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Abstract

Oxide-metal-based hybrid materials have gained great research interest in recent
years owing to their potential towards multifunctionality, property coupling, and
tunability. Specifically, oxide-metal hybrid materials in a vertically aligned
nanocomposite (VAN) form could produce pronounced anisotropic physical properties,
e.g., hyperbolic optical properties. Herein, self-assembled HfO,-Au nanocomposites
with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded
in a HfO, matrix were fabricated using a one-step self-assembly process. The film
crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin
TiN-Au buffer layer during the growth. The HfO,-Au hybrid VAN films show an
obvious plasmonic resonance at 480 nm, which is much lower than the typical
plasmonic resonance wavelength of Au nanostructures, and is attributed to the well
aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging
from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO,, this nanoscale
hybrid plasmonic metamaterial present strong potentials for future integrated optical
and electronic switching device designs.

Key words: Oxide-metal VAN, metamaterials, PLD, anisotropic, plasmonic
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Introduction

Metamaterials are artificial materials that display extraordinary optical, electrical,
and mechanical properties that are difficult to achieve in natural materials.!> >3-4 The
metamaterials’ unique properties make them valuable for applications in various fields,
including chemical catalysis> 6, optics’, and sensors®. Recently significant work has
been focused on enabling multifunctionality and tunability of these metamaterials.® 1°
One class of metamaterials is highly anisotropic materials which present hyperbolic
optical properties.!! In these metamaterials, the signs of the permittivity (€) are opposite
along in-plane (IP) and out-of-plane (OP) directions, leading to some extraordinary
optical responses that have great potential in various fields such as physical research'?,
subwavelength resolution imaging, photocatalysis, superlens, cloaking.!3 1415 16

Various methods have been demonstrated for the fabrication of anisotropic
metamaterials, including e-beam lithography'’, membrane projection lithography!®,
chemical method!®- 20, electrodeposition?!, chemical vapor deposition (CVD)??, and
physical vapor deposition (PVD)?. Recently, pulsed laser deposition (PLD) has shown
its unique advantages in fabricating complex two-phase or three-phase nanocomposite
thin films?* 25 26, especially for the growth of oxide-metal vertically aligned
nanocomposites (VAN)”> 27. VAN thin films typically consist of one phase as
nanopillars embedded in the matrix phase, and show intriguing optical®®, magnetic?,
ferroelectric, and multiferroic properties’?, taking advantageous of their unique vertical
interface coupling. The VAN hybrid structures can generate strong anisotropy

compared to pure phase thin films, which makes them strong candidates for hybrid



Nanoscale

hyperbolic metamaterials. Several oxide-metal VAN systems with interesting optical
properties have been successfully integrated, such as tunable localized surface plasmon
resonance (LSPR) peak in the visible and near-infrared regimes in BaTiO3-Au VANs3!,
hyperbolic property for near-field electromagnetic wave manipulation in
Lay ¢7S1933Mn0O3-Au VANSs’, and highly anisotropic and hyperbolic optical response in
ZnO-Cu VAN systems*?. Most of the Au nanostructures reported in VAN hybrid
systems are Au nanopillars with the diameter ranging from 5 nm to 25 nm and
plasmonic resonance response ranging from 550 nm to 600 nm. 333435 The nanopillars
grow epitaxially with morphology tunability achieved by tuning laser frequency,
oxygen partial pressure’®, metal composition’, film growth thickness?, and alloying
with other metals37- 3839,

In this work, we demonstrate the growth of self-assembled HfO,-Au VAN hybrid
metamaterials fabricated using PLD. HfO, is selected as the dielectric matrix material
considering its high refractive index for its broad applications as anti-reflection coatings,
bandpass filters, beam splitters, and high reflectivity mirrors*® 4> 42 and its high-k
dielectric nature for broad applications in semiconductor industry. On the other hand,
Au is a plasmonic material and presents broad applications in optics. Additionally, Au
is a noble metal and an ideal candidate for integration in a HfO,-based oxide-metal
hybrid system. SrTiO; (a=3.905 A) substrate was used for the nanocomposite
deposition. HfO, has multiple polymorphs including cubic, monoclinic, tetragonal and
orthorhombic structures, with lattice parameters ranging from 3.26 nm to 6.39 nm, and

all dielectric materials. As shown in Fig. 1, besides the direct growth of HfO,-Au VAN,
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we also implemented a seed layer of TiN-Au (TiN, a=4.249 A) for facilitating the
nucleation and growth of the Au nanopillars, and to reduce the strain between thin films
and the substrate. We compared the crystallinity and optical properties of the composite
film with and without the seed layer for exploring the seed layer growth effects in this

system.

Experimental details

Thin film growth

The self-assembled thin films were deposited under vacuum using pulsed laser
deposition (with a KrF excimer laser, A=248 nm). The buffered HfO,-Au thin film was
fabricated with a two-step growth using a TiN-Au buffer layer as a template. Firstly,
TiN-Au layer was directly deposited on the single crystal STO (001) substrate with a
TiN target. Then the HfO,-Au layer was deposited on the top of the TiN-Au buffer layer
with a HfN/Au target. As for the unbuffered HfO,-Au thin film, the HfO,-Au layer was
directly deposited on the single crystal STO (001) substrate under the same condition.
All the films were deposited under vacuum at the temperature of 600 C.
Structure and optical characterization

The microstructure of the films was characterized using X-ray diffraction (XRD,
PANalytical Empyrean), Transmission Electron Microscopy (TEM), and Scanning
Transmission Electron Microscopy (STEM) (FEI TALOS 200X operated at 200 kV,
and FEI Titan™ G2 80-200 STEM with a Cs probe corrector and ChemiSTEM™

technology, operated at 200 kV), and STEM electron-dispersive X-ray spectroscopy
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(EDS). STEM images were taken with a high-angle annular dark-field (HAADF)
detector with a collection range of 60-160 mrad. The dielectric permittivity of the films
was measured using a spectroscopic ellipsometer (JA Woollam RC2). The obtained
data was modeled as in-plane (&) and out-of-plane (g1) components using the general
oscillator models to make them Kramers—Kronig consistent. The transmittance of the
films was measured using Lambda 1050 with 3D detector (normal beam test) and total

absolute measurement system (TAMS) detector (different incident angle test).

Results and discussion

2.1 Structural analysis of the HfO,-Au films by XRD

The crystallinity of the thin films was characterized using 6-20 XRD scans first.
Fig. 1 show the 6-20 XRD scans of the composite films with and without TiN-Au buffer
layer. For the composite film with a TiN-Au buffer layer, a peak of 34.04°  is visible,
indexed as the monoclinic HfO, (002), indicating a preferred (001) orientation of HfO,.
According to the PDF #43-1017 for the HfO,, the peak at 20 = 34.04° corresponds to
a d-spacing of 5.263 A, which is slightly larger than the d-spacing of 5.216 A of the
bulk counterpart (or standard 260 = 34.357° ). This result suggests a tensile strain in the
out-of-plane direction for HfO,, which is caused by the lattice mismatch between the
film and the substrate, as well as the strain between pillars and matrix. Clearly visible
are TiN (200) at 42.86° , Au (200) at 44.42° and Au (220) at 64.97° . In comparison,
only STO (100) peaks could be clearly identified from the sample without the buffer

layer, indicating poor crystal quality (i.e., much smaller grain size) and polycrystalline

Page 6 of 23



Page 7 of 23

Nanoscale

nature of the composite film. Since the XRD tool was set for epitaxial peak
identification, the peaks from films with poor crystal quality can be very weak. It is
noted that the film diffractions can be observed under TEM diffraction mode and will
be discussed later. This poor crystal quality is likely due to the large lattice mismatch
between HfO, and STO. In short, the XRD results demonstrate that the crystallinity of
the HfO,-Au thin film is improved by applying the TiN-Au buffer layer.

It is noted that the presence of HfO, peak indicates the oxidation of HfN during the
PLD process. (As shown in Fig. S1, the target used for deposition is a pure HfN target).
To better understand the oxidation process during the deposition, a pure HfN sample
was fabricated with the same HfN target under the same growth condition. As shown
in Fig. S2, the pure HfN film can be obtained with HfN target only, while the HIN-Au
co-growth led to the formation of HfO,-Au film. It is believed that Au could assist the
conversion of HfN to HfO, during the PLD growth despite the high base vacuum of

107 Torr achieved prior to the deposition.

2.2 Morphology of the HfO,-Au VANs by TEM/STEM

TEM and STEM coupled with EDS analysis was conducted to further characterize
the microstructure of the thin films. The cross-sectional HAADF STEM image of HfO,-
Au film on STO without buffer is shown in Fig. 3a along with the schematic diagram
in Fig. 3b. The total film thickness is around 60 nm. Both Au pillars and Au particles
are randomly distributed inside the HfO, matrix, with short and discontinued pillars.

The selected area electron diffraction (SAED) pattern in Fig. 3f indicates that the HfO,
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matrix is polycrystalline with several growth orientations. In comparison, the
morphology and growth quality of HfO,-Au film was significantly improved after
including the TiN-Au buffer layer (Fig. 3d). The VAN structure also became more
ordered which is similar to the schematic drawing in Fig. 3c. Specifically, the ultra-thin
Au pillars are well aligned and embedded in the HfO, matrix and grew straight
throughout the entire film. The SAED pattern, along [100] sto zone axis shown in Fig.
3g, confirms the nearly epitaxial growth quality of HfO, and Au with the underlying
substrate as evidenced by the distinguished diffraction dots from different phases. This
is consistent with the result of XRD. The EDS mapping in Fig. 3h clearly shows the
distribution of Au pillars, which are uniformly embedded in both the HfO, matrix and
the TiN buffer layer.

To further understand the interfacial structure of the film, high-resolution STEM
was performed on the buffered HfO,-Au film. As shown in the HAADF STEM image
in Fig. 4a, the Au pillars and HfO, matrix can be clearly distinguished with very
different contrast considering the contrast is proportional to Z!7, i.e., brighter contrast
of Au vs. lower contrast in HfO,, The diameter of the pillars is around 3 nm. The local
high-resolution STEM image confirms that the lattice structure of the HfO, matrix is
monoclinic, which agrees with the XRD results. It is worth noting that Au pillars in
HfO, grow directly over the pillars in the TiN buffer layer, as shown in Fig. 4b. This
reveals that the TiN-Au buffer layer acts as a seeding layer which improves the ordering
of Au pillars.

To investigate the orientation relationship between the Au pillars and the HfO,
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matrix, the plan-view TEM/STEM analysis was conducted. From the high-resolution
STEM image shown in Fig. 4c, the out-of-plane growth orientation of Au is either [110]
or [100], and the HfO, matrix is in [001], which matches with the XRD results. In the
HfO, matrix, there are obvious domain structures exist, corresponding to 90°  rotation
about its [001] axis. Such rotated domain structure could help compensate the overall
strain resulted from the asymmetric monoclinic structure. This also explains the high-
quality epitaxial growth of the monoclinic HfO, around the cubic Au nanopillars.
Further EDS mapping and line-scan analysis shown in Fig. 4d and Fig. 4e, further
confirm very thin diameter of the Au pillars, ~ 3 nm, which is smaller than previously
reported Au pillars in VAN structure.> 2743

The laser frequency was found to play an important role in the film growth, and it
can influence both pillar shape and dimension. The optimized sample shown in Fig. 3
was fabricated under the laser frequency of 2 Hz. As a comparison, a 10 Hz sample was
also fabricated under the same condition, and the STEM cross-section image was shown
in Fig. S3. It can be observed that some of the Au pillars can no longer grow
continuously, and the pillar diameter is around 5 nm, which is much larger than that of
the 2 Hz sample. This is due to the very limited diffusion time in between the pulses at
10 Hz. Therefore, suitable frequency can be key to achieve straight, continuous, ultra-
fine Au pillars.

To investigate the difference between directly deposited HfO, films (fabricated by
HfO, target) and the films formed by oxidation, a reference sample was fabricated with

a HfO, target under the same deposition conditions as the deposition using the HfN
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target. As shown in Fig. S4(a)(b), Au pillars in the directly deposited HfO, film were
obviously tilted. This is likely due to the monoclinic structure of the HfO, matrix. The
HfN, on the contrast, has a cubic structure, therefore the Au pillars can grow straight in
the initial stage in the film growth by HfN target, and the further oxidation process
convert HfN to HfO, during the remaining deposition. The high-resolution TEM image
shown in Fig. S4(c) reveals that the Au pillars grows inside the monoclinic HfO, matrix
by the interface steps, leading to the tilted Au pillars.

To better understand the oxidation process, a comparison sample was fabricated
under room temperature. STEM images and EDS elemental mapping of this RT sample
are shown in Fig. S6. It can be observed that the Au grow as nanoparticles embedded
in HfN matrix under room temperature. Based on the EDS element mapping, only the
very top surface portion (5 nm) of the HfN film was oxidized, and a clear contrast edge
can be distinguished at the top of the HfN film in the HAADF image. This suggests that
the oxidation likely happened during the cooling process after the deposition.

Since Au is embedded in the HfN matrix in the HfN-Au film, there are a lot of
phase boundaries between Au and HfN, and these vertical phase boundaries can act as
an oxygen diffusion path. Previous research reveals that oxygen can diffuse faster
through the grain boundaries and phase boundaries.*** In pure HfN film, the amount
of grain / phase boundaries is much less than that in the HfN-Au film. Therefore, the
existence of Au nanopillars and the vertical phase boundaries could assist the oxidation
process of the HfN film.

2.3 Optical Properties of the HfO,-Au VANs

10
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To investigate the optical properties of the HfO,-Au films, ellipsometry
measurement was performed. The dielectric constants were fitted and presented in Fig.
5a and Fig. 5b. Due to the anisotropic structure of the film, the obtained data was
modeled as in-plane (e') and out-of-plane (') components using the general oscillator
models to make them Kramers—Kronig consistent. A hyperbolic region between 1050
nm and 1800 nm could be observed in the buffered HfO,-Au thin film, where the out-
of-plane permittivity is negative while the in-plane permittivity is positive. The film
without buffer layer shows no obvious hyperbolic region, which could be due to the
random distribution of the Au pillars and particles inside the film. The anisotropic
optical property makes this buffered HfO,-Au film as an ideal hyperbolic metamaterial
for different optical applications.!?

In addition, the transmittance measurement was also conducted for both thin films.
As shown in Fig. 5c, clear absorption valleys could be observed for both thin films. In
the buffered HfO,-Au thin film, only a strong adsorption peak can be distinguished at
480 nm, which results from the plasmon resonance of Au pillars. Simulated electric
field maps under 480 nm incident beam by COMSOL simulation were shown in Fig.
S8, which agrees well with the plasmonic resonance of Au pillars. The plasmonic
resonance wavelength is much smaller than previously reported data, which is from 550
nm to 600 nm (marked as a yellow region in Fig. 5¢).33 3% 35 This could be due to the
low diameter of ultra-thin Au pillars, since the plasmonic absorption peak can have a

redshift as the size increases.?3 The unbuffered HfO,-Au thin film shows two plasmonic

11
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peaks at 480 nm and 540 nm, which could result from Au pillars and Au particles
respectively. The plasmonic property could be applied in future sensor device designs.

To explore the changes of transmittance as a function of the incident angle, we
have conducted angular dependent transmittance test on the buffered sample by the
Lambda UV-vis system with a TAMS detector, since the Au nanowires could exhibit
two plasmon resonances with different electrical field direction.*® As shown in Fig. S7,
the plasmon resonance peak is still around 490 nm, but more contribution from the
higher wavelength region can be observed which may result from the different
dimensions of Au pillars viewed from different angles. It is also noted that the plasmon
resonance can be influenced by several factors, such as the matrix materials and
interaction between Au pillars.*’ Therefore, the results of the Au pillars in HfO, could
be different from the results of individual Au nanowires.

Overall, this study presents a new approach to manufacture HfO, based VAN thin
films with very fine and highly aligned thin Au nanopillars. By adding suitable buffer
layer, the crystallinity of the films and the nanopillar ordering were obviously improved,
which indicates the importance of strain effect during the PLD growth. The as-
deposited HfO,-Au thin film shows strong anisotropic optical properties, which make
it as ideal as a hybrid metamaterial. However, the oxidation mechanism of HfN under
HfN-Au deposition is still under investigation. HfN, deposited by itself, results in pure
HfN films while the HfN-Au composite target deposition will result in the HfO,-Au
films. The incorporation of Au is believed to facilitate the overall oxidation process of
HfN during the growth. Further research is undergoing to explore the fundamental

12

Page 12 of 23



Page 13 of 23

Nanoscale

mechanisms for the HfN oxidation process facilitated by the presence of Au. It is
interesting to note that TiN-Au and TaN-Au VAN systems under the same growth
conditions did not result in obvious oxidation issues during the composite growth, in
comparison.?® 28 48, 49 Further work could focus on tuning the growth parameters for
limiting oxidation process of HfN. For example, higher deposition rate and high flux of
the adatoms could limit the diffusion and oxidation process as the primary nitride
oxidation mechanisms have been reported based on diffusion and surface reaction.>% !
On the other hand, HfO, is also a good candidate for memristor devices, and such HfO,
-Au VAN coupled in memristor designs for novel filamentary switching properties.
This unique nanocomposite system could also find applications in optics, such as
hyperbolic property in quantum nanophotonic application,> gain-assisted hyperlenses
and tunable nonlinear imaging devices, as well as the plasmonic property in sensing

device design.!

Conclusion

In summary, self-assembled HfO,-Au nanocomposite thin films with ultra-thin Au
nanopillars of 3nm has been successfully deposited on STO substrates by using a HfN
target through a direct conversion process during deposition. During the PLD process,
HfN was naturally oxidized to be HfO, during the co-growth of HfN-Au. The
crystallinity of the film and the ordering of the Au nanopillars are improved by adding
a TiN-Au buffer layer. The plasmonic resonance of the HfO,-Au VAN grown on TiN-
Au buffer occurs at the wavelength around 480 nm due to the ultra-fine Au pillars.

13
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Hyperbolic transition region of the TiN-Au buffered film ranges from 1050 nm to 1800
nm. This work paves a new way to fabricate HfO,-metal hybrid nanocomposites with

strong anisotropic structure and optical properties for future optics and electronics.
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Fig. 1 Schematic of experiments design: (a) Schematic of HfO,-Au VAN structure
designed, and (b, ¢, d, e)e) schematics showing crystallinity and orientations of the
films deposited with and without TiN-Au buffer.
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Fig. 2 XRD 6-20 pattern of HfO,-Au thin films grown on SrTiO; (STO) (001) with or
without TiN-Au buffer layer.

b  Without buffer c With buffer

aE: - : ; ¢ y . .
Flg 3 Cross-section of HfO,-Au thin film on STO with and without TiN-Au buffer.
(b,c) Schematic of the structures with and without TiN-Au buffer, (a,d) HAADF-
STEM images of two films, (f,g) corresponding diffraction patterns, and (e,h) EDS

element maps.
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& 8
Distance (m)

Fig. 4 STEM cross-section and plan-view observation of HfO,-Au thin film on STO
with the TiN-Au buffer. (a) cross-section image at top surface, (b) cross-section image
at the interface between TiN buffer layer and HfO, film, (¢) plan-view image of the
film tilted to HfO, [001] projection, (d) EDS element maps of the film in the plan view
(Hf-red, Au-green), and (e) EDS element maps along with the EDS line profiles across
two Au columns. The yellow dash-line in (c) indicates a domain boundary position.
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(b) with buffer. (c)The transmittance of HfO,-Au on STO (001) with and without TiN-
Au buffer.
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