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Vision: Rapid failure prediction based on microstructure, geometry, 
and loading conditions
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Today: Failure Prediction is Difficult and Slow Even With a Team

3Johnson et al. IJF 2019, Kramer, Boyce et al., IJF 2019

1. Create Mesh (Days-
Weeks)

3. Run Many Large Simulations (Days-Weeks-
Months)

2. Iteratively Calibrate 
Material Model with 

Damage (Days-Weeks)

Can physics-informed Deep Learning (DL) algorithms be 
trained to rapidly identify the initial microstructural 
conditions that lead to incipient failure initiation?



Outline
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• Part 1: Predicting AM mechanical response

• Training data generation using porous AM material

• Data mapping

• Local variations in stress state

• Deep Learning algorithm

• Deep Learning predictions

• Conclusions and future work



Part 1 Project Overview: Predicting AM Mechanical Response
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Training Data: High fidelity model 
results from AM dogbones 
loaded in tension

DL Model: Supervised 3D CNN

Inputs: Porosity and final state 
equivalent plastic strain (EQPS)

Output: Metric Classification

Submitted to: Computational 
Materials Science

Metrics



Experimental CT measurements inform training data meshes
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large pore
small pore

• Training data consists of dogbone gauge sections loaded in tension past peak load

CT Data: Chris Laursen, Jay Carroll



Calibration to tensile specimens
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Model Calibration
Exp. Data

• Plasticity is captured with Voce hardening model 

• Model calibrated using porous mesh from CT scan – captures “matrix” response



Different porosity samples lead to different local behavior

8



Force-displacement and max equivalent plastic strain (EQPS) show 
large variations due to pore structures
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Deep Learning algorithm requires uniform voxel (3D Pixel) data 
format
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1 mm 

Sierra simulations results 
from tetrahedral mesh

Results mapped to 
uniform hexahedral mesh

Hex elements in pores 
removed



Specimens show large local stress state variations even in nominal 
uniaxial tension simulations → Reduces risk of extrapolation
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Compression

Tension

Mixed



Deep Learning algorithm architecture 
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• Model architecture based on Huang et al. Front. Neurosci. 2019 
• Output is classification – pass/fail for failure metric 

ᵃ�ᵄ�ᵄ�ᵄ� ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�

Model Inputs per Voxel
Output

 if Solid
0          if Pore

Failure / No Failure



Failure prediction results in test sets for network trained only on 
tension 
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Failure Metric: Sample failed to reach a required load before onset of strain localization.
FEA Simulation Time: 88 minutes on 216 CPUs
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x

Square Tension Cylindrical Tension Square Compression



Extension: Using GANs to augment CT images of AM material – 
Collaboration with Amir Farimani and Francis Ogoke (CMU)
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• Generative Adversarial Networks (GANs) produce new 
samples from a training set while preserving the 
underlying statistics.

• GANs are trained to minimize the distance between the 
distribution of the training data and the generated 
samples.

GAN network schematic



Project Summary
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• Deep Learning was able to predict performance variation due to microstructural features 5 
orders of magnitude faster than FEA (nearly instantaneous).

• Model maintained predictiveness in different part geometries and stress states.

• DL is able to pick up on patterns that subject matter experts cannot. Prior to this work we 
explored looking at stress measures to predict ductility with little success.

• Using large datasets for DL training, such as volumetric data used here, on GPUs is a challenge.



Vision: Rapid failure prediction based on microstructure, geometry, 
and loading conditions enabled by Deep Learning
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New 3-Year Project Will Combine Experimental and Computational 
Mechanics with Deep Learning to Predict Material Failure 
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125 µm 125 µm

Crystal Plasticity
Continuum Plasticity and 

Damage Models

Emerging Experimental Capabilities

Digital Volume Correlation 
(DVC)

Diffraction 
Contrast 

Tomography 
(DCT)

High Resolution µCT

High Fidelity Modeling

Large Scale Physics-Informed Deep Learning

CP-FE

EBSD



Future Work
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• Multiscale coupling – mesoscale CP to macroscale continuum damage simulations

• Digital Volume Correlation (DVC) testing

• In situ micron-scale CT testing

• High Energy Diffraction Microscopy (Prof. Mike Sangid)

• Transmission Electron Microscopy for failure initiation mechanisms (Profs. Billy Oates 
and Brandon Krick)

• TriBeam characterization on deformed DCT+CP simulated sample

• Combining all of the above in DL model for failure predictions



Questions? 

Students interested in postdoc position?

kyljohn@sandia.gov
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Specimens show large local stress state variations even in nominal 
uniaxial compression simulations → Reduces risk of extrapolation
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Tension

Mixed



Test: Accuracy: 56.2%Test: Accuracy: 91.9% Test: Accuracy: 62.3%

Failure prediction results in test sets for network trained only on 
tension 
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Failure Metric: Sample Max EQPS remained below critical value and displacement reached a 
required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x
Square Tension Cylindrical Tension Square Compression
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Failure prediction results in test sets for network trained only on 
tension 
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Test Accuracy: 62.5%Test Accuracy: 89.2% Test Accuracy: 85.8%
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FailureNo Failure
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Square Tension Cylindrical Tension Square Compression

Failure Metric: Sample Max EQPS remained below critical value and force reached a 
required value at onset of localization.

FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x
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Failure prediction results in test sets for network trained only on 
tension 
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Test Accuracy: 80.0%Test Accuracy: 84.7% Test Accuracy: 10.8%
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Square Tension Cylindrical Tension Square Compression

Failure Metric: Sample displacement reached a required value at onset of localization.
FEA Simulation Time: 88 minutes on 216 cpus
DL Network Inference Time: 0.02 s on 2 GPUs

Speedup: 264000x



Current 3-year project: Failure Prediction Using Deep Learning
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• Extending approach to include 
Diffraction Contrast Tomography 
(DCT), in situ µCT, Digital Volume 
Correlation (DVC), crystal plasticity, 
and continuum damage modeling.

• Collaboration with Prof. Mike Sangid 
(Purdue) for High Energy Diffraction 
Microscopy (HEDM)

• Collaboration with Billy Oates and 
Brandon Krick (FAMU/FSU) for 
Transmission Electron Microscopy



New SNL Capability: DCT+crystal plasticity workflow 
successfully demonstrated
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Grain #100
Vf =9.5%

Witzen et al., Int. J. Plast., 2020.

Awarded plus-up funding that 
will allow 3D EBSD 

reconstruction of sample to 
validate crystal plasticity 

predictions of DCT-
characterized sample (Andrew 

Polonsky and Tim Ruggles)

Future: TriBeam Validation

Diffraction Contrast Tomography Scan

Euler Angles for Every Grain in Sample

Crystal Plasticity Results Allow Interrogation of 
Individual Grains 



Ongoing Deep Learning Work
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• Implementing and modifying StressNet1 architecture to handle 3D, time-dependent datasets.

[1] Wang, Y. et al., “StressNet: Deep Learning to Predict Stress With 
Fracture Propagation in Brittle Materials”, https://arxiv.org/pdf/2011.10227.pdf



Exemplar Designs
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Combined Loading Failure Specimen

Bao and Wierzbicki, Int. J. Mech. Sci. 2004

2nd Sandia Fracture Challenge Specimen

Designs can be taken from different orientations of rolled plate to test 
anisotropy



Statistics of original data EQPS vs. mapped data EQPS illustrates 
smoothing
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Memory management becomes an issue with large datasets
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Patch-level CNN Classification (Cheng et al., ICDIP 
Proceedings 2017)

Current 3D training samples contain 750k voxels – approaching 
memory limits on GPU.

Multiple components of the DL process live in GPU memory 
simultaneously.  

• DL model weights 
• Activation function values 
• Backpropagation update values
• 3D element values (batch of inputs)

Scaling options
• Batch size limitations
• Smaller/simpler architecture

• Loading different architecture layers across GPUs
• Loading single architecture layer across GPUs

• Patch-wise CNNs
• Physics Informed Neural Networks – use physical insights 

to perform computations

Increasing Com
plexity
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Algorithm is not simply ordering samples by ascending EQPS values.



Low- and full-fidelity vs. experiment

31Lofi Mesh 0 Lofi Mesh 1 Spherical pores

Vcutoff applied to sample 8

Ellip poresExperiment


