

Exceptional service in the national interest

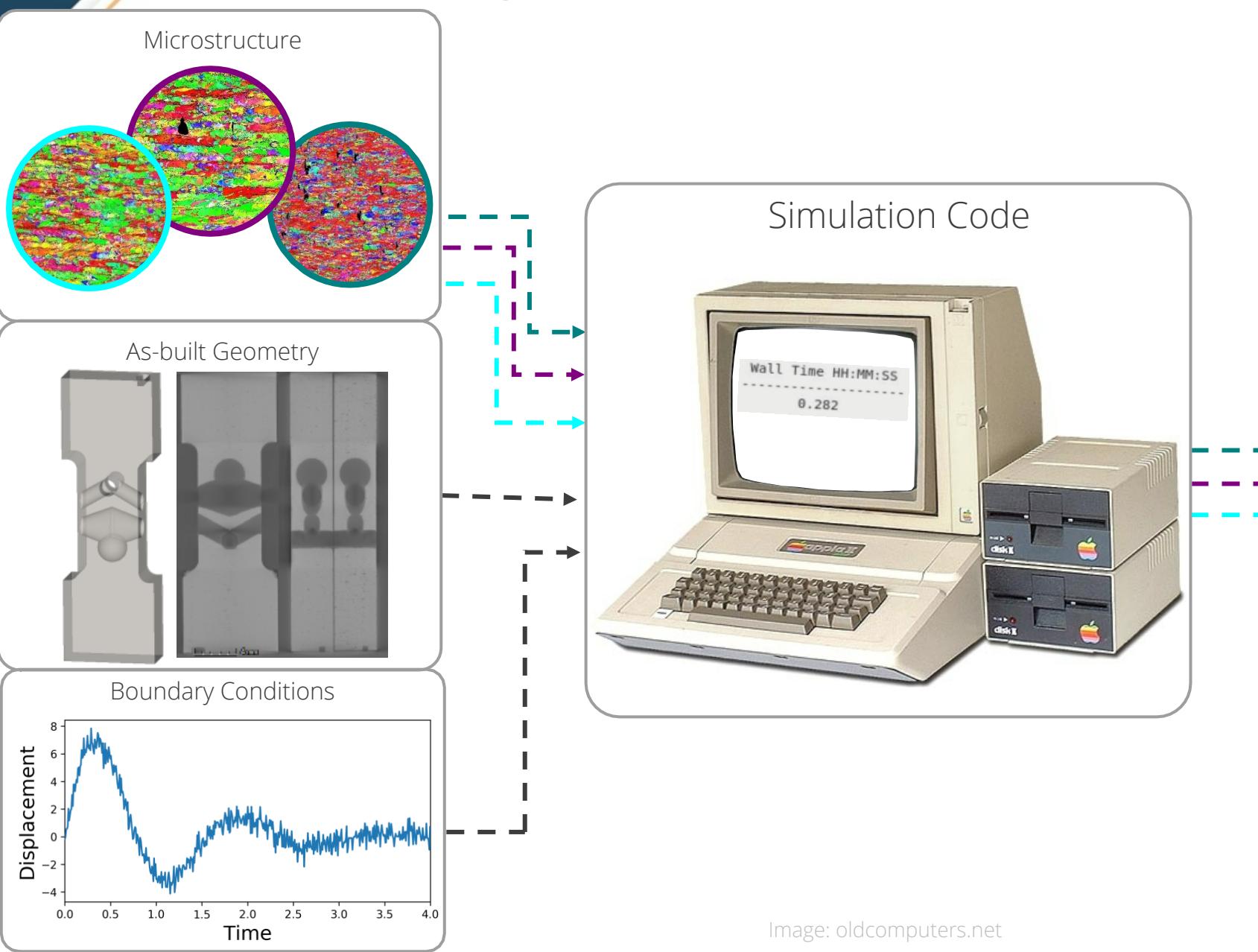
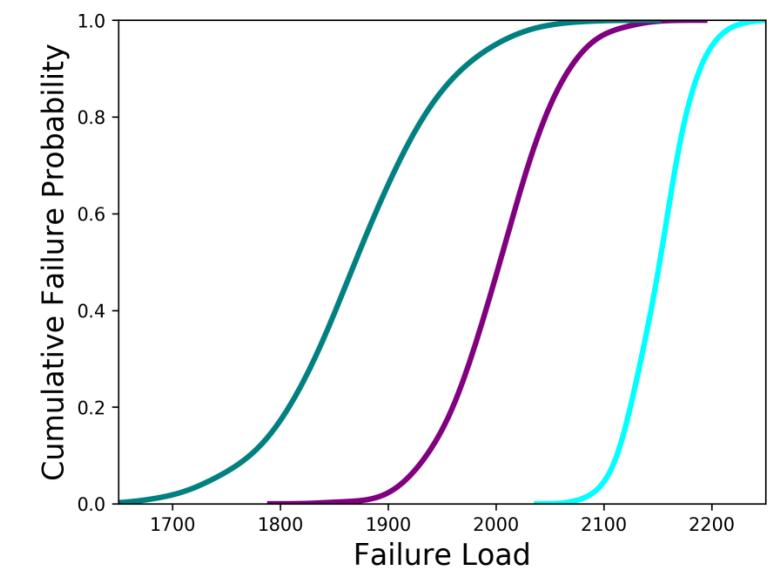
Predicting Mechanical Performance in Additive Manufacturing Components Using Deep Learning

Kyle Johnson, Demitri Maestas, Philip Noell, Hojun Lim, John Emery, Matthew Smith, Carianne Martinez, and Warren Davis

US National Congress on Computational Mechanics

July 29, 2021

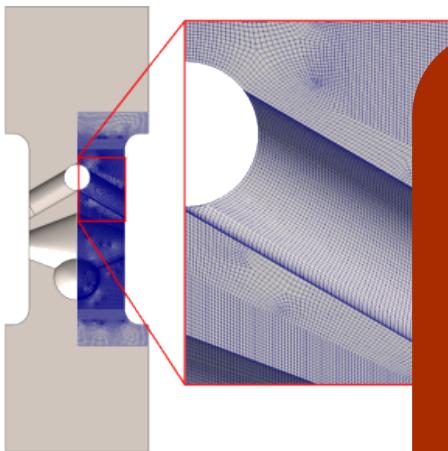
Vision: Rapid failure prediction based on microstructure, geometry, and loading conditions



Qualification, Topology Optimization, etc.

Today: Failure Prediction is Difficult and Slow Even With a Team

1. Create Mesh (Days-Weeks)

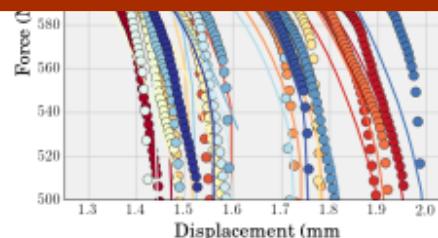
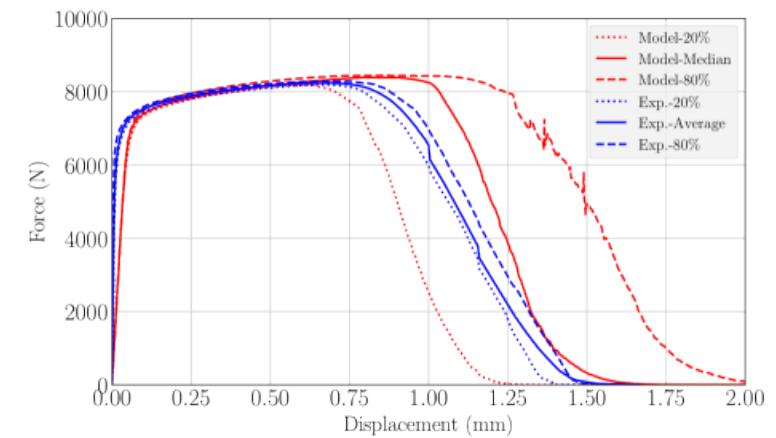


2. Iteratively Calibrate Material Model with Damage (Days-Weeks)

700

3. Run Many Large Simulations (Days-Weeks-Months)

Can physics-informed Deep Learning (DL) algorithms be trained to rapidly identify the initial microstructural conditions that lead to incipient failure initiation?



Outline

- Part 1: Predicting AM mechanical response
 - Training data generation using porous AM material
 - Data mapping
 - Local variations in stress state
 - Deep Learning algorithm
 - Deep Learning predictions
 - Conclusions and future work

Part 1 Project Overview: Predicting AM Mechanical Response

Training Data: High fidelity model results from AM dogbones loaded in tension

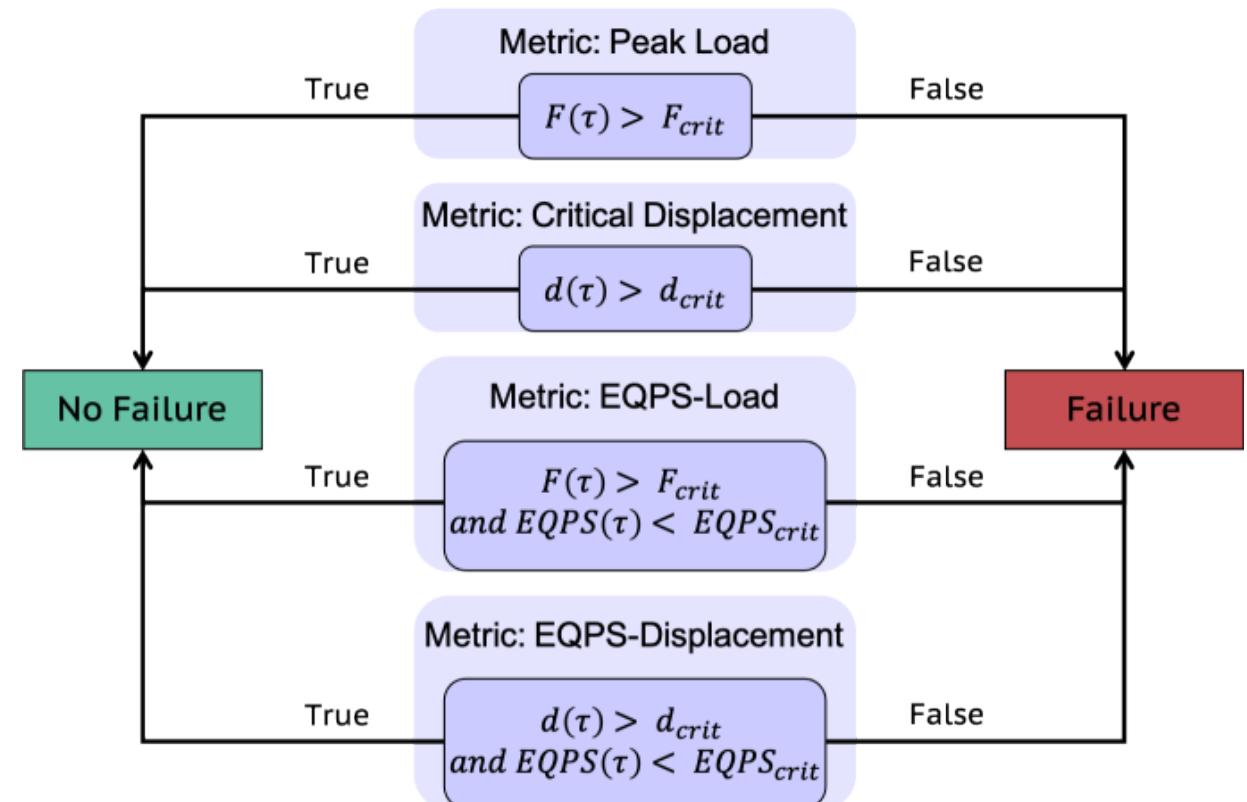
DL Model: Supervised 3D CNN

Inputs: Porosity and final state equivalent plastic strain (EQPS)

Output: Metric Classification

Submitted to: Computational Materials Science

Metrics



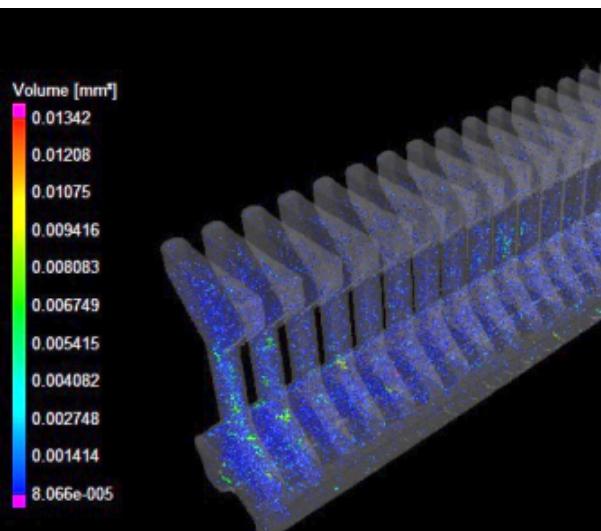
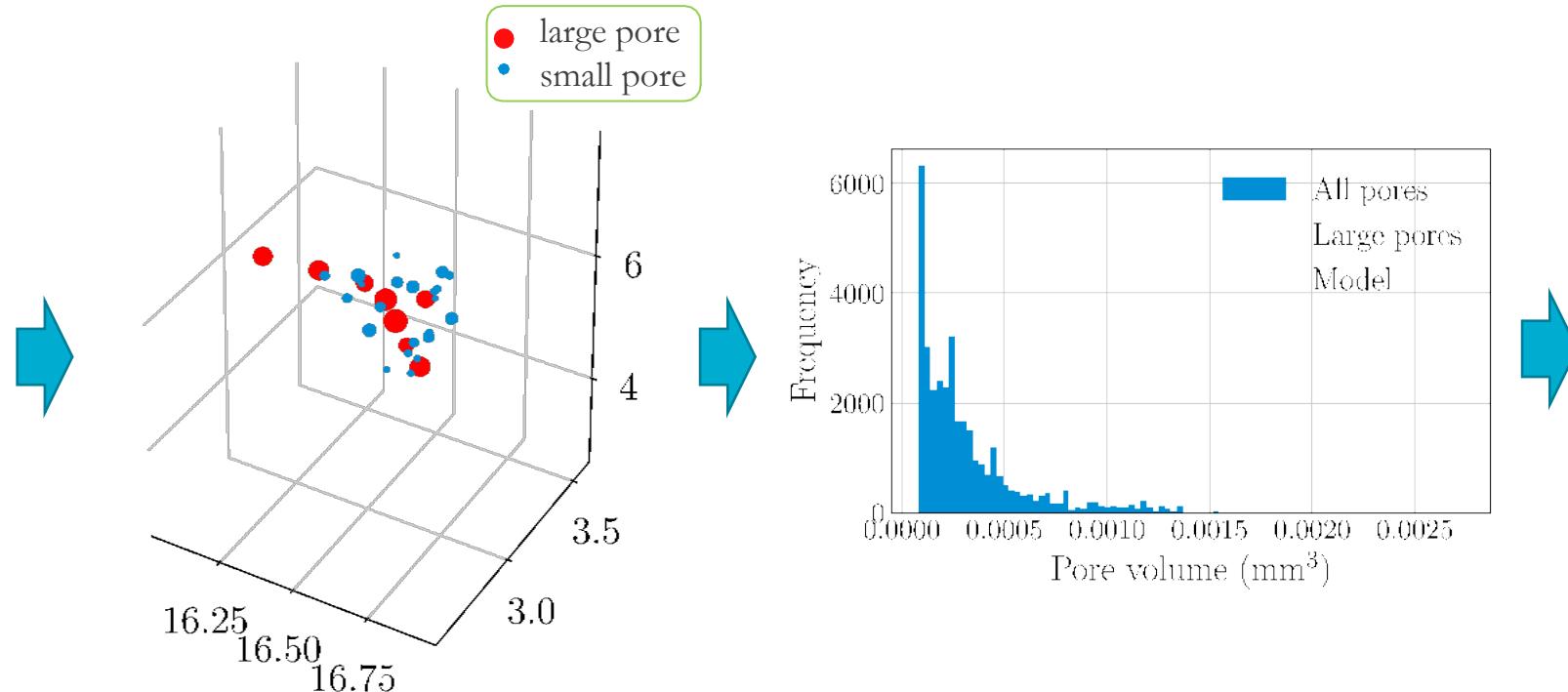
τ = time corresponding to peak load

F_{crit} = required load

d_{crit} = required displacement

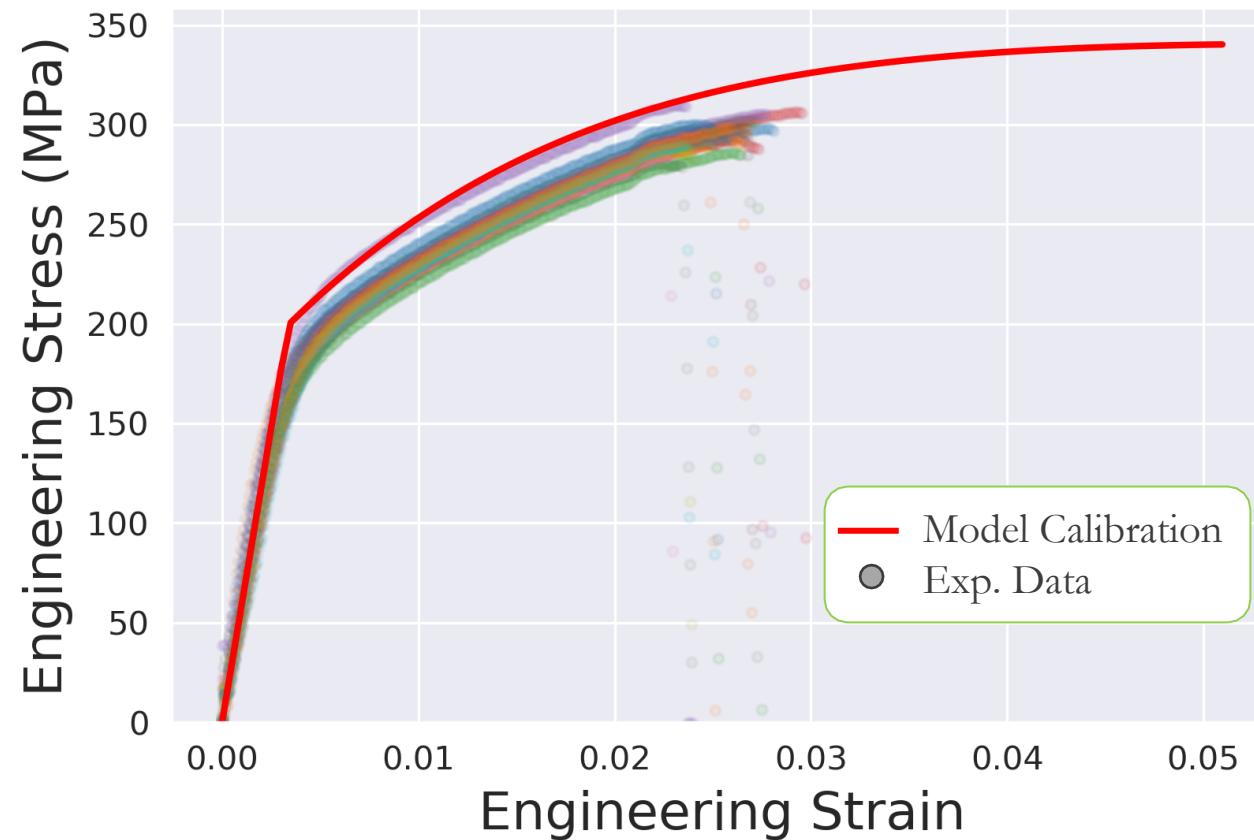
$EQPS_{crit}$ = required equivalent plastic strain

Experimental CT measurements inform training data meshes



- Training data consists of dogbone gauge sections loaded in tension past peak load

Calibration to tensile specimens

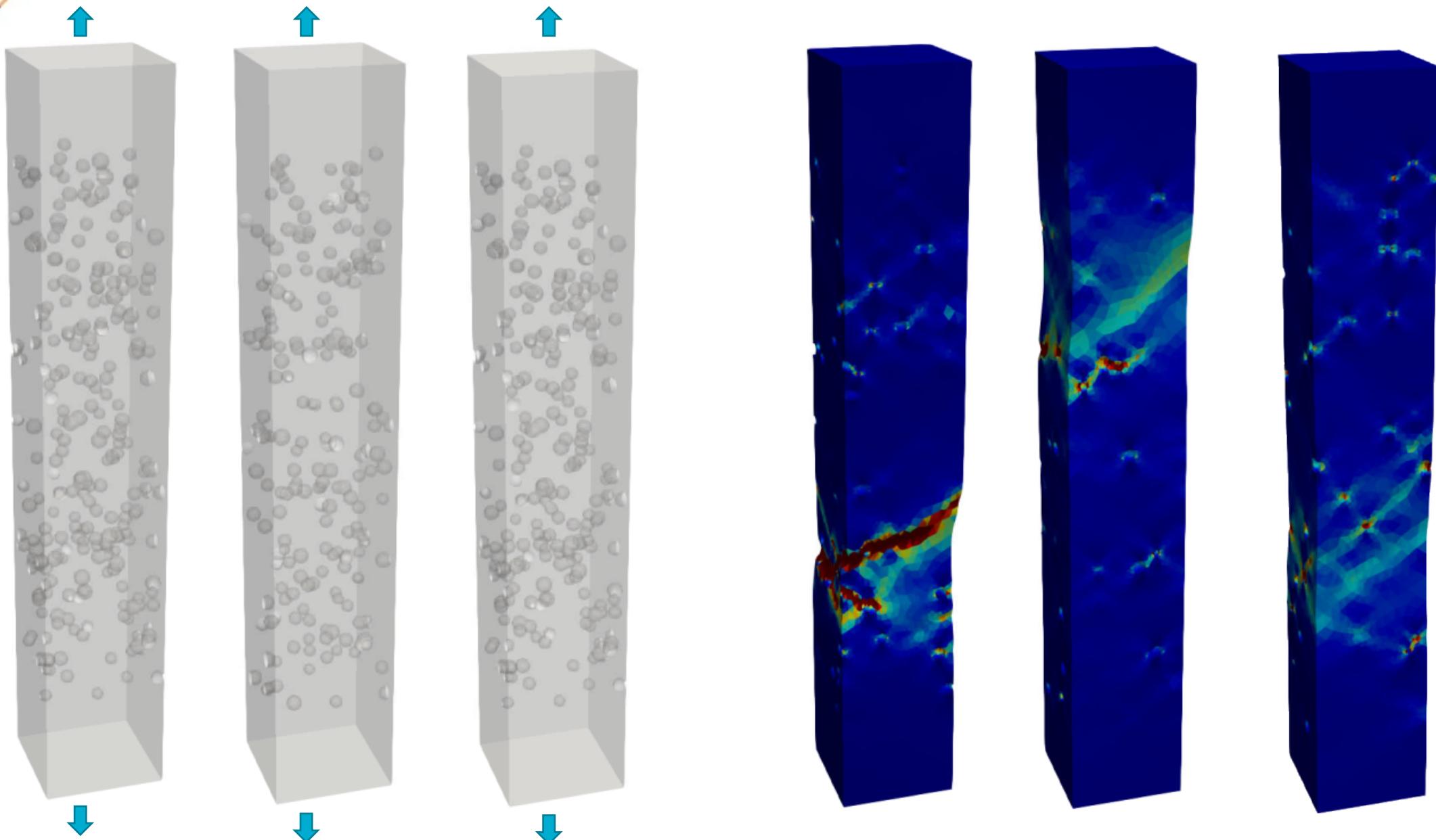


- Plasticity is captured with Voce hardening model

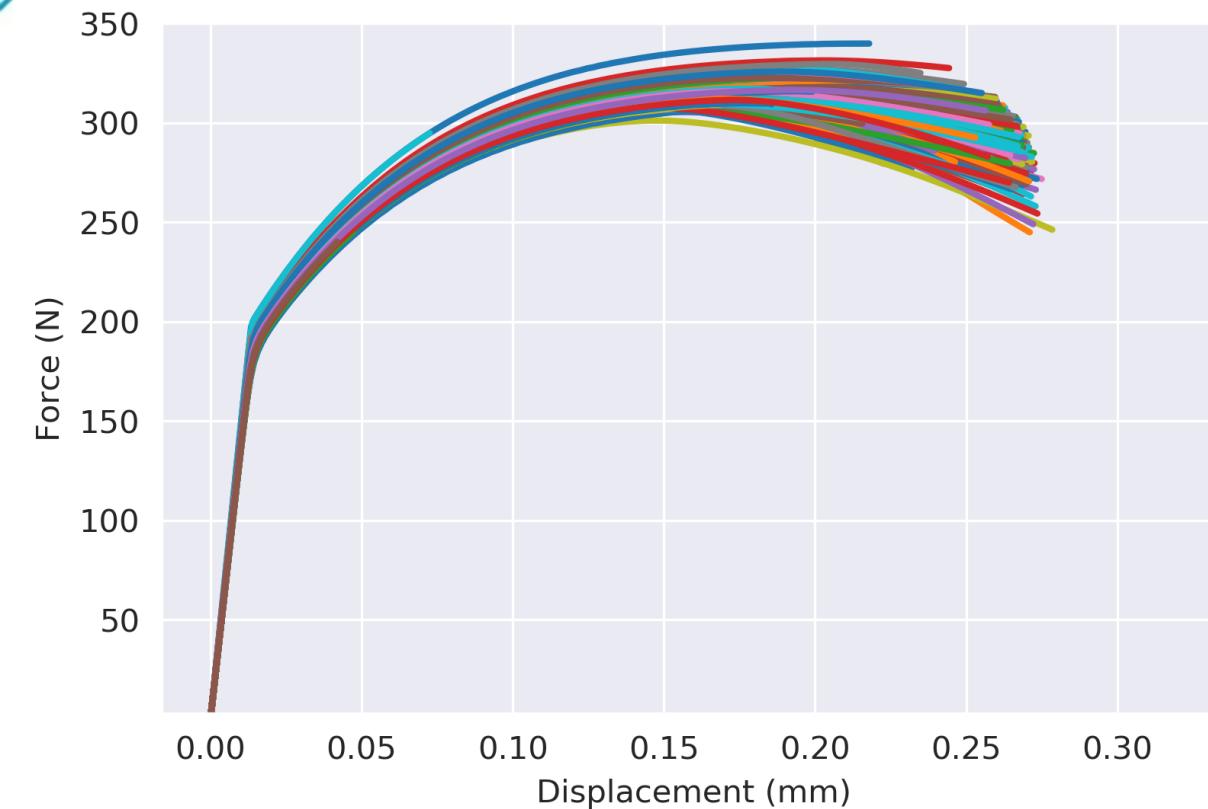
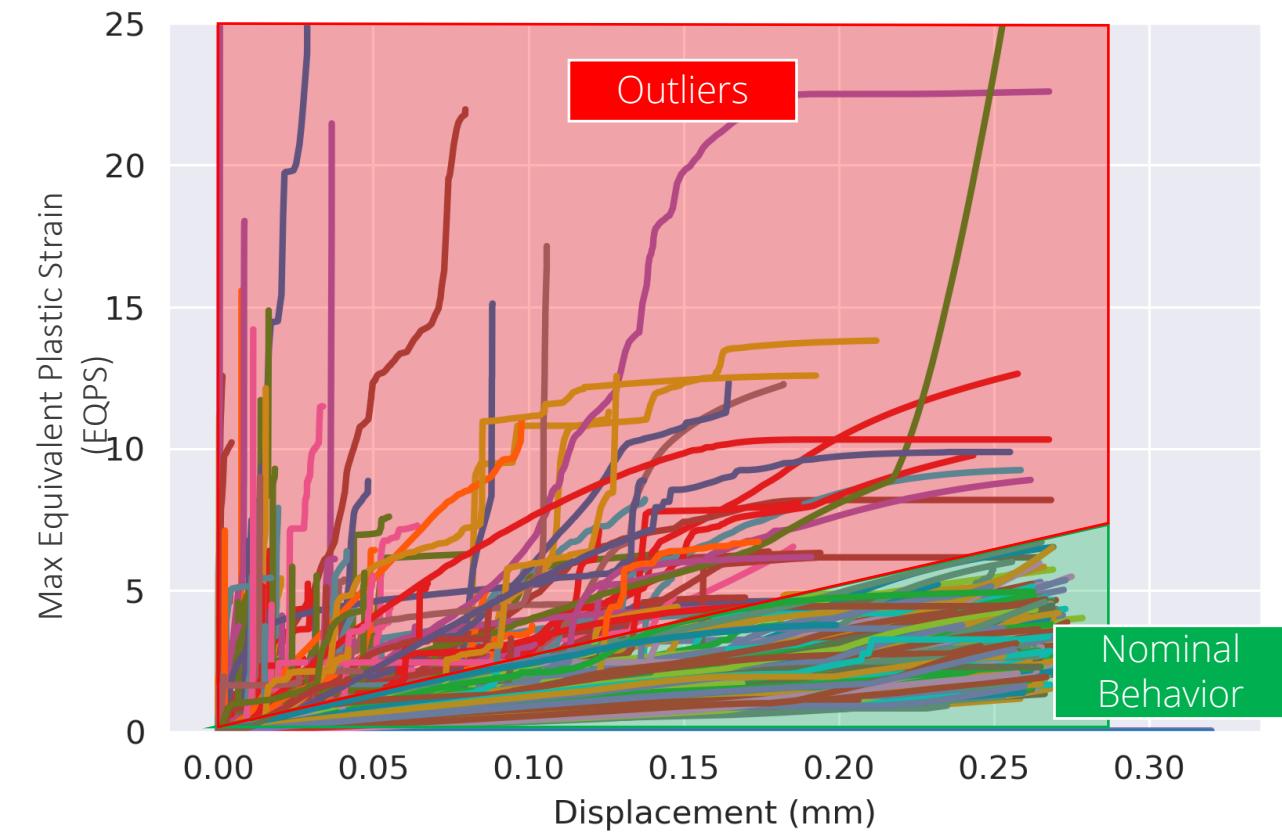
$$\bar{\sigma} = \sigma_y + A(1 - \exp(-n\bar{\varepsilon}^p))$$

- Model calibrated using porous mesh from CT scan – captures “matrix” response

Different porosity samples lead to different local behavior

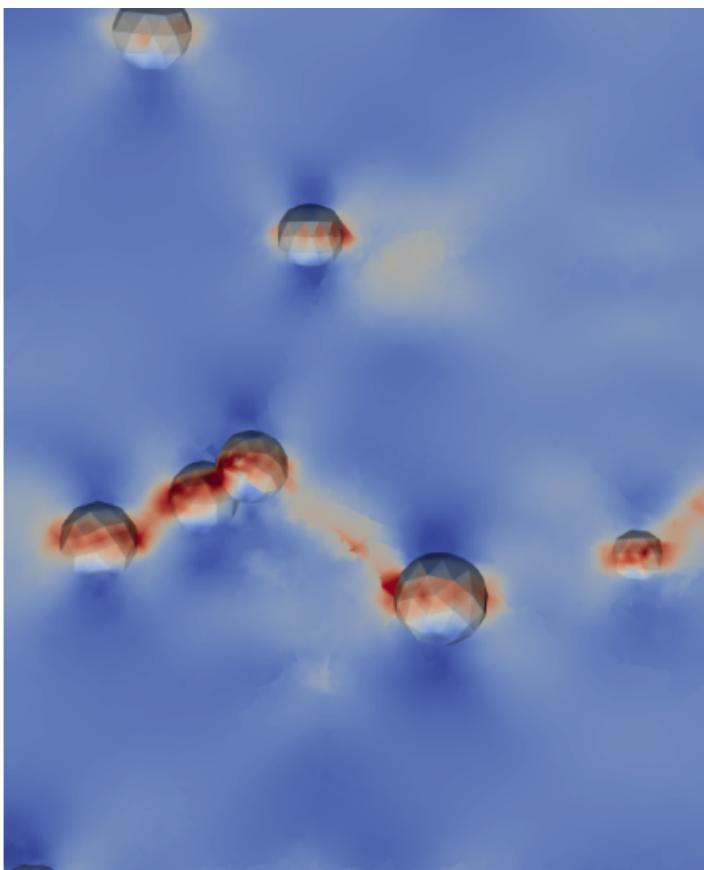
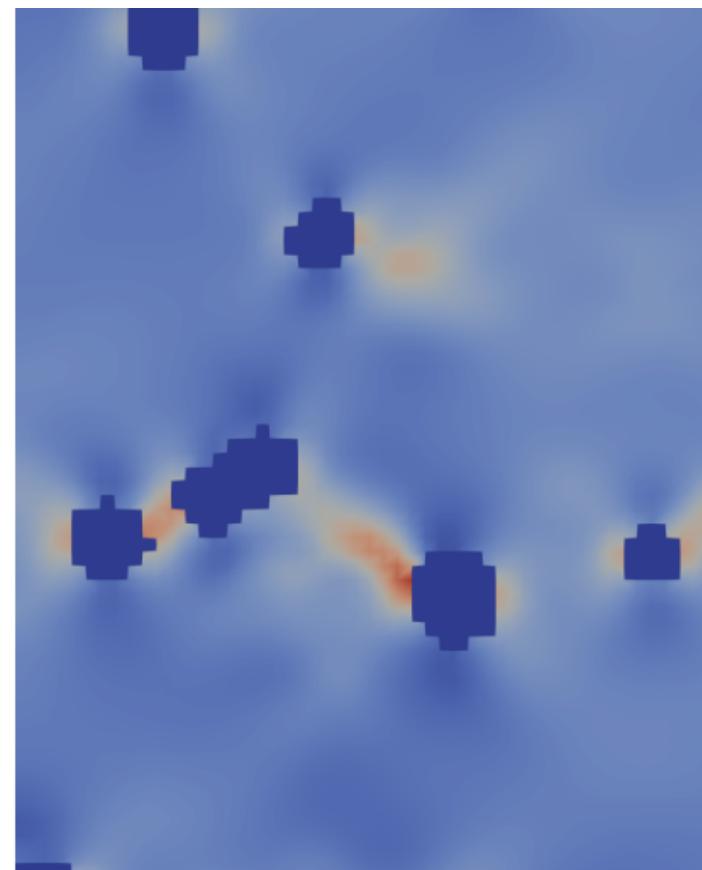
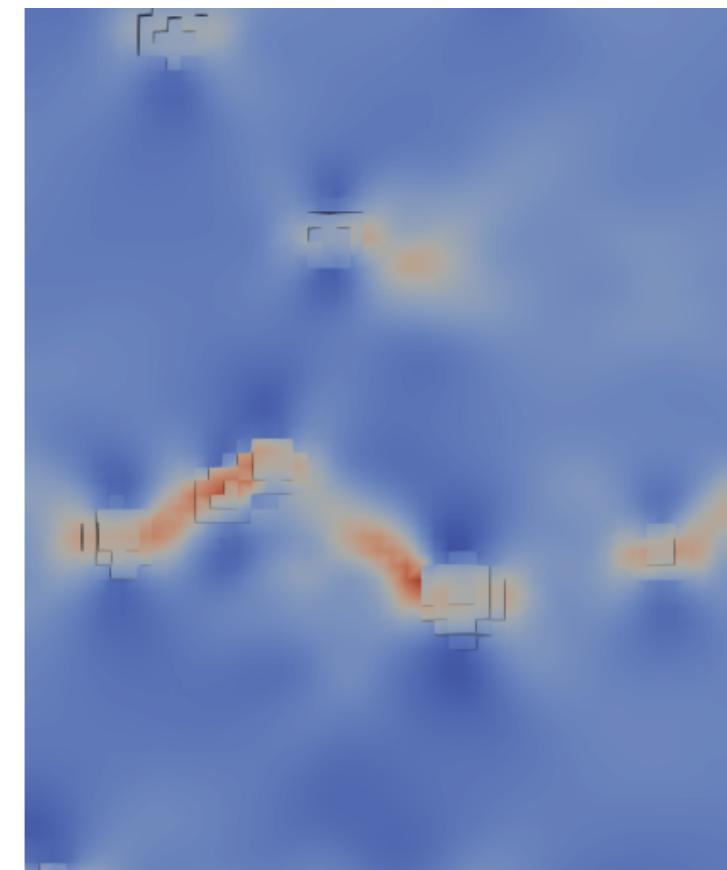
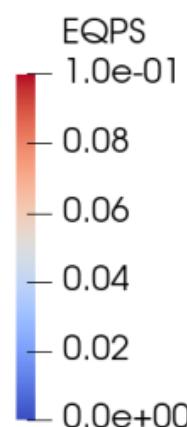


Force-displacement and max equivalent plastic strain (EQPS) show large variations due to pore structures

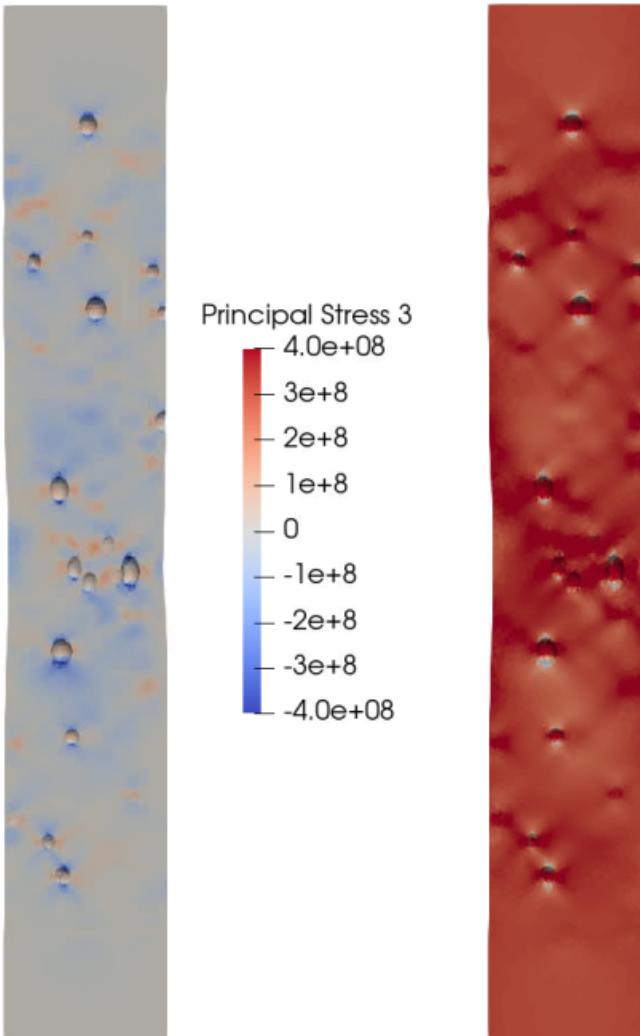
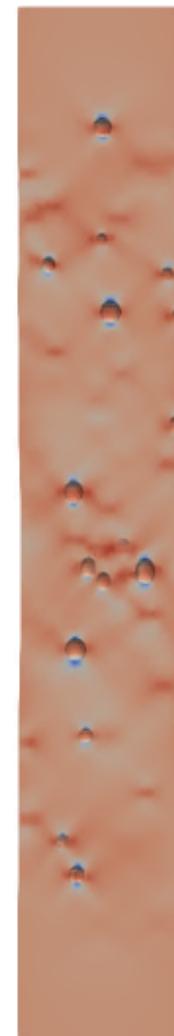
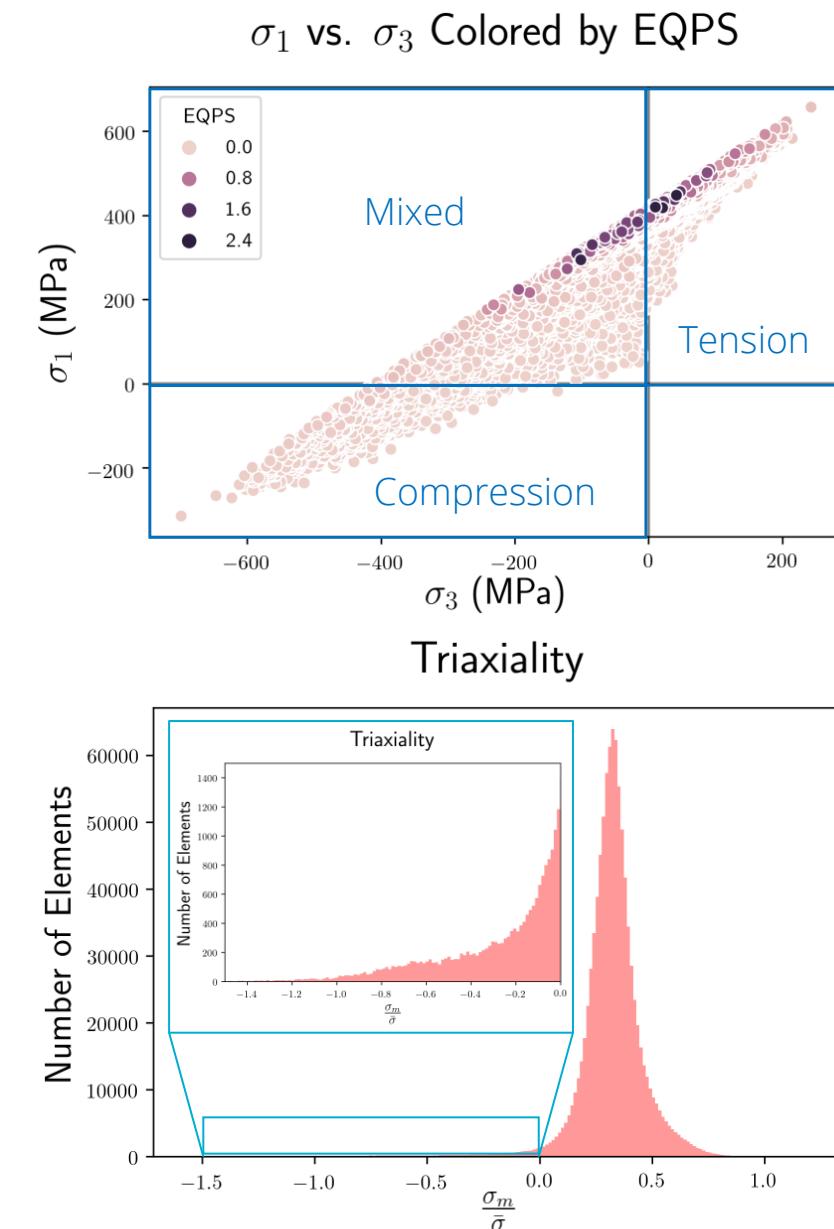


Deep Learning algorithm requires uniform voxel (3D Pixel) data format

1 mm

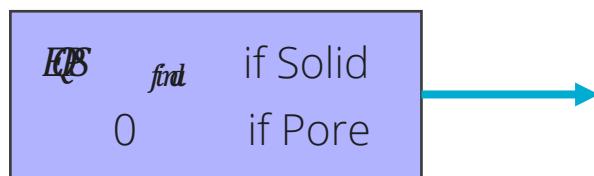
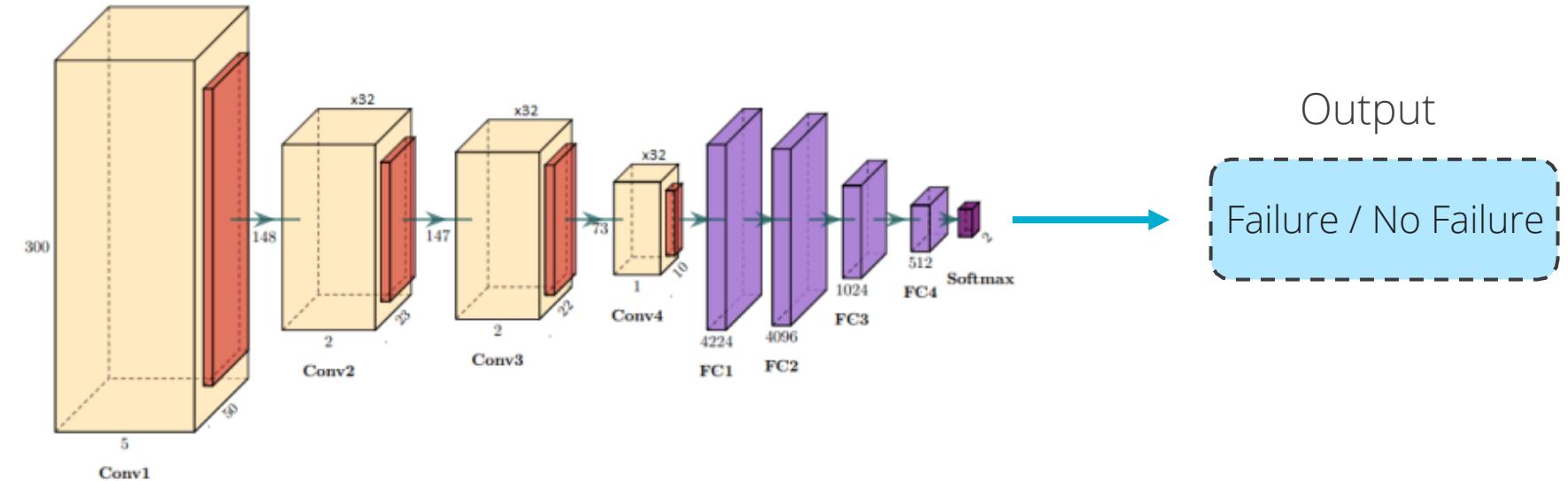


Specimens show large local stress state variations even in nominal uniaxial tension simulations → Reduces risk of extrapolation



Deep Learning algorithm architecture

Model Inputs per Voxel



- Model architecture based on Huang et al. *Front. Neurosci.* 2019
- Output is classification – pass/fail for failure metric

Failure prediction results in test sets for network trained only on tension

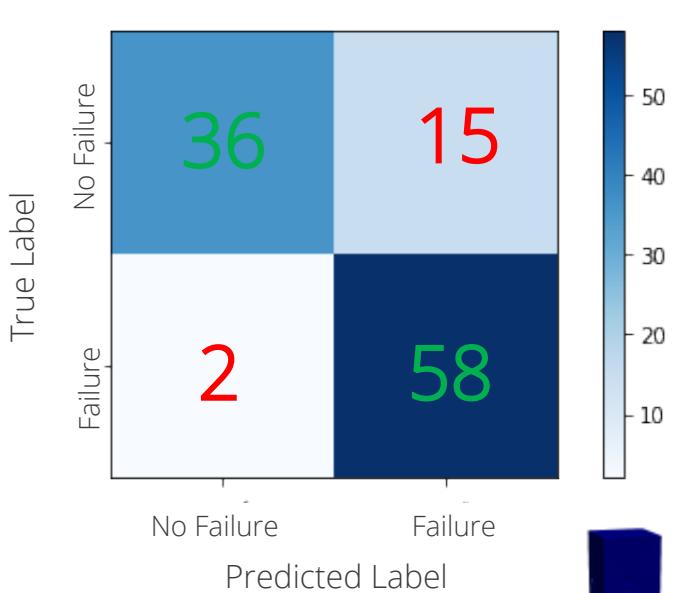
Failure Metric: Sample failed to reach a required load before onset of strain localization.

FEA Simulation Time: 88 minutes on 216 CPUs

DL Network Inference Time: 0.02 s on 2 GPUs

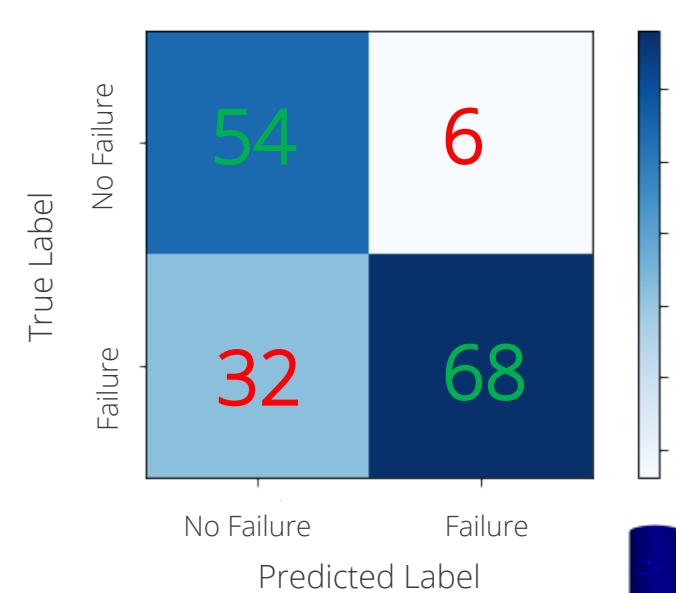
Speedup: 264000x

Square Tension



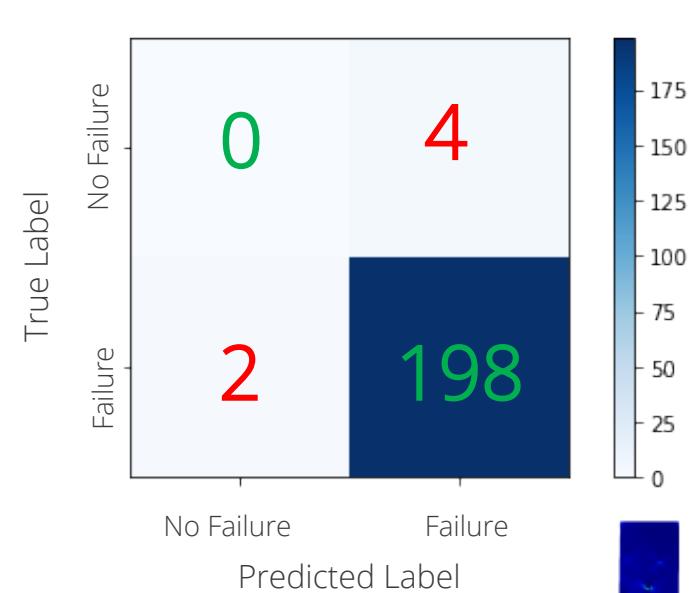
Test Accuracy: 84.7%

Cylindrical Tension



Test Accuracy: 76.2%

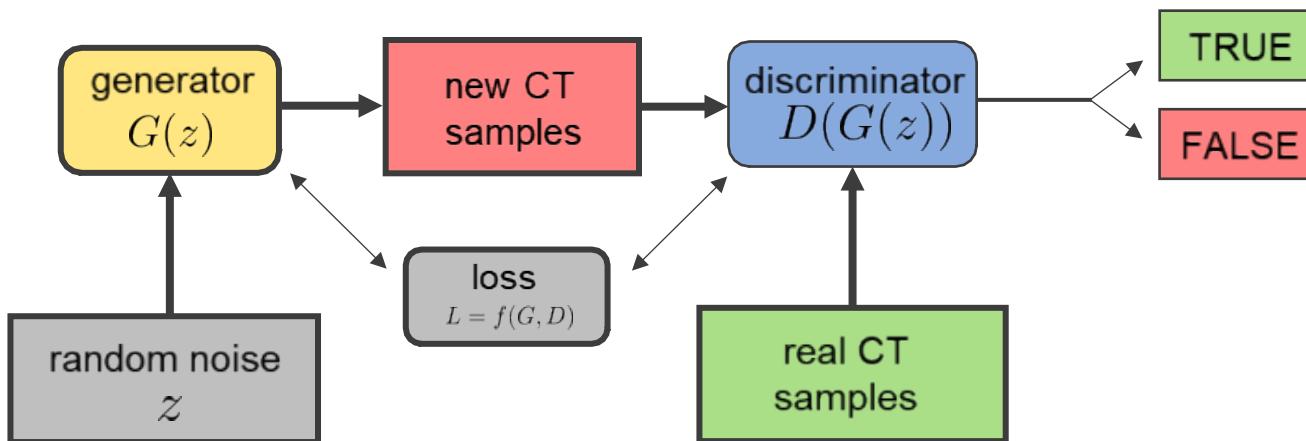
Square Compression



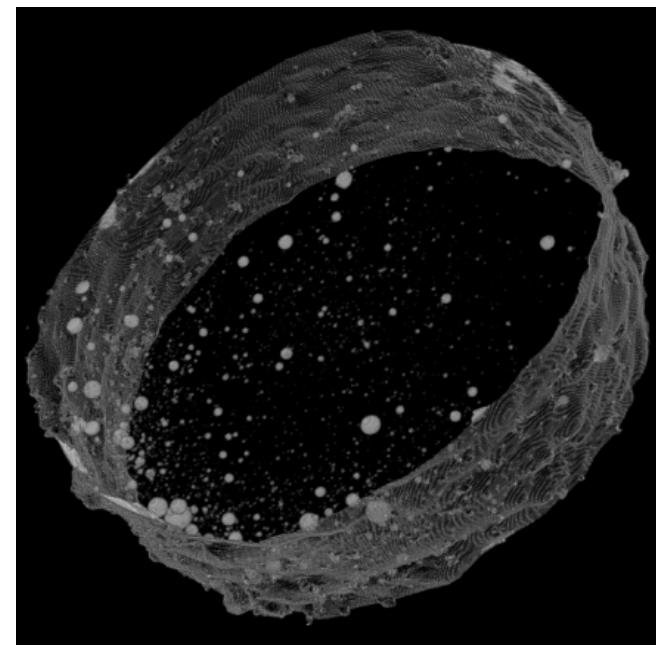
Test Accuracy: 97.1%

Extension: Using GANs to augment CT images of AM material – Collaboration with Amir Farimani and Francis Ogoke (CMU)

- Generative Adversarial Networks (GANs) produce new samples from a training set while preserving the underlying statistics.
- GANs are trained to minimize the distance between the distribution of the training data and the generated samples.



GAN network schematic

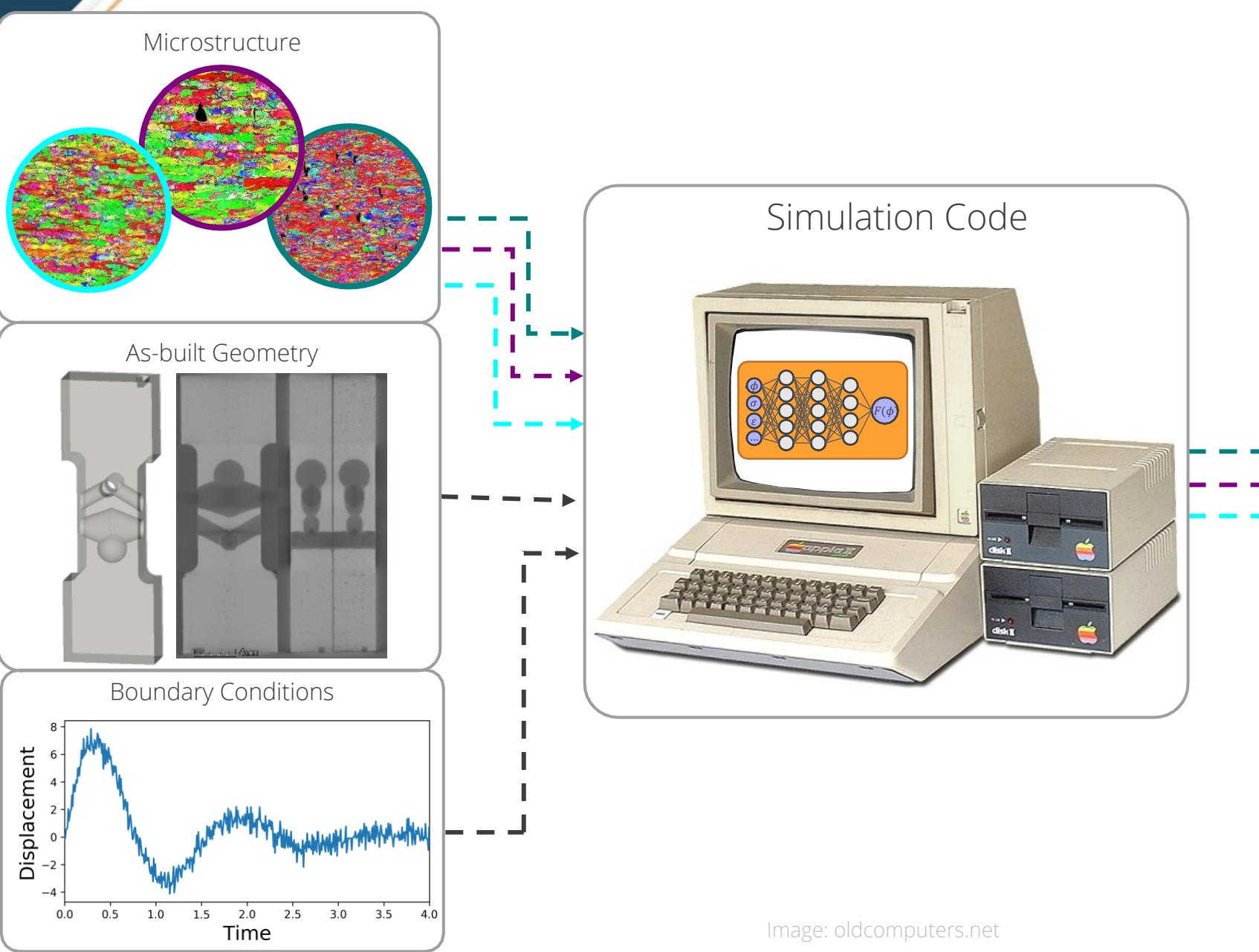
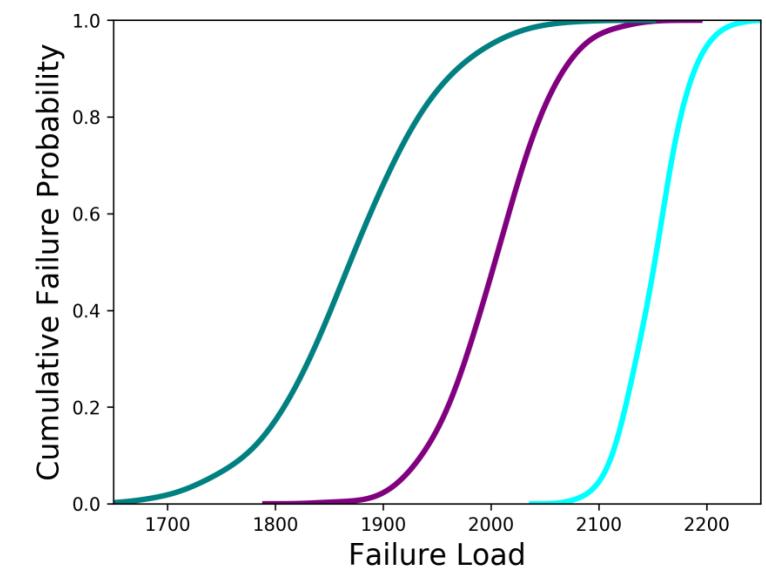


Metric	Notes
Volume Distribution	
Nearest Neighbor Distances	
Location Distribution	
Ellipticity	
Moment of Inertia	
Surface Area	
Mallat Scattering Transform	$ x * \psi_{\lambda_p} * \psi_{\lambda_{p'}} * \phi_J$

Project Summary

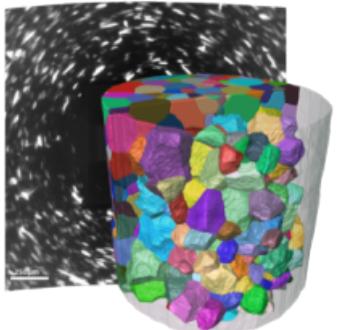
- Deep Learning was able to predict performance variation due to microstructural features 5 orders of magnitude faster than FEA (nearly instantaneous).
- Model maintained predictiveness in different part geometries and stress states.
- DL is able to pick up on patterns that subject matter experts cannot. Prior to this work we explored looking at stress measures to predict ductility with little success.
- Using large datasets for DL training, such as volumetric data used here, on GPUs is a challenge.

Vision: Rapid failure prediction based on microstructure, geometry, and loading conditions enabled by Deep Learning

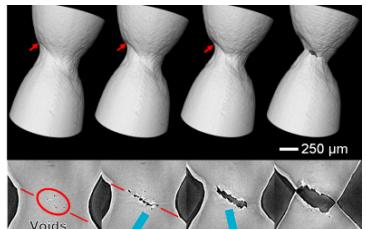
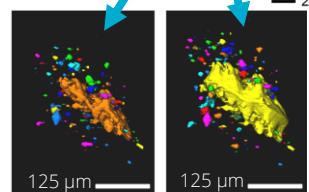
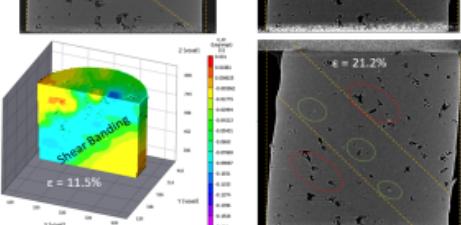


New 3-Year Project Will Combine Experimental and Computational Mechanics with Deep Learning to Predict Material Failure

Emerging Experimental Capabilities

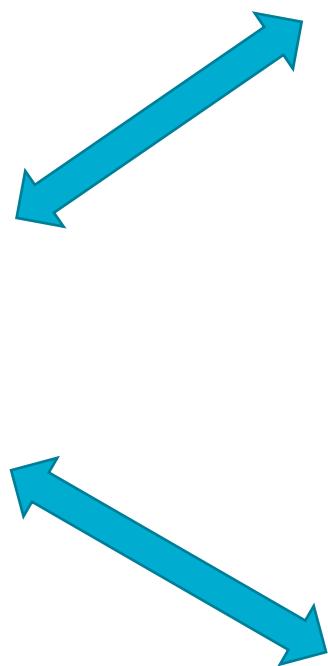


Diffraction
Contrast
Tomography
(DCT)

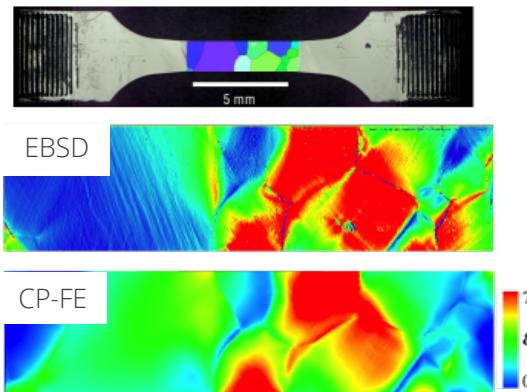


Digital Volume Correlation
(DVC)

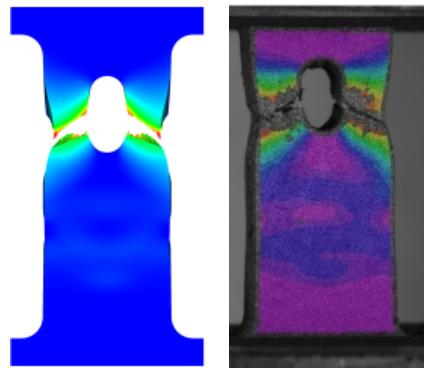
High Resolution µCT



High Fidelity Modeling

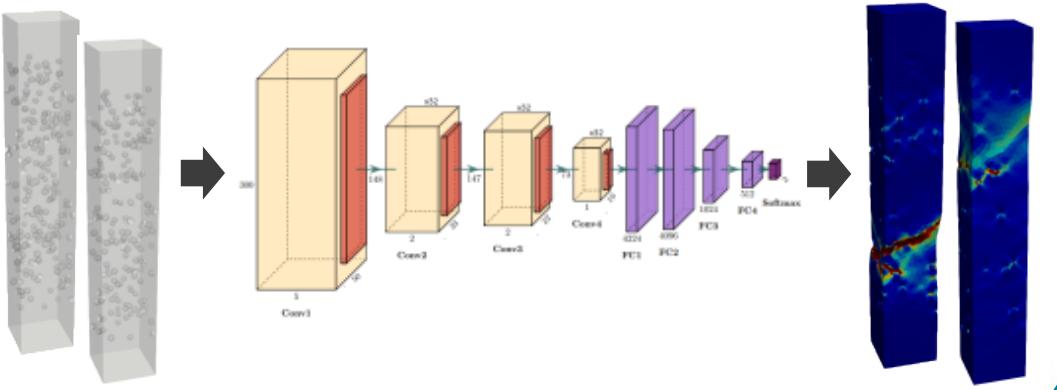


Crystal Plasticity



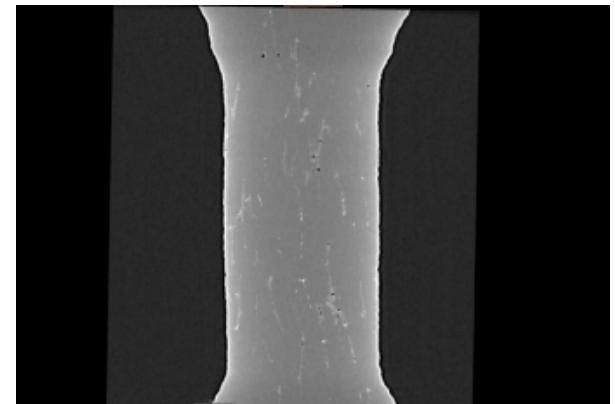
Continuum Plasticity and
Damage Models

Large Scale Physics-Informed Deep Learning



Future Work

- Multiscale coupling – mesoscale CP to macroscale continuum damage simulations
- Digital Volume Correlation (DVC) testing
- In situ micron-scale CT testing
- High Energy Diffraction Microscopy (Prof. Mike Sangid)
- Transmission Electron Microscopy for failure initiation mechanisms (Profs. Billy Oates and Brandon Krick)
- TriBeam characterization on deformed DCT+CP simulated sample
- Combining all of the above in DL model for failure predictions

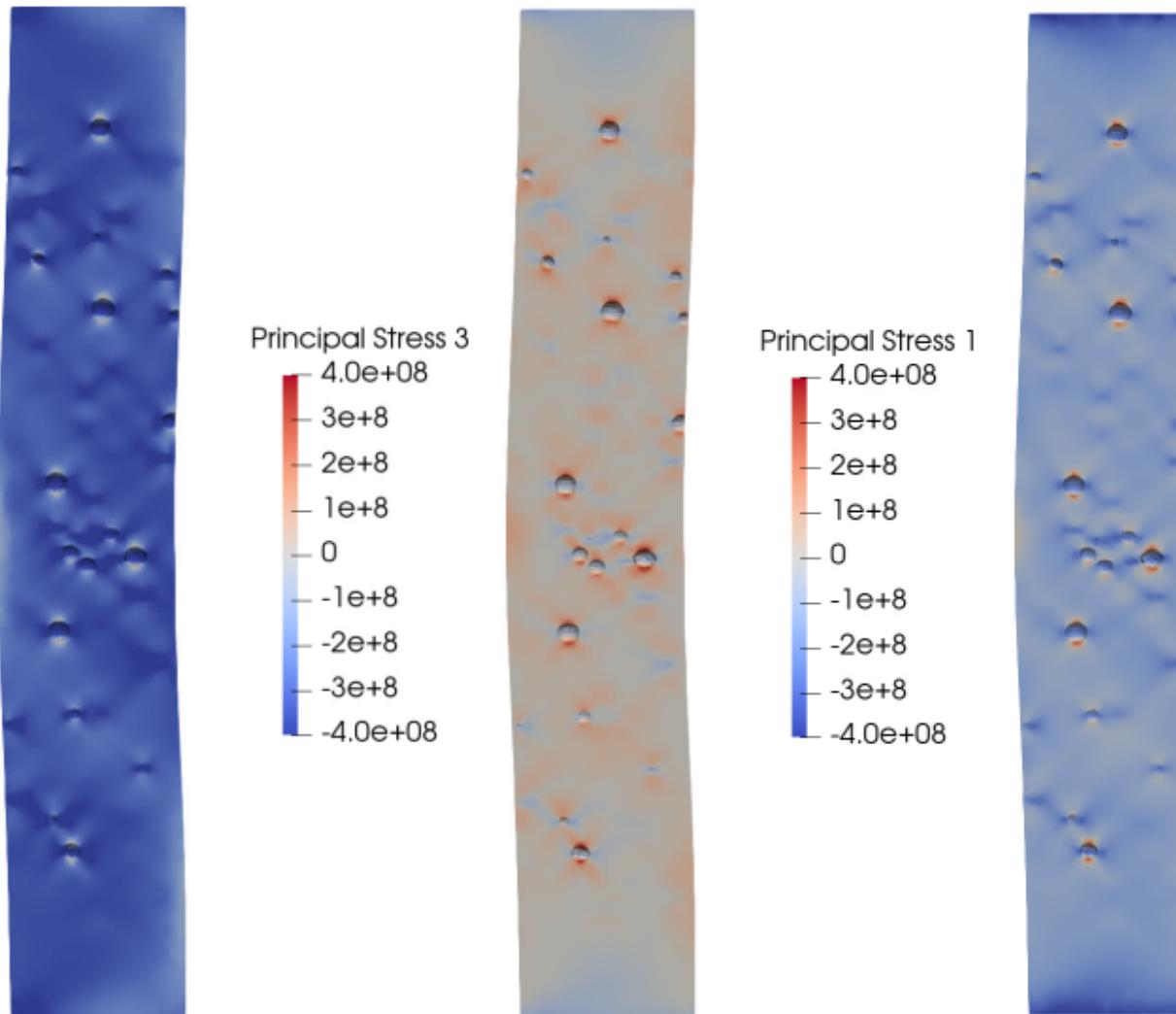
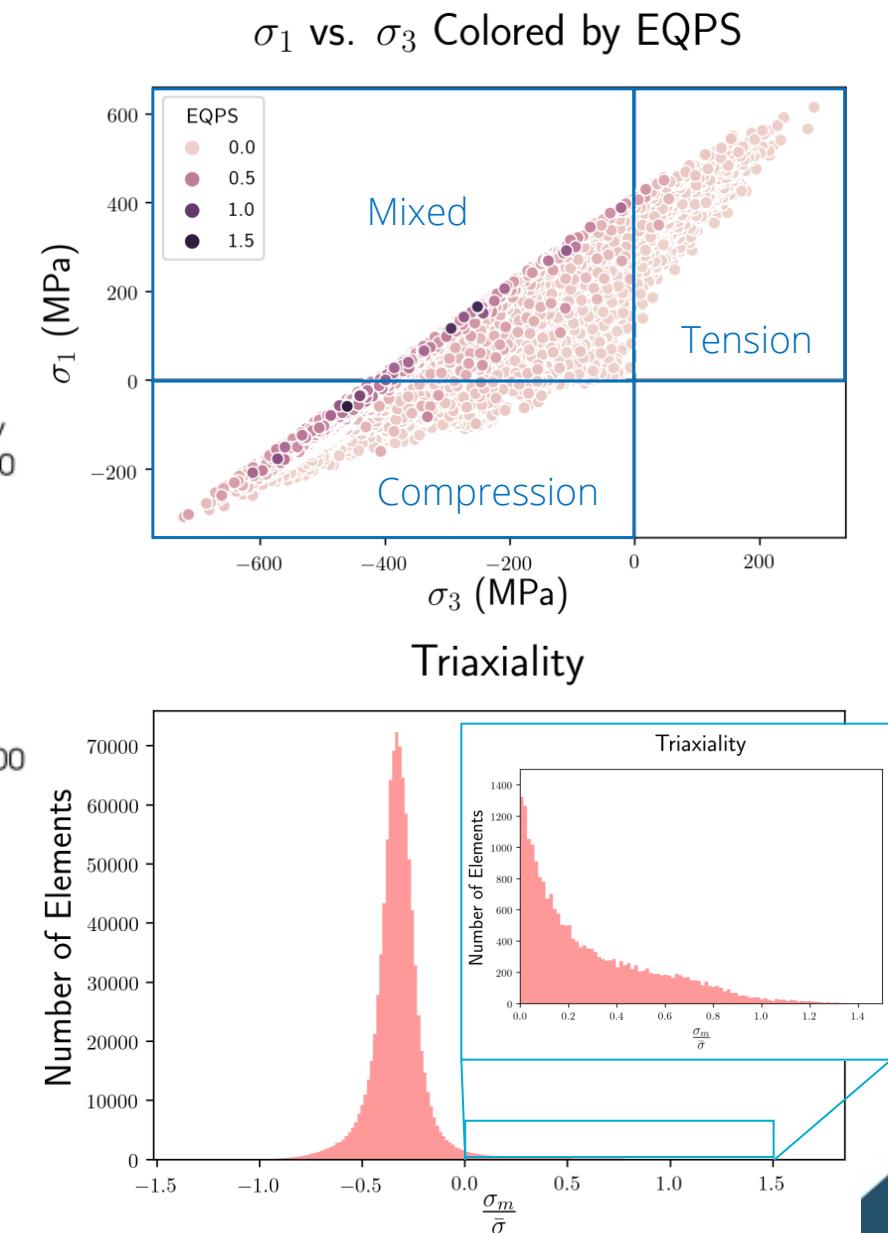


Questions?

Students interested in postdoc position?

kyljohn@sandia.gov

Specimens show large local stress state variations even in nominal uniaxial compression simulations → Reduces risk of extrapolation



Failure prediction results in test sets for network trained only on tension

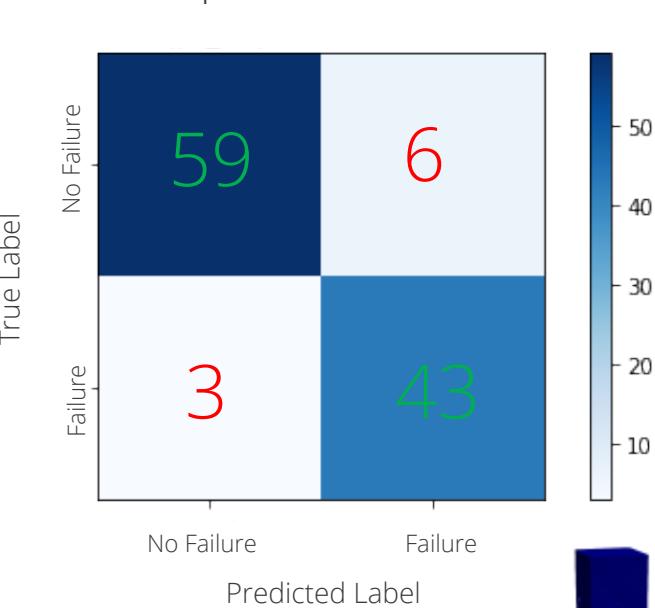
Failure Metric: Sample Max EQPS remained below critical value and displacement reached a required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus

DL Network Inference Time: 0.02 s on 2 GPUs

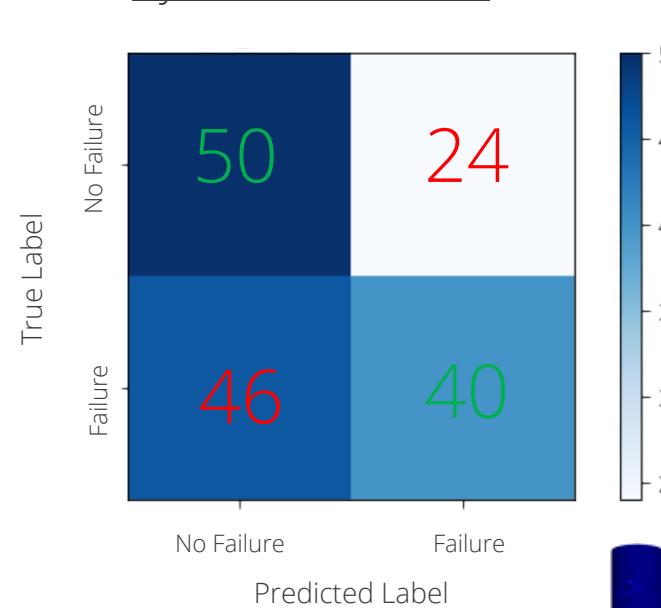
Speedup: 264000x

Square Tension

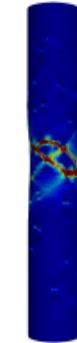


Test: Accuracy: 91.9%

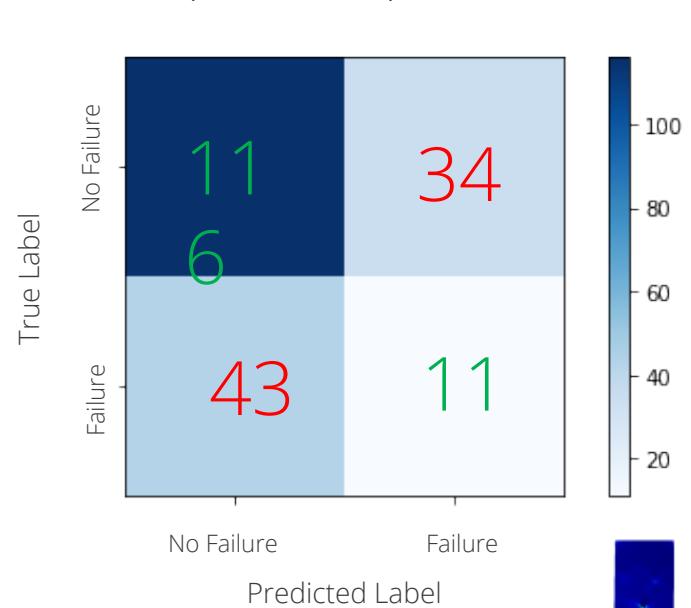
Cylindrical Tension



Test: Accuracy: 56.2%



Square Compression



Test: Accuracy: 62.3%

Failure prediction results in test sets for network trained only on tension

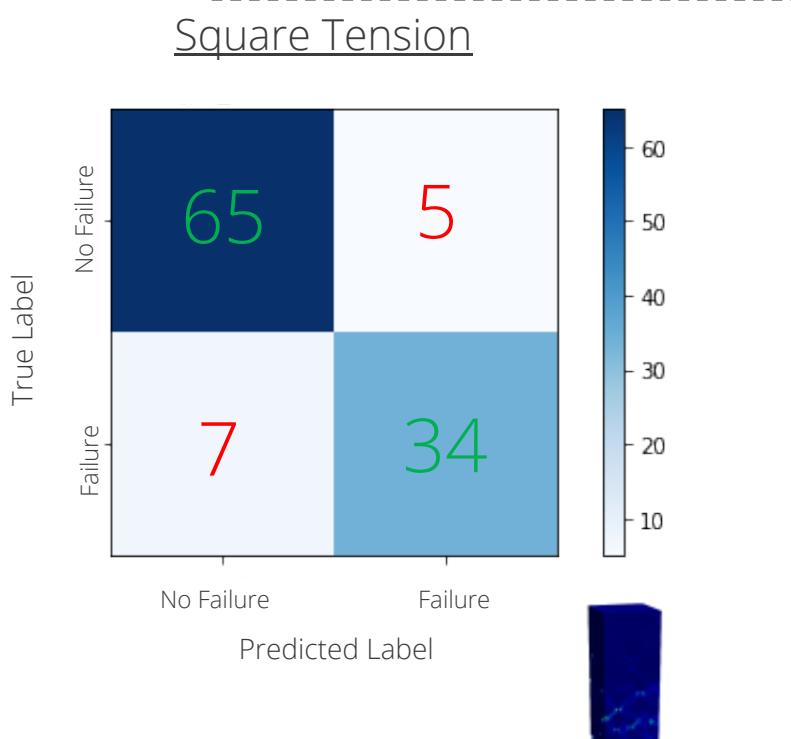
Failure Metric: Sample Max EQPS remained below critical value and force reached a required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus

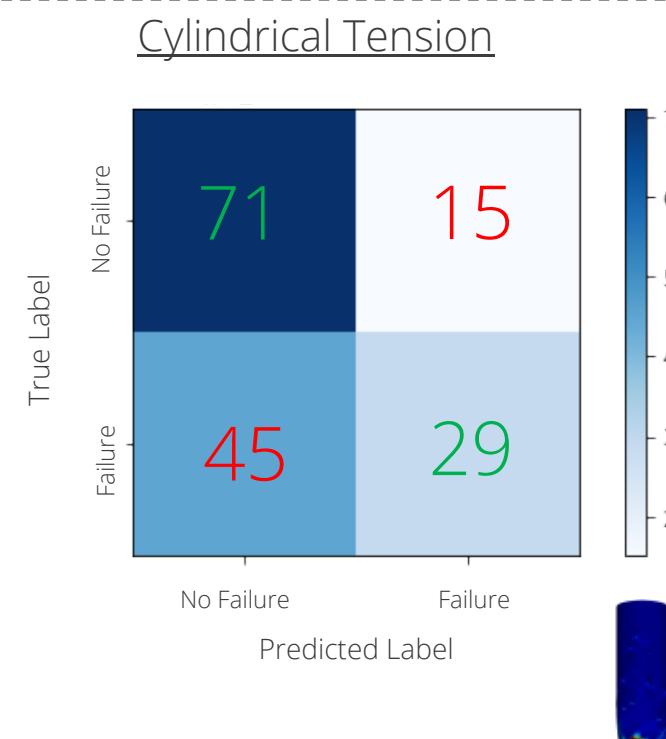
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x

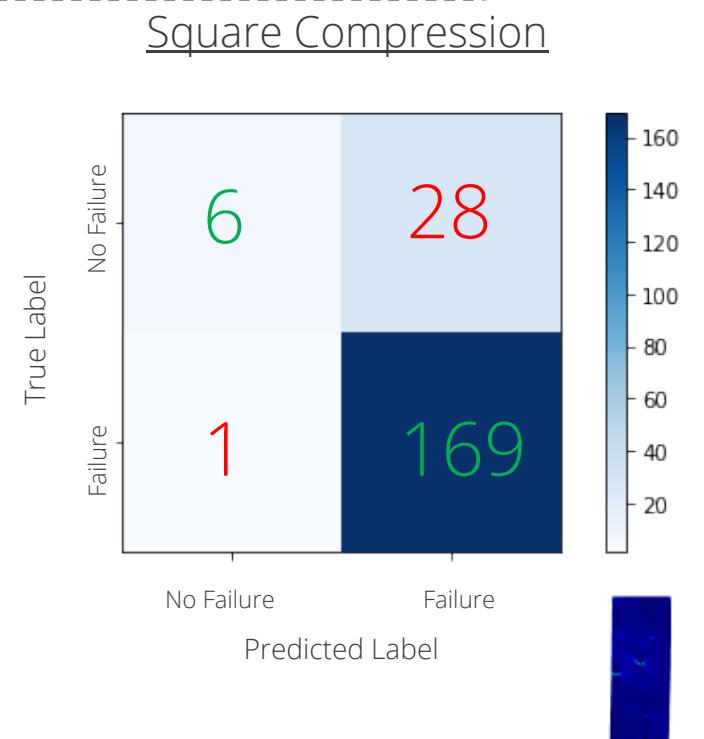
Square Tension



Cylindrical Tension



Square Compression



Failure prediction results in test sets for network trained only on tension

Failure Metric: Sample displacement reached a required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus

DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x

Square Tension

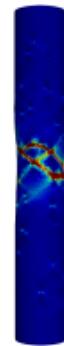


Test Accuracy: 84.7%

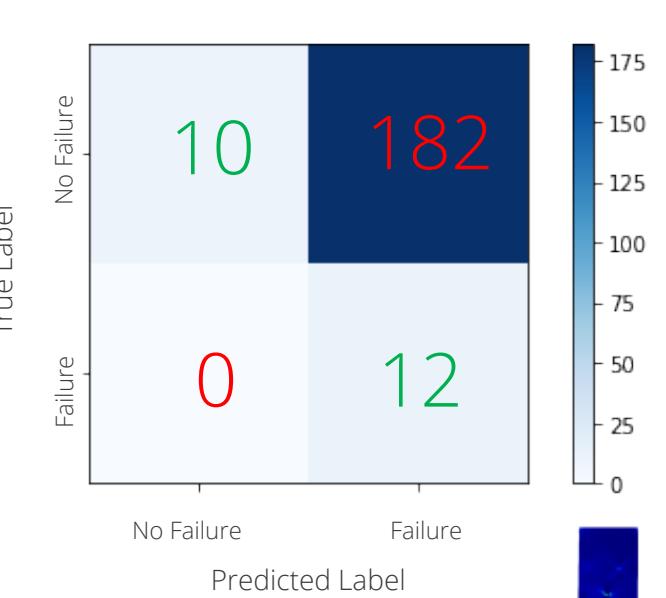
Cylindrical Tension



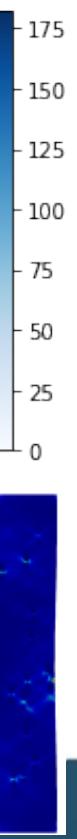
Test Accuracy: 80.0%



Square Compression

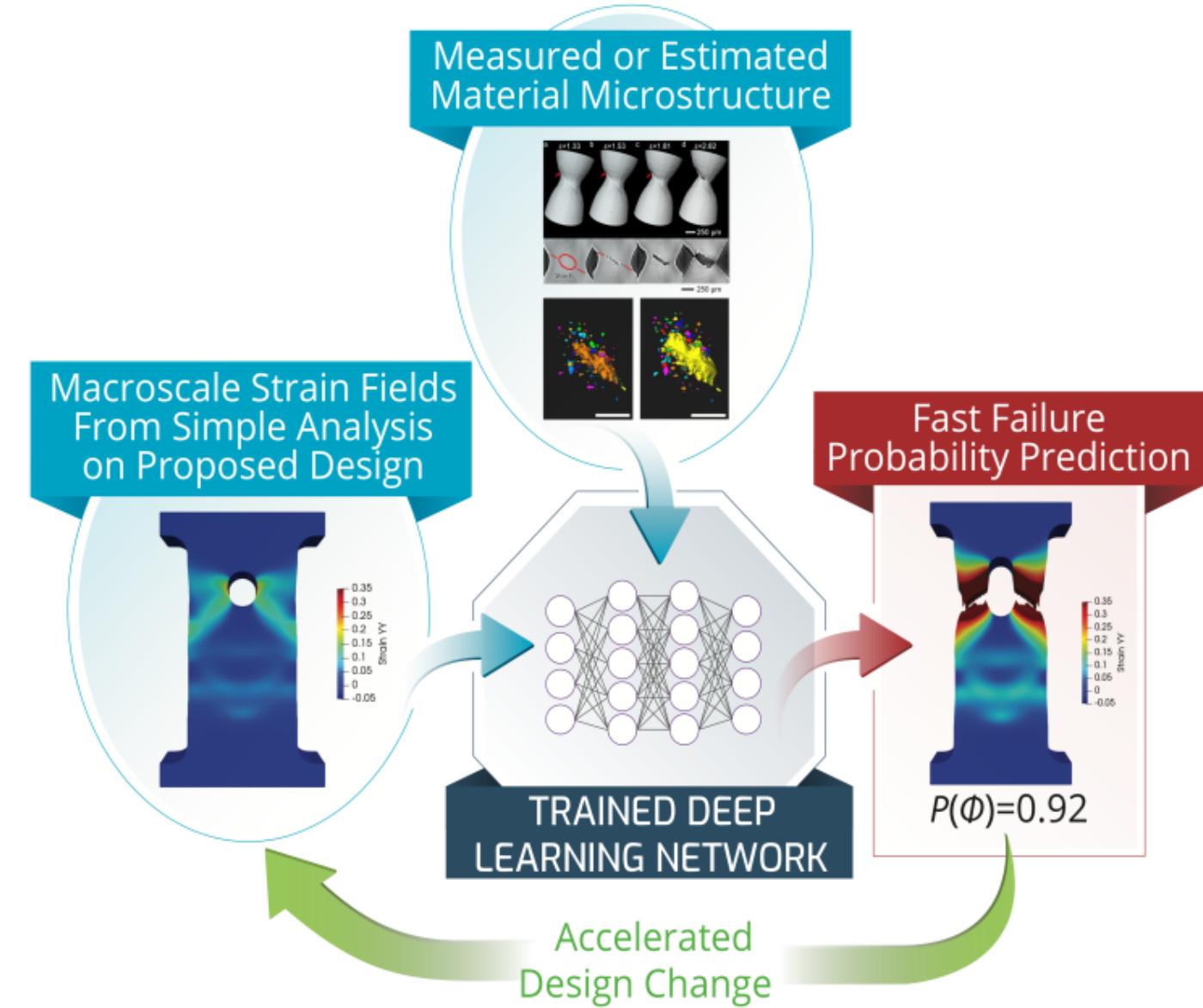


Test Accuracy: 10.8%

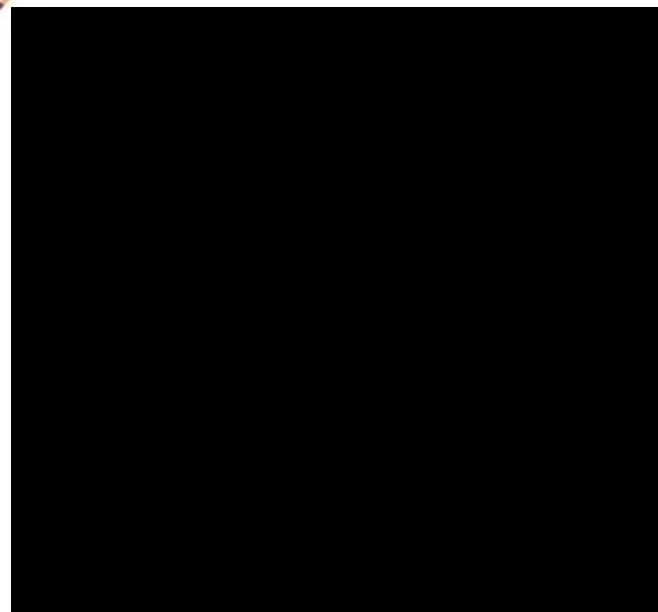


Current 3-year project: Failure Prediction Using Deep Learning

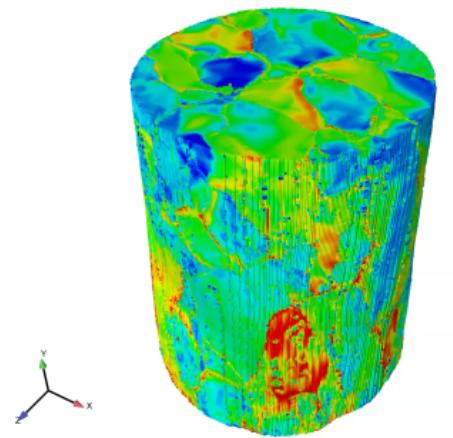
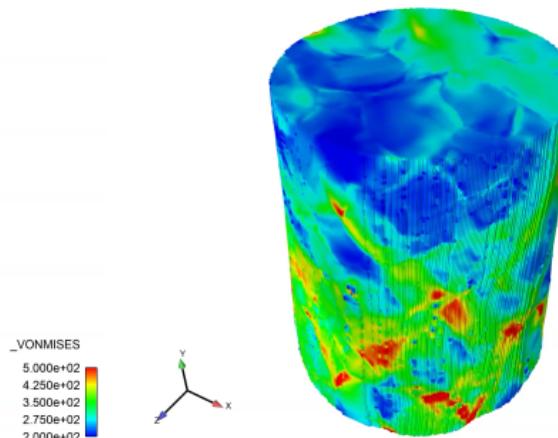
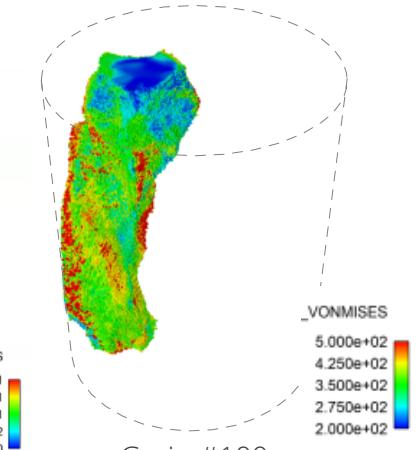
- Extending approach to include Diffraction Contrast Tomography (DCT), in situ μ CT, Digital Volume Correlation (DVC), crystal plasticity, and continuum damage modeling.
- Collaboration with Prof. Mike Sangid (Purdue) for High Energy Diffraction Microscopy (HEDM)
- Collaboration with Billy Oates and Brandon Krick (FAMU/FSU) for Transmission Electron Microscopy



New SNL Capability: DCT+crystal plasticity workflow successfully demonstrated



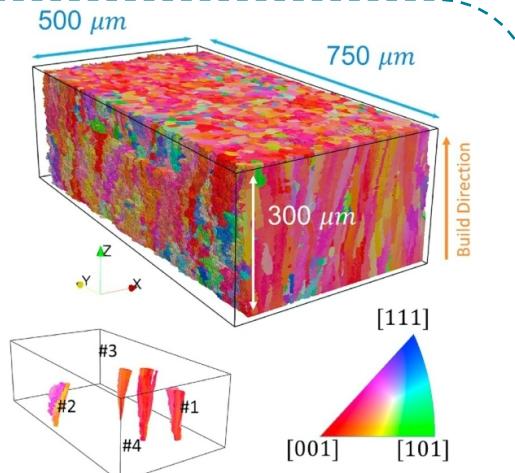
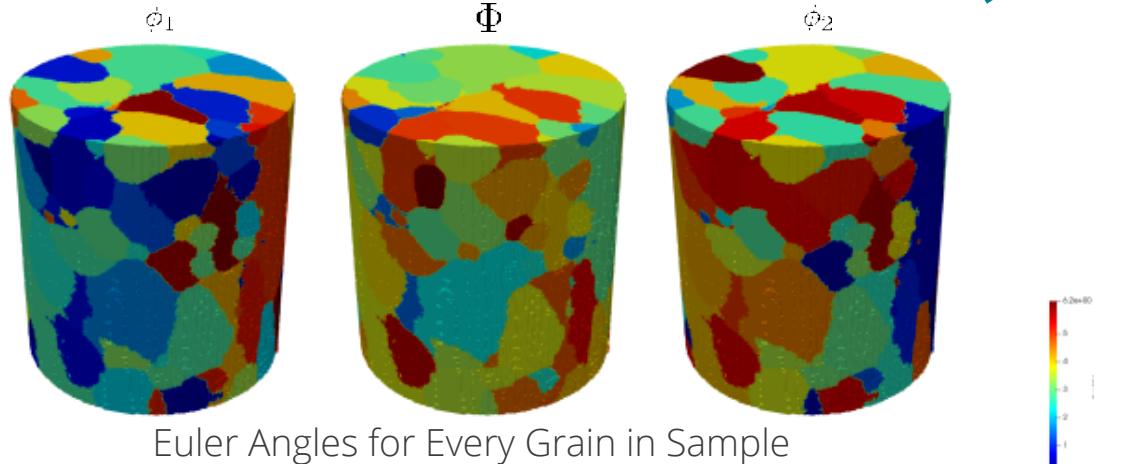
Diffraction Contrast Tomography Scan



Crystal Plasticity Results Allow Interrogation of Individual Grains

Future: TriBeam Validation

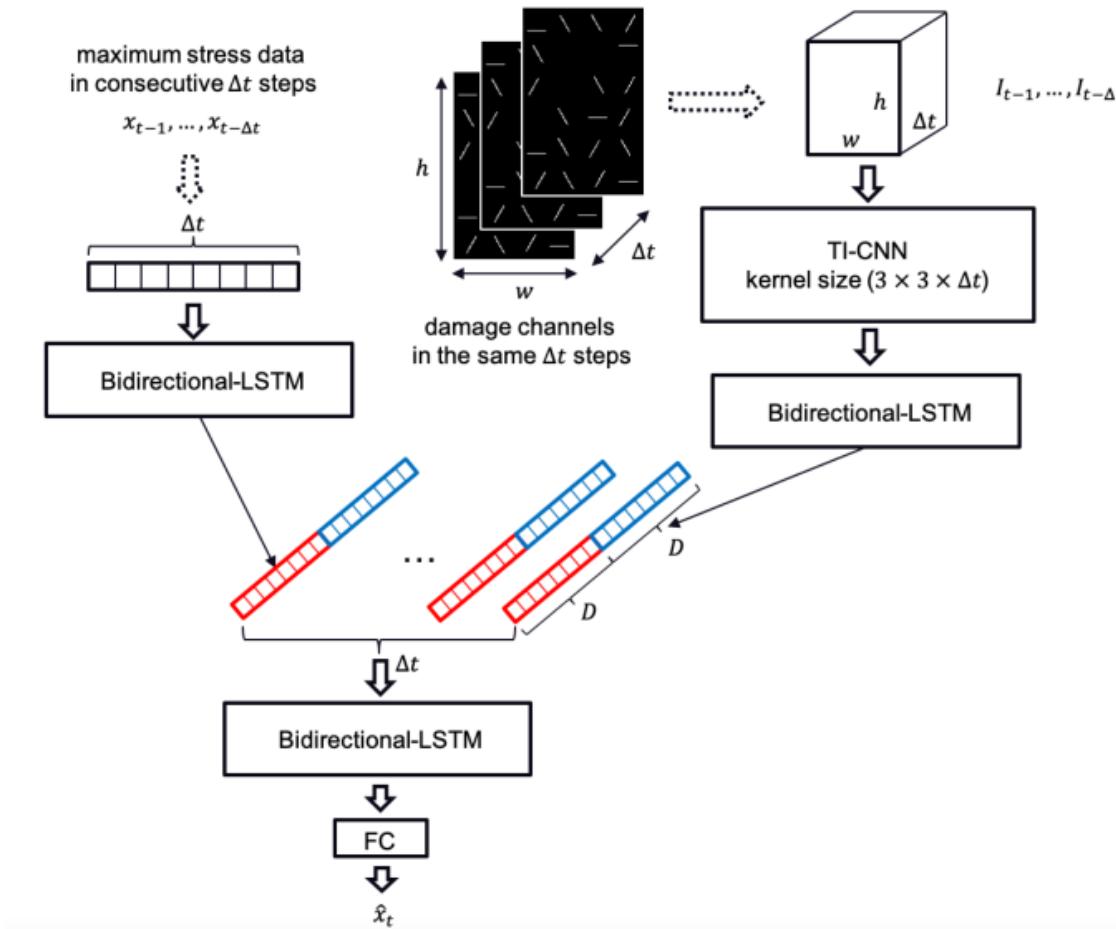
Awarded plus-up funding that will allow 3D EBSD reconstruction of sample to validate crystal plasticity predictions of DCT-characterized sample (Andrew Polonsky and Tim Ruggles)



Euler Angles for Every Grain in Sample

Witzen et al., Int. J. Plast., 2020.

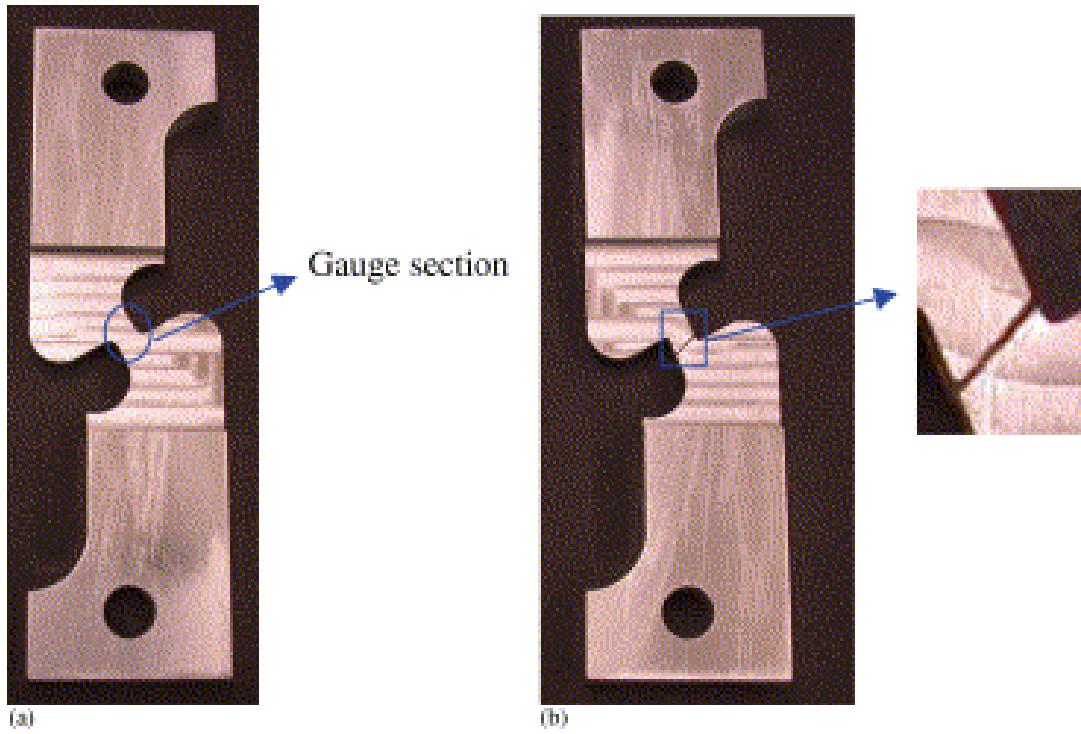
Ongoing Deep Learning Work



- Implementing and modifying StressNet¹ architecture to handle 3D, time-dependent datasets.

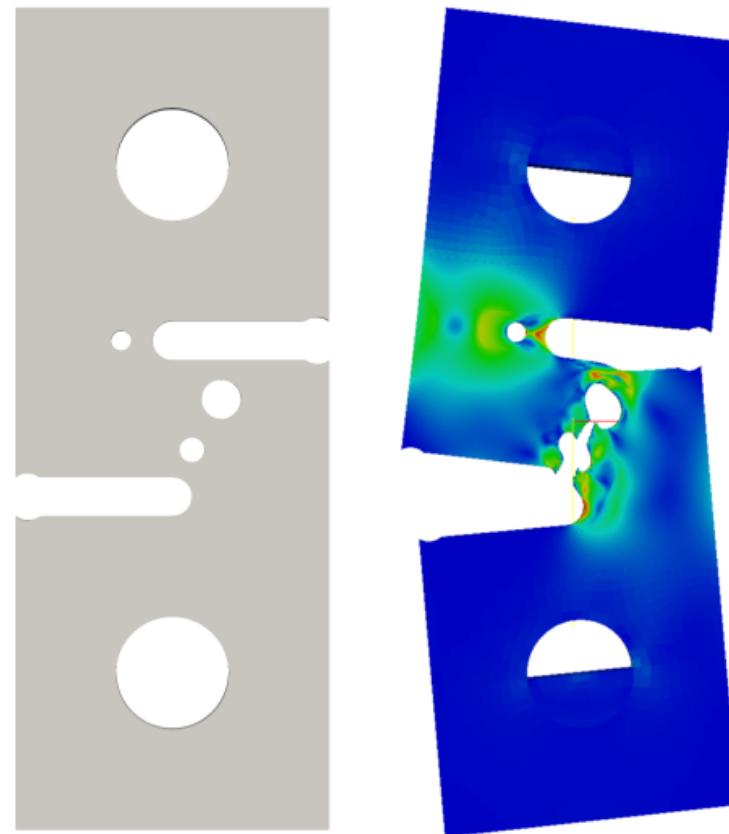
[1] Wang, Y. et al., "StressNet: Deep Learning to Predict Stress With Fracture Propagation in Brittle Materials", <https://arxiv.org/pdf/2011.10227.pdf>

Exemplar Designs



Combined Loading Failure Specimen

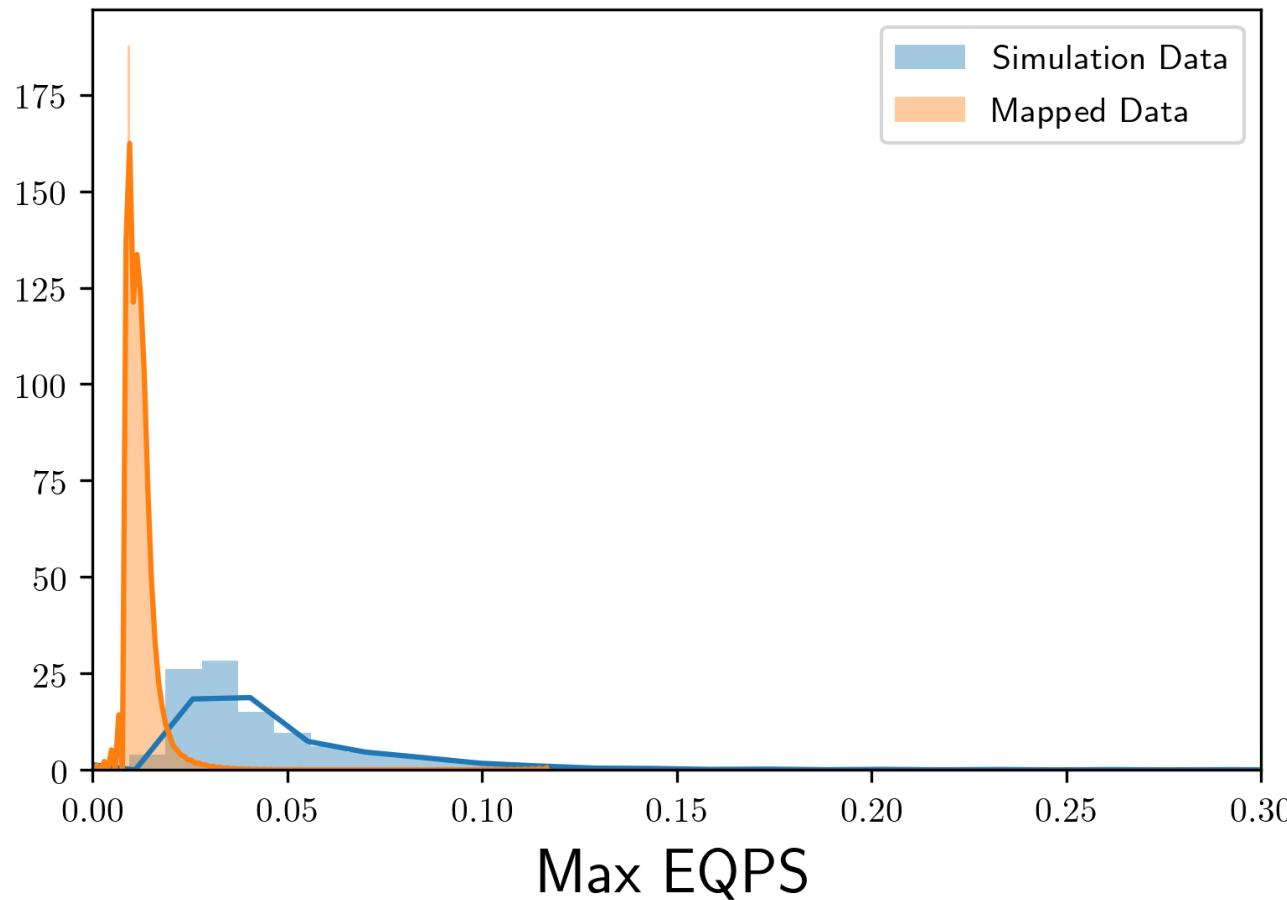
Bao and Wierzbicki, *Int. J. Mech. Sci.* 2004



Designs can be taken from different orientations of rolled plate to test anisotropy

Statistics of original data EQPS vs. mapped data EQPS illustrates smoothing

Original vs. Mapped Data



Memory management becomes an issue with large datasets

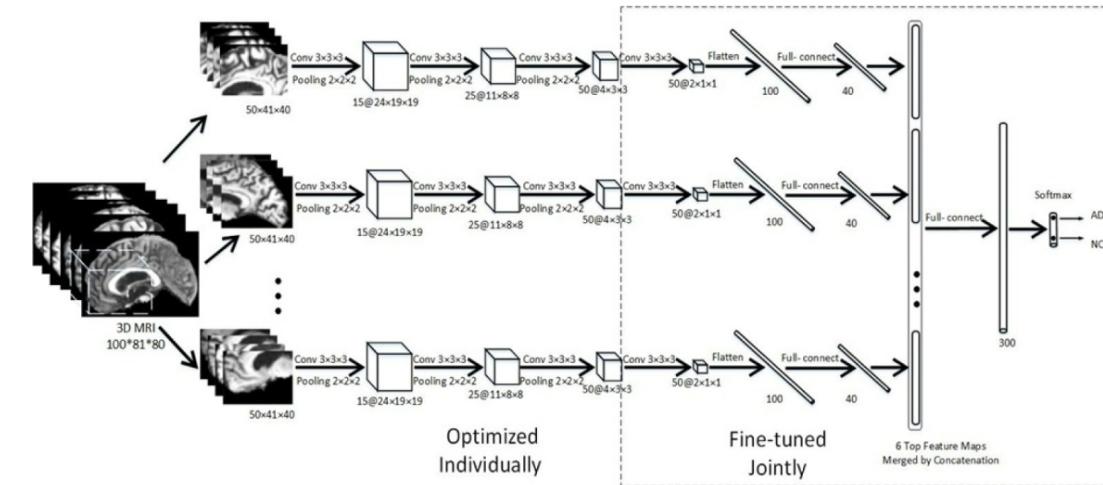
Current 3D training samples contain 750k voxels – approaching memory limits on GPU.

Multiple components of the DL process live in GPU memory simultaneously.

- DL model weights
- Activation function values
- Backpropagation update values
- 3D element values (batch of inputs)

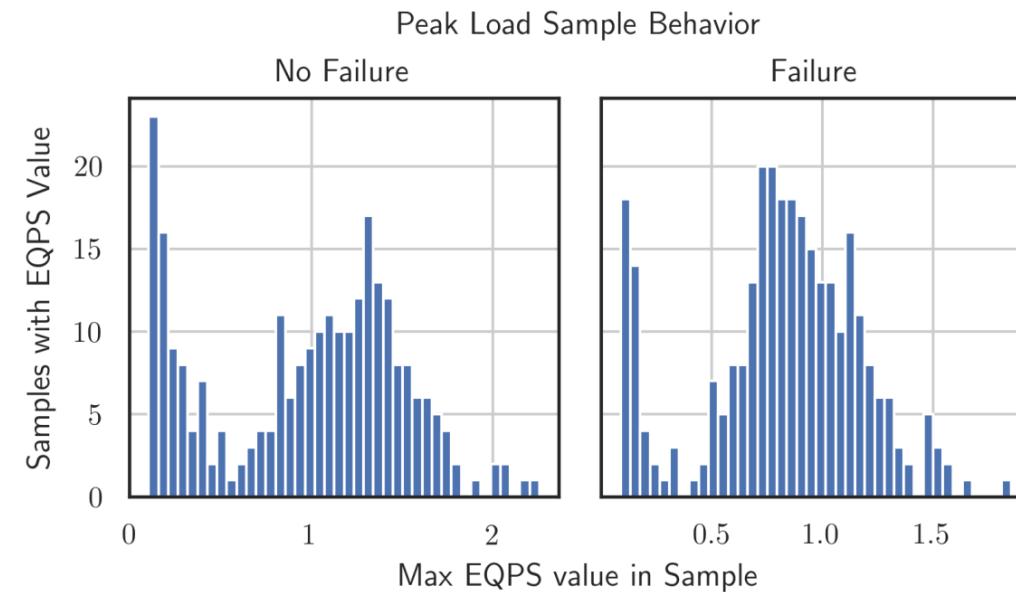
Scaling options

- Batch size limitations
- Smaller/simpler architecture
- Loading different architecture layers across GPUs
- Loading single architecture layer across GPUs
- Patch-wise CNNs
- Physics Informed Neural Networks – use physical insights to perform computations



Patch-level CNN Classification (Cheng et al., ICDIP Proceedings 2017)

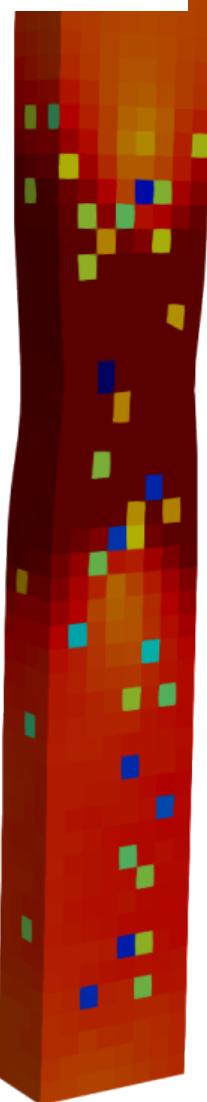
Algorithm is not simply ordering samples by ascending EQPS values.



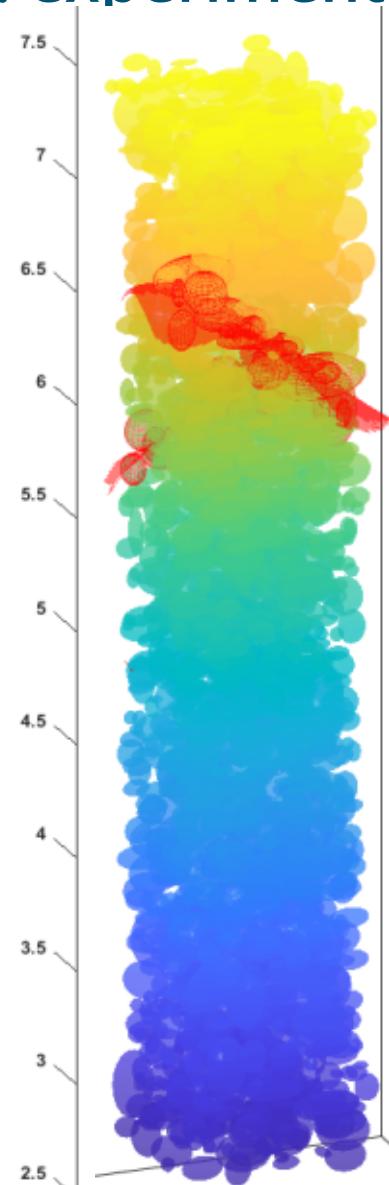
Low- and full-fidelity vs. experiment

V_{cutoff} applied to sample 8

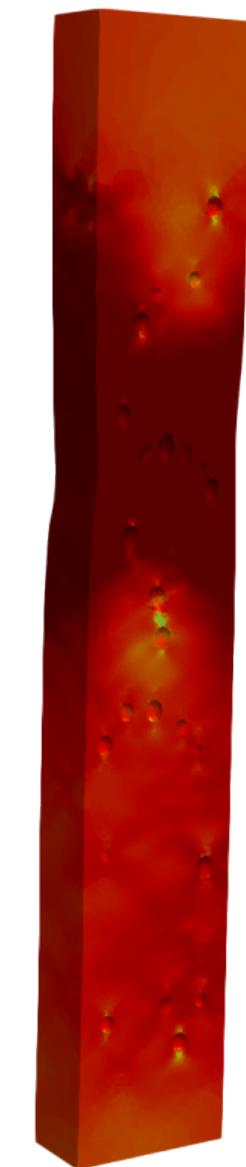
Lofi Mesh 0



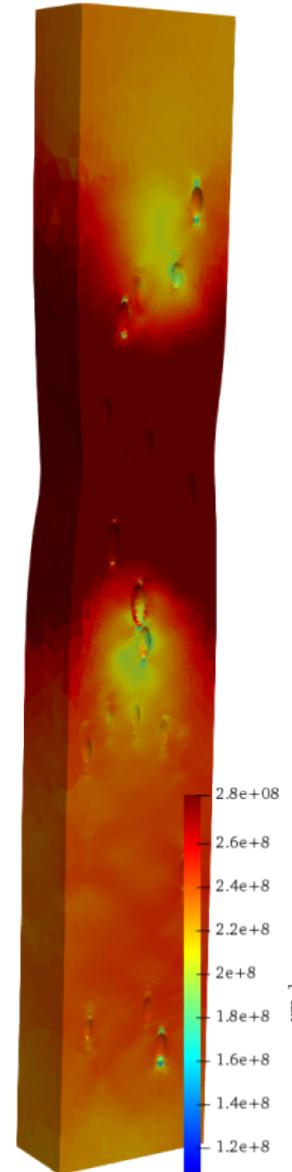
Lofi Mesh 1



Experiment



Spherical pores



Ellip pores

2.8e+08
2.6e+08
2.4e+08
2e+08
1.8e+08
1.6e+08
1.4e+08
1.2e+08

1
m⁻³