
A Data-driven Approach to Rethinking
Open Source Software Organizations as

a Team of Teams

Elaine M. Raybourn1?, Reed Milewicz1, David M. Rogers2, Benjamin H.
Sims3, Greg Watson2, Elsa Gonsiorowski4, and Jim Willenbring1

1 Sandia National Laboratories, P.O. Box 5800 MS 0639
Albuquerque, New Mexico 87185 USA

{emraybo,rmilewi,jmwille}@sandia.gov
2 Oak Ridge National Laboratory, 1 Bethel Valley Road

Oak Ridge, Tennessee 37380 USA
{rogersdm,watsongr}@ornl.gov

3 Los Alamos National Laboratory, P.O. Box 1663
Los Alamos, New Mexico 87545 USA

bsims@lanl.gov
4 Lawrence Livermore National Laboratory, 7000 East Ave.

Livermore, California 94550 USA
gonsie@llnl.gov

Abstract. This paper introduces a data-driven approach toward re-
thinking the characterization of a virtual organization as an aggregate,
team of teams. We developed a repository mining toolkit, Reposcanner,
to assist software teams in identifying opportunities for software process
improvement and connected collaborations with other teams, thus char-
acterizing efforts as team of teams. We use the example of continuous
integration (CI) testing as an indicator of software development team
productivity that signals potential best practices in which team of teams
collaboration exists. Our preliminary findings indicate that the degree
to which continuous integration testing is present can also signal the
likelihood of related best practices, and a team of teams organizational
structure.

Keywords: software productivity, repository mining, team of teams

1 Introduction

The Exascale Computing Project (ECP) is a virtual organization comprised
of 6 co-design centers, 24 computational science applications, and 71 software
technology products developed by teams from national laboratories, universi-
ties, and industry. Over 1000 researchers have contributed to an interconnected

? Contact Author

SAND2021-9378CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Rethinking Open Source Software Organizations as a Team of Teams

web of software projects since its inception in 2017. It is thus a large collection
of open-source scientific software projects, and in a sense, one example among
many of the ongoing live experiments in coordinating codes, disciplines, and in-
stitutions at scale. We define a virtual organization as one that is composed of
geographically dispersed members who mostly rely on electronic communication
technology as a principle means of executing work. For these reasons, the ECP
provides an ideal opportunity to apply tools and techniques of repository min-
ing, backed by decades of academic scholarship, to deepen our understanding
of what it takes to make scientific software teams successful. Drawing upon a
well-supported foundation of software improvement theory and practice, the au-
thors are developing a toolkit to automate the workflow of the Productivity and
Sustainability Improvement Planning (PSIP) methodology. The PSIP toolkit
includes a software repository mining framework which characterizes collabo-
ration and software development testing practices (Reposcanner), interactive
self-assessment (RateYourProject [RYP]), and progress tracking cards (PTC).
Together, these tools are designed to assist development teams in achieving soft-
ware process maturity.

In the present paper, we provide preliminary findings from ongoing efforts
by the PSIP team to model software development practices found in aggregate
within the ECP that may generalize to open source software organizations. Us-
ing Reposcanner as a tool for data-driven exploration, we examine continuous
integration practices across teams as a lens from which to describe collaborative
scientific software development at scale.

2 Data-driven Approach to Characterizing ECP as a
Team of Teams

The ECP has drawn geographically dispersed researchers to work together as
members of the virtual organization that is advancing the United States’ first
exascale software stack (see exascaleproject.org). While the ECP is organized to
integrate and interoperate the work of many teams, an examination of solely an
official organizational structure does not provide adequate insights into how soft-
ware teams work together, coordinate their actions in reality, and whether they
form a collection of independent teams or are truly interdependent. Understand-
ing the extent to which the ECP functions as a collection of aggregate teams is
the subject of the research articulated in the present paper. Our research seeks
to identify opportunities for open source software process improvement at scale.
In this research we use the public-facing GitHub repositories of the ECP as a
use case to understand whether, and to what extent, interconnectedness among
projects, code repositories, individuals, and teams impact computational science
practices, risk mitigation, and the overall culture of sustainability/productivity
across the virtual organization. We intend to apply this information to inform
the development of tools aimed at automating the software process improve-
ment method known as Productivity and Sustainability Improvement Planning
(PSIP) [1].

Rethinking Open Source Software Organizations as a Team of Teams 3

The ECP has been described as a team of teams [2]. A team of teams, as
described by McChrystal et al. [3] and Fussell and Goodyear [4], is a distributed,
coordinated organization that works toward a common goal, and is made up of
a number of smaller, close-knit, semi-independent teams. The challenge for or-
ganizations such as ECP, composed of aggregate teams, is to preserve some of
the advantages of small teams (e.g. ease of communication, interpersonal trust,
shared consciousness, and agile decision-making) and scale these advantages to
work across the larger, coordinated organization as a team of teams [2]. It is
difficult to do this in a traditional, hierarchical organization, so [3, 4] propose a
more network-oriented organizational structure that enables the team of teams
to more effectively coordinate and share information. Teams of teams interop-
erate through collaboration around an aligning narrative [4]. One coordination
mechanism [2–4] suggested is to appoint liaisons between teams: key members
of one team who embed with another team for a period of time in order to build
trust and serve as a steward of cross-team communication. Additionally, McInnes
et al. [5] and others [2] assert that the most successful ECP teams collaborate
through software ecosystems—as developers, users, and testers.

In the subsequent section we discuss early stage data analyses which appear
promising toward a description of team of teams collaboration at scale. Our
analyses suggest ECP, a virtual organization, may have some key characteristics
of a team of teams organization in which the associated software ecosystem of
projects is linked by a network of shared contributors.

2.1 Methodology

To match the scale of the ECP and keep pace with its evolution, we leveraged so-
lutions for automated, scalable data collection and analysis using software reposi-
tory mining. Software repository mining is the subdiscipline of empirical software
engineering concerned with collecting and interpreting artifacts from code devel-
opment platforms to uncover insights and actionable information about software
systems and projects. Historically speaking, most scientific software has been the
product of individuals and small teams working in isolation to create bespoke
scripts for their own research [1]. However, the cultural shift towards open, re-
producible science and open-source, collaborative community software projects
has now made it possible to rigorously study the character and evolution of
scientific software.

We conducted a systematic, rapid review of the literature on data mining
software development team repositories, which identified 742 relevant published
articles as of December 2020. Through further review, we narrowed these down
to 47 papers that were most directly relevant to our research questions, including
three key references on research design [6–8]. These references point to GitHub
as presenting a unique and insightful data source for all aspects of development,
including internal and external team behaviors. However, each also cautioned
that data obtained from these sources do not represent comprehensive activity
logs, can be revised over time, and have inherent identifiability problems.

4 Rethinking Open Source Software Organizations as a Team of Teams

2.2 Research Questions

By studying ECP development teams and their practices at scale using reposi-
tory mining and social network analysis, we were able to draw general conclu-
sions about observable behaviors and characteristics expressed in the artifacts of
code that could contribute to a snapshot of a team’s software productivity prac-
tice. It is important to note that in the context of repository mining research,
establishing and disambiguating software contributor identities is a significant
challenge [6]. Accurate determination of developer identity is a necessary step
towards connecting individuals and teams to measures of activity and impact.
However, studies of large-scale open-source software projects often must contend
with incomplete or inaccurate data that limits the ability of researchers to draw
reliable conclusions.

Therefore, we decided to defer the employment of targeted interviews and/or
surveys to the future, as we refine and evaluate our data analytics approach and
findings. We were especially interested in understanding whether ECP teams
that have public accessible GitHub repositories could be identified as leveraging
each other’s software. Therefore our initial investigations were guided by the
following research questions (in order of exploration):

RQ1: How many contributors5 participate in more than one ECP project?
RQ2: How many ECP projects have explicit code dependencies upon other

ECP projects?
RQ3: How many ECP project teams have implemented some form of tests,

code examples, and continuous integration–specifically, can we infer from their
practice of testing code that they function as a team of teams?

RQ4: Does ECP have a social network structure that would indicate it func-
tions as a team of teams – specifically, can we identify ECP members who func-
tion as liaisons6 between teams?

2.3 Datasets

We bound our initial analyses to relevant, publicly available GitHub artifacts
associated with ECP software teams, such as lists of project members, code
repositories, and metadata.

Due to overlapping software technologies among projects, some repositories
were difficult to attribute entirely to a single ECP project. Therefore, to vali-
date the repository list, we manually curated the list of project repositories, and
cross-validated the repositories with project assignments by verifying the pres-
ence of known project personnel in GitHub developer lists. This step allowed
us to base the dataset of relevant repositories on ECP project “ground truth”
and address risks to data integrity identified in [6–9]. Through this process, we
compiled a list of 296 ECP software repositories. Of those, 259 were hosted by

5 For analysis purposes, we define a contributor as a unique individual who committed
a revision to 1 or more repositories (within a project or cross-project).

6 For analysis purposes, we define a liaison as a unique individual who committed a
revision to 2 or more cross-project repositories.

Rethinking Open Source Software Organizations as a Team of Teams 5

GitHub, 16 by Bitbucket, 18 by a GitLab server, and 3 by other types of version
control. Based on this list, only 53 of 82 total ECP projects (as defined by the
official work breakdown structure as of August 2020) were represented in our list
of publicly hosted repositories. The remainder of the projects likely have private,
or other source code repositories unknown to the PSIP team. Approximately half
of the projects had four or more repositories on GitHub. Datasets of open source
software developer code commits, issues, pull requests, and comments were gen-
erated using the Reposcanner toolkit (described below) and analyzed in Python
using the Pandas and NetworkX libraries. Commit history was analyzed from
277 of the repositories above, while issues, pull requests, and comments were only
analyzed from GitHub. While this is not by any means a complete representation
of aggregate ECP teams, the dataset enabled us to test our hypotheses.

3 Reposcanner Data Mining Software Toolkit

We developed Reposcanner, a novel software repository mining toolkit, to aid in
our research to characterize team of teams collaboration and software develop-
ment testing practices. Written in Python, Reposcanner provides a highly mod-
ular, extensible framework for defining routines for mining data from software
repositories and performing analyses on that data to yield insights about team
behaviors. Reposcanner provides several attractive features not normally seen in
repository mining research codes, such as seamless support for different version
control platforms like GitHub, GitLab, and Bitbucket, smart parsing of URLs,
intelligent credential management capabilities, and a comprehensive test suite.
Reposcanner includes in-depth provenance logging, end-to-end analysis support
from raw data to graphs and tables, and a powerful data management layer with
rich metadata capabilities. The rich data that can be gleaned through reposi-
tory mining with Reposcanner spans from the very granular, like quantitative
metrics and qualitative instances of individual developer activity, to developer
networks and patterns of collaboration, and then on to ecosystem-wide studies
on software co-evolution across dependency networks. These advances enable re-
producible research and provide traceability for artifacts used in team decision
making.

Figure 1 presents the overall architecture of the Reposcanner toolkit. The
tool is built around a request-response architecture model where user inputs
are translated to a set of tasks which are consumed by data mining routines.
The resulting data is held in a communal data store which can be leveraged by
downstream analyses to derive human-readable reports that are meant to inform
team decision making about their projects. It is our intention that Reposcanner
be packaged as a toolkit to assist software teams in identifying opportunities for
software process improvement, and in summarizing the state of their practice,
as in step 1 of the PSIP methodology [1].

6 Rethinking Open Source Software Organizations as a Team of Teams

Fig. 1. An overview of the architecture of Reposcanner. Data collection operations are
represented as task objects which are consumed by mining routines (1-2). The resulting
data is held in a communal data store which can be leveraged by downstream analyses
responsible for graphs, summaries, and other artifacts (3).

4 Discussion of Findings

To address RQ1, regarding contributors to more than one project, we applied
Reposcanner to the GitHub database as of July 13, 2021. We found that 52
out of the 53 ECP projects in our dataset were connected to one another via
at least one contributor in common. Although limited to ECP projects with
public-facing source code repositories, our findings nevertheless indicate that a
significant subset of the organization is connected via interactions across project
teams.

Other conclusions drawn from querying this dataset include: (1) there were
4247 distinct contributors; (2) 617 individuals (14.5 percent of the population)
crossed project lines, meaning that they contributed to repositories belonging
to more than one ECP project; and (3) 71 individuals (1.7 percent) contributed
across 4 or more projects (See Table 1.) In other words, we found a limited
but substantial contingent of developers who work across domains and software
layers, therefore strengthening our hypothesis that these teams may function as
a team of teams. These findings are also relevant to RQ4, which is discussed
further below.

To address RQ2, we used a curated subset of an official ECP project de-
pendency database to construct a dependency graph of ECP projects. The
dependency database, which was based on code dependencies entered by the
project teams themselves, indicated that all categories of ECP software depend
on programming models, development tools, and software ecosystem infrastruc-
ture packages. Thus, by querying a database generated by Reposcanner and
curating additional lists, we were able to answer RQ1 and RQ2: namely that at
the time of this research ECP had at least 240 individuals who contributed to
one or more projects, and that all ECP projects self-reported dependencies. More

Rethinking Open Source Software Organizations as a Team of Teams 7

Table 1. Contributors to ECP projects. The left column indicates the number of
projects a person contributed to, the center column indicates how many contributed
to that number of projects, and the right column breaks this down into percentages.

of ECP projects # of contributors % of contributors

≥ 7 7 0.2
6 6 0.1
5 22 0.5
4 36 0.8
3 122 2.9
2 424 10.0
1 3630 85.5

specifically, ECP application codebases are reported as dependent on software
technology (ST) codes, tools, and libraries [9] as expected.

To address RQ3, we identified ECP teams that had adopted at least one of
several best practices in software development such as continuous integration
(which is of interest to related research [10]). Our findings relating to RQ3 on
adoption of tests, code examples, CI, and documentation practices are illustrated
by the plot in Figure 2. Here we computed the conditional probabilities of ob-
serving each practice within GitHub repositories belonging to a project team.
For the purposes of our analysis, key project personnel are the minimum num-
ber of core developers on half the project’s repositories, and core developers are
defined as the set of developers needed to account for 80% of the lines of code
added to a repository over the previous 12 months. Community contributors
are defined as non-core developers who created an issue or comment over the
previous 3 months. Meanwhile, the presence of tests, examples, tutorials, and CI
were determined based on file names; lines of documentation per lines of code
were based on file names and classifications made by the Linguist tool offered by
GitHub 7. While this approach leaves some ambiguity on how the files are used in
practices, it does allow us to compare, in a coarse-grained way, the co-occurrence
of different key practices and team structures (e.g. how many repositories with
eight or more community contributors also use continuous integration services?).

The statistics in Figure 2 are aggregated at the project level. Even though a
majority of the projects have some repository which implements these practices,
there are still some teams that have not adopted CI. Further analysis of our data
also suggests connections between software development practices (RQ3) and
social network structure (RQ4). We found that teams implementing examples,
tutorials, and CI also have high levels of community involvement, as defined by
cross-project contributions. In fact, having more developers is the best indicator
of whether tests exist. 87% of projects with tests have examples. Examples are
the best predictor of whether a project has CI (at 71%). Finally, CI is the best
indicator for whether a project has a large user community. Our analyses to

7 https://github.com/github/linguist

8 Rethinking Open Source Software Organizations as a Team of Teams

Conjoined practices
Probability(X given Y)

X

Y

Key devs >= 2

>= 8 Community Contribs

>= 8 Lines of
Documentation per 1k loc

Tests

Example / Tutorial

Continuous Integration

Key d
evs

Te
sts

Ex
am

ples
CI Co

m
m

un
ity

Doc
s

Fig. 2. Conditional probabilities of observing each practice within GitHub repositories
belonging to a project team.

gain understanding about ECP project team implementation of CI yielded a
few key observations. First, a highly interconnected ecosystem of project teams
actively makes use of pull requests and issues. Second, larger teams, code tests,
and examples are all related. Third, code examples attract collaborators, and
are associated with implementation of automated build and test systems.

Finally, to address RQ4 we used an individual and their commits (revisions or
changes to files) to GitHub project repositories as a rough indicator of whether
they are associated with a given ECP team/project. Using a dataset collected
with Reposcanner, we learned that the vast majority (86 percent) of contributors
only committed to a single ECP project. However, there also appears to be
a small but relevant number of contributors who made commits to multiple
ECP projects. We noted that approximately 14% of ECP commit contributors
have made at least one commit to more than one project, suggesting that these
contributors might be considered liaisons between teams, and allowing us to infer
that the ECP may be an example of how open source software organizations can
function as a team of teams.

Another preliminary result from analyzing team repositories, relevant to
RQ4, is that many GitHub issues in ECP repositories are associated with sig-
nificant cross-team discussions. The average number of unique GitHub users
involved in issues and discussions is 28.5 per project. This average is taken over
user activity between January 2017 and February 2021. Of those 28.5 users, 9.1
are associated with an ECP project roster or a core developer on an ECP project,

Rethinking Open Source Software Organizations as a Team of Teams 9

but only 5.5 come from within the project itself. That makes for a cross-team
discussion involving, on average, 3.6 people crossing over per project.

Finally, our findings in support of RQ4 are tentative at best. Nevertheless,
we are encouraged that we have been able to identify common contributors
among projects, suggesting that these contributors might serve as liaisons be-
tween teams, and that the ECP may indeed function as a team of teams.

5 Threats to Validity

While the majority of ECP repositories are hosted on GitHub, certain reposi-
tories are hosted outside of GitHub (Gitlab and Bitbucket), and at the time of
writing, did not offer full support for those platforms. Likewise, a minority of
repositories were private and therefore inaccessible. This means that we could not
gather information for every ECP repository, resulting in an under-estimation
of key personnel. Finally, our approach to identifying project practices is rudi-
mentary, involving only detecting the presence of filenames starting with “test”.
However, the CI checks were more robust, since CI involves a set of files with
a standard naming scheme. All of these issues are resolvable, however, and we
hope to provide a more comprehensive treatment of the ECP in future work.

6 Conclusions and Future Work

By studying ECP development teams and their practices at scale, the authors
were able to draw general conclusions about the observable behaviors and char-
acteristics that contribute to the characterization of open source software teams
as being part of a virtual team of teams organization.

Our preliminary data analyses with Reposcanner suggest that the ECP is
not only large and diverse but also notably interconnected in that its projects
are linked by a network of shared contributors, a smaller group of contributors
potentially serving as liaisons among projects with common, or shared, moti-
vations. These contributors represent individuals and teams working together
across codes, disciplines, and institutions to produce software for the exascale
ecosystem. We plan to build on this work by: (1) continuing to develop methods
for verifying and validating Reposcanner data; (2) collecting additional data on
number and frequency of code and text commits in order to identify different
categories of developers and liaisons; and (3) integrating a team of teams network
analysis with analysis of code development practices to create a comprehensive
picture of team relationships and activities signaling productivity and a cultural
propensity for incremental software process improvements.

Establishing a culture of software productivity that upgrades team practices
is necessary for a project like the ECP, whose scientific challenges demand solu-
tions that are frequently multi-scale, multi-platform, multi-physics, and multi-
disciplinary. It also reflects the more general trend in scientific software towards
open source community code development. In the future we hope to answer the
following questions: How do ECP teams work together as a team of teams? What

10 Rethinking Open Source Software Organizations as a Team of Teams

kinds of contributions do they make to each other’s projects? Are the tools and
techniques they use sufficient for this purpose? How do the connections form and
evolve over time? Are these connections indicative of a culture of productivity?

As comments and issues provide a rich dataset from which to investigate col-
laborations, our future research will continue to look more closely at these data.
Timestamps also provide insight into the evolution of these activities over time.
In the present research, source code itself was used to detect whether features
like documentation, testing, and continuous integration were implemented. We
implemented several Reposcanner routines that distilled data from these APIs
into output files stamped with provenance metadata.

Finally, previous research has established that using data even from a very
stable platform with a comprehensive API, like GitHub, poses considerable data
collection and validation challenges [9]. A key part of our research is understand-
ing these challenges and developing methods for ensuring our data collection is
reliable, a process that is ongoing. Further, arriving at a deeper understanding of
ECP culture and how to intervene to improve practices requires that we draw to-
gether data from heterogeneous quantitative and qualitative sources. We intend
to augment our research with confirmatory qualitative project characterization
in the future.

Acknowledgments. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525. Oak Ridge National Laboratory is a multiprogram
research laboratory managed by UT-Battelle, LLC, for the U.S. Department
of Energy under contract DE-AC05-00OR22725. This work was supported by
the U.S. Department of Energy Office of Science, Office of Advanced Scientific
Computing Research (ASCR), and by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

References

1. Heroux M.A. et al. (2020) Lightweight Software Process Improvement Using Pro-
ductivity and Sustainability Improvement Planning (PSIP). In: Juckeland G.,
Chandrasekaran S. (eds) Tools and Techniques for High Performance Comput-
ing. HUST 2019, SE-HER 2019, WIHPC 2019. Communications in Computer
and Information Science, vol 1190. Springer, Cham. https://doi.org/10.1007/

978-3-030-44728-1_6.

2. Raybourn, E.M., Moulton, J.D., Hungerford, A. (2019) Scaling Productivity and
Innovation on the Path to Exascale with a “Team of Teams” Approach. In: Nah
FH., Siau K. (eds) HCI in Business, Government and Organizations. Information
Systems and Analytics. HCII 2019. Lecture Notes in Computer Science, vol 11589.
Springer, Cham. https://doi.org/10.1007/978-3-030-22338-0_33.

Rethinking Open Source Software Organizations as a Team of Teams 11

3. McCrystal, S., Collins, T., Silverman, D., Fussell, C. (2015) Team of teams: New
rules of engagement for a complex world. New York, NY: Penguin Random House
LLC.

4. Fussell, C. and Goodyear, C.W. (2017) One mission: How leaders build a team of
teams. New York, NY: Penguin Random House LLC.

5. McInnes, L.C., Heroux, M.A., Draeger, E.W. et al. (2021) How community software
ecosystems can unlock the potential of exascale computing. Nat Comput Sci 1,
92–94. https://doi.org/10.1038/s43588-021-00033-y.

6. Amreen, Sadika, et al. (2020) ”ALFAA: Active Learning Fingerprint based Anti-
Aliasing for correcting developer identity errors in version control systems.” Empir-
ical Software Engineering 25, 2. 1136-1167.

7. Serebrenik, A. and Mens, T. (2015) Challenges in Software Ecosystems Research.
ECSAW ’15: Proc. 2015 Eur. Conf. on Software Architecture Workshops September
2015, no. 40 https://doi.org/10.1145/2797433.2797475.

8. Ilo, N., Grabner, J., Artner, T., Bernhart, M., Grechenig, T. (2015) Combining
software interrelationship data across heterogeneous software repositories. 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME)
https://doi.org/10.1109/ICSM.2015.7332516.

9. Kalliamvakou, E., Gousios, G., Blincoe, K. Singer, L., German D. M.,
Damian, D. (2016) An in-depth study of the promises and perils of mining
GitHub. Empirical Software Engineering 21, 2035–2071. https://doi.org/10.

1007/s10664-015-9393-5.
10. Kothe, D., Diachin, L., and McInnes, L.C. (2020) Exascale update. ser. Win-

ter ASCAC Meeting, Washington, DC, January 2020. Last retrieved on April
28, 2021 from https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/

202001/ECP_Update_0114202.

