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What is a nonlocal model?
● Basic concepts

1)  The state of a system at any material point depends on the state in a neighborhood of points

2)  Interactions can occur at distance without contact

3)  The solutions has a lower requirement of regularity: non-differentiable, singular, discontinuous 

● Why nonlocal model? The nonlocal model can capture the feature that traditional PDE fails to 
capture

1) Multiscale behavior (nonlocal as an upscaled/homogenized model)

2) Discontinuities such as cracks and fractures (peridynamics)

3) Anomalous behavior such as superdiffusion and subdiffusion (fractional operators) 

● Nonlocal operator with kernel K



  

Challenges in MD and nonlocal model

Existing challenges in MD and nonlocal model:
● MD has become a fundamental tool for inventing new materials, but it suffers from the its 

computational limitations in length and time scale it can address.

● We need to upscale MD to the continuum level, and nonlocal models exhibit all desired 
properties: 1. can handle discontinuities; 2. compatible with molecular scale forces; 3. can 
capture multiscale behavior

● Knowledge gap: Nonlocal kernels are often chosen as a posteriori. It’s difficult to derive them 
from the physical laws.

Our strategy:

1) Collect high-fidelity data from MD simulations 

2) Use machine learning algorithm to learn a nonlocal kernel as well as the material properties 
from coarse-grained MD data

3) Learned nonlocal operator needs to satisfy some solvability constraints to ensure well-
posedness.   

Coarse-grained MD data + 
ML = new advanced 
material model



  

Learning process

● Goal : Identify the kernel function as well as the material properties 

● Given : A collection of samples of coarse-grained MD displacement and forcing

● Model : Linearized peridynamic solid (LPS) model

and K is approximated by Bernstein polynomials:

● Optimization: Learn K, Young’s modulus E, Poisson ratio ν, and α by minimizing the residual 

                                    subject to solvability constraints

 

 



  

Solvability constraints

● When the kernel function K is positive and not too singular, the LPS model is 
guaranteed to be solvable

● To better improve the accuracy of the nonlocal model, we allow the kernel to be 
partially negative.

● While there’s no known theory on sign-changing kernel available for the LPS model, 
we impose the solvability constraints in a discrete manner

Theorem : the discrete LPS system is solvable if

where A and B are the discrete operators

 



  

The two-phase algorithm

● Phase 1: Constrain the parameters          to be non-negative, and 
minimize the residual

● Phase 2: Allow the kernel to be negative and apply the solvability 
constraints while minimizing the residual 

    



  

MD simulations of graphene: Training set 

● Perfrom MD simulation of a perfect sheet under the loads b at 0K and 300K

● Compute the smoothed (coarse-grained) displacements for 70 training samples, grid 
size is 5Å 

  The domain is a [-50Å,50Å]^2 square, the 
given loads b are

Where

      Is chosen such that the resulting strain 
are within the small strain regime (1%)
 



  

MD simulations of graphene: Validation set

● Perfrom MD simulation of a perfect sheet under the loads b at 0K and 300K

● Compute the smoothed (coarse-grained) displacements for 10 training samples

The training and validation 
datasets have the same 
domain but different loading 
conditions



  

Optimal choice of hyperparameters (δ, M)

●  To find the optimal hyperparameters, we compare the optimal δ for each 
given kernel order M, using two metrics on training and validation datasets.   

Error in residual :  

Error in solution :

● Results:



  

Kernel function and material properties

● We compare the material properties obtained from 0K and 300K

● Optimal kernel K:

Dataset E (Tpa) Poisson 
ratio ν

α

0K 0.91 -0.4297 2.8335

300K 0.90 -0.4196 2.5946

Kernel functions and material 
properties are not sensitive to 
temperature



  

Kernel function and material properties at 300K

● We compare the material properties at 300K with different noise level.

● Optimal kernel K

Datasets E (Tpa) ν α Residual
(train)

Solution
(train)

Residual
(Val)

Solution
(Val)

low noise 0.90 -0.4196 2.5946 9.82% 13.16% 18.08% 8.88%

med noise 0.87 -0.4422 2.5197 14.52% 28.27% 18.34% 9.82%

high noise 0.95 -0.3106 1.9365 27.64% 48.86% 23.73% 17.54%

Our learning strategy is robust 
with the existence of thermal 
noise.



  

Generalization to different domains/loadings

● Graphene at 0K on a different domain, circular object with radius 100Å

● Forcing terms are given as 

Training set Validation set Test set



  

Generalization to different domains/loadings

● Graphene at 0K on a different domain, circular object with radius 100Å

● Forcing terms are given as 

Test sample |u| data |u| solution (9% 
accuracy)



  

Generalization to different discretizations

● We consider training on hybrid datasets with grid size 5Å and 2.5Å, and compare the 
residual error and solution error on each grid size.

Our learning strategy can handle data 
from different discretizations!



  

Summary

● We proposed a machine learning method that extracts 
nonlocal models from coarse-grained MD data.

● The learned nonlocal model is guaranteed to be solvable. 

● The learned nonlocal model is robust with the presence of 
thermal noise, and can be generalized to problems with 
different loadins/domains/discretizations. 
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