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e Direct transmission of acoustic waves

Electromechanical crosstalk
* Guided wave propagation
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* Machined phononic crystals
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Mechanical Communication Metallic enclosure, or “barrier”

* < >x Electromagnetic

* Many engineering applications in harsh

. . waves are
environments require complete metal enclosures, R blocked
which block transmission of electromagnetic &2
waves.

* To supply power and send/receive data into such
enclosures, traditional electromagnetic

: : Elastic waves can
techniques fail. ‘,)) ¢ >/ oropagate

| || = Power and data transfer

e Solution: Transmit and receive signals carried by /
elastic waves excited by piezoelectric transducers

bonded to the barrier. Ultrasonic transducers
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Objectives

* Develop simplified models for mechanical communication channels comprising two
piezoelectric transducers and an arbitrary sequence of layers.

* Explore electromechanical crosstalk between piezoelectric communication channels
resulting from guided wave propagation in the barrier.

* Develop crosstalk reduction techniques to isolate individual power and data transmission
channels.



Simplified Model: Single Channel

* Single transducer pair becomes a two-port electrical network:
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Simplified Model: Typical Performance

Operating frequency for power transfer (resonance)
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Power transfer: Resonant operation at fixed frequency

Transmitted power (dB)

Frequency (MHz)

Data transfer: Flat bandwidth using mechanical
backing and optimized resistor/inductor
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Electromechanical Crosstalk

* The use of elastic waves to transmit energy Ctme-0s  surce ey, 2 component ()
introduces an additional source of e
crosstalk between data/power channels — _ I
guided waves propagating in the barrier
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* Crosstalk can be generated by both power | =
tile and data tile actuation. 1l
-0.03 , I . | | I | _'0 -800

* How can we reduce the crosstalk voltage o3 o0z ool o ool o; oo m

received by a tile?
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Crosstalk Directionality

All tiles 1mm thick PZT-4
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Placing tiles diagonally greatly reduces crosstalk
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Power Tile Isolation

* Unlike data transmission, effective power
transmission can be achieved over a very
narrow frequency range (i.e. tiles operating at
resonance). a
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<« |solation solution

* Crosstalk can be efficiently prevented by
blocking the guided waves in the barrier that
are generated at this frequency = introduce a
bandgap in the barrier at operating frequency.

* Design challenge: barrier integrity must be
maintained. e
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Grooving: Phononic Crystals and Bandgaps |

5

* Phononic crystal (PC): periodic lattice or
composite.

* Capable of exhibiting bandgaps, other wave
focusing/filtering properties.
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* Bandgap: frequency range where no waves can Meldovan. 2013
propagate.

* Challenging to design complete bandgaps for
guided waves, which are multi-modal and highly
dispersive (many wave modes at a certain
frequency).
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2D Finite Element Simulations

* Guided waves generated by power tiles are highly directional, wavefront is parallel to tile
edge =2 2D plane strain simulations capture behavior well.

Power tile (input @ 2.1 MHz) Data tile (open-circuit) — receives crosstalk
I

sym MM
| | I

Power tile (output) Data tile (short-circuit)

 Fix groove width (limitation of machining tolerance), vary depth/spacing.
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Crosstalk Reduction vs. Groove Depth and Spacing

(Double Sided, 5 Grooves) N
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Crosstalk RMS / Baseline RMS

Best design (92% reduction
in crosstalk):

4.1 mm unit cell

1.65 mm deep grooves

Design can tolerate
variation in groove depth
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Band Structure Analysis

* Dispersion describes wave propagation through
the grooved region of the barrier.

[0®

Mo p _ A
Weighting » /AIHIQJrIvIgd

* Describes polarization of wave, large p = mostly out of
plane motion

* Best-performing design shows bandgap at
operating frequency.
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Conclusions

* Using multiple mechanical communication channels on a single barrier generates
crosstalk between channels arising from guided wave propagation.

* Crosstalk can be minimized using square tiles and avoiding edge-to-edge adjacency.

* Machining periodic grooves into the barrier can significantly reduce the level of crosstalk
at a given frequency, while maintaining structural/electromagnetic integrity.
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