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ABSTRACT
Many engineering design problems can be formulated as decisions between two possible options.
This is the case, for example, when a quantity of interest must be maintained below or above
some threshold. The threshold thereby determines which input parameters lead to which option,
and creates a boundary between the two options known as the decision boundary. This report
details a machine learning approach for estimating decision boundaries, based on support vector
machines (SVMs), that is amenable to large scale computational simulations. Because it is
computationally expensive to evaluate each training sample, the approach iteratively estimates the
decision boundary in a manner that requires relatively few training samples to glean useful
estimates. The approach is then demonstrated on three example problems from structural
mechanics and heat transport.
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1. INTRODUCTION

Many engineering design problems involve limiting a given quantity of interest to below or above
some threshold. This quantity may be deterministic, such as the maximum stress within a
structure; or it may be probabilistic, such as the expected likelihood that a component will fail
after some amount of use. In the former example, the threshold might define the allowable
operating conditions for the structure, thereby demarcating the conditions as ‘safe’ or ‘unsafe’. In
the latter example, it might define the lifespan of the component, thereby demarcating the
component’s status as ‘no maintenance necessary’ or ‘maintenance required’. In both of these
cases, the decision can be cast as a binary classification problem where the user must decide
between two options. The threshold value in question forms a boundary between the
classifications and is therefore called the decision boundary.

Given a set of input parameters (e.g., external loads, power spectral densities) it can be classified
through the use of a decision function, which assigns the parameter set to one of the two classes.
For example, this decision function might take in a set of external loads and classify them as
‘safe’ or ‘unsafe’. In modern usage, the decision function may be based on a complex physical
model which may be computationally expensive to evaluate. This will be the case for high-fidelity
CFD or FEM simulations that may take hours, days, or even weeks to evaluate. Another use case
is when the decision function utilizes empirical processes, such as physical experiments, which
take a similarly long amount of time to carry out. Furthermore, there may be many parameters
that affect the quantity of interest, leading to a decision boundary with high dimensionality. In
practice, it is therefore necessary to limit the number of times the decision function is evaluated,
which in turn will limit the number of samples from which the decision boundary can be
estimated.

This report details the formulation of a machine learning algorithm for decision boundary
estimation, based on the work of Cholette et al. [1] and Basudhar and Missoum [2]. The
algorithm is designed to be efficient in the number of training samples, through the use of support
vector machines (SVMs). First introduced by Vladimir Vapnik and his colleagues at AT&T Bell
Labs [3], the SVM method is a machine learning technique for classification problems. SVMs
have been demonstrated on classification problems including structural health monitoring [4],
medical diagnosis [5], and others. SVMs have been shown to be among the most efficient
algorithms for classification problems [6, 7, 8, 9].

The report is structured as follows. In Section 2, we formally define the classification problem.
We also define support vectors and how they are used in solving the problem, before finally
detailing our decision boundary estimation algorithm. In Section 3, we apply the algoirthm to
three example problems. The first example is that of a bar under uniaxial load; the second
example is a cone structure subjected to a spatially-varying pressure load; and the third example
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is related to heat transport. Finally, in Section 4 we summarize the contributions of this report and
suggest extensions to the algorithm.
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2. FORMULATION

2.1. PROBLEM DESCRIPTION

Our main goal is to devise an efficient and general strategy to assess whether a given system
design is acceptable under various operational conditions. To this end, we will postulate the latter
acceptance/rejection problem abstractly as a classification task.

Figure 2.1-1. Decision Boundary Separating A + (Blue) and A − (Or-
ange)

Consider a function g : X → R, where X is the parameter space. For instance,
g(x) = h(x)−ao, x ∈ X , where x = {V,γ}. Here, h can be a function that maps x to the maximum
acceleration at a point of interest in a coupled fluid-structure interaction simulation, V and γ can
be representative parameters in the fluid, and ao an acceleration threshold. Now, consider the sets
A + := {x ∈ X : g(x)> 0} and A − := {x ∈ X : g(x)< 0} with X = A +∪A −, A +∩A − = /0 as
shown in Figure 2.1-1.

Now, let
yT (x) = sgn(g(x)) (2.1)

So, notice that yT (x) =−1,∀x ∈A − and y(x) = 1,∀x ∈A . Assume we are given a data set
{xi,yi}, i = 1, ..,N. Our goal is to, using this data set, find a function f that approximates (2.1).
That is, f classifies new observations xn as being in A + or A −.
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One of the main challenges in many applications is that obtaining samples xi,yi is
computationally expensive. Hence, our strategy should use data efficiently and effectively. As we
will show later in the report, we adopt an adaptive approach for efficiently sampling the parameter
space, hence, ameliorating the computational expense.

Support Vector Machines (SVMs) have been proposed as one of the most effective algorithms in
solving acceptance boundary problems [10]. Therefore, we adopt this family of algorithms as our
foundational component. We provide a brief overview of SVMs next and then introduce an
adaptive strategy for sampling the parameter space X partly based on the approach presented in
[11, 2].

2.2. SUPPORT VECTOR MACHINES (SVMS)

SVMs are among the most effective and efficient classification algorithms [6, 7, 8, 9]. The main
idea behind SVMs is to find a hypersurface that creates maximum separation of classes in a data
set.

Figure 2.2-1. Separating plane.

We start by considering the simplest classification case: linearly separable data. That is, classes in
the data set can be separated exactly by a hyperplane. First, consider the equation for a plane as
shown in Figure 2.2-1 given as

y(x) =wTx+w0 (2.2)

Notice that any point xa on the plane satisfies y(xa) = 0. Then, it follows that wTxa =−w0. The
distance from any point x to the plane is given as

γ(x) :=
wT (x−xa)

‖w‖
=
wTx+w0

‖w‖
=

y(x)
‖w‖

(2.3)
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Figure 2.2-2. Linearly Separable Data.

Now consider a data set {xi, ŷi}, i = 1...N where ŷi ∈ {−1,1} are class labels. Also, assume that
all these points are perfectly separated by a plane represented by (2.2) as shown in Figure 2.2-2.
The corresponding distance from any of these points, say xi, to the plane will be denoted as γi.
Notice that this is a signed distance (e.g. y(xi)> 0 =⇒ γi > 0 ). We can make the distance
unsigned by redefining γi as

γi =
ŷi
(
wTx+w0

)
‖w‖

(2.4)

Notice that there are infinitely many planes that can separate the data perfectly. The task behind
SVMs is to find a particular plane: the one that creates the widest margin. Towards this goal, we
first introduce the geometric margin as

γ
∗ = min

i
γi (2.5)

That is, the geometric margin is given by the distance of the closest point to the plane. Now, let
xg be a point that is on the geometric margin. Then,

γ
∗ =

ŷg
(
wTxg +w0

)
‖w‖

(2.6)

A plane that maximizes the geometric margin is defined by solving the optimization problem

w∗,w∗0 = argmax
w,w0

ŷg
(
wTxg +w0

)
‖w‖

(2.7)

However, this optimization problem is not convex. We can make progress by noticing that the
distance from any point to the plane does not change if we multiply w and w0 by a constant.
Hence, we can write

ŷg
(
ŵTxg + ŵ0

)
= 1 (2.8)
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where we have introduced ŵ = αw and ŵ0 = αw0 with α =wTxg +w0. Then, since xg has the
smallest distance to the boundary, notice that for any point xi, we have

ŷi
(
ŵTxi + ŵ0

)
≥ 1 (2.9)

It is customary in the literature to just use w and w0 to represent the scaled weights. We will
adopt this notation in the sequel. We can recast the optimization problem in (2.7) as

w∗,w∗0 = argmax
w,w0

1
‖w‖

subject to ŷi
(
wTxi +w0

)
≥ 1 (2.10)

Equivalently, we can solve the problem

w∗,w∗0 = argmin
w,w0

1
2
‖w‖2 subject to ŷi

(
wTxi +w0

)
≥ 1 (2.11)

which is a convex optimization problem that can be readily solved with conventional
techniques.

2.2.1. Nonlinear Separability

Most applications encompass data that is not linearly separable in input space as shown in
Figure 2.2-3. We can handle this case by introducing basis functions {φ j}, j = 1, ...,d that map

Figure 2.2-3. Non-linearly Separable Data.

the input space to another (usually of higher dimension) space. To this end, the decision function,
(2.2) is written as

y(x) =wTφ(x)+w0 (2.12)

Then, the optimization problem becomes

w∗ = argmin
w,w0

1
2
‖w‖2 subject to ŷi

(
wTφ(xi)+w0

)
≥ 1 (2.13)
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Practical implementations of SVMs use the dual formulation of this problem. We can derive the
dual problem by first introducing a Lagrangian

L (w,w0,λ) :=
1
2
‖w‖2−∑

i
λiŷi

((
wTφ(xi)+w0

)
−1
)

(2.14)

where λi, i = 1, ...,N are lagrange multipliers. Then, the dual function is defined as
q(λ) := minw,w0 L (w,w0,λ). Taking partial derivatives of the Lagrangian with respect tow,w0,
setting to zero, and solving in terms of λ, we get

w =
1
2 ∑

i
λiŷiφ(xi) (2.15)

and
∑

i
λiŷi = 0 (2.16)

Using these expressions with the Lagrangian, we arrive at the dual problem

λ∗ = argmax
λ

q(λ) :=−1
2
λT Qλ+1Tλ subject to ∑

i
ŷiλi = 0,λi ≥ 0 (2.17)

where Q is a matrix with components Qi j = ŷiŷ jφ(xi)
Tφ(x j).

Once we have solved the above optimization problem, we can computew and w0. Using (2.15) in
(2.12), we get

y(x) = ∑
i

λiŷiφ(xi)
Tφ(x) (2.18)

We will refer to (2.18) as the SVM decision function, which plays a crucial role in our adaptive
algorithm for constructing decision boundaries. Given a new point xb, we can predict the
corresponding class by evaluating sgn(y(xb)). The interested reader can consult [8] for a simple
procedure on how to calculate w∗0.

We can now introduce the kernel trick [12]. The inner products that appear in (2.18) can be
replaced by the evaluation of a kernel as K (x,x′)≡ φ(x)Tφ(x′). Then, we obtain

y(x) = ∑
i

λiŷiK (xi,x) (2.19)

The use of kernels as substitutes for inner products has its roots in the theory of Reproducing
Kernel Hilbert Spaces. Common kernels used in practice include polynomials and radial basis
functions (i.e. Gaussian) . For instance, a Gaussian kernel will be used in the work presented
herein and is defined as

K (xi,x j) := exp
(
−
‖xi−x j‖2

2σ2

)
) (2.20)

where σ is a user-defined parameter that describes the spread. The interested reader can consult
[9] for an in depth exposition on the theory and applications of Kernels to machine learning.
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2.2.2. Support Vectors

Recall that the complementarity condition requires

λiŷi
((
φT (xi)w

∗+w∗0
)
−1
)
= 0, i = 1, ...,N (2.21)

Then, notice that λi > 0 only for the points that satisfy φT (xi)w
∗+w∗0 = 1. These points lie

Figure 2.2-4. Non-linearly Separable Data.

right on the geometric margin and are called Support Vectors. This result has strong practical
implications in the evaluation of the decision function (2.19). Notice the summation can be
carried out over the support vectors only, which are generally far fewer than the number of
training points. To this end, define an index set as

Sv := { j : φT (x j)w
∗+w∗0 = 1} (2.22)

Then, the decision function can be evaluated as

y(x) = ∑
i∈Sv

λiŷiK (xi,x) (2.23)

2.2.3. Overlapping Classes

We now present a brief exposition on how overlapping classes are treated in the theory of SVMs.
In the case where classes cannot be separated exactly, we modify the optimization problem in
(2.13) as

w∗ = argmin
w,w0

1
2
‖w‖2 +C∑

i
ξi subject to ŷi

(
wTφ(xi)+w0

)
≥ 1−ξi, ξi ≥ 0 (2.24)
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Here we introduced the slack variables ξi in the constraints, which allows for data points to be
misclassified by a margin ξi. The second term in the objective forces the slack variables to be
close to zero. The coefficient C is a regularization parameter. As C→ ∞, we recover perfect class
separability (of course, if possible). The decision function for this problem is exactly the same as
(2.23), but the support vectors now include points that are on or inside the margin or are
misclassified.

Theoretically, the decision boundary problem leads to class separability. Therefore, in practice we
will select C to be as large as possible. We do not discuss the non-separable class problem any
further in this report.

2.3. ALGORITHM FOR DECISION BOUNDARY
IDENTIFICATION

We now present our complete algorithm for decision boundary estimation. First, we introduce
some notation that will be useful in the sequel. Let Ξb ⊂ X be a set of background parameter
samples. This set will have a large number of points and is the main set from which we will draw
training samples without replacement. Also, let Ξt ⊆ Ξb be a set of training samples on which we
perform expensive numerical simulations. That is, evaluating the true decision function (2.1)
entails the execution of large scale simulations. Hence, the training set {xi, ŷi} should be
judiciously constructed to ameliorate computational cost. This issue has received wide attention
in the decision boundary estimation literature [11, 2, 13, 1]. The common element in existing
work is an adaptive strategy for generating training samples. To this end, we can exploit the fact
that SVMs produce an explicit representation of the boundary through its decision function (i.e.
Eq. (2.23)).

Intuitively, samples close to the decision surface are more important that samples away from the
decision boundary. So, assuming that we have an initial data set that provides a reasonable
approximation to the decision boundary, we could adopt a greedy strategy in which we perform
expensive numerical evaluations only on samples that are close to the decision boundary. In this
early version of our work, we use a simple, greedy approach that has produced excellent results in
our preliminary investigations.

Assume that we have updated our SVM at iteration k. Next, we evaluate the SVM decision
function (2.19) over the background set. Then, we group samples on either side of the boundary
in sets A +

k := {x ∈ Ξb : yk(x)> 0} and A −
k := {x ∈ Ξb : yk(x)< 0}. Here, a subscript or

superscript k denotes a quantity that depends on the SVM at iteration k. For instance,
yk(x)≡ y(x;wk,wk

0). Next, we select the next best two samples where to evaluate our simulation
model as

x+
k = argmin

x∈A +
k

|yk(x)|, x−k = argmin
x∈A −k

|yk(x)| (2.25)

Notice that the above optimization problems are very simple to solve. We want to point out that
the greedy strategy put forward herein can miss part of the decision boundary in problems when
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A + and/or A − are small in parameter space. Also, some authors [11] have reported stagnation
(i.e. very slow change in the boundary during iterations) in greedy strategies. This issue was
addressed in [2, 1], but with much more involved algorithms than the one given in this report. One
idea to circumvent this problem is to introduce an exploration step that allows for the sampling of
regions away from the current decision boundary estimate. More robust exploration-exploitation
strategies are being developed and will be added to our algorithm in the near future. Algorithm 1
shows the steps implemented for the current work.

2.3.1. Error Metric

In our current implementation, we use the error definition reported in [11] to monitor
convergence. We first create a test set Ξc independent of Ξb and Ξt . Let ∆k denote the number
samples that change labels (i.e. signs) from iteration k−1 to iteration k. Then, we can define an
error metric as

εk :=
∆k

|Ξb|
(2.26)

This error is monitored from iteration to iteration and the algorithm is stopped when the error falls
below a user-defined tolerance.
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Algorithm 1: Adaptive sequential construction of the decision boundary
Initialization:

• Draw M uniformly distributed samples and store in Ξb.

• Draw N1 samples from Ξb without replacement and store in Ξt .

• Obtain the initial training labels {ŷ} by evaluating samples in Ξt using (2.1) (numer-
ical model).

• Add elements in {ŷ} to corresponding A + or A −.
// Ensure that there are samples on both sides of the boundary.
while |A +|= 0 or |A −|= 0 and |Ξb| 6= 0 do

Draw a sample without replacement from Ξb to Ξt ;
Evaluate new sample xk using (2.1) to obtain label ŷk;
Update A + and A − accordingly;

end
Specify the SVM kernel, C, and other hyperparameters ;
while not converged and maximum iterations not exceeded do

Train the SVM using Ξr,{ŷ j, j = 1, ..., |Ξt |} ;
Evaluate (2.19) over the background set Ξb to compute the distance from each sample to
the boundary;

Select the sample closest to the boundary from each of the sets A + and A −. These
samples denoted as x+k and x−k ;

Evaluate the computer model at x+k and x−k and compute their labels using (2.1) ;
Add x+k and x−k to Ξt and remove from Ξb;
Compute error;

end

17



3. EXAMPLES

We present three examples to demonstrate the performance of the decision boundary estimation
approach. The first example consists of a uni-axial bar made out of two materials, loaded on one
end, and fixed at the other. This is a 2D parameter space and the decision boundary isolates
regions where a threshold displacement is exceeded. The second example considers a conical
structure under a harmonic pressure loading. The pressure is parameterized using a low
dimensional representation to make the problem tractable. The quantity of interest in this problem
is the resultant acceleration at a given point and seek the decision boundary that separates regions
where a threshold acceleration is exceeded. The last example is a heat conduction problem
involving lithium-ion batteries in thermal runaway. This simplified problem removes chemical
reactions and focuses on heat transfer from a failed cell to an adjacent “target” cell through an
inert material. Given three design parameters, the boundary between thermal runaway being
mitigated and propagating to the target cell is found using a temperature criteria.

We implemented Algorithm 1 in Python 3.9.7 and used Scikit-Learn 1.02 for all the SVM
operations. A support vector machine with a Gaussian kernel was used for all the examples in this
report with a constant C = 1000. The spread parameter, σ , was selected automatically using the
default option in Scikit-Learn. Our code is available through Gitlab upon request.

3.1. BAR UNDER UNIAXIAL LOAD

Consider a bar of unit area and made of two materials. The bar is loaded with a point force at one
end and fixed at the other as shown in Figure 3.1-1 Assuming that the bar is divided into two

Figure 3.1-1. Bar example with two materials.

regions of lengths L1 and L2, the displacement at the loaded end is given as

u = F
(

L1

E1
+

L2

E2

)
(3.1)

We are interested in finding the values of E1 and E2 for which the displacement exceeds a certain
threshold u0. The decision function for this case is

g(E1,E2) = F
(

L1

E1
+

L2

E2

)
−u0 (3.2)
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The acceptance or decision boundary is given by the values of E1 and E2 that result in
g(E1,E2) = 0, which can be described analytically in the current case.

We used Algorithm 1 to approximate the decision boundary in this problem. To that end, we used
5000 samples in the background set, 5000 samples in the test set to compute the error according
to (2.26), and initialized the algorithm with 5 training samples. Recall that we evaluate our
numerical model only at the training samples. In the current case, the latter amounts to evaluating
the sign of (3.2).

Figure 3.1-2 shows the reconstructed decision boundary and the error versus number of iterations.
As we can see, the algorithm was able to identify the decision boundary with high accuracy. For
this example, we needed 117 training samples (i.e. function evaluations) and the error was zero at
the end of 55 iterations. Recall that a zero error just means that no sample in the test set changed
labels from one iteration to the other.

(a) Decision boundary. (b) Error versus iterations.

Figure 3.1-2. Results from Bar Example. Samples shown belong to the
training set. The dashed line corresponds to the estimated boundary,
while the solid line is the true boundary. They are practically indistin-
guishable in this example.

3.2. CONE STRUCTURE UNDER SPATIALLY-VARYING
PRESSURE LOAD

Now we consider the cone structure shown in Figure 3.2-1. The structure is excited with a
harmonic pressure whose spatial distribution is given as

p(r,θ ,x) = A1 cos(γθ)+A2 sin
(

2πV
x
H

)
r =

√
y2 + z2, θ = cos−1

(y
r

)
where the parameters A1,A2,γ,V are user-defined, and H is the height of the structure. For the
current example, we will fix A1 = A2 = 105 and search for a decision boundary using V ∈ [0,1]
and γ ∈ [1,3].
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Figure 3.2-1. Cone structure.

We used SIERRA/SD to construct the transfer matrix, T , for the cone structure. Then, the
acceleration resultant at the node of interest i was computed as

ai = ‖Q(i)T p̂‖

where Q(i) is an observation matrix that extracts the acceleration components at Node i and p̂ is a
vector of input pressures. Figure 3.2-2 shows displacement fields corresponding to two
representative points in the V − γ space.

(a) γ = 1, V = 2. (b) γ = 4, V = 1.

Figure 3.2-2. Representative deformation for cone structure under dif-
ferent parameters.

We initialized the training set using 25 initial points and the background set had 5000 samples.
We also used 5000 test samples to monitor convergence. Figure 3.2-3 shows the decision
boundary and the error versus iterations corresponding to a threshold ath = 0.15. Notice that the
decision boundary was accurately estimated. The total number of model (simulation) evaluations
for this example was 255 and the error tolerance (10−10) was satisfied after 114 iterations.

We solved the same problem, but now using a threshold ath = 0.17. The latter resulted in three
disconnected regions as shown in Figure 3.2-4. In this more challenging case, we were also able
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(a) Decision boundary (b) Error versus iterations.

Figure 3.2-3. Results from Cone Model Example. Samples shown be-
long to the training set. Threshold used: ath = 0.15. The dashed line
corresponds to the estimated boundary, while the solid line is the true
boundary.

to identify the decision boundary accurately. A total of 261 model evaluations were performed in
117 iterations. The algorithm stopped when the error tolerance was satisfied.

(a) Decision boundary (b) Error versus iterations.

Figure 3.2-4. Results from Cone Model Example. Samples shown be-
long to the training set. Threshold used: ath = 0.17. The dashed line
corresponds to the estimated boundary, while the solid line is the true
boundary.

3.3. PROPAGATING THERMAL RUNAWAY BETWEEN LI-ION
BATTERIES

When designing assemblies of Li-ion batteries, the thermal properties of the system can be
manipulated to improve system safety in a thermal runaway event. Figure 3.3-1 depicts the a
simplified scenario where the trigger cell is at an elevated temperature due to thermal runaway,
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and the adjacent cells are beginning to heat up. Typically, Li-ion batteries will enter thermal
runaway between 150oC and 200oC. In this scenario, heating of the adjacent “target” cells can be
slowed down by increasing external convection, increasing thermal contact resistance, or the
addition of inert materials between the cells (such as a plastic case).

Figure 3.3-1. Temperature at some time after thermal runaway in center
(tan) cell. Heat flows through the spacers (blue) to the adjacent cells
(gray).

For this demonstration, the system is treated as symmetric along the center of the trigger cell, and
the simulations domain includes half of the trigger cell, an inert plastic spacer, and the target cell.
The system is modeled in the open-source thermal runaway software LIM1TR [14]. The
simulation is initiated with the trigger cell at 650oC and the rest of the system at 25oC. If the
target cell exceeds 200oC, it fails, otherwise thermal runaway is assumed to have been mitigated.
The algorithm maps out this decision boundary in the space of three key heat transfer parameters
that could be manipulated by a system designer: external heat transfer coefficient, thermal contact
resistance, and the heat capacity of the inert material.

The decision boundary and error versus iterations are shown in Figure 3.3-2. We expect there to
be a single boundary, and the algorithm efficiently captures it in 195 evaluations with a
background sample size of 500,000. In Figure 3.3-2a, red dots are cases where thermal runaway
propagated to the target cell, and blue dots represent cases where thermal runaway was
mitigated.
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(a) Decision boundary
(b) Error versus iterations.

Figure 3.3-2. Results from the battery thermal runaway example. The
surface between propagation and mitigation is shown in green, where
red and blue dots are model evaluations (a).
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4. CONCLUDING REMARKS AND FUTURE
DIRECTIONS

We presented an approach that allows for the construction of decision boundaries that is amenable
to large scale compute simulations. We used support vector machines to adaptively construct a
decision boundary, while resorting to a limited number of expensive simulations. We
demonstrated the performance of the main algorithm through three examples from the areas of
structural mechanics and heat transport. In all cases, we were able to identify with high accuracy
the decision boundaries with a limited number of function evaluations (at most 120). We expect
that this type of technology will pave the way towards the integration of simulation and testing in
the decision making process across many disciplines.

The approach presented herein is largely based on the work reported in [1] and [2]. Although we
obtained satisfactory results in our preliminary investigations, we foresee that improvements will
be needed to deploy this problems to realistic applications. For instance, although the adaptive
algorithm can decrease the demand for costly simulations, the number of function evaluations
need may still be excessive for problems such as those involving turbulent flows and fluid
structure interaction where one simulation can take in the order of weeks. To this end, we foresee
a strong need for the integration of reduced order modeling in the process of constructing the
decision boundary. This would be a fertile research direction.

Another area of improvement would be the formal treatment of uncertainty in the decision
boundary construction. Uncertainty is always present in the form of, for instance, model and
measurement errors. The latter would render the class labels in the training set as random. That is,
the acceptance and rejection sets would become fuzzy.
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