov, “Pyyaml homepage,” https://pyyaml.org/wiki/Py YAML (2006).

43B. M. Garcia, J. Watkins, J. Guterl, and M. V. Umansky, “INGRID code GitHub repository,”
https://github.com/LLNL/INGRID (2019).

4B. M. Garcia, J. Watkins, J. Guterl, and M. V. Umansky, “INGRID Read the Docs,” https:
//ingrid.readthedocs.io/en/latest/ (2020).

30

Figure 1: Topological possibilities with one and two X-points. As explained in the main text, case
(a) is a single-null configuration; case (b) with the secondary X-point in the common-flux region
has five variations, depending on the location of the projection point X}; case (c) with the secondary
X-point in the private-flux region has two variations depending on the location of the projection
point Xj. The East-West notation for the two midplane points (Mg and My) and the two strike
points (Sg and Sy) is based on designating the direction along VW from the corresponding X-point
toward the O-point as “North”, as illustrated in case (a). This is invariant notation, independent on

whether the X-point is at the top, at the bottom, or anywhere else.

31

Figure 2: INGRID Patch Map; a subgrid is shown on one of the patches

32

SNL

Xpt1i

psi_1—>

plate_W1

el plate_E1
psi_pf_1

== Primary Separatrix

Figure 3: SNL Patch Map with the generalized midplane overlayed. O4 shows the original mag-
netic axis used to define the horizontal midplane through O4. The midplane defines the poloidal
boundary between patches B/C and D/E. For Patch Map customizability, INGRID allows for a
generalized midplane through Op to be defined (described in Section II-G). This is done by re-

defining the location of the magnetic axis and the directions of the rays generating the midplane.

33

psi_1/v
v\psi_2
B3
psi_core G
A3 /
plate_W1 G3
psi_pf_1

——— Primary Separatrix

UDN

xpt1

a3

plate_E1

= Secondary Separatrix

Figure 4: UDN Patch Map

34

psi_core

plate_W1

plate_E1 psi_2 plate_W2
== Primary Separatrix

= Secondary Separatrix

Figure 5: SF15 Patch Map

35

SF15

xpt1

si_core
Pl plate_E2

psi_pf_1

plate_W1 plate_E1

Primary Separatrix

= Secondary Separatrix

Figure 6: SF45 Patch Map

36

SF75

psi_core
B1 l E1

plate_W1

psi_pf_1
plate_W2

=== Primary Separatrix

= Secondary Separatrix

Figure 7: SF75 Patch Map

37

D3 E3

plate_W2

plate_W1

psi_2
plate_W2

——— Primary Separatrix

= Secondary Separatrix

Figure 8: SF105 Patch Map

38

plate_W2

]

SF135

xpt1

psi_1

psi_2

plate_W1 plate_E1

Primary Separatrix

Secondary Separatrix

Figure 9: SF135 Patch Map

39

Xpt2

plate_E2

psi_2

psi_pf_1

| |

plate_E1

plate_W1

Primary Separatrix

Secondary Separatrix

Figure 10: SF165 Patch Map

40

skewness correction

%
mns s 7
88! %
S l‘t =

NSty
INTTOE 77
VN
“‘\\ \\\\\\\\\

A\

Disabled Enabled

Figure 11: Comparison of SF135 grids generated with and without activation of the skew-
ness_correction tool. Highlighted regions illustrate regions of notably improved grid orthogo-

nality.

41

100 -
80 4
Gl
'JE-' 60 1
= Configuration
g . o ® SNL
}_
40 - .’ SF75
L
[]
L]
L]
20 - o
]
L
L
|:|_
I T T T T T 1
0 1000 2000 3000 4000 5000 6000
Total cells

Figure 12: Scaling of grid generation follows a sublinear trend independent of configuration. Grids
were generated with n X n many cells per Patch with n = {3,4,5,...,15}. With n X n subgrid

dimensions, SNL configurations contain 127> many cells, whereas SF75 configurations contain

27n? many cells.

42

INGRID UEDGE

Figure 13: INGRID and UEDGE generated grids used for the comparison calculations.

43

INGRID

UEDGE

60000
V| | 0.8 0.8
[m/ S] 40000
0.6 0.61
0.4 1 0.4 20000
E E
N N
0.2 0.2 1 0
0.0 0.0 1
—20000
-0.2 -0.2
‘ } } ; ; ! ! ! : ; —40000
04 06 0.8 1.0 12 14 0.4 0.6 08 10 1.2 14
R[m] Rm]
lelg
3 | — —
Ni os ~_ 08+ N
3 \ N 6
m— \
0.6 1 061
\ 5
/
0.4 0.4 2
E E
~N N
0.2 4 / 0.2 3
2
0.0 0.0
1
—0.2 -0.2
04 06 08 L0 12 14 04 06 08 10 12 14
R [m] R [m]
50
Te 0.8 084
[eV] w
061 0.6 1
0.44 0.4 4 30
E E
~N N
021 0.2
20
0.0 1 0.0
10
-0.2 -0.2
0j4 Ojﬁ 0.8 1.0 1.2 1.4 0:4 016 DjE 1‘.0 1‘.2 1:4
R [m] R[m]

44

Figure 14: Results of the comparison calculations run on INGRID and UEDGE generated grids.

INGRID: Nermalized Efit Data o0 e INGRID: LSN Grid
magx ~——— midline_1 psi_core
xptl midline_2 psi_pf_1
—— plate Wl —— psi_1 —— Primary Separatrix
plate_E1 ooe INGRID
Parameter File Path: “/Users/bryan-garcia/Desktop/INGRID/example_files/SNL/DIID_SNL.ymI" Select Parameter File
View Loaded File Create Patches Create Grid Export gridue Quit
dilg
0.5
N 00
N
-0.5
-0.5
-1.01
-1.0 -15
100 125 150 175 200 225 250
R
-15
R
- | m -— o
A €P Q=B jre2+Q= 0B)

Figure 15: The INGRID GUI with loaded EFIT data and an INGRID generated grid plotted in
separate windows. This interface allows users to load a parameter file, plot the contents, create a

Patch Map, create a grid, and export a gridue.

45

