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Polyurethanes are ubiquitous in commercial and 
specialized applications due to high tunability

 Polyurethanes contain a 
urethane (carbamate) linkage 
in their backbone and have 
high modularity relative to 
other classes of polymer

 This allows their use in 
various applications N

H
O

O
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How It’s Made: Thermoplastic 
polyurethanes (TPUs) and foams 

Yilgör, I.; Yilgör, E.; Wilkes, G. L. Polymer (Guildf). 2015, 58, A1–A36.

PU FoamsTPUs
• Polyols (high MW for flexible foams) are 

reacted with diisocyanates
• CO2 generation achieved through water 

addition 
• Water functions as a chain extender to 

form urea hard segments
• The CO2 acts as a blowing agent 

• Typically formed in two-steps: 
1. Diisocyanate reacts with soft-

segment to form iso-terminated 
prepolymer

2. Chain-extension by adding small 
molecule diol to prepolymer
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 Using CDI chemistry allows for more flexibility in the applied chemistry 
 Potential for safer synthetic routes

 These monomers are powders, not liquids so exposure chance is reduced 

CDI inspired monomers reveal a new path for 
non-isocyanate polyurethanes (NIPU)
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Reacting a diol with carbonyl diimidazole (CDI) affords a bis-carbonylimidazolide (BCI) monomer 

5 5Introduction Crosslinked PUsThermoplastic PUs
Wolfgang, J. D.; Long, T. E., Macromolecular Rapid Communications 2021, 42 (13), 2100163.

NSC-614-4746 08/2022
UUR



Isocyanate-, solvent-, and catalyst-free TPU 
synthesis using novel 1,4-BBCI monomer
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Branching results in a decrease in Tg; solution- and melt-
polymerization techniques yield comparable results

7
DMA Q800: Temp ramp, 3 °C/min to 200 °C, 1 Hz, Tg from tan δ peak

Tflow = 164 °C
Tflow = 163 °C
Tflow = 157 °C
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Versatility of BCI design allows for tailoring foam 
thermomechanical properties and pore geometry
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Butanediol based BCI monomer reacts with a 
triamine to form a flexible foam
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Wolfgang, J. D.;  White, B. T.; Long, T. E., Macromolecular Rapid Communications 2021, 42 (13), 2100163.
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Potential mechanisms for decarboxylation 
explored in the BCI system

Intermolecular β-elimination leading to terminal vinyl 

Homolysis and disproportionation leading to terminal vinyl 
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BBCI monomer releases CO2 at high 
temperatures 
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Β-hydrogen elimination confirmed as 
mechanism for decarboxylation

Intermolecular β-elimination leading to terminal vinyl 

Homolysis and disproportionation leading to terminal vinyl 
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Surfactant concentration controls cell 
architecture 

0.25 wt %
0.5 wt %

1.0 wt % 1.5 wt % 5.0 wt %

JEOL 6300 SEM, 15 KV accelerating voltage Sputtercoated 10 Å Au
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Surfactant loading affects pore stability

1.0 wt % 5.0 wt %No surfactant
 1 wt % surfactant loading produces most stable pore formation
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BCI foams display minimal water 
uptake at multiple architectures 
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 All foam compositions display minimal water uptake (4 wt. % at 
90 % relative humidity) 

16Introduction Crosslinked PUsThermoplastic PUs

NSC-614-4746 08/2022
UUR



Surfactant produces a higher fraction of 
open-cells in butanediol-based foams

a. b.

c. d.
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TADE-based PU foams contain closed-cells 
and unique pore structures 
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Partially aromatic, high Tg PU foams from 2,4,4'-
triaminodiphenylether (TADE)

Video starts ~ 4 min after reaction start.

• CHDMBCI and TADE melted at 180 °C under N2
• Reaction is homogeneous
• Curing reached after ~ 4-5 min
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Aryl amines effectively increase Tg, allowing 
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Design of new BCI monomer with no β-
hydrogens allows for tunable CO2 generation

 Monomer for Eastman’s Triton® 
polyester 

 Provides good impact resistance and 
rigidity 

 No beta hydrogens, so no CO2generation expected

 Could replace aromatic BCI monomers 
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Reacting TADE with CBBCI results 
in porous structure 
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 Crosslinked product still 
achieved porous 
structure

 Volatile imidazole could 
serve as the blowing 
agent, eliminating need 
for CO2 generation 

+
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Conclusions 

CDI Chemistry allows for non-isocyanate 
polyurethane synthesis

BCI monomers are capable of synthesizing 
PU foams and thermoplastics

Imidazole as can be used as a circular, green 
route for polyurethane foam blowing 
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