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Glass-ceramic 1o ivietal oeals

| (GETMS)

* Variety of industrial applications for glass-ceramics

> Hermetic glass-ceramic to metal seals (GCTMS)
> Subject to complex thermomechanical histories
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.| Glass-Ceramics — Microstructure

» Glass-ceramics are produced by inducing a ceramic
phase(s) in an inorganic base glass

» Advantageous features arise from microstructure
> Up to 5 constituents
> Inelasticity from residual glass and silica polymorphs

GCtSS NL16 Profiles
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.1 Objective

*Need to be able to simulate sealing process
> Predict residual stress states ‘
> Optimize thermal profile during sealing

* Need appropriate constitutive model for glass- -

ceramic
> No existing specialized glass-ceramic constitutive models
o Existing efforts adapt other model forms (e.g. non-linear viscoelastic)
> Neglect complexity and details of current combination of mechanisms

* The objective of the current work is to develop a glass :

-ceramic constitutive model
> Theory coupling viscoelastic and phase-transformation response ‘
> Robust 3D numerical implementation
> Use model to simulate sealing process



;1 Glass-Ceramic Model

» Seek macroscale representation of glass-ceramics via use of
internal state variable/continuum thermodynamics theory
> Thermoviscoelastic theory for response of glass
o Utilize shape memory alloy (SMA) theory as basis (Lagoudas model) for

phase transformations |
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.| Constitutive Behavior

» Coleman-Noll and 2" Law arguments produce:
> All constituents/phases assumed isotropic
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* Transformation functions
o Utilize Jo — I7 model

- Combines parts of Qidwai & Lagoudas (IJP, 2000) and Lagoudas et al.
(IJP, 2012)
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Viscoelasticity

- Hereditary integral based formulation

> Creep — not relaxation — spectra needed for use of Gibbs free
energy

> Shift-factor relates mate/qahsand laboratory” time
t —

0 a(s)

* Investigate impact of two shift factors
> WLF — equilibrated shift factor

_Gl (T - Tref)
02 + (T - Tref)’

logypa =

- WLF-Lag
> Incorporate some history dependence
> Sealing problem exhibits large temperature ranges of interest (RT << T)

e (T—Tref Jra =g, — s 0))8—Tds)
Co + (T = Tt — fy (1= ju (¢ — ,0)) ZLdis)

1Og10 aWLF_Lag _




Numerical Implementation
3D numerical implementation formulated and implemented

Strain, € (-)

- Sierra/SolidMechanics FE code constitutive library (LAME)
> Fully implicit integration

> Line-search augmented Newton-Raphson

> Verified through a variety of loadings
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Temﬁeréture: T (K)

| Validation

» Consider response through “no”-load thermal sweeps

o “Ladder’/ratcheting tests

> Dilatometer (courtesy S. Dai, SNL)

o Stress free thermal sweeps
o Measures axial strain
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* Working on extending validation against other

experiments




«| Example Problem — Simple Seal

» Simple seal used as representative example problem
o Common test for prediction and measurement of residual stress
> GC Seal enclosed in concentric metal (stainless steel) shell
> Cooled from above T, to RT

Glass-Ceramic

Jamison et al., SAND2017-10894
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Impact of Shift Factor

* Investigate simple seal with multiple shift factor
- WLF-Lag at different cooling rates

o WLF cooled at 2 K/min

> Purely volumetric flow rule/? =0, Wg =7

Hydrostatic stress

along top seal surface
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» Stress state remains compressive through loading
* Impact of both viscoelastic and transformation mechanisms

may be observed




Impact of Effective Stress

» Consider four different effective stress forms
o Pure deviatoricyl =%, 72 =0
> Pure volumetrig}, = 0, 75 = fy
> Both volumetric and dewator’ﬁ =, 73 =
> No transformatlon;yl = 0, 72 =0
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* Presence of hydrostatic strain yields lower hydrostatic
stress magnitudes




»| Impact of Flow Rule
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* Onset of transformation leads to differences in stress
evolution

- Cases with hydrostatic stress decrease stress magnitudes
and plastic strain evolution in shell

* Differences in shell versus seal dominated response




«I Conclusion and Summary

* Developed new phenomenological constitutive model
for glass-ceramic materials
> Coupled viscoelasticity and phase transformation
> 3D numerical implementation

* Results show promise for use in modeling seal
applications
> Validation against simple, existing experiments
> 3D form considered for simple seal case
> Explored impact of shift factor and flow rule
o Interesting interaction between different mechanisms

* Future work
> Expanded validation exercises
> Consideration of quartz response
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