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* The study of how power is delivered from
the capacitor banks to the load region

« Specifically, the magnetically insulated
transmission lines in the vacuum section of a
pulsed power driver

* Electrodes heat due to ohmic heating,
charged particle bombardment, etc.

* This heating liberates contaminants from
surface/bulk and ionize

A strong magnetic field insulates the
plasma from crossing the gap

» Plasma drifts along electrodes

e Current loss occurs when a weak or no

magnetic field is present to insulate the
plasma M.R. Gomez et al. PRAB (2017)
10.1103/PhysRevAccelBeams.20.010401
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.010401

M University of Michigan MAIZE Facility
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Michigan Accelerator for Inductive Z-

pinch Experiments (MAIZE) at the

University of Michigan

« Delivers up to 1 MA (at full charge)
for a matched load with a rise time of
100 ns

* 40 bricks comprised of two
oppositely charged 40 nF capacitors
and a spark gap switch

« Charges and Discharges in parallel

to add current

P.C. Campbell et al. IEEE Trans. 46 (2018)
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uumm ,NEEHWG& New Power Flow Platform at the University of Michigan
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Anode Plate

Strip-line flyer plate geometry used on the Z-
machine for dynamic material property

A. PEREGBRNTBRAB (2019)

Anode Plate

D-hole
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laser entrance window

Target in situ inside MAIZE vacuum
chamber
50 ym Aluminum Planar Foil
R =3.6 mQ
L = 20-50 nH
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3D Printed Support
Structure

Uses Form 2 SLA printer
Durable Resin 4
31.8 MPa tensile strength
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M Thin Foil Planar Tab Experiments — Large Gap Size (13 mm)
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M Thin Foil Planar Tab Experiments — Small Gap Size (4.8 mm)
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M Print-A-Lute - Pre Shot — Anode Foils
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M Print-A-Lute - Pre Shot — Anode Foils
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M Print-a-Lute — Visible Self-Emission - 01762
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M Print-a-Lute — Visible Self-Emission — Composite Image
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Higher brightness

Main bright spots seen
at where the posts
attach to the anode

levels

“Bright” wisps on cathode at rough height of upper
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M Print-a-Lute — Post Shot — Upper Anode Level
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Print-a-Lute — Post Shot — Lower Anode Level
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Foil “cut”
from heating
up at metal

contact
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M Print-a-Lute — Post Shot — Anode Post
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Scorching on
posts
concentric to

cairode nmors
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M Print-a-Lute — Post Shot — Cathode
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Scorch marks (opposite sides)

Looks to be from plasma
generated at post connection
locations as it sometimes appears
1§ after the all-metal print-a-lute shots
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s | Sandia Internship - Organization/Manager/Mentor

« Organization: 1659 — Advanced Capabilities for Pulsed Power
 Manager: George R. Laity
* Mentor: Mark D. Johnston

“Department 1659 develops new capabilities and diagnostics for state-of-the-art pulsed-
power facilities. We conduct experiments on Z and other pulsed power facilities in
support of multiple programs, including power flow physics. We develop and support
emission spectroscopy on Z, which is fielded on ~50% of experiments on Z. We
maintain and operate SITF (Systems Integration Testing Facility) to develop
subsystems for Z to a TRL of 6 prior to fielding on Z, including magnetic field coils,
gas puff z-pinches and other capabilities. We are developing new systems for Z to
provide in-situ electrode cleaning to mitigate or eliminate contaminant plasma
formation on electrodes which limit current coupling efficiency.”
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VUV Spectrometer - McPherson 234/302

* Optical Design: Abberation Corrected Seya-
Namioka

fI#: f/4.5
*Focal Length: 0.2 m
* Gratings: 600, 1200, 2400 g/mm

* Grating Coatings: Al + MgF2
* Pl for 2400 g/mm

* Operating Wavelengths: > 40 nm
*Required Vacuum: ~10° Torr

*Linear Dispersion: 4 nm/mm
« Slit Width: 0.1-3 mm




s 1 Camera - Photek iCMOS 160

* Quantum Efficiency: 20-25% (100 T
-300 nm)

 Gate Width: > 3 ns

 Window Size: 25mm, 1920x1200
pixels

* Pixel Size: 13.3 um

seeeaeeeeet g

* Window Material: MgF,



19 ‘ Spectrometer Calibration Setup




First Collected Spectra Using Deuterium Lamp Source
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VUV Spectrometer Slit Focusing Optics

* MgF, 1s standard coating and lens material for optics operating at wavelengths in VUV near
Lyman-o
* Lens
* Transmission near 50% @ 121.6 nm
* MgF?2 is a birefringent material — refracts polarizations differently & has to be oriented correctly to light (iE)

* Refractive Index (n) is variable and non-linear with wavelength () (larger n for smaller 1)
* Useful only for measuring a specific line — focal length changes vs A — move lens to measure different line

* Mirrors
* High reflectance (78-83% @ 121.6 nm)
* Use of focusing mirrors should achieve same thing as lens, with higher efficiency in VUV

* Optical surface damage
* Films/surface coatings form from general exposure to oxygen, humidity
* Over time, VUV interaction can damage by interacting with these films
* Storage in general humidity can also further degrade optical reflectivity/ transmission




» | Electrode Surface Science — Upcoming Experiments

Foil Experiments

e

Contaminant
Layer

» Ohmic Heating occurs at skin depth of conductor
» Heat transfers to foil/wire bulk and surface contaminant monolayers

* As bulk thickness decreases, how does the rate of contaminant
layer desorption react?

» Should be directly proportional to ohmic heating rather than other heating
methods like ion/electron deposition

* Finite energy in a current pulse. Thermal Energy scales from current
density at skin depth layer (for planar geometry)

» Heat transfer should take place from skin depth layer to bulk material and
contaminant layer

» Shot-to-shot, increasing bulk thickness in relation to skin depth of current
pulse should increase the thermal energy deposited there rather in the
contaminant layers (should act as a heat sink).

» Conversely, shrinking the bulk material thickness should see more heat
transferred to the contaminant layer, increasing the rate of material
desorbed from the surface (and possibly electrode material melt)

» Using spectroscopy, we should be able to measure the plasma density
and thus the contaminant inventory from the wire/foil



Electrode Surface Science — Upcoming Experiments

Sandia Light Lab pulser for wire - B
experiments

VUV optics chamber before spectrometer



M Conclusions & Future Work
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« Expand the platform to more complex
geometries relevant to pulsed power
accelerator architecture

* Post-hole Convolute

» Use the platform to develop more
diagnostics for power flow
experiments

* VUV Spectroscopy

» Use of advanced computational
techniques to further investigate
underlying physics

smtrevor@umich.edu | tismith@sandia.gov
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