This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in

the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Understanding the Effects of DRAM Correctable
Error Logging at Scale

Kurt B. Ferreira, Scott Levy & Victor Kuhns
Center for Computing Research
Sandia National Laboratories
{kbferre,sllevy,vgkuhns} @sandia.gov

Abstract—Fault tolerance poses a major challenge for future
large-scale systems. Current research on fault tolerance has been
principally focused on mitigating the impact of uncorrectable
errors: errors that corrupt the state of the machine and require
a restart from a known good state. However, correctable errors
occur much more frequently than uncorrectable errors and may
be even more common on future systems. Although an application
can safely continue to execute when correctable errors occur,
recovery from a correctable error requires the error to be
corrected and, in most cases, information about its occurrence to
be logged. The potential performance impact of these recovery
activities has not been extensively studied in HPC.

In this paper, we use simulation to examine the relationship
between recovery from correctable errors and application per-
formance for several important extreme-scale workloads. Our
paper contains what is, to the best of our knowledge, the
first detailed analysis of the impact of correctable errors on
application performance. Our study shows that correctable errors
can have significant impact on application performance for future
systems. We also find that although the focus on correctable
errors is focused on reducing failure rates, reducing the time
required to log individual errors may have a greater impact
on overheads at scale. Finally, this study outlines the error
frequency and durations targets to keep correctable overheads
similar to that of today’s systems. This paper provides critical
analysis and insight into the overheads of correctable errors and
provides practical advice to systems administrators and hardware
designers in an effort to fine-tune performance to application and
system characteristics.

I. INTRODUCTION

Maintaining the performance of high-performance comput-
ing (HPC) applications as failures become more and more
frequent is a major challenge that needs to be addressed for
next-generation extreme-scale systems. Recent studies have
demonstrated that hardware failures are expected to become
ever more common [1]. Increasing the scale of HPC systems
requires the aggregation of more individual components. More
components means more frequent failures. Additionally, ad-
vances in memory device design may exacerbate this trend.
Reductions in device-feature sizes and near-threshold supply
voltages may mean that next-generation DRAM devices are
less reliable than devices that are currently deployed in large-
scale HPC systems [1]. Understanding the implications of
these trends requires that we have detailed knowledge of how
DRAM errors affect current leadership-class systems.

Recent research has largely focused on uncorrectable and
fatal errors: errors that require applications to be restarted

Nathan DeBardeleben & Sean Blanchard
Ultrascale Systems Research Center
Los Alamos National Laboratory
{ndebard,seanb} @lanl.gov

from a known good state.! However, the impacts of the most
common type of memory errors in large-scale systems, cor-
rectable errors (CE), have largely been overlooked. An analysis
of failures on recent leadership-class systems shows that the
correctable error rates are 20 times higher than uncorrectable
errors [2]. Correctable errors are corrected in hardware and
are essentially invisible to the affected application, except for
the logging of the error. While applications can continue to
make progress despite the presence of correctable errors (i.e.
restarting the application is unnecessary), the time required
to correct and log these errors has the potential to impact
application performance by delaying application computation.

In this paper, we present a detailed analysis of the relation-
ship between the cost of correcting and logging memory CEs
and application performance on large-scale systems. Specifi-
cally, to better understand the potential performance impact of
CEs, we answer the following key questions:

e« What is the expected performance impact of CEs on
applications running on current and projected future
extreme-scale systems?

« How frequently can CEs occur without significantly de-
grading application performance?

« What is the application performance impact of CEs that
are isolated to a single process?

« How can system designers address CEs to utilize future
DRAM hardware while improving application perfor-
mance on next-generation systems?

We address these questions by using a validated simulation
framework to study the impact of correcting and logging
correctable errors on the performance of important HPC
workloads. Simulation enables us to perform experiments that
would be difficult or impossible on real hardware. Based on
the data and analysis presented in this paper, we make the
following contributions:

« we confirm the costs associated with the logging of

correctable errors (§I1V-A);

« we show how CEs from just one single node can signif-
icantly impact application performance (§IV-B)

Linux uses several mitigation strategies, e.g., page offlining, when the
error affects a page whose contents can be safely reconstructed or discarded.
However, even given mitigation, uncorrectable and fatal errors frequently
necessitate a node reboot and an application restart.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2021-9208C

« we demonstrate the impacts of the correction and logging
correctable errors on current systems is modest and
project how these costs may impact applications on future
exascale class systems, outlining reliability targets to keep
overheads minimal (§§IV-C,IV-D); and,

« we examine the relationship between the correctable error
rate and the time required to correct and log the errors,
showing that if per-event overheads for CEs can be kept
low, very high CE rates can occur without significant
application impacts (§IV-E).

We note that our analysis only accounts for the CPU impact
of the correctable logging overheads and not the less signifi-
cant impacts of a potential decrease in memory bandwidth and
other side effects. Therefore, our analysis represents a lower
bound on the overall possible application impacts. For appli-
cations that are sensitive to memory bandwidth, correctable
overheads may be more significant.

Overall, this paper provides critical insight into the over-
heads of correctable errors and provides practical advice to
users and systems administrators in an effort to fine-tune
performance to application and system characteristics.

II. BACKGROUND
A. CPU Memory Error Detection and Correction

Error detection and handling is critical to pinpointing failing
components and taking corrective action in a timely fashion.
Error handling is typically a cooperative activity between the
platform hardware, firmware (UEFI or BIOS), and the host
operating system. Errors are processed in software by the
OS or in firmware [3]. Firmware error processing allows the
firmware to collect detailed information about where the error
occurred that is not available in the processor. For example,
the processor provides the physical address where the error
occurred. However, it may not be possible for the processor
to use the physical address to identify the precise DRAM
device that failed. Identifying the DRAM devices enables the
firmware to take corrective action to avoid the error in the
future[4]. When firmware decoding is enabled, the processor
signals the occurrence of an error to the firmware with a
System Management Interrupt (SMI). Based on information
obtained from the processor and other hardware components,
the firmware creates a detailed description of the error and
notifies the OS of its occurrence. Alternatively, when software
processing is enabled, the processor generates a Machine
Check Exception that is handled in software by the OS. Al-
though the affected workload can continue to execute, the time
spent correcting and collecting information about correctable
errors can perturb application progress.

Memory errors are typically classified into three categories:
Correctable, Uncorrectable, and Fatal. Correctable errors (CE)
are errors that can be corrected or mitigated in hardware
such that the platform’s state is the same as it would have
been in if no error had occurred. An example of a CE is
a single bit (or single symbol in the case of chipkill) error.
Detected, uncorrectable errors (DUE) are those errors that
were detected by hardware, but could not be corrected. Multi-

bit/multi-symbol errors are an example of DUEs. The system
may continue to execute but the application may need to restart
in order to recover lost state.” Fatal errors corrupt the state of
the processor such that continued correct operation can no
longer be guaranteed. Recovering from a fatal error typically
requires the processor to be halted and the node rebooted.

B. GPU Memory Error Detection and Correction

A large chunk of the systems in the TOP500 list utilize an
accelerator like the Nvidia GPUs [7].3 The Tesla V100 GPUs,
which are used in Summit and Sierra, protect critical memory
structures (Streaming Multiprocessor (SM) register files, L1
cache, L2 cache, and main memory) with a Single-Error Cor-
recting Double-Error Detecting (SECDED) Error-Correcting
Code (ECC). Single-bit errors (SBE) are corrected by the
hardware. Applications are notified of double-bit errors (DBE)
so that they may gracefully exit and the GPU halts [8].

Limited information is available about the occurrence of
errors detected by the SECDED ECC. Counts of the num-
ber of SBEs can be obtained via the Nvidia Management
Library (NVML). We are not aware of existing empirical data
regarding the time required to handle a correctable error in
GPU memory. Moreover, because GPUs lack facilities for
error injection like those found on CPUs, cf. III-A, it is not
currently feasible to collect this data. As a result, we do not
examine the impact of correctable memory error logging on
GPUs in this paper.*

C. Operating System Noise

Delays introduced in application processes by CE-related
correction and logging activities are analogous to operating
system noise (or jitter), which may affect the performance
of large-scale applications [9], [10]. Figure 1 illustrates this
phenomenon. Figure la shows a fixed interval (¢ — t,) of
an application running on three processes (pg, p1, and ps)
in the absence of CEs. These three processes exchange two
messages, m; and my. For the purposes of this figure, we
assume that messages represent strict dependencies: any delay
in message arrival requires the recipient to stall until the
message is received. Figure 1b illustrates the potential impact
of CE correction and logging. If py encounters a CE just
before it would have otherwise sent my, then p; must wait
(the waiting period is shown in grey) until the message arrives.
If p; subsequently encounters a CE before sending ms, then
p2 must wait. Part of the time that ps spends waiting is due to
a delay that originated at py, which it does not communicate
directly with. In other words, delays incurred handling CEs

2Many techniques for avoiding restarts have been explored, see e.g., [5],
[6], but to the best of our knowledge none of these approaches have been
widely deployed.

3For several systems on the list, Intel Xeon Phi processors are identified as
accelerators. However, the Intel Xeon Phi processors that Trinity (Los Alamos
National Laboratory) and Cori (Lawrence Berkeley National Laboratory) are
not identified as accelerators).

4Given the very limited information (e.g., neither memory addresses nor
timestamps are recorded for SBEs) that is logged, we expect that the impact
of SBE logging on application performance will be much more modest than
we observe for correctable memory errors on CPUs.

Po l

p1 l

P2 l

E

to t to tn to t1+6 ta+20 tn

(a) without CE activity (b) with local CE activity delays

Fig. 1: To illustrate how delays introduced by local correctable
error (CE) activities may propagate along application com-
munication dependencies, this figure shows a fixed interval
(to—ty) of execution for three processes: p1, p2, and p3. These
processes exchange two messages, m; and ms. For illustration
purposes, the messages in this figures are assumed to create
strict dependencies (i.e., any delay in the arrival of a message
will cause the receiver to stall). The black regions marked with
a white 0 denote the execution of CE mitigation activities. The
grey regions denote periods in which the execution of a process
is stalled due to an unsatisfied communication dependency.

on one process may propagate to other processes along the
application’s communication dependencies.

III. EXPERIMENTAL APPROACH
A. APEI Error Injection

To develop a detailed understanding of the cost of recover-
ing from correctable errors, we collected empirical data using
ACPI Platform Error Interfaces (APEI) Error Injection, see
Section IV-A. APEI is part of the Advanced Configuration
and Power Interface (ACPI). ACPI is a standard that defines
how operating systems interact with the hardware components
that comprise the systems on which they run. APEI defines
an interface by which the operating system can be notified
of errors. The APEI also provides a mechanism for injecting
hardware errors: the error injection table (EINJ).

EINIJ provides a platform-independent interface that enables
the operating system to inject hardware errors without requir-
ing platform-specific software support. The primary objective
of this mechanism is to validate operating system Reliability,
Availability, and Serviceability (RAS) features. The ACPI
specification defines several error types for EINJ, including
correctable and uncorrectable errors from DRAM memory,
the processor, and the PCI interface. EINJ is not supported on
every platform; it requires support from the host processor, OS,
and firmware/BIOS. Moreover, platforms that support EINJ
may not support all possible error types. For example, our
test platform (see Section IV-A) supports only the Memory
Correctable and Memory Uncorrectable error types.

Using the EINJ table to inject errors on Linux-based systems
is accomplished by writing to virtual files in the sysfs.> Using

SAll of the relevant virtual files are in the
/sys/kernel/debug/apei/einj directory. Additional information
about Linux EINJ support, including a simple example of injecting an error,
is available in the Linux kernel documentation, see [11].

this interface, the user can specify the error type and target
memory address, and trigger the injection of the error.

B. Memory Failure Logging

DRAM on modern HPC systems is protected by ECCs.
When the memory controller detects a memory error, it
attempts to use the ECC to correct the error. If it is able to
correct the error, the error is recorded as a CE. If it is unable
to correct the error, the error is recorded as a DUE. On x86-
based processors, correctable errors are recorded in registers
provided by the x86 Machine Check Architecture (MCA) [12],
[4]. These registers are polled periodically and their contents
are used to record detailed information about the occurrence of
CEs in the console log. This information includes the physical
address where the error occurred and ECC syndrome data that
describes the cause of the error. Decoding the information
recorded for each error allows us to identify the physical
location of each logged error, but the decoding process takes
time, perturbing application performance.

For CEs, APEI supports two types of processor notification:
software-based (or OS-based) and firmware-based. In the case
of software-based notification, a Corrected Machine Check
Interrupt (CMCI) [4], [3] is generated which records the
DRAM error and the time of its occurrence. However, it may
be difficult to determine the precise DRAM location of an
error because of complexities related to memory organiza-
tion [3]. As a result, mitigating errors with memory page
retirement [13] may not always be possible with CMClI-based
reporting. With firmware-based notification, the information
recorded when the error occurs includes the physical address
and the specific DRAM device where the error occurred.
Firmware-based notification relies on the Enhanced Machine
Check Architecture (EMCA) [4] and is independent of the
underlying OS running on the node. While this method allows
for precise identification of the source of the error, it is also
comparatively more expensive. It requires the system to enter
System Management Mode (SMM) which halts all forward
progress on all cores of the processor while the memory
configuration information is assembled and passed to system
software [3]. Modern processors like the Intel Skylake pro-
cessor typically require firmware-based notification to enable
advanced RAS features. Therefore, the performance impacts
of this error model are important to the HPC community.

To measure the system impacts of the memory decoding
and logging overheads, we use the selfish [9] system noise
measurement microbenchmark. selfish tracks the periods
of time (detours) when the CPU is taken from the application
to perform system tasks. It detects detours by continuously
reading the processor timestamp counter (TSC) [14]. When
the counter interval exceeds a user-defined threshold,® the time
and duration of this detour is recorded. To ensure that the we
accurately captured the impact of injecting errors with EINJ,
we used taskset () to bind each of the selfish threads
and the kernel to specific cores and collected selfish traces

SFor the data presented in this section, we used 150 nanoseconds

on all 48 cores. By running selfish while we inject errors
using EINJ we can measure the time required to recover from
a correctable error.

C. Simulating Correctable Overheads

In general, communication in Message Passing Inter-
face (MPI) programs cannot be determined offline because
message matches cannot be established statically [15]. This
makes analytically modeling application performance chal-
lenging even if all parameters of the application are known. We
therefore use a validated discrete-event simulation framework
to evaluate the impact of local correctable error mitigation
activities on application performance.

Our simulation-based approach models CE mitigation ac-
tivities as CPU detours: periods of time during which appli-
cation progress is blocked by CE handling. We measure these
detours using a well known microbenchmark while injecting
correctable errors on the system (see Section IV-A). This
approach allows a level of fidelity and control not always
possible in implementation-based approaches. It also allows us
to examine simulated systems much larger than those generally
available.

Our simulation framework is based on the freely available
LogGOPSim [16] and the tool chain described by Levy et
al. [17]. LogGOPSim uses the LogGOPS model, an extension
of the well-known LogP model [18], to account for the tem-
poral cost of communication events. An application’s commu-
nication events are generated from traces of the application’s
execution. These traces contain the sequence of MPI opera-
tions invoked by each application process. LogGOPSim uses
these traces to reproduce all communication dependencies,
including indirect dependencies between processes which do
not communicate directly.

LogGOPSim can also extrapolate traces; a trace collected
by running the application with p processes can be extrapo-
lated to simulate performance of the application running with
k - p processes. The extrapolation produces exact communica-
tion patterns for MPI collective operations and approximates
point-to-point communications [16]. The validation of Log—
GOPSim and its trace extrapolation features have been docu-
mented previously [16], [9], [17], along with the simulator’s
ability to accurately predict application performance in the
presence of performance perturbations [19], [17], [9].

D. Simulation Setup and Repeatability

We model correctable errors using an extension of the
OS noise injection functionality provided by LogGOPSim.
Our extension programmatically injects detours that represent
correctable errors. The timing of each simulated correctable
error is determined statistically using random numbers drawn
from an exponential distribution. The mean of the distribution
(i.e., the mean time between correctable errors) is based on
data regarding the frequency of correctable errors in existing
publications, see e.g., [20], [21], [22], [23], [24]. The duration
of the detour is determined by the amount of time required
to recover from a correctable error. For the experiments in

this paper, we rely on empirical results described in this paper
(see Section IV-A) and data published elsewhere [3] for these
values. Application processes are delayed appropriately when
a simulated correctable error occurs. Delays that occur on
one application process have the potential to propagate along
communication dependencies and introduce delays in other
processes, cf. Figure 1.

To generate the data presented in this paper, we collected
execution traces for 128 process (125 process for LULESH, 64
for LAMMPS-crack) single-threaded runs on Mutrino of each
of the workloads described in Table I. Mutrino is a Cray XC40
that is a development system for Trinity. Like Trinity it is
composed of two partitions: one consisting of compute nodes
built around Intel Haswell processors and one consisting of
compute nodes built around Intel Knights Landing processors.
All of the traces collected for this paper were collected on
the Haswell partition.” We used these traces to simulate the
execution of each workload in the presence of correctable
errors. For all of the data presented in this paper, we configured
LogGOPSim to extrapolate these traces to simulate one MPI
process per node for the systems in TABLE II. We also
configured it to use the network parameters collected on a
Cray XC40 system, see [25]. The accuracy of LogGOPSim
simulations has been verified [16] and, for certain applications,
has been shown to be within 6% of the actual execution
time [26].

We examine the performance of seven HPC workloads.
These workloads, described in Table I, include three important
DOE production applications (LAMMPS, CTH, and SPARC),
an important HPC benchmark (HPCG), a proxy application
(LULESH) from the Department of Energy’s Exascale Co-
Design Center for Materials in Extreme Environments (Ex-
MatEx), a scientific code used to study the behavior of
subatomic particles (MILC), and a mini-application (miniFE)
from Sandia’s Mantevo suite. This diverse set of workloads
captures a wide range of computational methods and appli-
cation behaviors. It additionally captures a significant cross-
section of the scalable, high-performance applications that are
run on current extreme-scale systems as well as workloads
that represent the computational patterns that are expected to
be run on future systems.

E. Simulated Correctable Error Rates

In this section, we discuss the system parameters we used
in our simulation-based evaluation of the overheads of CEs
in the remainder of the paper. This evaluation will examine
overheads for a number of key systems as well as an evaluation
for a strawman exascale-class system. For these evaluations we
need an understanding of the correctable errors rates observed
in literature as well as a method for projecting these rates
onto future exascale class systems with the understanding that
the reliability of future DRAM is likely to decrease due to
feature size reductions, power concerns, and DRAM ECC

"The traces of the open-source workloads, i.e., all of the workloads except
CTH and SPARC, are publicly available online at: (redacted for double-blind
review).

Application

Description

A classical molecular dynamics simulator from Sandia National Laboratories [27], [28]. The data presented in this paper are from

LAMMPS experiments that use the Lennard-Jones (LAMMPS-1j), SNAP (LAMMPS-snap), and Crack (LAMMPS-crack) potentials.
A proxy application that approximates the hydrodynamics equations discretely by partitioning the spatial problem domain into a
LULESH . . .
collection of volumetric elements defined by a mesh [29].
A benchmark that generates and solves a synthetic 3D sparse linear system using a local symmetric Gauss-Seidel preconditioned
HPCG . .
conjugate gradient method [30].
CTH A shock physics code [31], [32] developed at Sandia National Laboratories. We used an input file that describes the detonation of a
conical explosive charge (CTH-st) to collect the data presented in this paper.
MILC Numerical simulation for the study of quantum chromodynamics (QCD), the theory of the strong interactions of subatomic physics [33].
miniFE A proxy application that captures the key behaviors of unstructured implicit finite element codes [34].
SPARC SPARC [35] is a next-generation compressible computational fluid dynamics (CFD) code developed by Sandia National Laboratories.
We used the “Generic Reentry Vehicle” (GRV) input problem to collect the data presented in this paper.
TABLE I: Descriptions of the workloads used in evaluation.
System CEs / node / year GiB /node CEs/GiB /year MTBCE,,; Nodes Simulated Nodes
(seconds)
Google [36] 22,696 1-4 11,384 1368 - -
Facebook [2] 5,964 2-24 460 (median 108) 5292 - -
Cielo [24] 26.35 32 0.82 1.2 x 106 8,894 8,192
Trinity [37] (W/ CEcielo) 89.6 128 0.82 311,400 19,420 16,384
Summit [38] (W/ CE¢ielo) 425.6 608 0.82 62,280 4,608 4,096
Exascale (W CE¢jelo) 574 700 0.82 55,440 16,384 16,384
Exascale (W CE¢cielox10) 5,740 700 8.2 5,544 16,384 16,384
Exascale (W C'Ecielox20) 11,480 700 16.4 3,024 16,384 16,384
Exascale (W CE¢ielox100) 57,400 700 82 554.4 16,384 16,384
Exascale (W CEpedian(Facebook)) 75,600 700 108 432 16,384 16,384

TABLE II: Measured and hypothesized correctable error parameters used in this work. MTBCE,,,. is defined as the mean time
in hours between correctable errors on a node. The number of simulated processes for LULESH is the nearest power-of-2
multiple of 125 to the number of simulated nodes used for the other workloads, e.g., 16,000 instead of 16,384.

technology concerns. Therefore, for an exascale-class system
we are trying to evaluate how much correctable error rates can
increase while still keeping overheads to an acceptable level.

Table II outlines the correctable errors parameters used
in the remainder of this work. For each system, we define
the mean time between correctable errors per node (denoted
MTBCE,,4.). MTBCE,,;. is calculated from values in the table.
The first three rows of the table, are measured correctable error
rates from recent data centers (Google [36], Facebook [2],
and the Cielo supercomputer located at Los Alamos National
Labs [24]). One interesting result from these three studies
is the significant increase of reliability for newer generation
memory systems. For example, the Google study measured an
average of 11, 384 CEs per gigabyte of DRAM per year, while
the Facebook and Cielo studies measured an average 460 and
333 CEs/GiB/year, respectively. It is unclear how much of this
increase in reliability is due to process changes and how much
is due to technology changes. For the Facebook and Google
studies, much of the DRAM was protected by SECDED ECC
(single-bit error correction, double-bit error detection error
correcting code), while the Cielo system used chipkill-correct
ECC, which allows single DRAM device correction, double-
device error detection.

The next two rows of the table outline the CE parameters
for the HPC systems Summit and Trinity. As the CE rates
for Trinity and Summit are not publicly available, we use the

per gigabyte rates measured from the Cielo study [24]. We
believe this is a reasonable assumption as all three systems
utilize chipkill-correct memory protection.

The remainder of the table defines parameters for a number
of hypothetical exascale class systems evaluated in this work.
For each of these exascale systems we assume 16, 384 nodes
and 700 GiB of DRAM memory. What varies for each of
these systems is the per gigabyte CE rate. As one goal of
this work is to provide guidance on how much the CE rate
can increase without impacting performance, we start as a
baseline the rate measured on Cielo (the most reliable in
available literature). As memory error rates are expected to
decrease for exascale systems (x4 chipkill is unlikely for
exascale due to power concerns and decreased feature sizes
may increase error rates), we also examine increased error
rates of those measured on Cielo: 10x, 20x, and 100x
Cielo (denoted CEciciox10s CEciciox20, CEcielox100), and
the median of the rate measured by Meza et al.[2] (denoted
CEpedian(Facebook)) Which corresponds to a rate of about
120X of that measured on Cielo.

IV. RESULTS

In this section we examine the potential impact of DRAM
correctable errors on workload performance. The data pre-
sented in this section were collected using the experimental
methodology described in Section III.

A. DRAM Correctable Costs

In this section, we evaluate the time required to handle
DRAM CEs on a modern HPC system. Specifically, we
consider the time required for: hardware error correction (i.e.,
how long it takes to correct an error using ECC), and the time
required to decode and log the error. Decoding and logging
can be performed in software by the OS, or in firmware.

All of the data presented in this section was measured on
Blake, a 48-node Linux cluster with an Intel OmniPath inter-
connect network. Each compute node consists of 4 sockets.
Each socket is occupied by a 24-core, 2.1GHz Intel Skylake
processor (a total of 96 cores/nmode). Each node also has
192GB of DDR4 DRAM. It is running Red Hat Enterprise
Linux Server release 7.4 with a Linux kernel, version 3.10.693.

Using Blake, we collected empirical data on the time
required to handle CEs using APEI EINJ as described in
Sections III-A and III-B. To establish a baseline, we measured
the background noise signature of Blake. The results of this
experiment are shown in Fig. 2a. As described in Section III-B,
the data in this figure were collected using selfish. Each
bar in this figure represents a detour identified by selfish:
its height corresponds to the duration of the detour and its
position on the z-axis corresponds to the time when the detour
occurred. We also measured the noise signature of the system
during “dry-run” error injections. In this case, we wrote to
the APEI EINJ virtual files in the Linux sysfs to configure
the error to be injected but do not actually trigger injection
of the error. We repeat this process every 10 seconds over the
duration of the experiment. The results of this experiment are
shown in Fig. 2b. Comparing Figures 2a and 2b reveals that
configuring error injection via the interface provided by APEI
EINJ results in minimal disruption of the processor. In other
words, our measurements are not significantly affected by the
act of configuring error injection.

To measure the cost of decoding and logging correctable
errors in software using CMCI, we configured the processor
to generate Corrected Machine-Check Error Interrupts (CMCI)
when CEs occur [14, Volume 3 §15.5]. We also set the CMCI
Error Threshold to 1 (i.e., every correctable error generates
a CMCI interrupt) and triggered an error injection every 10
seconds using the APEI EINJ interface. The results of this ex-
periment are shown in Fig. 2c. The tallest bars (approximately
700us) occur every 10 seconds and represent the cost of
decoding and logging the occurrence of the error in software.
To measure the cost of decoding the error in firmware we
configured the processor to enable Intel’s Enhanced MCA
Memory Logging [4]. We configured the correctable error
threshold in firmware to 10 (i.e., only every 10" correctable
error is logged). The results of this experiment are shown in
Fig. 2d. In this figure, the taller bars fall into two groups. The
first group of detours occur every 10 seconds and are approxi-
mately 7 milliseconds in duration. These detours represent the
delay introduced by a System Management Interrupt (SMI)
that is generated each time a correctable error occurs [4,
§1.2.4]. The second group of detours occur every 100 seconds

and are approximately 500 milliseconds in duration. These
detours represent the time required by the firmware to decode
and log the occurrence of the correctable error.

Missing from this figure is the “All logging turned off” noise
signatures, denoting the overheads of the hardware correction
mechanisms. This data was collected and was similar to the
“Native” and “Dry Run” figures

B. Single Process CEs

In this section, we examine the performance impact of a
single process experiencing CEs. Specifically, we consider
how frequently CEs can occur without significantly degrading
application performance. Understanding when CEs degrade
application perform may be useful to system administrators
who are faced with deciding when to replace DIMMs that are
experiencing CEs.? To understand how CEs on a single process
affect application performance, we conducted a series of
experiments in which we varied the MTBCE,,4. and simulated
how long our applications took to complete for three different
logging overheads. The results of these experiments are shown
in Fig. 3. Fig. 3a shows the results for correction-only (i.e.,
no information about the correctable errors is logged). The
performance impact in this case is negligible; the simulated
application slowdown is below 1% even though CEs are
very frequent. In the case of software logging, the simulated
application slowdown remains below 10% for an MTBCE, 4.
as low as 10 milliseconds. In the case of firmware logging,
the simulated application slowdown remains below 10% for
an MTBCE,,;. as low as 1 second. Given that the overhead
of logging each CE in this case is 133ms, the application
struggles make meaningful progress when MTBCE,,,. is much
smaller than 1 second. For example, an MTBCE, ;. of 200ms
causes the application’s runtime to be hundreds of percent
slower than error-free execution.

C. Correctable Overheads for Current and Future Systems

In this section, we examine the performance impact of
every application process experiencing correctable errors at the
same rate on all processes. Specifically, we consider how the
MTBCE,,,. affect application performance on current, recent,
and projected future systems. A description of each of the
systems we considered is shown in Table II.

To understand the impact of CEs on current HPC systems,
we conducted a set of experiments in which we simulated the
performance impact of three values of CE logging overheads
on nine workloads. We repeated these experiments for three
current (or recent, in the case of Cielo) extreme-scale systems.
The MTBCE, ;. for Trinity and Summit are not public. There-
fore, we use the CE rate derived from data collected over the
lifetime of Cielo [24], [39]. We project the CE rate on Summit
and Trinity by assuming that the rate is constant per byte of
memory. Because all three systems use chipkill-correct DRAM

8This is particularly true given that a recent study from Levy et al. presented
data showing no correlation between correctable and uncorrectable errors [24].
Based on this data, system administrators may be able to allow DIMMs to
generate CEs without jeopardizing the operational status of the machine.

(a) Native OS Signature for Blake (b) “Dry Run” Injection OS Signature(c) Software Cost (OS decoding with(d) Firmware Cost (Firmware decod-
CMCI) ing with EMCA, threshold set to 10)

Fig. 2: Native and “dry run” OS noise signature for Blake. The “dry run” option configures the EINJ interface at the requested
frequency (in this case every ten seconds) but does not trigger the error. This attempts to measure the cost of the error injection
utility and writing to the sysfs filesystem. As can be seen from the figure, the injection utility impacts no additional OS noise.

Missing from this figure is the “All logging turned off” case, denoting the overheads of the hardware correction mechanisms.
This data was collected and looked the same as the “Native” and “Dry Run” figures.

10t

Relative to

2

o

Percent

200ms 100ms 20ms 10ms
MTBCEode

m LAMMPS-crack
LULESH

= ML
CTH-st

= SPARC

= HPCG

m miniFE

— LAMMPS-j

= LAMMPS-snap

2ms. 1ms

(a) Hardware Correction Impacts

Fig.

Relative to

Percent

10t

m LAMMPS-crack
LULESH

- ML
CTH-st

= SPARC

== HPCG

m— miniFE

- LAMMPS-]

= LAMMPS-snap

200ms 100ms 20ms 10ms 2ms 1ms
MTBCEpoge

(b) Software-based Logging Impacts

= LAMMPS-crack
LULESH

10| mm MILC
CTH-st

= SPARC

- HPCG

- miniFE

— LAMMPS-j

m— AMMPS-snap

10!

Relative to

Percent

105

25 200ms
MTBCE poge

(c) Firmware-based Logging Impacts

3: Performance impacts of one process experiencing correctable errors as a function of the recovery overhead.

Results are based on 16,384 (16,000 for LULESH) node simulations of each application. Data for three scenarios are
shown: hardware only correction with no logging (150ns per event), Software-based logging using the Corrected Machine
Check Architecture (CMCA) (775usec per event), and the Firmware-based logging using the Enhanced Machine Check

Architecture (EMCA) (133msecs per event) .

Relative to

Percent

°

= LAMMPS-crack
LULESH

- MILC
CTH-st

= SPARC

— HPCG

- miniFE

= LAMMPS-Ij

== LAMMPS-snap

Hardware (No Logging) ~ Software Logging
Logging Mechanism

(a) Cielo

Firmware Logging

Relative to

Percent

= LAMMPS-crack
LULESH

- MILC
CTH-st

m= SPARC

- HPCG

- miniFE

- LAMMPS-j

= LAMMPS-snap

Hardware (No Logging) ~ Software Logging
Logging Mechanism

(b) Trinity

Firmware Logging

m= LAMMPS-crack
LULESH

- MILC
CTH-st

m= SPARC

- HPCG

- miniFE

- LAMMPS-j

= LAMMPS-snap

Relative to
g

°

Percent

Hardware (No Logging) ~ Software Logging

Firmware Logging
Logging Mechanism

(c) Summit

Fig. 4: Performance impacts of correctable errors for existing systems Cielo, Trinity, and Summit using data from
Table II. Data for three scenarios are shown: hardware only correction with no logging (150ns per event), Software-
based logging using the Corrected Machine Check Architecture (CMCA) (775usec per event), and the Firmware-based
logging using the Enhanced Machine Check Architecture (EMCA) (133msecs per event). These results confirm that
the correctable error rate on recent systems do not lead to significant application performance slowdowns.

ECC, we believe this is a reasonable approximation. Figure 4
shows the results of these experiments. In these figures, the
height of each bar represents the arithmetic mean of at least
eight simulations (in some cases data from 16 simulations was
used). Error bars are not shown in this figure because they
would not be visible. The data in this figure show that the
impact of CEs on these systems is negligible, significantly
less than 10% in all cases. These results confirm that CEs on
current systems are not a significant issue.

To understand the potential impact of CEs on future sys-
tems, we conducted as series of experiments in which we simu-
late workload performance for five projected exascale systems.
We simulated the execution of nine workloads running on five
projected future systems with three values of the CE logging
overhead. A description of each of these systems is available
in Table II, see also Section III-E. For each exascale system,
we assume 16, 384 nodes, 700 GiB of DRAM memory. Each
system uses a different MTBCE,,4. projection, based on data
collected on Cielo. Because the CE rate measured on Cielo
may be optimistic for an exascale platform, these experiments
allow us to explore how much more frequent CEs can without
significantly degrading application performance.

The results of experiments are shown in Figure 5. In all
five cases, the performance impact of Hardware correction-
only (no logging) is negligible. Similarly, the performance
impact of software logging is modest: significantly below
10% in all five cases. In contrast, the performance impact of
firmware logging is, in some cases significant. The workload
slowdown on the Exascalecg,,,,, system is nearly 100%
for LAMMPS-crack and LULESH, and between 10 and 15%
for miniFE, HPCG, SPARC, CTH and MILC. Applications
running on the Exascalecg,,, 100 EXASCAlECE, giunracebos SYSEMS
experience even larger slowdowns: 100-1000% for SPARC,
CTH, MILC, LULESH, and LAMMPS-crack. Interestingly,
LAMMPS-]j and LAMMPS-snap never see overheads greater
than a few percent in all five cases. We believe this variance
in application behavior is due to the difference in collective
frequency of each application, see [19]. The implication of this
data is that to achieve good workload performance on future
systems, we should limit the MTBCE,,4. so that CEs are no
more 10 to 20 times more frequent than they were observed
on Cielo. In other words, we should ensure that MTBCE,,,.
remains above 5.544-3,024 seconds.

D. Exploring Software/OS Reporting Impacts

In the previous section we outlined MTBCE,, 4, rates which
demonstrate significant impacts for the firmware decoding of
correctable errors. In this section, we try to determine at what
CE rates do we see overheads for the software/OS decoding
of CE.

Figure 6 shows the simulated overheads for three different
MTBCE,,;. scenarios: 36 seconds, 3.6 seconds, and around 1
second. Also shown on the figures are the hardware-only and
firmware overheads, which can be used for comparison. From
this figure we observe that even in the case of very frequent
CE (once every second, per node), the performance impacts

are less then 10%. Therefore, the CE rate can increase by
a factor of one million of the measured on Cielo before the
software logging has significant performance impacts.

Finally in this section, we note that we could not find a
reasonable MTBCE,, . such that we could observe significant
performance impacts for the “no logging” case. Such a rate
reaches the limits of our simulation infrastructure and would
correspond to a scenario where hardware would be broken to
such a degree that replacement is the proper action.

E. Exploring Correctable Reporting Duration Overheads

Lastly in the section, we investigate the impact of cor-
rectable error reporting durations on application performance
at scale. To illustrate this point will will use two very different
MTBCE, 4., of 200 milliseconds and 720 seconds. For each
of these rates we vary the per correctable event overheads
from 150 nanoseconds to 133 milliseconds. Again we use the
simulation framework described previously with a node count
of 16, 384 nodes.

Figure 7 shows the results of these reporting overheads. First
thing to note is that no data included for the MTBCE, ;4. =
5.55 x 107> hours case. Due to the frequency CEs generated
on each node, the application is essentially unable to make
any reasonable forward progress. The next important point to
note is, though there is four orders of magnitude difference in
the CE rates, there is only two orders magnitude difference in
overheads (in some case the overheads is only one order).
Overall, this figure demonstrates two important points: (i)
Keeping per-event CE overheads lower is key to keeping
overheads low, and (ii) If per-CE event overheads are kept
low, a much higher CE rate can be tolerated by the system
without significant impacts. These two points are important to
the design and construction of future exascale-class systems
as less reliable (in terms of CE rate) DRAM hardware may
be utilized with possible saving on power and/or cost.

V. RELATED WORK

Efforts to characterize the frequency and type of correctable
and uncorrectable failures on large-scale HPC and cloud
systems have been ongoing for over a decade now. Schroeder
and Gibson studied failures in supercomputer systems at
LANL [40]. Schroeder et al. conducted a large-scale field
study using Google’s server fleet [36]. Li ef al. studied memory
errors on three different data sets, including a server farm of
an Internet service provider [41]. In 2010, Li et al. published
an expanded study of memory errors at an Internet server farm
and other data center sources [20]. Hwang et al. published an
expanded study on Google’s server fleet, as well as two IBM
Blue Gene clusters [21]. Sridharan and Liberty presented a
study of DRAM failures in a high-performance computing
system [42]. El-Sayed et al. studied temperature effects of
DRAM in data center environments [43]. Similarly, Siddiqua
et al. studied DRAM failures from client and server sys-
tems [44]. Sridharan et al. studied DRAM and SRAM faults,
with a focus on positional and vendor effects [22]. Di Martino
et al. studied failures in Blue Waters, an HPC system at the

107 == LAmMMPs-crack 103 | == LAMMPS-crack 103 | == LAMMPS-crack
LULESH LULESH LULESH
- MILC - MILC - MILC
CTH-st CTH-st CTH-st
¥ 102 { mem SPARC ¥ 102 mm SPARC ¥ 102 mm SPARC
W= HPCG W= HPCG W= HPCG
° W= miniFE ° W= miniFE ° W= miniFE
- - LAMMPS-lj - - LAMMPS-lj - - LAMMPS-lj
2 10" mm LAMMPS-snap 2 10" mm LAMMPS-snap 2 10" mm LAMMPS-snap
k] k] k]
2 2 2
10° 10° 10°
- o - o - o
£ £ £
g g g
g I I g g
s s s
4 4 4

Hardware (No Logging) ~Software Logging ~ Firmware Logging Hardware (No Logging) ~ Software Logging Firmware Logging Hardware (No Logging) ~ Software Logging Firmware Logging
Logging Mechanism Logging Mechanism Logging Mechanism

(a) Exascalecg ., (b) Exascalecgg,, 10 (¢) Exascaleck g,y 20

B 03] == Lammps-crack m= LAMMPS-crack
LULESH LULESH
- MILC - MILC

CTH-st CTH-st

¥ 102 { mem SPARC ¥ 102 mm SPARC
m—HPCG m—HPCG

w - miniFE w - miniFE

H - LAMMPS-j H - LAMMPS-j

2 — LAMMPS-snap 2 — LAMMPS-snap

k] k]

]]

2 2

Percent
Percent

Hardware (No Logging) ~ Software Logging Firmware Logging Hardware (No Logging) ~ Software Logging Firmware Logging
Logging Mechanism Logging Mechanism

(d) Exascalecgqy,y 100 (e) Exascalecg

‘median(Facebook)

Fig. 5: Performance impacts of correctable errors for hypothetical Exascale-class systems using the data from Table II.
Data for five error rates are shown: the rate measured on Cielo [24], 10 times the rate measured on Cielo (denoted
CEciclox10), 20 times the rate measured on Cielo (denoted CEcjelox20), 100 times the rate measured on Cielo (denoted
CEcielox100), and the rate measured as the median from Meza et al. [2](about 120 times the CE rate measured on
Cielo, denoted CEedian(Facebook))- Three scenarios are shown: hardware only correction with no logging (150ns per
event), Software-based logging using the Corrected Machine Check Architecture (CMCA) (775usec per event), and
the Firmware-based logging using the Enhanced Machine Check Architecture (EMCA) (133msecs per event). To keep
correctable overheads low, the MTBCE,,;, for an exascale system should not drop below 5.544-3 024 seconds

10° 8 10° 8 10°
= LAMMPS-crack = LAMMPS-crack m= LAMMPS-crack
LULESH LULESH LULESH
10¢ | mem MILC 10° | mem MILC 10° | mem MILC
CTH-st CTH-st CTH-st
k: m= SPARC k: m= SPARC k: m= SPARC

10° | e HPCG 10° 1 e HPCG 10° 1 e HPCG
- miniFE - miniFE - miniFE
- LAMMPS-|

- LAMMPS-snap

= LAMMPS-j
= LAMMPS-snap

= LAMMPS-j
m— LAMMPS-snap

Relative to
Relative to
Relative to

Percent
Percent
Percent

Hardware (No Logging) ~ Software Logging Firmware Logging
Logging Mechanism Logging Mechanism Logging Mechanism

Hardware (No Logging) ~ Software Logging ~ Firmware Logging Hardware (No Logging) ~ Software Logging ~ Firmware Logging

(a) MTBCE, ;4. = 1 second (b) MTBCE,,4. = 3.6 seconds (¢) MTBCE,,;4. = 36 seconds

Fig. 6: Performance impacts of correctable errors for a hypothetical Exascale-class systems using an extreme MTBCE
rate to determine where Software-OS reporting is impacted. Again, three scenarios are shown: hardware only correction
with no logging (150ns per event), Software-based logging using the Corrected Machine Check Architecture (CMCA)
(775usec per event), and the Firmware-based logging using the Enhanced Machine Check Architecture (EMCA)
(133msecs per event) .

LAMMPS-crack
LULESH

10%{ mem MILC

CTH-st
SPARC

10° 1 e HPCG

m— miniFE

L | = LAMMPs-
" LAMMPS-snap

or-free Execution

Percent Slowdown Relative to Erre

015 775
=

(a) MTBCE,,q. = 0.2 seconds

10000 20000 50000 133000
ing Overhead (mi

LAMMPS-crack
LULESH
10%{ mem MILC
CTH-st
SPARC
10° 1 e HPCG

or-free Execution

m— miniFE
, | = LAMMPS-
= LAMMPS-snap

Percent Slowdown Relative to Erre

015 775
=

(b) MTBCE,,p4. = 720 seconds

10000 20000 50000 133000
ing Overhead (mi

Fig. 7: Performance impacts of correctable errors for a hypothetical Exascale-class systems with MTBCE,,;, = 0.2
seconds and MTBCE,,;. = 720 seconds. A number of different correctable reporting overheads are shown, from 150ns
per event to 133msecs. Results demonstrate that if per reporting event durations can be kept low, a higher CE rate
(possibly using less power) will achieve acceptable overheads.

University of Illinois, Urbana-Champaign [45]. Additionally,
Bautista-Gomez et al. [23] presented a study of DRAM
memory errors on a large-scale system in the explicit absence
of an ECC in an effort understand the behavior of raw memory
failures. Siddiqua et al. [39] presented a study demonstrating
that the incidence of each DRAM correctable fault mode on
Cielo was stable over time. Gupta et al. [46] studied five
vastly different systems of varying sizes and hardware and
software configurations to discover common failure trends that
are across HPC systems. The data set covering the longest
period of operation that they considered was collected on the
Jaguar XT4 system from 2008-2011. Finally, Levy et al. [24]
demonstrated that Cielo exhibited no discernible aging effects
and that contrary to popular belief, correctable DRAM faults
are not predictive of future uncorrectable DRAM faults.

Our study has origins in previous works that characterizes
application behavior in the presence of OS noise [10], [9].
Collectively, this research shows that the pattern of OS noise
events determines the impact on application performance and
the benefits of coordination. Moreover, it shows that the dura-
tion of an OS noise event can significantly slowdown applica-
tion performance. Additionally, Delgado and Karavanic [47]
examined the impact of system management mode (SMM)
interrupts on network and IO workloads. Finally, Macarenco
et al. [48] examine the impact of SMM mode induced by
using virtualization for small scale NAS parallel benchmark
runs and the UnixBench benchmark.

Most closely related, Gottscho et al. [3] examine the single-
machine performance impacts of correctable DRAM errors for
web search and SPEC CPU2006 benchmarks. In this work, the
authors demonstrate that an “avalanche” of these correctable
errors can significantly impact benchmark performance. Fi-
nally, using a proprietary hardware and software tool, the
authors also characterize the impacts of DRAM correctable
errors for Windows Server 2012 at a hardware, firmware, and
OS level.

Our work distinguishes itself from these existing studies in
several important ways. First, to the best of our knowledge this

is the first study to examine the HPC performance impacts
of correctable DRAM errors. Much of the existing work is
focused on either characterizing failures or examining the
application performance implication of DUEs. In addition,
unlike previous work, we attempt a principled analysis of
the correctable error rate increases likely with future systems
as well as the importance of reducing the duration of each
memory error event. Finally, we provide prescriptive guidance
on how possible increases in MTBCEs of future exascale
systems can influence performance.

VI. CONCLUSIONS & LESSONS LEARNED

Efficiently deploying and using the first Exascale system
will require a detailed understanding of correctable error
overheads. In this paper, we provide a detailed analysis of
the impacts of correctable errors on a number of hypothetical
Exascale-class systems. Our results demonstrate that: (i) If
Firmware First CE reporting is used on future systems, the
MTBCE,,; for an exascale system should not drop below
5,544-3,024 seconds (depending on workload) to minimize
impacts to less than 10%; (ii) If firmware first functionality
is not needed on a proposed exascale system and OS-level
reporting of CEs is used, it may be possible utilize significantly
less reliable DRAM hardware, for example an MTBCE, 4.
greater than 432 seconds, or 120X the CE rate measured
on Cielo; and (iii) For single node, bursty CE errors, in the
software-based logging case a node can generate a CE every
10ms without significantly impacting application performance.
For firmware-based logging, CE that occur more than once
every second lead to significant slowdowns. Taken together,
the results of this paper provides critical insight and practical
advice to users and systems administrators on correctable error
rates and overheads.

VII. ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-

eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NAO0003525. This paper describes objective technical results
and analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States
Government.

[1]

[2]

[3]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. S. Williams, and K. Yelick, “Exascale computing study: Technology
challenges in achieving exascale systems, Peter Kogge, editor & study
lead,” 2008.

J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in
large-scale production data centers: Analysis and modeling of new trends
from the field,” in Proceedings of the 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, ser.
DSN ’15. Washington, DC, USA: IEEE Computer Society, 2015, pp.
415-426. [Online]. Available: https://doi.org/10.1109/DSN.2015.57

M. Gottscho, M. Shoaib, S. Govindan, B. Sharma, D. Wang, and
P. Gupta, “Measuring the impact of memory errors on application
performance,” IEEE Computer Architecture Letters, vol. 16, no. 1, pp.
51-55, Jan 2017.

Intel, “MCA enhancements in Intel Xeon processors,” https://software.
intel.com/en-us/download/mca-enhancements-in-intel- xeon-processors,
January 2018.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based

fault tolerance applied to high performance computing,” Journal of

Parallel and Distributed Computing, vol. 69, no. 4, pp. 410-416, 2009.
K. Teranishi and M. A. Heroux, “Toward local failure local recovery
resilience model using mpi-ulfm,” in Proceedings of the 21st European
MPI Users’ Group Meeting. ACM, 2014, p. 51.

TOP500, “Highlights — TOP500 supercomputer sites,” https://www.
top500.o0rg/lists/2019/06/highs/, retrieved September 2019.

Nvidia, “Dynamic page retirement: Reference guide,” 2019.
[Online]. Available: https://docs.nvidia.com/deploy/pdf/Dynamic_Page_
Retirement.pdf

T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the in-
fluence of system noise on large-scale applications by simulation,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC’10), Nov. 2010.

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 19.

Linux Kernel Organization, “APEI error injection,” https://www.kernel.
org/doc/Documentation/acpi/apei/einj.txt, retrieved April 2019.
“AMD64 architecture programmer’s manual volume 2: System program-
ming, revision 3.23,” http://developer.amd.com/wordpress/media/2012/
10/24593_APM_v21.pdf, 2013.

D. Tang, P. Carruthers, Z. Totari, and M. W. Shapiro, “Assessment
of the effect of memory page retirement on system RAS against
hardware faults,” in International Conference on Dependable Systems
and Networks (DSN’06), June 2006, pp. 365-370.

Intel, “Intel 64 and IA-32 architectures software developer’s
manual,” http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, January 2019.

G. Bronevetsky, “Communication-sensitive static dataflow for paral-
lel message passing applications,” in Proceedings of the 7th annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion. IEEE Computer Society, 2009, pp. 1-12.

T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - simulating
large-scale applications in the LogGOPS model,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. ACM, Jun. 2010, pp. 597-604.

S. Levy, B. Topp, K. B. Ferreira, D. Arnold, T. Hoefler, and P. Widener,
“Using simulation to evaluate the performance of resilience strategies
at scale,” in High Performance Computing, Networking, Storage and
Analysis (SCC), 2013 SC Companion:. 1EEE, 2013.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

(31]

[32]

[33]

[34]

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: Towards a realistic model
of parallel computation,” in Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPOPP '93. New York, NY, USA: ACM, 1993, pp. 1-12. [Online].
Available: http://doi.acm.org/10.1145/155332.155333

K. B. Ferreira, S. Levy, P. Widener, D. Arnold, and T. Hoefler,
“Understanding the effects of communication and coordination on
checkpointing at scale,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC14). IEEE Press, 2014, pp. 883-894.

X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,”
in Proceedings of the 2010 USENIX conference on USENIX
annual technical conference, ser. USENIXATC’10. Berkeley, Calif.,
USA: USENIX Association, 2010, pp. 6-20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855840.1855846

A. A. Hwang, 1. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: understanding the nature of DRAM errors and
the implications for system design,” in Proceedings of the 17th
international conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New
York, NY, USA: ACM, 2012, pp. 111-122. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150989

V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and
S. Gurumurthi, “Feng shui of supercomputer memory: Positional effects
in DRAM and SRAM faults,” in Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC "13. New York, NY, USA: ACM, 2013, pp. 22:1-
22:11. [Online]. Available: http://doi.acm.org/10.1145/2503210.2503257
L. Bautista-Gomez, F. Zyulkyarov, O. Unsal, and S. McIntosh-Smith,
“Unprotected computing: A large-scale study of DRAM raw error rate
on a supercomputer,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 55:1-55:11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3014904.3014978
S. Levy, K. B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan,
and E. Baseman, “Lessons learned from memory errors observed over
the lifetime of Cielo,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage, and Analysis,
ser. SC *18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 43:1-43:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3291656.3291714
K. B. Ferreira, S. Levy, K. Pedretti, and R. E. Grant, “Characterizing
mpi matching via trace-based simulation,” Parallel Computing, vol. 77,
pp. 57 — 83, 2018.

S. Levy, B. Topp, K. B. Ferreira, D. Arnold, T. Hoefler, and P. Widener,
“Using simulation to evaluate the performance of resilience strategies at
scale,” in High Performance Computing Systems. Performance Model-
ing, Benchmarking and Simulation, S. A. Jarvis, S. A. Wright, and S. D.
Hammond, Eds. Springer International Publishing, 2014, pp. 91-114.
S. Plimpton, “Fast parallel algorithms for short-range molecular-
dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1-19,
1995.

Sandia National Laboratories, “LAMMPS molecular dynamics simula-
tor,” http://lammps.sandia.gov, Apr. 10 2013.

Lawrence Livermore National Laboratory, “Co-design at Lawrence
Livermore National Lab : Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH),” http://codesign.lInl.gov/lulesh.php.
Indiana University, “HPCG benchmark,” http://physics.indiana.edu/~sg/
milc.html, retrieved September 2017.

J. McGlaun, S. Thompson, and M. Elrick, “CTH: A three-dimensional
shock wave physics code,” International Journal of Impact Engineering,
vol. 10, no. 1, pp. 351-360, 1990.

J. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. 1.
Kerley, J. M. McGlaun, S. V. PetneY, S. A. Silling, P. A. Taylor, and
L. Yarrington, “CTH: A software family for multi-dimensional shock
physics analysis,” in Proceedings of the 19th Intl. Symp. on Shock Waves,
Jul. 1993, pp. 377-382.

Sandia National Laboratories and University of Tennessee Knoxville,
“MIMD lattice computation (MILC) collaboration,” http://www.
hpcg-benchmark.org, 2017, retrieved September 2017.

M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratory, Tech. Rep. SAND2009-5574, 2009.

M. Howard, A. Bradley, S. W. Bova, J. Overfelt, R. Wagnild, D. Dinzl,
M. Hoemmen, and A. Klinvex, “Towards performance portability in
a compressible CFD code,” in Proc. 23rd AIAA Computational Fluid
Dynamics Conference, 2017.

B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the
wild: a large-scale field study,” Commun. ACM, vol. 54, no. 2, pp.
100-107, Feb. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1897816.1897844

Los Alamos National Laboratory, “Trinity: Advanced technology sys-
tem,” https://www.lanl.gov/projects/trinity/index.php, Apr. 10 2018.
Oak Ridge National Laboratory, “Introducing Summit,” https://www.
olcf.ornl.gov/summit/, Apr. 10 2018.

T. Siddiqua, V. Sridharan, S. E. Raasch, N. DeBardeleben, K. B. Ferreira,
S. Levy, E. Baseman, and Q. Guan, “Lifetime memory reliability data
from the field,” in 2017 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Oct 2017,
pp. 1-6.

B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” in Dependable Systems and Networks
(DSN 2006), Philadelphia, PA, June 2006.

X. Li, K. Shen, M. C. Huang, and L. Chu, “A memory
soft error measurement on production systems,” in 2007 USENIX
Annual Technical Conference on Proceedings of the USENIX
Annual Technical Conference, ser. ATC’07. Berkeley, Calif., USA:
USENIX Association, 2007, pp. 21:1-21:6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364385.1364406

V. Sridharan and D. Liberty, “A study of DRAM failures in the
field,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’12. Los Alamitos, Calif., USA: IEEE Computer Society Press, 2012,
pp. 76:1-76:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389100

N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang,
and B. Schroeder, “Temperature management in data centers: why
some (might) like it hot” in Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’12. New York, NY, USA: ACM, 2012, pp. 163-174. [Online].
Available: http://doi.acm.org/10.1145/2254756.2254778

T. Siddiqua, A. Papathanasiou, A. Biswas, and S. Gurumurthi, “Analysis
of memory errors from large-scale field data collection,” in Silicon
Errors in Logic - System Effects (SELSE), 2013 IEEE Workshop on,
2013.

C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, “Lessons learned from the analysis of system failures at
petascale: The case of Blue Waters,” in International Conference on
Dependable Systems and Networks, 2014.

S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: Long-term measurement, analysis, and implications,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 44:1-44:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126937

B. Delgado and K. L. Karavanic, “Performance implications of system
management mode,” in 2013 IEEE International Symposium on Work-
load Characterization (IISWC), Sept 2013, pp. 163-173.

K. Macarenco, K. Frye, B. Hamlin, and K. L. Karavanic, “The effects
of system management interrupts on multithreaded, hyper-threaded, and
MPI applications,” in 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), Aug 2016, pp. 338-345.

