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Project Overview

Problem Statement

* Motivation: /n situ power harvesting required for use of downhole autonomous
sensors for real-time, long-term monitoring of CO, plume movement/permeance,
wellbore health, and induced seismicity

* Objective: Develop thermoelectric generators (TEGs) as downhole power sources for
sensors to perform in situ real-time long-term downhole monitoring

* Main research questions: What TEG designs will meet power needs of in situ
sensors? Material design/requirements to survive downhole environments? Cost?

* Industry involvement: Nothing formal currently, but ongoing discussions with the
operator of the Farnsworth Unit EOR-CO,, storage site for field testing and validation

» Ties to Priority Research Directions of the Mission Innovation CCUS Workshop:

Downhole thermopile arrays for power harvesting potentially address these PRDs,

* PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO, Injection — in situ monitoring to
assess pressure build-up

* PRD S-3: Optimizing CO, Injection by Control of Near-Well Environment — in situ real-time monitoring may
enable rapid intervention

* PRD S-4: Developing Smart Convergence Monitoring to Demonstrate Containment and Enable Storage Site
Closure — multiple thermopile arrays may enable integrated, simultaneous monitoring of caprocks, reservoirs,
and USDWs

* PRD S-5: Realizing Smart Monitoring to Assess Anomalies and Provide Assurance — in situ power harvesting
supports autonomous sensor systems

* PRD S-9: Establishing, Demonstrating, and Forecasting Well Integrity - power harvesting enables sensors for
continual long-term monitoring of trends in hydrodynamic and material behavior




Subsurface CO, Sequestration

» Subsurface sequestration is the only
viable option for reducing industrial
emissions of CO,
« DOE’s large-scale pilot programs (e.g.,
Southwest Regional Partnership, SWP) Dgmiti . .-
were established to: :j:f,”; i ) e
« Obtain baselines for monitoring efforts i " 5% 7 A% EEhNe I
 Monitor the effectiveness of injection and — TP g Nl v L o T
storage operations O a1maTvTy A
« Provide test-beds for injection, storage, and 8 b i Apee
monitoring operations P Te— : i B
« Need for improved understanding of CO, (D wemurr _— ﬁgmg‘% E N
movement within reservoir/caprock, and s eeo, I L
potential leakage pathways along the day at Famsworth | _ <
wellbore. S [ a——

« Collection of long-term data via downhole —
sensors will allow application of “big —

data” concepts to better quantify the long

-term stability and safety of subsurfacg sensors require power, many must be outside of
CO, sequestration the casing—how to power them, charge batteries?

We propose powering via downhole power 4
harvesting with thermoelectric generators (TEG)




General Approach

In situ power harvesting is required to support a wireless downhole system of
autonomous sensors. This project evaluates use of thermoelectric generators (TEGs)
attached to casing or tubing to generate substantial power (e.g., 10’s of Watts) via power
harvesting.

* We are evaluating use of TEGs—thermopile arrays—to harvest energy from:
— Intermittent pumping to produce a transient higher gradient, charging a battery
— Any location along the length of the wellbore (e.g., reservoir unit, caprock, overlying
aquifer)

« Our primary focus is power generation—other research groups are working on

sensor development
— TEG designs based on sensor power needs
— TEGs will be attached to 1) production tubing or 2) casing outer wall

 Thermopile arrays themselves can be used as sensors; also evaluating this
— Temperature profiles (e.g., profiles shift due to CO, saturation changes & thermal
blanketing)
— Thermal gradient into-out of borehole—a function of near-field / far-field thermal
conductivity
 Indirect measurement of CO,/brine saturation in wall rock or casing cement or of near well-
bore leakage/movement of CO,
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Planned Work

1. Thermal-hydrologic modeling to determine relevant heat fluxes
— Used to size thermo-electric generator (TE) arrays, determine power generation,
assess steady-state and transient heat flow, and plan benchtop experiments
2. Bench-scale testing of TEGs

3. Perform benchtop thermal hydrologic testing
— Optimize TEG and heat sink designs
— Develop integrated TEG power system
— Develop and validate power generation and thermal-hydrologic models
— Test use of TEGs as sensors
* Temperature changes, thermal pulse decay
« Changes in near-field and far-field thermal conductivity due to changing
brine/CO,, saturation
4. Design, build and test field-sized TE systems

— Potential path forward: attached-to-tubing thermopile validation at Farnsworth
Unit, less likely is thermopiles outside casing, as that requires drilling of a new
well



Thermoelectric Generators

» TEGs directly convert heat into electric power.

* Thermoelectric modules consists of several P-type and N-type thermoelectric
legs connected in series or series-parallel combination.

« Solid-state heat engines with no moving parts. Robust and very reliable in long-
life applications.

 Efficiencies are low, but ideally suited for energy harvesting applications.

» Thermoelectric generator takes advantage of the Seebeck Voltage. When a
temperature differential is maintained across a thermoelectric couple, a voltage
is generated. Current can be drawn by connecting a load.

* Dense alumina substrates
on the top and bottom.
Edges are sealed to
protect the TE elements.

* Heat source and heat sink
are attached to the top
and bottom with good
thermal interface material
for efficient heat transfer. 7
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Using TEGs for Downhole
Power Harvesting (comsoL Example)

Wellbore mock-up based on 3" e L SOUTIONe
production tubing, 5.5” OD casing,

cement-filled annulus between Production™”|

casing and rock Tubing 4

Examine a thermal pulse over two j‘f,':f‘r -

days (1.8 x 10° s) associated with

pumping cold scCO, into a 70°C Brine-filled "~ gy

reservoir (properties modelled after ~ @"ulus — |

Farnsworth) v

Thermopile array composed of 0.24
m long cylindrical shell of 1
commercial module consisting of o
125 BiTe TE couples mounted on
exterior of production tubing

Really a best-case example

ime, sec

involving thermal gradients

associated with spring-type heat
fine moirinted nn ~aina iNfarior



Using TEGs for Downhole
Power Harvesting (comsoL example)

Thermal model of transient cooling pulse

Model:

» Reservoir initially at 70°C, cools near
wellbore then returns to far-field T

« Spike in voltage produced by thermal
pulse

* Assume 125 TE couples in 1 shell
module with Seebeck coefficient of 400 | i
mV/K

0.5

Heat flux through the
TEG during and after
the pulse is
converted to
electricity.

TEMPERATURE GRADIENT, K

0

0 20000 40000 80000 100000 120000 140000

Voltage DelT




Thermoelectric Module

Open circuit voltage of a TEG; V., =S, *dT * N
where S is the Seebeck coefficient of a P-N thermoelectric couple
(for a BiTe-based TEG module,
Sp.n ~400 uV/K); dT is the temperature differential across the TE
couple; and N is the number of TE couples in the module.
We are using commercial TEG modules consisting of 125
couples (BiTe material); expected V. and maximum Power
output for 1 module at different dT are:

]:[-\]I MARLOW

Technical Data Sheet for TG12-2.5 10

Single-Stage Thermoelectric Generator 1

dT(K) |Voc (V)|P (mW)
100 5.38 | 836.42
0.54 9.93
0.054 | 0.11

NOMINAL PERFORMANCE IN MITROGEN

Size: 1.18”x1.18”x0.159”

Power output depends on the
load, so load optimization is
required. For max power, V| .4 ~
1/2 VOC

To generate sufficient
power/voltage, several TEG
modules will be connected in
series or parallel configuration!0

V is proportional dT and P is



TEG Testing

Ambient Pressure Benchtop Tests

Testing TEG efficiency
 TEGs identified and purchased -

« Steel mount designed and machined
« Heat fins (for testing purposes) purchased

* Testing (low P) to determine efficiency and
function completed; used to calibrate
COMSOL power generation models

Testing TEG with mount and heat sinks

-




Power Conditioning and Battery
Management

. ; Testing power conditioner
« TEG voltage/current vary with heat flux; directly

powering sensors is difficult.

« Solution: Store the energy in a battery, which can then
be used to power sensors. Power management
circuitry is required to condition the TEG power output
and charge the battery.

« Power conditioning chip identified/purchased. Testing
at room T/high T (100°C) conditions completed.

* Card T1or benchtop tesp| ngegg Igned and be|n7g pullt
e

e GehETET sting at elevated temperatures

eoo0om @ﬂ

@
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Power Conditioning and
Battery Management

Schematic for downhole power

* Preliminary card for downhole use designed. conditioner/battery
Includes: <———1330. 00—
— Power conditioning chip S =3
— Memory and microprocessor for data management
— Battery (rechargeable coin cell) ;
_ B _ _ 1175.00
« Simplified card for lab testing has been built |
« Batteries are the biggest challenge:
— Limited options for high-temperature, rechargeable _v
batteries
Top Bottom
Card for
high P/T
lab testing

13




Benchtop High P/T Testing

TEG High Temperature/ High Pressure Apparatus
* Robustness/survivability

testing G )

— Verify component operation at )5 o -
downhole P-T (6 F—— 4 Fiter ;

A valve for CO2 & V3

— Test TEGs, power conditioner, vacuumpuge —
batte rl €s EI\f: Ecxr::i(;ks \Ifl&::!:uevalve

_ i RFO = Restrictive How Orifice
Pressure SyStem belng Pl = Pressure Indicator
assembled: Pressure Safety Data PRV = Pressure Relief Valve

. R = Regulator (pressure)
PaCkage (PSDP) N progreSS TI=TeImperature Indicator
V= Valve

— System packaging for benchtop
and downhole use designed and

DTC—DigiSense
temperature controller

being built. C%dc.yli?dber Reservair
» Testing at simulated field T
conditions:
— Exercise/validate COMSOL
— Aid in system design for field use e Tasra
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High P/T Packaging for
Downhole System

General concept: Hollow sleeve design, encapsulating TEGS,

batteries, and support electronics
Slightly reduced-scale version being built for high P/T benchtop testing

) 4.25"0D
2.625"1D ::- Preliminary design

for downhole use

Design for -:>

benchtop testing

9.5” Long




COMSOL Modeling of TEG Performance
High P/T Benchtop Testing Setup

Tubing — . i .
Model for low-P test system " e N
developed TEGAmy u,% 44
« Models heat flow, TEG power o Ao o
. Pressure vessel — | AR
generation (voltage/current) wall L ¥ -y
* Includes all system components Voael Tubing vt flomioe G (10 v |
(TEGS, tubing, mount, heat fins) Tt
« Fitting to measured data used to SN i
calibrate power generation model
1.60E+00
- Modelled Array ::>
HeoEE * COMSOL Voltage Matches ;
1.20E+00 Marlow Mode Measured Values .
Air Experiment _ Modelled Array Voltage During 10 min. scCO, flux
5 LooEece P >
Ef E-01 § ' .
> 6o0e01 ;g: Y
4.00E-01 § ot
2 DDE-01 g / I
0.00E-00 QD " i A
0 5 10 15 20 25 30
dT (C)

16



Accomplishments to Date

Completed acquisition and ambient testing of TEGS for down-hole
use.

Developed and tested of power conditioning circuitry for down-hole
use. Prototype of actual circuit board built for high P/T lab testing.

Preliminary packaging design completed, and a lab-scale unit is in
production for high P/T testing
COMSOL models for TEG performance/power generation
— Model for ambient TEG test system calibrated/validated against lab data
— Model of high P/T test system developed (will be finalized once system
packaging is finalized)
— Preliminary model developed for downhole power generation in
response to thermal pulses

» Discussions with possible field site (SWP Farnsworth site) in
progress.
— Possible boreholes identified

— Full set of borehole component dimensions, downhole conditions, pump17
cchediles etc have been made available



Lessons Learned

e Largest issue remaining: options for high-temperature
rechargeable batteries are very limited. Current choices
are only good to 60-70°C, or are too large for this
application. Continuing to work this issue.

18



Synergy Opportunities

» Wireless downhole sensors for real-time, long-term
monitoring of CO, plume movement/permeance, wellbore
health, and induced seismicity require a power source.
TEGs provide a method for powering sensors by pumping
fluids down the borehole and harvesting energy from the
resulting thermal pulse.

» Power/data transmission to wireless sensors is beyond
the scope of this project (we focus only on power
generation); however, a possible technology has been
identified.

« Southwest Regional Partnership (SWP): possible field

testing at Farnsworth EOR site. .



Project Summary

In situ power harvesting is required for use of wireless downhole sensors. TEGs
are a possible solution for downhole power generation, harvesting power from
thermal pulses generated by intermittent pumping of cool or heated fluids down
the borehole.

Status

— System designed
+ TEGs identified and tested
*  Power conditioning circuitry designed and tested
+ Batteries for energy storage (?)
High P/T packaging designed and being built for testing

— Benchtop testing
* Ambient pressure testing completed (establish TEG efficiencies and performance at elevated temperatures)
* High P/T testing to establish survivability and downhole performance of system and packaging (end-of-FY
milestone)
— COMSOL modeling of TEG power generation
* Modeling of ambient pressure benchtop tests completed (calibrate and validate power generation model)

*  Preliminary models of benchtop high P/T test apparatus completed (modifications required for final
geometry/packaging).

»  Preliminary models of power generation in downhole pumping scenarios completed (modifications required for
final geometry/packaging). 20

— Field Testlng Ongoing discussions with SWP Farnsworth site
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Project Summary

Next Steps:

 Complete laboratory testing at elevated P/T
 Build prototype unit for field testing

» Coordinate with field site and plan field test
 Complete downhole field test in FY22

21
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Benefit to the Program

* Project addresses 3 Major Goals of the Carbon Storage

Program:
1. Wellbore Integrity & Mitigation — thermopile in situ power harvesting for wellbore
monitoring

2. Storage Complex Efficiency and Security — thermopiles span
reservoir/caprocks/USDWs

3. Monitoring, Verification, and Accounting and Assessment — real-time on-demand
confirmation

* Project benefits statement:

The project develops autonomous downhole thermopile arrays for in situ power
harvesting. Solution for real-time to long-term monitoring Carbon Storage
Program Goals on wellbore health, CO, storage efficiency, and storage
permanence. Lab/field validation by Year 2 support Testing and Monitoring
Plans (UIC-VI requirements), ensuring 99 percent CO, storage (Storage
Complex Goal), & global reservoir-caprock-USDW monitoring (\Wellbore/MVA
Goal). Thermopiles improve over battery-based embedded sensors by scaling
in arrays for abundant remote power. Designs include in-series thermopiles to

nowar failarad cancenr criitace for nraccecirira oftain acniicticr and chamical




Project Overview
Goals and Objectives

Funding (DOE and Cost Share):
— DOE: $500K ($200K FY21/$300K FY22)

Overall Project Performance Dates
— Oct. 2020 to Sep. 2022; FY21: theory & lab tests; FY22: field validation

Project Participants: Sandia w/NMT (potentially SWP or
CarbonSAFE)

Overall Project Goals & Objectives in Statement of Project
Obijectives:

— Develop thermopile arrays for in situ data capture & transmission

— Determine if thermopile materials will survive downhole environments

— Assess economics of scaling arrays for reservoir/caprock/USDW monitoring

How do project goals and objectives relate to the program goals and
objectives?

— Goal success criteria include lab demonstration of power generation, and figid
validation of scalability of thermopile arrays; supports monitoring Program Goals



Organization Chart

* Principal team members are all at Sandia National
Laboratories
— Charles Bryan, P.l.: project oversight, integration
— Ramesh Koripella: power system development and integration

— Tom Dewers: COMSOL modeling at field and lab scales, high
pressure system development and testing

— Jason Heath: interface with field sites, support field-scale
thermal-hydrologic modeling

— Others: Adam Foris, packaging; Derek Heeger and Jeff Frank,
power management
« Southwest Regional Partnership on Carbon
Sequestration (SWP) (contact Mr. George El-kaseeh).
Ongoing discussions about a possible field test at the
Farnsworth site.



Gantt Chart

FY2020 FY2021 FY2022 FY2023
Sk $200k $300k Sk

NN NN NN NN NN
Overall Project @ @@ O @I <7>®@
Task 1 @
Task 2 @
Task 3 <3>
Task 4 @ <7>
Milestones: Chart Key

. : TRL Go / No-Go Project .
1. Complete project managemgnt ?nd pl.annlng dc?cuments. # | Score Timeframe S e <>M|Iestone
2. Complete Thermal-hydrologic simulations required to

design/size thermopile array for benchtop tests
3 Buil(? benchto test?n S sths and complete benchtop tests Go / No-Go
i ; ) P ) gsy ] P P 1. Do thermal-hydrologic calculations indicate that heat flux
4. ldentify a field site and partner for testing (thermopile energy output) will be sufficient for the planned
5. Complete large-scale thermopile arrays for field testing use? Will f}he designed thermoelectric generators be
. N o economic
6. Initiate field testing 2. Did benchtop testing determine that thermopile use is
7. Final Report. feasible?
3. Has a field site/partner been identified? 26
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