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Ionomers as Single-Ion Conductors
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(no solvent)

Li+

An-X

why single-ion?
• high transference number
• no concentration gradients

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015).
Liang, S. et al. Macromolecules 47, 4428–4437 (2014).
Rojas, A. A. et al. Macromolecules 48, 6589–6595 (2015).



Ionic Aggregates in Ionomers
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Coulombic forces favor aggregates
polymer entropy limits size
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nm-scale ionic aggregates

“ionomer peak”
• ubiquitous
• low wavevector peak in scattering
• from inter-aggregate scattering

Yarusso & Cooper, Macromolecules, 1983



Ionic Conductivity in Ionomers

5

low due to low e, slow polymer motion, ionic aggregates 

Wang, J.-H. H. et al. Macromolecules 48, 7273–7285 (2015) Bartels, J. et al. Macromolecules 48, 111–118 (2015)

need sDC > 10-3 S/cm for applications



A Model System: Precise Ionomers
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PE backbone with precisely spaced carboxylic acid functional groups

Wagener group, University of Florida

Total scattering;
predominantly 
counterions in 
ionomer peak

M. E. Seitz et al., J. Am. Chem. Soc.  2010, 132, 8165-8174. 



Atomistic Simulations

7

often see stringy aggregate morphologies

p9AA-100%Li

Bolintineanu et al., ACS Macro Lett. 2, 206 (2013)
Buitrago et al, Macromolecules 48, 1210 (2015)

scattering matches exp.



Coarse-Grained Simulations
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Ions in the polymer backbone: 
“ionenes”

backbone beads 
per repeat unit
    

 -  Na+

Ions pendant to the backbone:
“pendants”

 N = 3 

N = 3, 5, 7, 9 (11)
35 or 36 backbone beads
800 polymers
counterion size = 0.5 s

bulk dielectric constant = 4
Bjerrum length = 35.7s
when Coulomb energy = kT



Ionenes: percolated

N = 9 

Small clusters                      Large clusters
Only charged beads shown   

Pendants: not percolated

-
+ +-

CG Simulations: Architecture Matters
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Hall et al., Phys. Rev. Lett. (2011)



•  Experimental/simulation agreement for pendants
•   Peak location similar
•   Increasing spacing moves peak to left
•   Random spacing moves and broadens peak

Experiment Simulation

Hall et al., J. Am Chem. Soc. (2012)

+-

+-Random block
     N = 5

S(k)
[a.u.] SCI-CI(k)

k [nm-1] k [nm-1]

‘Pseudorandom’
15C-C per COOH

 -  Na+

 -  Na+

CG MD: Comparison to X-ray Scattering
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Movies
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ionenes N = 9 pendants N = 9



Ion Trajectories

12 periodic ionenes Nbb=9periodic ionenes Nbb=9

periodic pendants N = 9

ions move by cluster 
rearrangment/collision

2 separate clusters
Follow one cation

Clusters have collided

Ion has moved to other cluster.
NEVER separated from a cluster.

Clusters reform with ion moved

time



•  Ionenes, pendants similar at short times
•  Pendants slower but qualitatively similar at long times

Mean Squared Displacements

[                                     ]n 
+

- [                                     ]n 
+-
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Ion Dynamics
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cations in periodic pendants

indicative of 2 time scales:
• local motion in clusters
• slower rearrangement between clusters

non-Gaussian 
parameter

ion cluster auto-correlation

p7: tc = 8000 t
p9: tc = 31000 t



•  Ionenes have faster diffusion than pendants
•  Percolated systems have faster diffusion

Counterion Diffusion Constants

15
Hall et al., Macromolecules (2012)

not percolated



Effect of Field: Ionenes
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E = 5.0

field direction

E = 0.0 E = 1.0

add force  Fx = qEx to each ion



Effect of Field: Pendants
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E = 5.0

field direction

E = 0.0 E = 1.0



MSDs in the Field
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diffusion drift in the E field

ionene N = 3 pendant N = 9

dashed = anion, solid = cation



Time-dependent Structure Factors
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ionenes N = 3 pendants N = 9

decay of counterion-counterion
scattering peak

0.66 < b < 0.96



Drift Velocity
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in linear response regime
polymers are short so they also move



Ion Mobilities
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from non-equilibrium simulation in field:

from equilibrium Einstein relation

ion motion is correlated



Conductivity
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discrete, non-percolated morphology

• conductivity decreases with decreasing ion concentration
• lowest for non-percolated aggregate morphology

Ting et al., Macromolecules, 2015



Oscillating fields
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Why?  would like to understand DRS experiments

Choi, U. H. et al. Macromolecules 48, 410–420 (2015)

• how many free ions? ion pairs? aggregates?
• what molecular motions lead to the a relaxation?
• how is the MWS relaxation related to the aggregate morphology?



Oscillating Electric Fields
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apply field in 
x direction 

• a fast, percolated system:  ionenes 
with N = 3, “i3”

• a isolated cluster system: pendants 
with N = 7, “p7” 

• polymers have 36 (i3) and 35 (p7) 
backbone beads

• also simulate 1 repeat unit of each, 
the “monomers”

E0 = 1 is in linear response regime

systems simulated



Frequency-dependent s(w)
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apply field 

calculate current



Frequency-dependent s(w)
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apply field 

calculate current



Plasma Oscillations
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De Leeuw, S. W. & Perram, J. W. Physica A 107A, 179 (1981)

MD simulations of molten saltpeak near plasma frequency wp

conducting boundary 
conditions



Lower Frequencies
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conductivity agrees with static calculation
scales as 1/w as w      0

i3

p7



Lower Frequencies
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 iN3   1/t* ≈ 0.02/t
pN7   1/t* ≈ 0.0001/t

cluster relaxation times from S(k,t)

• can’t resolve cluster rearrangements in p7
• do see chain/cluster dynamics in i3, mi3



Compare to Experiment
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precise PE-ImBr ionomers 

• ImBr form ionic aggregates
• dielectric response primarily due to ions
• some fraction of ions participate in a process

Choi, U. H. et al. Macromolecules 48, 410–420 (2015)

dielectric strength of a process



Compare to Experiment
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i3

p7

simulations too noisy to resolve a process
shapes of spectra similar to experiment



Conclusions
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 molecular architecture important
 isolated aggregates for pendants or large spacing
 percolation for ionenes or short spacing

 ion motion by cluster rearrangment
 ion motion is correlated
 higher conductivity in percolated morphologies
 methodology for extracting s(w), c(w) from simulations

Hall, et al., Phys Rev Lett 106, 127801 (2011); 
JACS 134, 574 (2012);
Macromolecules, 45, 8097 (2012);
Ting et al., Macromolecules 48, 809 (2015);
Ting et al., in preparation (2016)

coarse-grained atomistic
Bolintineanu et al., ACS Macro Lett. 2, 206 (2013);
Bolintineanu et al., Macromolecules 46, 5381 (2013);
Lueth et al., J Chem Phys 140, 054902 (2014);
Buitrago et al., Macromolecules 48, 1210 (2015)



Dependence on e: iN3
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linear scale, normalize by wp



Monomer vs Ionomer Structure
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Current Density
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w = 0.1/t

w = 1.0/t

w = 10.0/t

wp = 14.2/t
i3 system



Cluster Dynamics

Ions move.

Is there any?
Color distinct clusters by 
different color

Start
Finish (107 steps later)
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t = 50,000 t



Cluster Dynamics
ionenes

Start Finish (107 steps later)
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Field does not enhance mixing
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t = 0

t = 7.5 x 104 t ,

• field biases ion motion in field 
direction

• mixing occurs once

• independent of field
• mixing by thermal motion  

pendants, N = 9



Molecular Dynamics Simulations
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bead-spring polymer model
(Kremer & Grest, 1990)

interactions between all “beads”

r

-e

“bead” diameter s

Lennard-Jones potential:
interactions between bonded beads

FENE springs

Ubond = uLJ+u

+ Coulomb interactions + temperature



Morphology: Li-neutralized pAA
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coloring by cluster

p9AA-10%Li p9AA-43%Li p9AA-100%Li

p21AA-43%Li

Bolintineanu et al, ACS Macro Lett, 2013



Closer look at aggregates
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Two mechanisms of aggregate formation:
1. Counterion-oxygen association  dominant at moderate to high neutralization
2. Hydrogen-bonded networks  dominant at low neutralization

p9AA-10%Li p9AA-43%Li p9AA-100%Li



Comparison to X-ray Scattering
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Direct Comparison
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• excellent agreement in peak positions
• good agreement in peak shapes

1 Buitrago et al, Macromolecules 48, 
1210 (2015)
2 Seitz et al, JACS 132, 8165 (2010)

1

1

1

1

2

• 120°C, same neutralization
• S(q) scaled to match 

amorphous halo height



Ion Trajectories
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periodic ionenes N = 9

this counterion (enlarged in red) 
and nearby clusters
before, during, and after its “hop” 
(total time 1000 t) 

mechanism is not standard hopping

periodic pendants N = 9

mechanism is not standard hopping

[                                     ]n 
+

- [                                     ]n 
+-

4 counterion trajectories (blue) 
and 3 anion trajectories 
(red and purple on one polymer, polymer 
center of mass in grey, another anion in 
purple)
1000 steps of 50 t each



Static Electric Field
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add force  Fx = qEx to each ion

how strong a field should we add? 

electrostatic force

LJ units: |q| = 1, kT = 1, s = 1; 

for field

at contact, r = 0.75s:  F = -63/kTs

F = 1/kTs

rough estimate in real units: 
s = 0.4 nm, T = 298K, E = 0.8 V/nm = 8x106 V/cm 



Ionomer MD Simulations
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+ Coulomb interactions

NVT ensemble: Langevin thermostat 

noise W sets temperature

• 800 chains of 35-36 beads
• 4-12 charges per chain
• 1 cation per charged bead (anion)

• equilibrate for 107 timesteps
• collect averages for 4x107

• 1M CPU-hours ≈ 325 days on 128 cores

LAMMPS: open source MD code from Sandia 
http://lammps.sandia.gov/

e = 4

+ temperature

repulsive LJ interactions + FENE springs ... 

2,816 nodes / 22,528 cores 


