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What is Power Flow for Current Delivery?

• The study of how power is delivered from 
the capacitor banks to the load region
• Specifically, the magnetically insulated 
transmission lines in the vacuum section of a 
pulsed power driver

• Electrodes heat due to ohmic heating, 
charged particle bombardment, etc. 
• This heating liberates contaminants from 
surface/bulk and ionize
• A strong magnetic field insulates the 
plasma from crossing the gap
• Plasma drifts along electrodes
• Current loss occurs when a weak or no 
magnetic field is present to insulate the 
plasma M.R. Gomez et al. PRAB (2017) 

10.1103/PhysRevAccelBeams.20.010401
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.010401


University of Michigan MAIZE Facility

• Michigan Accelerator for Inductive Z-
pinch Experiments (MAIZE) at the 
University of Michigan

• Delivers up to 1 MA (at full charge) 
for a matched load with a rise time of 
100 ns

• 40 bricks comprised of two 
oppositely charged 40 nF capacitors 
and a spark gap switch

• Charges and Discharges in parallel 
to add current

P.C. Campbell et al. IEEE Trans. 46 (2018)
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New Power Flow Platform at the University of Michigan
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Strip-line flyer plate geometry used on the Z-
machine for dynamic material property 

experimentsA. Porwitzky et al. PRAB (2019)

T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Thin Foil Planar Tab Experiments – Large Gap Size (13 mm)

Starting Foil Locations (13 
mm) 5T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Thin Foil Planar Tab Experiments – Large Gap Size (13 mm)

6
Starting Foil Locations (13 

mm)T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Thin Foil Planar Tab Experiments – Small Gap Size (4.8 mm)

7
Starting Foil Locations (4.8 

mm)T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Print-A-Lute -  Pre Shot – Anode Foils

8T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Print-A-Lute -  Pre Shot – Anode Foils

9T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Print-a-Lute – Visible Self-Emission - 01762

5mm

10T.J. Smith et al. RSI (2021) 10.1063/5.0043856

https://doi.org/10.1063/5.0043856


Print-a-Lute – Visible Self-Emission – Composite Image

5mm

“Bright” wisps on cathode at rough height of upper 
anode level

Main bright spots seen 
at where the posts 
attach to the anode 

levels

Higher brightness
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Print-a-Lute – Post Shot – Upper Anode Level

Scorch marks
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Print-a-Lute – Post Shot – Lower Anode Level

Foil “cut” 
from heating 
up at metal 
contact
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Print-a-Lute – Post Shot – Anode Post

Scorching on 
posts 

concentric to 
cathode hole
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Print-a-Lute – Post Shot – Cathode

Scorch marks (opposite sides)

Looks to be from plasma 
generated at post connection 

locations as it sometimes appears 
after the all-metal print-a-lute shots
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Sandia Internship - Organization/Manager/Mentor16

• Organization: 1659 – Advanced Capabilities for Pulsed Power
• Manager: George R. Laity
• Mentor: Mark D. Johnston

“Department 1659 develops new capabilities and diagnostics for state-of-the-art pulsed-
power facilities. We conduct experiments on Z and other pulsed power facilities in 
support of multiple programs, including power flow physics. We develop and support 
emission spectroscopy on Z, which is fielded on ~50% of experiments on Z. We 
maintain and operate SITF (Systems Integration Testing Facility) to develop 
subsystems for Z to a TRL of 6 prior to fielding on Z, including magnetic field coils, 
gas puff z-pinches and other capabilities. We are developing new systems for Z to 
provide in-situ electrode cleaning to mitigate or eliminate contaminant plasma 
formation on electrodes which limit current coupling efficiency.”



VUV Spectrometer  - McPherson 234/30217

•Optical Design: Abberation Corrected Seya-
Namioka
• f/#: f/4.5
•Focal Length: 0.2 m
•Gratings: 600, 1200, 2400 g/mm
•Grating Coatings: Al + MgF2 
•Pl for 2400 g/mm

•Operating Wavelengths: > 40 nm
•Required Vacuum: ~10-5 Torr
•Linear Dispersion: 4 nm/mm
•Slit Width: 0.1-3 mm



Camera - Photek iCMOS 16018

•Quantum Efficiency: 20-25% (100
-300 nm)
•Gate Width: > 3 ns
•Window Size: 25mm, 1920x1200 
pixels
•Pixel Size: 13.3 µm
•Window Material: MgF2



Spectrometer Calibration Setup19



First Collected Spectra Using Deuterium Lamp Source20

• 1200 g/mm Grating – 1400 Å Blazed
• 2 µs Gate Width
• 70/100 Gain (Photek Camera)
• 50 µm slit width
• Centered @ 1216 Å (left), 1440 Å 
(center), & 1600 Å (right)
• Left and Right images are 
cropped



VUV Spectrometer Slit Focusing Optics



Electrode Surface Science – Upcoming Experiments22

•Ohmic Heating occurs at skin depth of conductor
• Heat transfers to foil/wire bulk and surface contaminant monolayers 

• As bulk thickness decreases, how does the rate of contaminant 
layer desorption react? 
• Should be directly proportional to ohmic heating rather than other heating 
methods like ion/electron  deposition 
• Finite energy in a current pulse. Thermal Energy scales from current 
density at skin depth layer  (for planar geometry) 
• Heat transfer should take place from skin depth layer to bulk material and 
contaminant layer 
• Shot-to-shot, increasing bulk thickness in relation to skin depth of current 
pulse should increase the thermal energy deposited there rather in the 
contaminant layers (should act as a heat sink). 
• Conversely, shrinking the bulk material thickness should see more heat 
transferred to the contaminant layer, increasing the rate of material 
desorbed from the surface (and possibly electrode material melt) 
• Using spectroscopy, we should be able to measure the plasma density 
and thus the contaminant inventory from the wire/foil



Electrode Surface Science – Upcoming Experiments23

Sandia Light Lab pulser for wire 
experiments

VUV optics chamber before spectrometer



Conclusions & Future Work

• Expand the platform to more complex 
geometries relevant to pulsed power 
accelerator architecture
• Post-hole Convolute

• Use the platform to develop more 
diagnostics for power flow 
experiments
• VUV Spectroscopy

• Use of advanced computational 
techniques to further investigate 
underlying physics
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