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Nomenclature
AlxGa1-xN barrier / AlyGa1-yN channel

=
X/Y HEMT



Why AlGaN HEMTs?3

High power

High temperature 
• Wide band gaps suppress intrinsic carrier density effects and thermionic emission-induced leakage

Predicted ve vs. E in AlxGa1-xN based on Monte-Carlo simulation

M. Farahmand et al.,IEEE Transactions on Electron 
Devices, vol. 48, no. 3, pp. 535-542, 2001.

Si

SiC

GaN
Al 0.85G

a 0.15N

AlN

Alloy Scattering → Bathtub Shape

M. E. Coltrin and R. J. Kaplar, Journal of Applied 
Physics, vol. 121, no. 055706, 2017 

Material
EG

(eV)
EC

(MV/cm)

Electron 
mobility
(cm²/V s)

vsat

(107 cm/s)

Thermal 
conductivity

(W/m·K)
SiC 3.3 2.5 1000 2.0 370

GaN 3.4 4.9 1000 1.4 253
AlN 6.0 15.4 426 1.3 319

AlxGa1-xN 
(x>0.7) 5.0-6.0 13.5-15.4 ~150-400 Interpolation Interpolation

b-Ga2O3 4.9 10.3 180 1.1 11-27
Diamond 5.5 13.0 4500-7300 1.9-2.3 2290

Pmax = ImaxVmax/8

Jmax = qvsatnsJmax = qnsEc

P. G. Neudeck, R. S. Okojie, and L.-Y. Chen, Proceedings of the IEEE, vol. 90, no. 6, pp. 1065 - 1076, 2002.

Estimated properties of wide band gap materials
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Ultra-wide bandgap: AlGaN choice material for high 
temperature and power switching applications



High temperature device background4

Low off-state leakage for high 
temperatures: 

10-6 A/mm for Al0.85GaN/Al0.7Ga0.3N 
HEMTs (Sandia), 

compared to 
10-2 A/mm for Al0.25Ga0.75N/GaN 

HEMTs (1)

NASA: SiC JFET[1]

Characterized to 961°C
GaN HEMT inverter[2]

25 – 200°C

[1] P. G. Neudeck, IEEE Electron Device Letters, vol. 38, no. 8, (2017).
[2] G. Tang, IEEE Electron Device Letters, vol. 38, no. 9, pp. 1282-1285 (2017).
[3] P. H. Carey, Journal of the Electron Devices Society, vol. 7, pp. 444-452, 2019.
[4] W. S. Tan, Solid-State Electronics 50: 511-513 (2006).

10-6 A/mm

85/70 HEMT[3]

25°C

100°C

200°C

300°C

400°C
500°C10-2 A/mm

25/0 HEMT[4]
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Enhancement-Mode AlGaN-channel HEMTs6

Enhancement-Mode
(normally off)

Depletion-Mode
(normally on) Barrier

Channel
2DEG

Source
Gate

Drain

Barrier
Channel

Source Gate Drain
P+

P-Gate

Barrier
Channel

Gate
DrainSource Two approaches for E

-mode already 
successfully 

implemented at 
Sandia

AlGaN HEMTs are 
innately D-mode

Depletion-mode load inverter

Currently complimentary pFET and nFET not practical 
→Combine e-mode and d-mode for logicE-mode switches: Safer in failures

Masahito Kanamura, et al. (2010). IEEE Electron Device Letters 31(3): 189-191.
Hilt, O., et al. (2010). Proceedings of the 22nd International Symposium on Power Semiconductor Devices & ICs, Hiroshima, Japan, IEEE.
Yong Cai, et al. (2006). IEEE Transactions on Electron Devices 53(9): 2207-2215.

Recess + F- ions
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Enhancement-Mode AlGaN-channel HEMTs7

JVSTB, vol. 37, no. 021208, 2019.

Enhancement-Mode
(normally off)

Barrier
Channel

Source Gate Drain
P+

P-Gate

Barrier
Channel

Gate
DrainSource Two approaches for E-

mode successfully 
implemented at Sandia

Recess + F- ions

Appl. Phys. Lett. 114, 112104 (2019)
45/30 HEMT + p-AlGaN cap 85/70 HEMT: Recess + F- ions

Etch Times



Enhancement-Mode AlGaN-channel HEMTs8

Threshold voltage = 1.5 V
Drain Current = 500 mA (DC), 1.5 A (pulsed)
Breakdown voltage = ~650 V

Need to change epitaxy design 
Ohmic contact needs improvement

2

1

What needs more work?
1. Offset voltage
2. High gate bias 



Epitaxial Design9

• Could repeatably make good contacts to a 45/30 HEMT 

Motivated transport study[3]

45/30 HEMT [1]
85/70 HEMT[2] 100/60 HEMT

• For a long time we worked off the assumption that the high barrier composition was limiting our ohmic contacts
• …Until we observed Ohmic contacts on a 100/60 HEMT → Channel composition dependence → What was going on?

4 V

1 V

-2 V

-5 V

-8 to -14V

[1] ECS Journal of Solid State Science and Technology, vol. 6, no. 11, pp. S3010-
S3013, 2017.
[2] Journal of Electronic Materials, vol. 48, pp. 5581–5585, 2019.
[3] B. A. Klein, Journal of Applied Physics (submitted).



Epitaxial Design10

µ * ns = 1/qRSH

Guidelines 
Reduced channel Al% → higher mobility 
Increased Barrier/Channel Al% contrast → higher ns

Hall Mobility Sheet Carrier Concentration Sheet Resistance

• Lower Al% channel = higher mobility
• Mobility less variable over temperature 

compared to GaN HEMTs
• Over the 500oC range

• AlGaN channels: 3.1x reduction
• GaN channel: 6.9 x reduction

 Improved stability over T

• High barrier/channel Al 
contrast increases carrier 
concentration

Good combination for high 
temperature epitaxy:
1. Low mobility variation
2. High carrier concentration

B. A. Klein, Journal of Applied Physics (submitted).



Epitaxial Design → Ohmic Contacts11

Design Principles 
1. Keep the Al-rich barrier – Want to keep for benefits in power and high 

temperature 
2. Increase the Al contrast between barrier and channel – Reduce sheet resistance

100/40/100
VNA8043a

85/50/100
VNA8109

72/40/100
VNA8104

9e-04 Ωcm² 3.3 e-04 Ωcm²1.1e-04 Ωcm²



Epitaxial Design → Ohmic Contacts12

VNA8109a: 
85/50/100

Planar Ohmic contacts

 Reduced specific contact resistance by 2×: 
5×10-3 to 1×10-4 Ωcm²

 Reduced sheet resistance by over half: 
4.7 kΩ/sq to 1.7 kΩ/sq

 Increased current density by over 6×:
30 mA/mm to 200 mA/mm (long channel devices)

85/50 HEMT

New problems:
Leakage current

 Threshold voltage control 
 Epitaxial design
 Ohmic contacts
• High temperature gate metals

I D
S (

m
A/

m
m

)



High Temperature Gates13

Before >300°C After >300°C

“Standard” Gate: 200 Å Ni / 4500 Å Au
• Nickel metal migration
• Changes to electrical properties 
• Metal pads don’t survive
 Need high temperature gate metal

Metal
Resistivity, 
~25°C (Ωm)

Melting 
Point (K)

Thermal 
Expansion (x106) 

(cm-1)
Au 2.35 1337 14.2
Mo 5.34 2896 5
W 5.6 3695 4.5
Ni 6.84 1726 13
Pt 10.6 2042 9
Ta 12.4 3293 6.5
Nb 12.5 2742 7
Cr 12.9 2130 6
Pd 20 1825  
V 25 2163 8
Zr 40 2128 5.7

Properties of Candidate Metals

Gate Metal Experiment
1. 2000 Å W (sputter)
2. 2000 Å Pd (evap)
3. 200 Å Pt / 2000 Å Au (evap)

Pattern standard Ohmic contacts
•85/70 HEMT
•250 Å Ti / 1000 Å Al / 150 Å Ni / 500 Å Au
•Anneal: 1100°C, 30s, ~1mT nitrogen

Characterization 
1. Pre-high temperature I-V sweeps
2. Multiple Cycles: Anneal at 500°C → I-V sweeps



High Temperature Gates14

Before RTA After RTA Before RTA After RTA

Pt/Au GatePd Gate
Before RTA After RTA

W Gate

On/Off Current 
Ratio

Max Drain 
Current (mA/mm)

Metal Before 
RTA

After 
RTA

Before 
RTA

After 
RTA

W 3x105 1.8x106 27 21
Pd 1 x108 2.8x106 26 13
Pt/Au 8 x 107 5.4x108 27 7

Best Results: W gate 
• Burn-in for improved Ion/Ioff ratio
• Maintains good drain current
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High Temperature Mask Set16

Transistors

Inverters

Ring Oscillator

SRAM

Process 
Control 
Monitors

Column 1 Column 2 Column 3
3 Columns

Use for 3 different barrier etches
OR

Use for 3 different p-(Al)GaN etches



High Temperature Mask Set: Inverter design17

Column 1 Column 2 Column 3

Vary βR (driver-
load ratio) by E/D 
gate width ratio. 
Vary gate length.

Vary βR (driver-
load ratio) by E/D 
gate width ratio. 
Vary gate length.

Vary βR (driver-
load ratio) by E/D 
gate width ratio. 
Vary gate length.

GL 1.5 
µm

GL 2.5 
µm

GL 5 
µm

βR = 1.5 βR = 1.5 βR = 1.5

βR = 6 βR = 6 βR = 6

βR = 16 βR = 16 βR = 16

GL 1.5 
µm

GL 2.5 
µm

GL 5 
µm

βR = 1.5 βR = 1.5 βR = 1.5

βR = 6 βR = 6 βR = 6

βR = 16 βR = 16 βR = 16

GL 1.5 
µm

GL 2.5 
µm

GL 5 
µm

βR = 1.5 βR = 1.5 βR = 1.5

βR = 6 βR = 6 βR = 6

βR = 16 βR = 16 βR = 16

See for example: J. Uyemura, Fundamentals of MOS 
Digital Integrated Circuits (1988).
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Inverter Characteristic Plot



High Temperature Devices: Transistor18

Drain Current 
Decrease 

Above 200°C

Drain Current 
Remains High

Enhancement Mode Depletion Mode

I D
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m
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0
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Vg (V) -5 5Vg (V)
30

0
I D
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A/

m
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)25oC

300oC

Ion/Ioff 
(T=300°C)=2.6e7 Ion/Ioff(T = 300°C) > 1E6

D-mode: drain current stable 25-300°C
E-mode: drain current decreases >200°C

E-mode resistance increases → inverter 
Vout,Low rises

On/Off ratio stable 25-300°C for both e- 
and d-mode transistors



High Temperature Devices: Inverter Results19
βR = 1.5 βR = 6 βR = 16 

45
/3

0 
H

EM
T

85
/7

0 
H

EM
T

Vth(e-mode) bad
Level shifting

• 45/30 HEMT with p-AlGaN Cap
• Lower e-mode resistance than 85/70 → Improved inverter performance
• Threshold voltage of e-mode is too low → Level shifting needed



High Temperature Devices: Inverter Results20

AlGaN High Temperature Inverter
D-mode

E-mode

85/50 HEMT

T = 25°C

45/30 HEMT + p-AlGaN gate cap
• Operation up to 491ºC
• Requires level shifting
• E-mode threshold wasn’t 

shifted positive enough

85/70 HEMT 
• Increasing resistance of e-

mode → Degradation of 
inverter characteristics with 
increasing temperature

85/50 HEMT 
• Room T performance 

improvements from reduced 
sheet resistance.

• Needs testing over T
• Need to minimize leakage for 

high Vin



Summary21

Ultra-wide bandgap: AlGaN choice material for high 
temperature and power switching applications

• E-mode: Two approaches for threshold voltage control
• Transport study: Needed high barrier/channel Al contrast
• Ohmic contacts: Improved by modifying epitaxy 85/70 

HEMT → 85/50 HEMT
• High temperature Gate Metals: Tungsten (2000 Å)

High Temperature Devices
• E-mode/D-mode logic gates
• 45/30 HEMT Inverter tested up to ~500°C
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