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Outline

* |ntroduction to the nonlocal modeling

* Challenges in MD (molecular dynamics) and
nonlocal model

* A nonlocal operator regression algorithm

* Nonlocal surrogates for MD simulations



What Is a nonloceé

* Basic concepts

1) The state of a system at any material point depends on the state in a neighborhood of points
2) Interactions can occur at distance without contact

3) The solutions has a lower requirement of regularity: non-differentiable, singular, discontinuous
Why nonlocal model? The nonlocal model can capture the feature that traditional PDE fails to
capture

1) Multiscale behavior (nonlocal as an upscaled/homogenized model)

2) Discontinuities such as cracks and fractures (peridynamics)

3) Anomalous behavior such as superdiffusion and subdiffusion (fractional operators)

* Nonlocal operator with kernel K

Lk (u)= . )K (2, y)(uly) — u(z))dy
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2)

3)

Challenges in ML

Existing challenges in MD and nonlocal model.:

MD has become a fundamental tool for inventing new materials, but it suffers from the its
computational limitations in length and time scale it can address.

We need to upscale MD to the continuum level, and nonlocal models exhibit all desired
properties: 1. can handle discontinuities; 2. compatible with molecular scale forces; 3. can
capture multiscale behavior

Knowledge gap: Nonlocal kernels are often chosen as a posteriori. It's difficult to derive them
from the physical laws.

Our strategy:
Collect high-fidelity data from MD simulations

Use machine learning algorithm to learn a nonlocal kernel as well as the material properties
from coarse-grained MD data

Learned nonlocal operator needs to satisfy some solvability constraints to ensure well-
posedness.

Coarse-grained MD data +
ML = new advanced
material model

MD data I Coarse-grained




Learning proc

Goal : Identify the kernel function as well as the material properties

Given : A collection of samples of coarse-grained MD displacement and forcing

{(u;, b))}
Model : Linearized peridynamic solid (LPS) model
i) =~ [ O Klly =) (=) (000 + 0(y) dy
[l = x) LR ) — ) dy = b,

Bs(x) ly — x|
060 = sy [ Hly =y =) (aly) — ) dy

and K is approximated by Bernsteln ponnomiaIs:

K y>—z| P B (P57,

Optimization: Learn K, Young s modulus E, Poisson ratio v, and a by minimizing the residual

1

N

|Lxu; — bll5 subject to solvability constraints




Solvability con

* When the kernel function K is positive and not too singular, the LPS model is
guaranteed to be solvable

* To better improve the accuracy of the nonlocal model, we allow the kernel to be
partially negative.

* While there’s no known theory on sign-changing kernel available for the LPS model,
we impose the solvability constraints in a discrete manner

Theorem : the discrete LPS system is solvable if

min eig(A) > 0, coercivity,

min eig(BA™'B") > 0, inf-sup,

min eig(A — 2B'B) > 0, Cauchy Schwars,
where A and B are the discrete operators

o Cs N L Tt VNN,
A m(5)/]95(x)uK<|y )F = (uly) — u(o) dy = b

Bu~ — /B Ky =Xy 0 (a(y) (o) dy




The two-phase al

* Phase 1: Constrain the parameters (D) }10 be non-negative, and
minimize the residual

1
{DPTe EPre pPre oPTe} = ng’mﬁﬂﬁéui —bl3

* Phase 2: Allow the kernel to be negative and apply the solvability
constraints while minimizing the residual

1
{Dp,E,v,a} = argminNHL(gui — bz||§
min eig(A) > 0
min eig(BA™'B*) > 0
min eig(A — 2B'B) > 0



MD simul

* Perfrom MD simulation of a perfect sheet under the loads b at OK and 300K

 Compute the smoothed (coarse-grained) displacements for 70 training samples, grid
size is 5A

The domain is a [-50A,50A]*2 square, the
given loads b are

b]ﬂ’k2 <ZL’1,IE2) = (C COS(]ﬁZL’l) COS(inBQ),O) or
b, &, (21,22) = (0, Ccos(kiz1) cos(kazs))
Where ky, ko € {0,7/50,27/50,...,57/50}

(C Is chosen such that the resulting strain
are within the small strain regime (1%)



WIDES

* Perfrom MD simulation of a perfect sheet under the loads b at OK and 300K

 Compute the smoothed (coarse-grained) displacements for 10 training samples

1
—1
b0 = 3 exp { - |

dL10 diTIPDIE " B Cd d b 54dIMpIE

The training and validation
gy datasets have the same
P domain but different loading
2 5 conditions




Optimal choice of hyperpara

To find the optimal hyperparameters, we compare the optimal o for each
given kernel order M, using two metrics on training and validation datasets.

Error in residual ;

Error in solution :

average{||Lsu; — bi[}i,

average{[|£5 b — wil[}Y,

Results:

dataset | M &} Lo Fokige o v AvgE
0 125A | 13.91% 17.54% | 16.31% 14.49% 1
5 12.5A | 10.42% 12.19% | 13.02%  7.69% | 0.6933

0K 10 20A | 9.81% 11.72% | 13.28% 7.16% | 0.6704
15 22.5A | 9.80% 11.61% | 13.50% 7.22% | 0.6731
20 25A | 9.75% 11.89% | 13.53% 7.00% | 0.6729
0 12.5A | 13.46% 31.33% | 20.15% 14.86% 1
5 12.5A | 10.50% 13.80% | 17.83% 9.66% | 0.6784

300K |10 20A | 9.79% 13.32% | 18.11% 9.08% | 0.6549
15 20A | 9.82% 13.16% | 18.08% 8.88% | 0.6505
20 25A | 9.81% 13.36% | 18.34% 9.23% | 0.6609




Kernel function and material

* We compare the material properties obtained from OK and 300K

0.91 -0.4297 2.8335
300K 0.90 -0.4196 2.5946
* Optimal kernel K:

x10 *°
—0K, §=20,M =10 . .
s 300K, 6=20,M=15 Kernel functions and material
_ properties are not sensitive to
& 5 temperature
0 L=
0 5 16 1I5 20

Bond length (A)




Kernel function and material prc

We compare the material properties at 300K with different noise level.

low noise 0.90 -0.4196 2.5946 9.82% 13.16% 18.08% 8.88%

med noise 0.87 -0.4422 2.5197 14.52% 28.27% 18.34% 9.82%

high noise 0.95 -0.3106 1.9365 27.64%  48.86%  23.73% 17.54%
x10~°

20

—360K, low l:loise; _ 6=20,M = 15
15 i e e e Our learning strategy is robust

with the existence of thermal
noise.

0 5 10 15 20
Bond length (A)




Ge

« Graphene at OK on a different domain, circular object with radius 100A

* Forcing terms are given as
b = (0,0)for r <50

b = (acos(40) cos(d), a cos(40) sin(6))for r > 50

(L) ;
P

L Fi F wE mR
.t Tt b

Training set Validation set Test set




Generalization to diffe

« Graphene at OK on a different domain, circular object with radius 100A

* Forcing terms are given as
b = (O 0)for r <50

(a cos(46) cos(0), a cos(40) sin(f))for r > 50

Ju| data |u] solution

Test sample

|u| data |u| solution (9%
accuracy)




Generalization to different disc

« We consider training on hybrid datasets with grid size 5A and 2.5A, and compare the
residual error and solution error on each grid size.

Strain Sou a0d Sy | Ep | E™ | Egt | E
h=5Aand h=254| h=254 |16.19% | 8.01% | 2.95E-0 | 8.44%
h=5Aand h=254| h=54 |13.24% | 9.29% | 1.97E-1 | 7.80%

Our learning strategy can handle data
from different discretizations!




Summ:

* We proposed a machine learning method that extracts
nonlocal models from coarse-grained MD data.

* The learned nonlocal model is guaranteed to be solvable.
* The learned nonlocal model is robust with the presence of

thermal noise, and can be generalized to problems with
different loadins/domains/discretizations.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

