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and loading conditions

@/ Vision: Rapid failure prediction based on microstructure, geometry,
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/" Today: Failure Prediction is Difficult and Slow Even With a Team

1. Create Mesh (Days- 2. Iteratively Calibrate

Material Model with
, Weeis) l Damage (Days-Weeks) .
0.35

Can physics-informed Deep Learning (DL) algorithms be l .

trained to rapidly identify the initial microstructural [g;;ﬁ
conditions that lead to incipient failure initiation?

3. Run Many Large Simulations (Days-Weeks-
Months)
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« Part 1: Predicting AM mechanical response

* Training data generation using porous AM material
* Data mapping

 Local variations in stress state

« Deep Learning algorithm

« Deep Learning predictions

 Conclusions and future work




P Part 1 Project Overview: Predicting AM Mechanical Response

/Trammg Data: High fidelity model|
results from AM dogbones
loaded in tension

DL Model: Supervised 3D CNN

Inputs: Porosity and final state
equivalent plastic strain (EQPS)

Qutput: Metric Classification

Submitted to: Computational
Materials Science
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Metrics

Metric: Peak Load
( ] False

True

L F(T) > Ferit J

Metric: Critical Displacement
[ } False
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No Failure
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True
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Metric: EQPS-Load
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True

t:md EQPS(1) < EQPSmﬂ

Metric: EQPS-Displacement

( d(1) > deyie ] False

T =

tmd EQPS(7) < EQPb‘md

time corresponding to peak load
Fei¢ = required load
d.ri = required displacement

EQPS,,;; = required equivalent plastic strain




Experimental CT measurements inform training data meshes

@ large pore
® small pore
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 Training data consists of dogbone gauge sections loaded in tension past peak load . =

CT Data: Chris Laursen, Jay Carroll



/" Calibration to tensile specimens
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 Plasticity is captured with Voce hardening model
0 = gy + A(1 — exp(—néP))

» Model calibrated using porous mesh from CT scan - captures “matrix” response
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Different porosity samples lead to different local behavior
VR | 1t 1)

/

EQPS
5.0e-01
..

— 0.3
— 0.2

t 0.1
0.0e+00

'l 3 M y



// Force-displacement and max equivalent plastic strain (EQPS) show
large variations due to pore structures
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Deep Learning algorithm requires uniform voxel (3D Pixel) data
format

P

Sierra simulations results Results mapped to Hex elements in pores
from tetrahedral mesh uniform hexahedral mesh removed




o1 vs. o3 Colored by EQPS

/ Specimens show large local stress state variations even in nominal
_ uniaxial tension simulations — Reduces risk of extrapolation
/
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Deep Learning algorithm architecture

Model Inputs per Voxel
—= x Output

BB g IfSolid : | |
0 if Pore 0 e o

3
512 ! ]
Softmax VN e e -
024 FC4
FE3
4224 409G

ConvZ Coavd Fo1 @ FO2

« Model architecture based on Huang et al. Front. Neurosci. 2019
« Output is classification - pass/fail for failure metric




// Failure prediction results in test sets for network trained only on
tension

o o o

. Failure Metric: Sample failed to reach a required load before onset of strain localization. \:
| FEA Simulation Time: 88 minutes on 216 CPUs |
; DL Network Inference Time: 0.02 s on 2 GPUs ;

Speedup: 264000x
Square Tension Cylindrical Tension Square Compression
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Collaboration with Amir Farimani and Francis Ogoke (CMU)

P / Extension: Using GANs to augment CT images of AM material -

* Generative Adversarial Networks (GANs) produce new

samples from a training set while preserving the

underlying statistics.

e GANS are trained to minimize the distance between the

distribution of the training data and the generated

discriminato
—’[ D(G(2))

samples.

generator new CT
G(z) samples

random noise
b
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GAN network schematic

real CT
samples
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P/ Project Summary

« Deep Learning was able to predict performance variation due to microstructural features 5
orders of magnitude faster than FEA (nearly instantaneous).

« Model maintained predictiveness in different part geometries and stress states.

« DL is able to pick up on patterns that subject matter experts cannot. Prior to this work we
explored looking at stress measures to predict ductility with little success.

« Using large datasets for DL training, such as volumetric data used here, on GPUs is a challenge.




Vision: Rapid failure prediction based on microstructure, geometry,
and loading conditions enabled by Deep Learning
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/ New 3-Year Project Will Combine Experimental and Computational
Mechanics with Deep Learning to Predict Material Failure

Diffraction

Contrast
Tomography
(DCT)

Digital Volume Correlation

(DVCQ) /

@

Ve High Fidelity Modeling
Crvstal Plasticit Continuum Plasticity and
rystal Flasticity Damage Models
\ ‘
Large Scale Physics-Informed Deep Learning
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Future Work

rd

Multiscale coupling — mesoscale CP to macroscale continuum damage simulations

Digital Volume Correlation (DVC) testing
In situ micron-scale CT testing
High Energy Diffraction Microscopy (Prof. Mike Sangid)

Transmission Electron Microscopy for failure initiation mechanisms (Profs. Billy Oates
and Brandon Krick)

TriBeam characterization on deformed DCT+CP simulated sample

Combining all of the above in DL model for failure predictions




Questions?
Students interested in postdoc position?

kyljohn@sandia.gov
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Specimens show large local stress state variations even in nominal
uniaxial compression simulations — Reduces risk of extrapolation

o1 vs. o3 Colored by EQPS
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// Failure prediction results in test sets for network trained only on

--tension. .. \
. Failure Metric: Sample Max EQPS remained below critical value and displacement reached a
i required value at onset of localization.

| FEA Simulation Time: 88 minutes on 216 cpus |
DL Network Inference Time: 0.02 s on 2 GPUs i
| Speedup: 264000x !
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// Failure prediction results in test sets for network trained only on
--tension .. \
’ Failure Metric: Sample Max EQPS remained below critical value and force reached a |
i required value at onset of localization. i
i FEA Simulation Time: 88 minutes on 216 cpus |
DL Network Inference Time: 0.02 s on 2 GPUs i
| Speedup: 264000x !
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// Failure prediction results in test sets for network trained only on
~ension \

Failure Metric: Sample displacement reached a required value at onset of localization.
FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs
Speedup: 264000x

_______________________________________________________________________________
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P Current 3-year project: Failure Prediction Using Deep Learning

Measured or Estimated
Material Microstructure

/o Extending approach to include
Diffraction Contrast Tomography
(DCT), in situ uCT, Digital Volume
Correlation (DVCQ), crystal plasticity,
and continuum damage modeling.

Macroscale Strain Fields Fast Failure
- Collaboration with Prof. Mike Sangid Fgﬁﬂi'ggff*ggggﬁ | Probability Prediction
(Purdue) for High Energy Diffraction \

Microscopy (HEDM)
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PURDUE m Design Change

« Collaboration with Billy Oates and
Brandon Krick (FAMU/FSU) for
Transmission Electron Microscopy




/ New SNL Capability: DCT+crystal plasticity workflow
” successfully demonstrated
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Awarded plus-up funding that
will allow 3D EBSD
reconstruction of sample to

validate crystal plasticity
predictions of DCT- \tB
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Fuler Angles for Every Grain in Sample | Witzen et al, Int.J. Plast, 2020.
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Ongoing Deep Learning Work
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« Implementing and modifying StressNet! architecture to handle 3D, time-dependent datasets.

[11Wang, V. et al,, “StressNet: Deep Learning to Predict Stress With
Fracture Propagation in Brittle Materials”, https://arxiv.org/pdf/2011.10227.pdf




Exemplar Designs

Combined Loading Failure Specimen 219 Sandia Fracture Challenge Specimen

Bao and Wierzbicki, Int. J. Mech. Sci. 2004

Designs can be taken from different orientations of rolled plate to test

anisotropy




// Statistics of original data EQPS vs. mapped data EQPS illustrates

smoothing
Original vs. Mapped Data
Simulation Data
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Memory management becomes an issue with large datasets

/

“Current 3D training samples contain 750k voxels - approaching
/ memory limits on GPU.
Multiple components of the DL process live in GPU memory e P s s |
simultaneously. @ sl @_3@ \

* DL model weights

 Activation function values

» Backpropagation update values

» 3D element values (batch of inputs)
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Individually i Jointly Merged by Concatenation

* Smaller/simpler architecture T |

: ‘ : Patch-level CNN Classification (Cheng et al., ICDIP
» Loading different architecture layers across GPUs Proceedings 20(1 7) 5

» Loading single architecture layer across GPUs

» Patch-wise CNNs
« Physics Informed Neural Networks - use physical insights
to perform computations
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Algorithm is not simply ordering samples by ascending EQPS values.
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/" Low- and full-fidelity vs. experiment
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