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Background and Motivation
% Polyurethane uses

+ Traditional polyurethane synthesis
% Novel pathways towards NIPUs

Thermoplastic Polyurethane Capabilities |

% Linear polyurethane synthesis through melt
polymerization

% Thermomechanical characterization

Non-isocyanate Polyurethane Foams
% Synthetic pathways

% Avenues for decarboxylation

% Architecture control through surfactant content

% Structure property relationships for flexible and rigid
foams
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Polyurethanes are ubiquitous in commercial and v«
specialized applications due to high tunability

= Polyurethanes contain a
urethane (carbamate) linkage
in their backbone and have
high modularity relative to
other classes of polymer o)

= This allows their use in \( /”\
. e N o

various applications

Polyurethane

Carbamate
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How It's Made: Thermoplastic
polyurethanes (TPUs) and foams

TPUs PU Foams
» Typically formed in two-steps: - Polyols (high MW for flexible foams) are
1. Diisocyanate reacts with soft- reacted with diisocyanates
segment to form iso-terminated » CO, generation achieved through water
prepolymer addition
2. Chain-extension by adding small . Water functions as a chain extender to
molecule diol to prepolymer form urea hard segments
0-C-Np N=C0  * HO. OH - The CO, acts as a blowing agent
HO
l OH OH
] 5 5 ] HOWOH o/ OF
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R, R E R & rR._ HOM&OH
/( O~ °N N- 0" “O” °N N Of\ Gl Sucrose
H H H H ycerol
Dutta, A. S. Plastics Design Library; William Andrew
Yilgor, L.; Yilgér, E.; Willkes, G. L. Polymer (Guildf). 2015, 58_, A1-A36. Publishing, 2018; pp 17-27. Bnode5|gn
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CDI inspired monomers reveal a new path for / |
non-isocyanate polyurethanes (NIPU) ¥ ¢

Reacting a diol with carbonyl diimidazole (CDI) affords a bis-carbonylimidazolide (BCI) monomer
O

I} L U
\—/ l—/
O O
Né\NJ\O/Rb)LN/\\N + R2 i R )OL R
. A )
N=\
BCl diamine I%/NH Polyurethane

= Using CDI chemistry allows for more flexibility in the applied chemistry
= Potential for safer synthetic routes
= These monomers are powders, not liquids so exposure chance is reduced
Wolfgang, J. D.; Long, T. E., Macromolecular Rapid Communications 2021, 42 (13), 2100163.
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Isocyanate-, solvent-, and catalyst-free TPU '«
synthesis using novel 1,4-BBCI monomer

i P\

//\NJLO/\/\/O\Q/N\’/ o HNSNSNSA N

1,4-BBCI 1,8-Diaminooctane (1,8-DAO)

150 °C, 15 min, N,
=\ 150 °C, vac., 5 min
HN N /] 170 °C, vac., 80 min

_1,4-BDCI +1,8-DAO

Wolfgang, J. D.; White, B. T.; Long, T. E., Macromolecular Rapid Communications 2021, 42 (13), 2100163.
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Branching results in a decrease in T, solution- and melt-
polymerization techniques yield comparable results
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DMA Q800: Temp ramp, 3 °C/min to 200 °C, 1 Hz, T, from tan & peak BUURd
: : - iodesi n
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Aliphatic flexible foams PDMS-doped foams Cyclic aliphatic and aromatic Predicting pore

~ | with uniform cell shape rigid foam __geometry.
O N_z 0 . )
HzN D ’%){_} II ~ /\NJ\O . NH, .
NH, 1,4-BBCI R i 5 NV D@ N ] @
T-403 N;, O HzN {_} ] \g/ HzNﬁj \©\NH2
i 2 CHDMBCI TADE
1,4-BBCI T.403
H2N/\/\S|< s.)qhs/\/\NH2 180 °C, N,, 3-5 min

950 g/mol aminopropyl terminated PDMS

l160 °C, N2,1-2 min

NSC-614-4746 08/2022
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Butanediol based BCI monomer reacts with a ;7= £,
triamine to form a flexible foam

tion Time ~ 70 s

0-15s 30-45 s

Wolfgang, J. D.; White, B. T.; Long, T. E., Macromolecular Rapid Communications 2021, 42 (13), 2100163.
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Potential mechanisms for decarboxylation / 5
explored in the BCI system ’

Intermolecular B-elimination leading to terminal vinyl

SN-R
\ \—/ I \
& > 140 °C e CO, ry
J\ Q2 _0__0O y )\ /\/\ < _L> N T+ AN-R
O o/\)\/u\( o0 Y in HN\::/N' o%o/\/\ \=/

(2 ¥

Homolysis and disproportionation leading to terminal vinyl

N N
U v o { { \
N) S 140 C /N) C/\ | C02 /N»

N
OJ\O/\/\/OYO - OJ\O/\)%;m}.\?O ' ﬁj —> OJ\O/\/\ ' 4/_ l:l
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BBCI monomer releases CO, at high ‘
temperatures |

50000
140 °C 170 °C

40000

30000

CO2 ppm

20000

10000

Temperature of Oil bath

= 29, 7.35 mmol

= CO, generation begins at 140 °C

GasLab 5% CO, detector CM-0124
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Elimination of abstractable hydrogens
inhibits CO, generation

NSC-614-4746 08/2022 W

UUR

Aromatic BCI monomers do not

produce CO,

N/
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T O
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Aliphatic BCI monomer without B-
hydrogen
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B-hydrogen elimination confirmed as A
‘mechanism for decarboxylation

Intermolecular B-elimination leading to terminal vinyl

SN-R
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Surfactant concentration controls cell

_architecture

1,4-BBCI

160 °C, N5,1.5 min

dabco surfactant
0.25-5wt%

JEOL 6300 SEM, 15 KV accelerating voltage Sputtercoated 10 A Au
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D% o\g@\‘ 160 °C, Np,1.5 min
H2N _<+ ﬂ
A, 1,4-BBCI Co 0 gurtactant

\Cross Section View of Cell Window

Bubble
Expansion —™
/ Higher surface tensi
Lower® :
surface Film drainage 141 pym 0.33 pm Surfactant

adsorption

—  Surface tension --—
gradient

No surfactant 1.0 wt % 5.0 wt %
= 1 wt % surfactant loading produces most stable pore formation loc 0144746 08/2022
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BCI foams display minimal water
_uptake at multiple architectures
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% All foam compositions display minimal water uptake (4 wt. % at

90 % relative humidity)
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Surfactant produces a higher fraction of P
open-cells in butanediol-based foams

BBCI-T403 + 0.8 wt
% Dabco DC193

JEOL JSM — IT500HR SEM and Cressington Sputter Coater 208HR with Au/Pd
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TADE-based PU foams contain closed-cells
and unique pore tructues

-
— g Ak [yt s a
W VW Nwd

w

T e

BBCI-TADE + 2.8
wt % Dabco DC193

JEOL JSM — IT500HR SEM and Cressington Sputter Coater 208HR with Au/Pd
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Partially aromatic, high T, PU foams from 2,4,4'-
triaminodiphenylether (Ti\DE)

0
\—/ o__N

CHDMBCI

180 °C, N5, 3-5 min

H |"J H
o_ N NH N N Hr\ﬁ\'\‘
T

- CHDMBCI and TADE melted at 180 °C under N,

. . —_ (o]
- Reaction is homogeneous Ty =111°C
. Curing reached after ~ 4-5 min (From TMA)
NSC-614-4746 08/2022
Video starts ~ 4 min after reaction start. UUR
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Aryl amines effectively increase T,, allowing
“use in high performance apphcatlons
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Design of new BCI monomer with no B- === £,
hydrogens allows for tunable CO, generation 5

. n Accepted mechanism for CO, production in the BCI system

N 7N N
£y ST 5 CO, ry
o ~ALILO R e S N AO . © —~> \ T NONR

() ¢y T o=

= Monomer for Eastman’s Triton®
polyester

. Prowdes ood impact resistance and
Provides g p HO OH

= No beta hydrogens, so no CO,
generation expected

2,2,4,4-tetramethyl cyclobutenediol (CB)

= Could replace aromatic BCI monomers
P Introduction 2 Thermoplastic PUs 2 Crosslinked PUs > % ﬁlggﬁftgn




Reacting TADE with CBBCI results j
in porous structure

) ) g - YA
0 — O 170 °C, N, 22 min '
-\ Weae! >
|§/ _ﬁ) HoN NH, %

CBBCI TADE

= Crosslinked product still
achieved porous
structure

= Volatile imidazole could
serve as the blowing
agent, eliminating need
for CO, generation

Tgo0f 115 °C
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Conclusions

CDI Chemistry allows for non-isocyanate
polyurethane synthesis O

O
//\NJkO/Rb)kN/\\

)

N

BCI monomers are capable of synthesizing
PU foams and thermoplastics

Imidazole as can be used as a circular, green
route for polyurethane foam blowing
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