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Goals: Al-rich AlGaN Channel E-mode power transistors and high temperature digital
logic circuitry
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3 | Why AlGaN HEMTs?

High power

Jmax = anSEC

High temperature

« Wide band gaps suppress intrinsic carrier density effects and thermionic emission-induced leakage
P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, Proceedings of the IEEE, vol. 90, no. 6, pp. 1065 - 1076, 2002.
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4 | High temperature device background

NASA: SiC JFET!
Characterized to 961°C

GaN HEMT inverter(]
25 -200°C
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Low off-state leakage for high
temperatures:

10 A/mm for Al, gsGaN/Al,,Ga, 3N
HEMTSs (Sandia),
compared to
102 A/mm for Al,,sGa, ,sN/GaN
HEMTs (1)
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(1P, G. Neudeck, IEEE Electron Device Letters, vol. 38, no. 8, (2017).

[21G. Tang, IEEE Electron Device Letters, vol. 38, no. 9, pp. 1282-1285 (2017).
[31P. H. Carey, Journal of the Electron Devices Society, vol. 7, pp. 444-452, 2019.
[4IW. S. Tan, Solid-State Electronics 50: 511-513 (2006).
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logic circuitry

1. Background / Motivation

2. Experiments
« Threshold voltage - Enhancement Mode Power Switches
- Epitaxial design - Mobility and Charge Density
- Ohmic contacts
* High temperature gate metals

3. High Temperature AlGaN HEMTSs

4. Summary



| Enhancement-Mode AlGaN-channel HEMTs
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Currently complimentary pFET and nFET not practical
—Combine e-mode and d-mode for logic
VDD

Depletion-mode load inverter

Masahito Kanamura, et al. (2010). IEEE Electron Device Letters 31(3): 189-191.
Hilt, O., et al. (2010). Proceedings of the 22nd International Symposium on Power Semiconductor Devices & ICs, Hiroshima, Japan, IEEE.
Yong Cai, et al. (2006). |[EEE Transactions on Electron Devices 53(9); 2207-2215.
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;> 1 Enhancement-Mode AlGaN-channel HEMTs
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JVSTB, vol. 37, no. 021208, 2019.

45/30 HEMT + p-AlGaN cap

Gate Voltage (V)

Appl. Phys. Lett. 114, 112104 (2019)

85/70 HEMT: Recess + F ions




¢ 1| Enhancement-Mode AlLGaN-channel HEMTs Eﬂﬁ
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Threshold voltage=1.5V What needs more work? | Need to change epitaxy design
Drain Current = 500 mA (DC), 1.5 A (pulsed) 1. Offset voltage Ohmic contact needs improvement
Breakdown voltage = ~650 V 2. High gate bias
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| Epitaxial Design

45/30 HEMT
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» For along time we worked off the assumption that the high barrier composition was limiting our ohmic contacts

* ...Until we observed Ohmic contacts on a 100/60 HEMT — Channel composition dependence — What was going on?

Motivated transport studyt!

45/30 HEMT

100/60 HEMT

86/70 HEMT

26/0 HEMT

Alg 45Gag 55N (50 nm)

AIN (30 nm)
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Alp 7330.6G0.2730.4N (10 nm)
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[1] ECS Journal of Solid State Science and Technology, vol. 6, no. 11, pp. S3010-

S3013, 2017.

[2] Journal of Electronic Materials, vol. 48, pp. 5581-5585, 2019.

[3] B. A. Klein, Journal of Applied Physics (submitted).

AIN (1.6 pm)

Sapphire Substrate

Alp g6Gag 14N (30 nm),
2.5x1018 Sj

Aly,6Gag 74N (20 nm)

Al,,Gag 3N (500 nm)

GaN (50 nm)

Al, 50,Gag503N (10 nm)

GaN:C (1.7 um), 1x1018 C

AIN (2.5 um)

AIN nucleation

Sapphire Substrate

SiC substrate




10 | Epitaxial Design

Hall Mobility
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* Lower Al% channel = higher mobility
* Mobility less variable over temperature

compared to GaN HEMTs
» Over the 500°C range

* AlGaN channels; 3.1x reduction

 GaN channel: 6.9 x reduction
» Improved stability over T

B. A. Klein, Journal of Applied Physics (submitted).
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1 | Epitaxial Design — Ohmic Contacts
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2 | Epitaxial Design — Ohmic Contacts

Id (mA)

500

400

300

200+

100+

Planar Ohmic contacts

III.IIIII I I II

Ret:(11,14)NF50GD5FW1000A SGD 3 Ret:(11,14)NF50GDSFW1000A
10° ¢ - - )
-Vg=8‘ﬁﬁ"_?_[l Z A B\ IDSGD Vi _10\200 QS_ZtO 10 V,ZVStEp
IG -
ICsau - i y
10’ -
< S
E <100 -
= 10
VNA8109a: 2 —
n
85/50/100 - o'l O - -
10’ New problems: 0 _
Leakage current ! PR P | .
-3
0 2 4 6 8 1'30'10 = 0 5 10 0 2 4 6 3 10
v
vaw a® V_ (V)

» Reduced specific contact resistance by 2x:

5x103to 1x104 Qcm?

» Reduced sheet resistance by over half:

4.7 kQ/sq to 1.7 kQ/sq
> Increased current density by over 6x:
30 mA/mm to 200 mA/mm (long channel devices)

v Threshold voltage control

v' Epitaxial design

v Ohmic contacts

- High temperature gate metals




i3 1 High Temperature Gates Properties of Candidate Metals

Thermal
Resistivity, | Melting | Expansion (x106)
~25°C (Qm) | Point (K) (cm)
Au PEE 1337 14.2
‘Mo Bkl 2896 5
w G 3695 4.5 -
Ni X 1726 13
After >300°C 3 106 2042 9 -
12.4 3293 6.5
'Nb  EPE 2742 7
“Standard” Gate: 200 A Ni/ 4500 A Au N - 2130 6
 Nickel metal migration IZI 20 1825 -
» Changes to electrical properties 25 2163 8
 Metal pads don't survive 3 <0 2128 5.7

> Need high temperature gate metal

Pattern standard Ohmic contacts - Gate Metal Experiment Characterization

«85/70 HEMT 1.2000 A W (sputter) 1. Pre-high temperature |-V sweeps

«250 A Ti/ 1000 A Al /150 A Ni/ 500 A Au 2.2000 A Pd (evap) 2. Multiple Cycles: Anneal at 500°C — |-V sweeps
«Anneal: 1100°C, 30s, ~1mT nitrogen 3.200 A Pt /2000 A Au (evap)
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High Temperature Gates
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3x10°

Pd
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1x108  2.8x108 26 13 & |/
5.4x108 27 7
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A Best Results W gate
{ « Burn-in for improved lon/loff ratio
IVIalntalns good drain current




s 1 Qutline

Goals: Al-rich AIGaN Channel E-mode power transistors and high temperature digital
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16 ‘ High Temperature Mask Set

Column 1 Column 2 Column 3
Eﬂi@ﬁz EEEE:E'IEEEE'- : ] 3] el IR 3Co|umns

Use for 3 different barrier etches
OR
Use for 3 different p-(Al)GaN etches

Transistors=

Ring Oscillator

Process
Control
Monitors




7 1 High Temperature Mask Set: Inverter design

Voo Column 1 Column 2 Column 3

GL1.S5 GL 2.5 GL5 GL1.S5 GL 2.5 GL5 GL1.S5 GL 2.5
um um um um um um um um

Bi=15 Bg=15 PB,=1.5 Bi=15 Bg=15 PB,=1.5 Bi=15 PBr=15
Br=6 Br=6 Br=6 Br=6 Br=6 Br=6 Br=6 Br=6
B.=16 Br=16 PBy=16 Br=16 PBy=16 PBy=16 Br=16  PBr=16

Inverter Characteristic Plot

B _ WEmade/ LEmade
* " Wpmode/ Lomode

VOUT

Mask Features

* Increasing Bz — Increasingly abrupt transition

See for example: ). Uyemura, Fundamentals of MOS * MU|t|p|e columns — Vary recess EtCh time
Digital Integrated Circuits (1988).

VIN

Vary B (driver- Vary B (driver- Vary B (driver-
load ratio) by E/D load ratio) by E/D load ratio) by E/D
gate width ratio. gate width ratio. gate width ratio.
Vary gate length. Vary gate length. Vary gate length.

GL5
um

Bg=1.5
Br=6
Br=16




18 | High Temperature Devices: Transistor

Enhancement Mode Depletion Mode

YO¥5 Colemn 3 E-Mode: GLZ.5 pm GW150 pm Y3Y5 Column 3 D-Mode: GL2.5 pm GW25 pm

10

—— 25°C
—— 10070
—— 150°C

- < - N N R R R S .47 4 D-mode: drain current stable 25-300°C
— E-mode: drain current decreases >200°C

Drain Current
Remains High —

Drain Current

Decrease ] IS S M A S ....... ........... ......... E-mode resistance increases — inverter
Above 200°C /. L " SR vV rises

out,Low

lo(MA/mm)

O — | | |
1 1 1 'l i i 1 1 1 i
B 5 -4 V (V) 3 2 2 3 4 S
XI5 Column 3 E-Mode: GLZ.5 pm GW15D pm . Y5 Column 3 D-Mode: GL2.5 pm GW25 pm
T T - - T - - r [ — — T — I — —T
Wl | T BT - 1 b oo :
1m A | | | | 1
—— 150°C
- 20070
1wtk 250°C
= 300°C

E ol lon/loff
= (T=300°C)=2.6e7

Ipy (mAfmam)

On/Off ratio stable 25-300°C for both e-
and d-mode transistors
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85/70 HEMT

45/30 HEMT

| High TelénE)FSrature Devices: InveBrt%r Results

Vaur™

Vayr V)

5

Y5 Column 3 GWE 150 pm GLE 2.5 pm, GWD 100 pm GLD 2.5 pm

5

0.5p

45/30 HEMT with p-AlGaN Cap
Lower e-mode resistance than 85/70 — Improved inverter performance
Threshold voltage of e-mode is too low —

XIYE Cohemn 3: GWE 150 pm GLE 2.5 pm, GWD 25 ym GLD 2.5 pm

—— 100°C
—=— 160°C
—— 200°C
260°C

" 300°C

—— E0 |

R

Level shifting needed

Br=16

¥AY5 Column 3: GWE 400 pm

GLE 2.5 pm, GWD 25 pm GLD 2.5 pm

Vth(e-mode) bad
Level shifting




AIGaN ngh Temperature Inverter

VourV)
(¥ ]

..............................................................

Vin )

rrereee] - 2200 !

———278°C|.

—250

190°C |

402°C
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35 Colemn 3: GM'JEJUOM“GLEEEII'I'I GWDZﬁunG.DZEII'I'I

. = 1
S—T" 1
— 150 I

|| ——zo0°c| |
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bo| —=— 300 .

N 85/70 HEMT
N BR =16

R R R R
1.5 2 25 3 a5
Vi )

i
4

i i
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85/50 HEMT

—— X11Y6 EW10.5GLE2DWTGLD2
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0 | High Temperature Devices: Inverter Results

45/30 HEMT + p-AlGaN gate cap

« Operation up to 491°C

* Requires level shifting

« E-mode threshold wasn't
shifted positive enough

85/70 HEMT

* Increasing resistance of e-
mode — Degradation of
inverter characteristics with
increasing temperature

85/50 HEMT

« Room T performance
improvements from reduced
sheet resistance.

* Needs testing over T

« Need to minimize leakage for
high V.,




21 1 Summary
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Ultra-wide bandgap: AlGaN choice material for high
temperature and power switching applications

4 6 4 -2 0o 2 4 6
Gate Voltage (V)

« E-mode: Two approaches for threshold voltage control

« Transport study: Needed high barrier/channel Al contrast

« Ohmic contacts: Improved by modifying epitaxy 85/70
HEMT — 85/50 HEMT

- High temperature Gate Metals: Tungsten (2000 A)

High Temperature Devices
 E-mode/D-mode logic gates
« 45/30 HEMT Inverter tested up to ~500°C

VourV)
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