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Insights on the Relationship between Matrix
Geochemistry and Production: From Pores to

Fractures Insights on geochemical processes influencing production from shales at multiple
spatial scales, from nanopores through the matrix and fractures to the reservoir
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Unlock Nanopores In Shale Matrix

* Unconventional reservoir: What
makes it unconventional?

Nanopores (~1 - 100 nm) accounts

for > 90% of total porosity in shale.

Fluids confined in nanopores
behave drastically differently from
their bulk phases (Wang, 2014,
Chem. Geol.).

* Objectives:
* Understand fluid (CH,-CO,-H,0)

behaviors in shale nanopores;
Explore possible engineering
approaches to unlocking these
nanopores to improve the
sustainability of a wellbore
production.
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Methane sorption and release within kerogen
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Key messages:

Two stages of methane release: As the pressure
draws down, fast advective release of compressed
free gas followed by slow diffusion of adsorbed
gas.

Fracturing controls the total stimulated volume,
while the decline rate is an intrinsic property of a
shale formation (i.e., independent of fracture
patterns).

Pressure management, periodic shut in, etc.




Displacement of CH, by CO, in kerogen nanopores

Pure gas adsorption 1:1 binary gas adsorption
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Key messages:
* Supercritical CO, as a chemical agent for enhanced oil/gas recovery
* Simultaneous shale gas extraction and carbon sequestration



Kerogen reaction with supercritical CO, |

Observations:

* After reaction, C and H decrease and O increases.

*  Pyrolysable carbon and residual carbon both decrease, presence of significant amount of inorganic carbon.
Implication: Chemical reaction with supercritical CO, as an alternative maturation process?

Original kerogen Reacted kerogen Reacted kerogen

Experiment: Immature kerogen

reacted with supercritical CO,

) / b0 oo saturated brine (IM) at 90 °C
S ' and 2800 psi for 30 days

unreacted kerogen concentrate \

Carbon Hydrogen Nitrogen Oxygen  Sulfur Ash C/H Cc/O C/N
% wiw % wiw % wiw % wiw % wiw % wiw atom atom atom
original kerogen 73.91 7.59 2.67 8.40 2.73 3.0 0.81 0.73 32.3
reacted residual kerogen 62.68 4.54 1.64 12.36 1.49 24.10 1.15 0.42 44.6
I
R A e e
mgHC/g mgHC/g mgCO,/g °C % wt % wt %wt mgHC/gTOC mgCO,/gTOC % wt
original kerogen 5.63 412.11 6.47 431 35.24 37.97 73.21 563 9 0.93
reacted residual kerogen 1.91 181.38 13.54 424 16.23 33.90 50.13 362 27 11.89
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Open up nanopores in kerogen through chemical-mechanical coupling
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Key messages:

Gas sorption and desorption is a strongly
coupled chemical-mechanical process.
Supercritical CO, may help open up
nanopores in kerogen.

Swelling is controlled by the surface layer of gas adsorbed.



Open up nanopores in kerogen (cont.)
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Key messages:

atm CO, and then measure pore size easy to open up nanopores through
changes. chemical-mechanical coupling.

* |Implications to reservoir engineering,
especially, for organic carbon-rich
plays = use of CO, to prevent pore
collapse?



Understanding water blockage: Wettability of kerogen
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Key messages:

* Supercritical CO, may change kerogen pore
surfaces from hydrophilic to hydrophobic
transition.

* It may reduce water blockage in shale matrix.

High pressure




Understanding water imbibition/loss/blockage and well
cleanup: Advective water flow in clay interlayers

MD simulations

Experiments
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Key messages:

* Itis extremely difficult to push water through
nanopores by an externally hydraulic pressure.

* Fast advective water flow can be induced by a
chemical potential gradient (capillary
pressure).

e  Water imbibition during hydrofracturing

Wellbore stability
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650 Well treatment (removal of water skin, e.g.,

using dry supercritical CO,.

Dehydration of <2 um bentonite measured with
thermo-gravimetric (TGA) analysis.



Production rate

Concluding Remarks

Nanopore confinement plays a critical role in gas
disposition and release in unconventional reservoirs.
Our work reveals complex interactions of CH,-CO,-
H,O 1n shale nanopores.

Mechanistic understanding of these interactions will
help explore possible ways to unlock shale
nanopores.

Such understanding is critical to design an effective
stimulation, EOR and carbon management strategy
for shale oil/gas extraction.

Improvement of production decline curve
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Addressed by this work

Workflow for
predicting
production decline
curve
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