

Survey of dynamic contact algorithms

Intern: Jonathan Hoy, University of Southern California, **Virtual at:** Los Angeles, CA

Mentor: Irina Tezaur, 08754 Department of Quantitative Modeling and Analysis

Abstract Contact is an important aspect of computational simulation of mechanical systems. State-of-the-art computational methods for simulating mechanical contact are fraught with numerical difficulties, leading to poor performance (in terms of CPU-time and accuracy) and a lack of robustness. Here, we evaluate a novel method for simulating contact based on the Schwarz alternating formulation, in which contact constraints are replaced with boundary conditions that are applied iteratively on the contact boundaries. Results on a canonical impact problem with an exact analytical solution suggest that the new Schwarz methodology is superior to established approaches including the penalty, Lagrange multiplier and augmented Lagrangian methods.

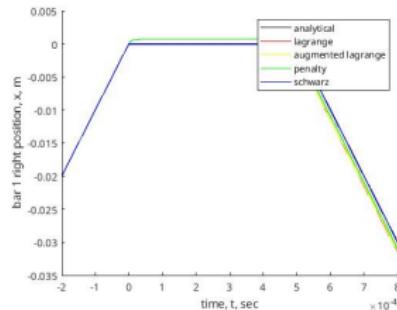
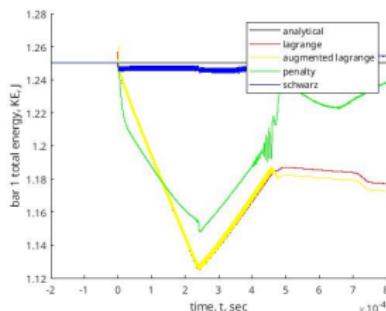
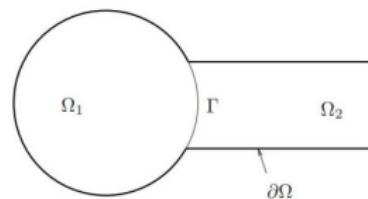
Problem Domain

Solid Mechanics

Technical Approach

Schwarz alternating method

Mission Application




Impact/fastener failure

Survey of dynamic contact algorithms: preliminary results

Intern: Jonathan Hoy, University of Southern California, **Virtual at:** Los Angeles, CA

Mentor: Irina Tezaur, 08754 Department of Quantitative Modeling and Analysis

Using the Schwarz alternating problem, the problem is treated as a coupled system where the two domains in contact Ω_1 and Ω_2 are given alternating Dirichlet and Neumann boundary conditions during each iteration until a converged result is obtained

⁰ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.