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What is shockless/ramp compression?

Continuous propagating stress wave that satisfies the Cauchy equations

dp  du
p?  poCy

Conservation of mass

C,du  Conservation of momentum

Limit of an infinite amount of tiny shocks
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Why is ramp compression of interest?

The B1-B2 transformation in MgO can be
studied using ramp compression

= Compression path is close to the isentrope

= Better constraint of the room temperature isotherm Liquid MgO
= Can probe extreme pressures without melting b
pting (tneary) , oy Metaliization at
o ; " 2100 GPa ?
% Thaory -
= Since the wave is continuous, you get the /
entire loading path from a single experiment
= Can often “see” physics in the wave profile Y
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Ramp compression requires precise control of the
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The basic concept for a ramp experiment is easy

Measure the velocities at multiple sample thicknesses, calculate the wavespeed and integrate...

>

Stress

VISAR

c _ Ax
or PDV 1) =+

Particle Velocity

>
Time Density

But this assumes the velocities are in-situ. In reality we always make the measurements at an interface.
Let's ignore this for now...
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The unique current pulseshaping capabilities at Z and
Thor make them well suited to ramp compression

You've already seen how the magnetic pressure can be used to launch flyer plates. Here, we design the
geometry and current pulse to produce a shockless compression.

Co-axial Stripline

7 - = anode - = cathode




Typical specs for a Z ramp compression experiment

= CuorAlpanels
= Usually Cu as material models are believed to be better

4 locations available for samples or ‘drives’
= Samples are typically 8mm squares, ~1Tmm thick

Peak pressures ~5MBar

Currentrise times: 500 - 1200 ns

Magnetic Field
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Typical specs for a Thor ramp compression experiment

= CuorAl panels
= Al used more often since itis more efficient

= 1 |location available for samples or ‘drives’
= Samples are typically 6-10mm disks, ~Tmm thick

= Peak pressures: ~20 Gpa

= Currentrise times: ~250 - 500 ns




Z can also be used for shock-ramp experiments to
explore elevated temperature isentropes
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Z can also be used for shock-ramp experiments to
explore elevated temperature isotherms

Ramp Configuration Shock-Ramp Configuration
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Three practical examples are next
 Platinum ramp on Z

 Tinramps on Z and Thor

 Shock-ramp of cerium

Any Questions So Far?




A significant amount of Pt data has been collected
on Z to 5.5 MBar: 11 profiles over 7 experiments
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Precision of Z was combined with the higher pressures
at NiF to produce Pt and Au standards to 800 GPa
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Recent data on Tin to explore phase-
transformation kinetics and strength
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Shock-Ramp Compression of cerium on Z to
explore shock melting and ramp solidification

Seagle et al., PRB, 102, 054102 (2020)
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Shock-Ramp Compression of cerium on Z

Data is consistent with DFT-MD and

Seagle et al., PRB, 102, 054102 (2020)

suggests solidification of Ce is observed
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ZFS-centric applications

Hirel et al, 2012
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» H, and He major components of ] upiter and
Satum

» Studying EOS of H,-He mixtures imperative
for successful modeling of gas giant planets

= Shock ramp allows us to reach the proposed

de-mixing region, probe along the planetary
isentropes
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= Shock ramp provides access to conditions
found inside planets = insights to planetary
formation and evolution
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= Allows us to investigate dominant constitutes
of Earth's core, such as Fe, MgO, MgSiOs,
or (MgFe)O (see Hannah Bausch’s talk on
08/10, Materials Science breakout session)
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Questions?
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