

Towards information limit in a low photon 3 dimensional x-ray imaging

Jungki Song*, Zachary Levine, Zhen Guo*, Bradley Alpert***, Michael Glinsky****, and George Barbastathis***

*MIT

**NRL

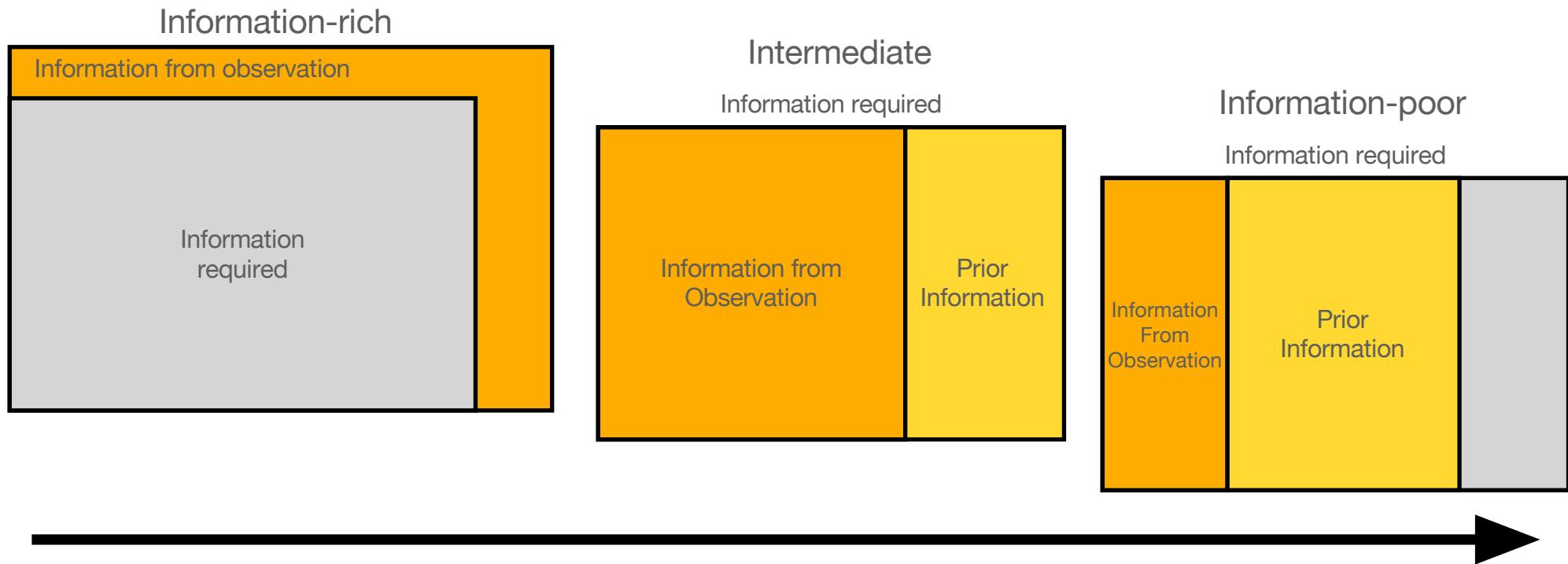
***NIST

****Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Information-based approach towards imaging

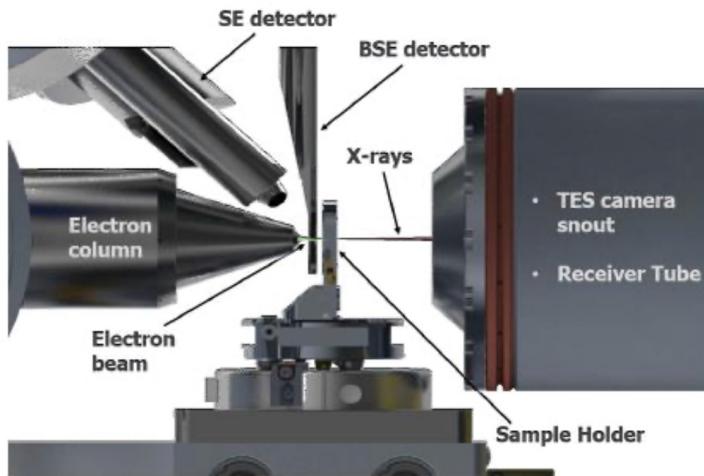
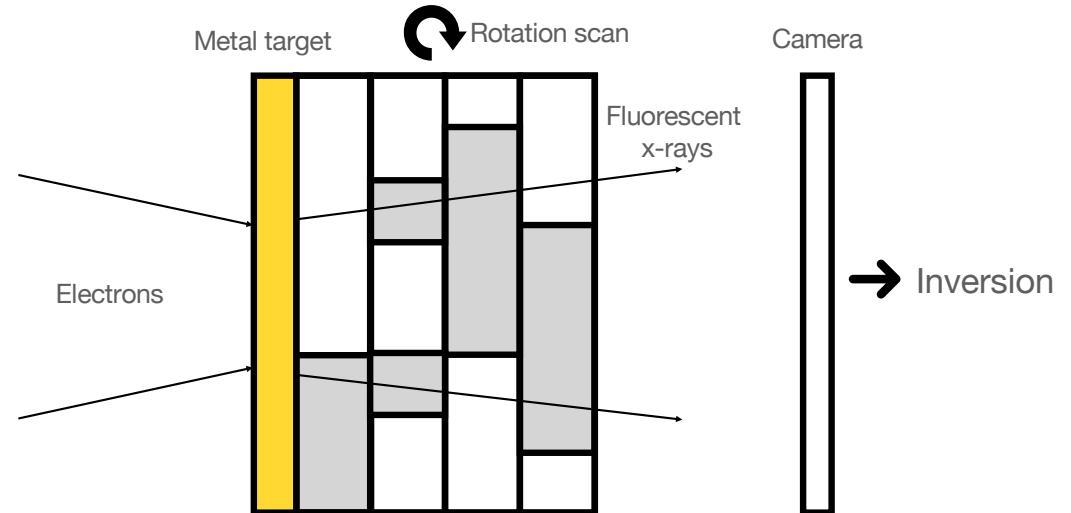
Classification of imaging problems based on information amount



Faster imaging speed, large field-of-view, Smaller feature size

Overview

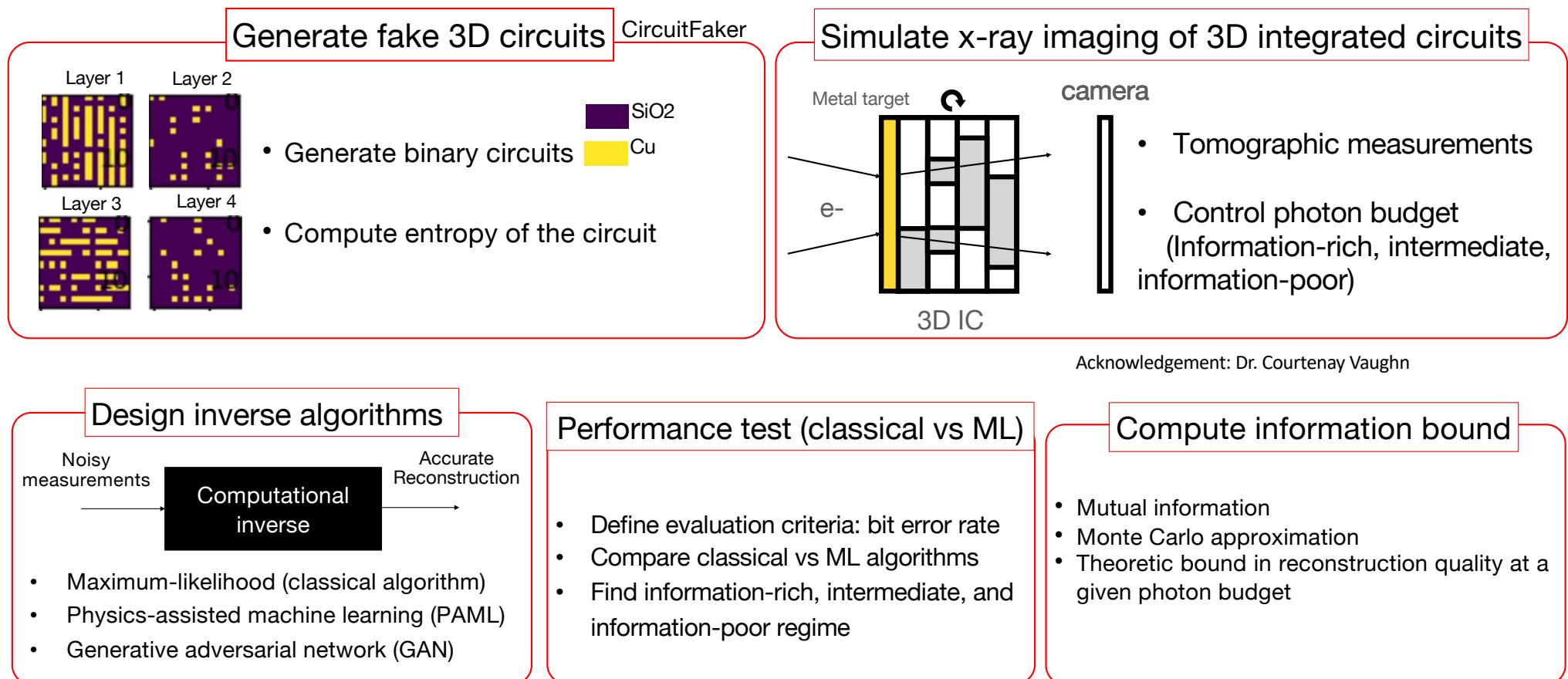
Develop inverse algorithms for x-ray imaging 3D integrated circuits



Questions to address

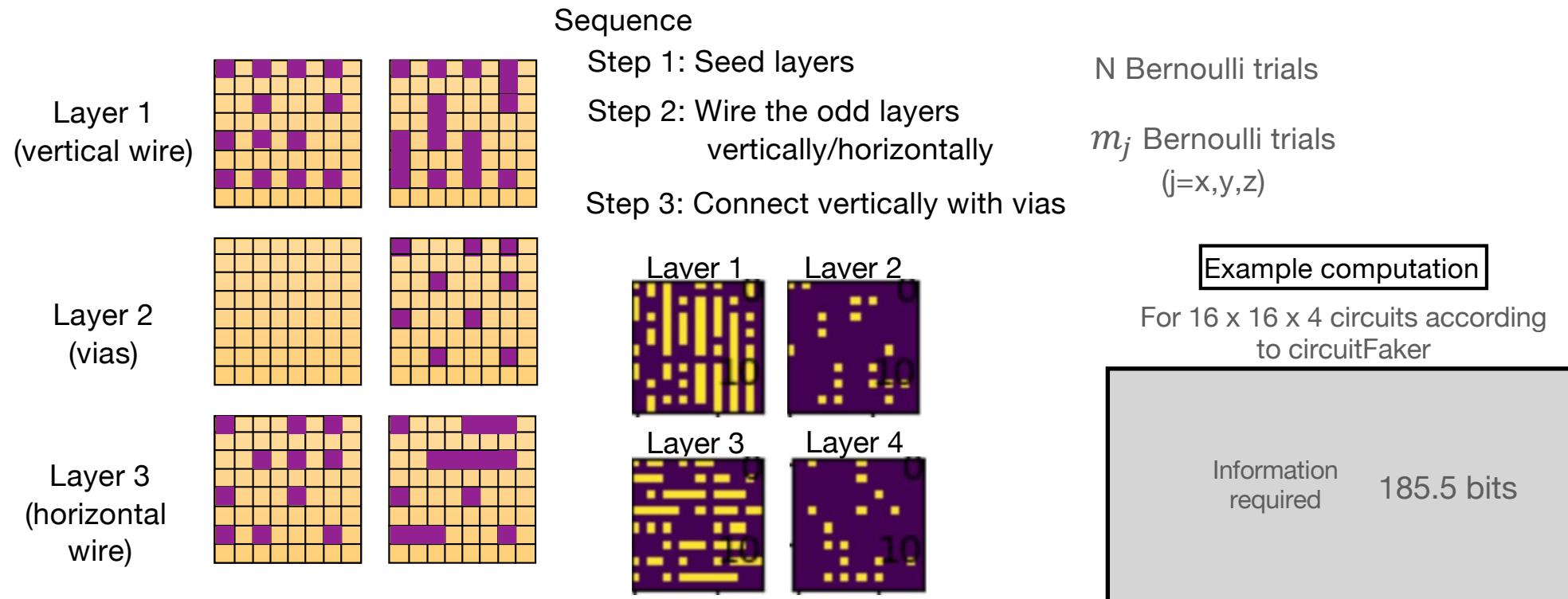
- How much information is required for 3D imaging?
- How do machine learning algorithms perform compared to classical maximum-likelihood estimation algorithm?
 - information-rich, intermediate, and information-poor
- What is an information-theoretic bound for imaging, and how can we compute it?

Research routine

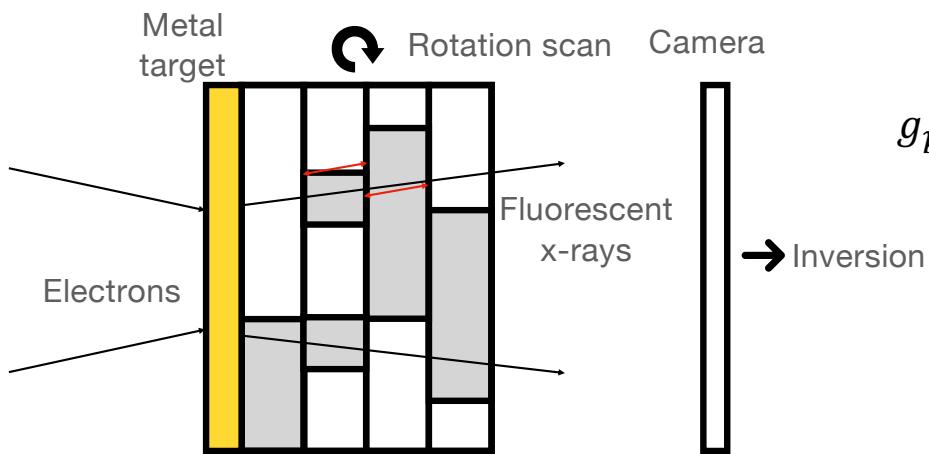


CircuitFaker: generate circuit with pre-defined design rule

- Generate binary circuits (Cu or SiO₂) that emulate real-world integrated circuits
- Can compute amount of information within the circuit



Simulate x-ray imaging of 3D integrated circuit



Attenuation of x-ray (no scattering)

$$g_p = \text{Poisson}(N_0 e^{-Af}) \rightarrow \log(N_0/g_p) = Hf$$

Linear system

H : ray propagation operator (distance the ray travels inside each voxel)
 f : 3D circuit (attenuation coefficient)

N_0 : Initial number of photons per ray

g_p : Poisson-contaminated measurements

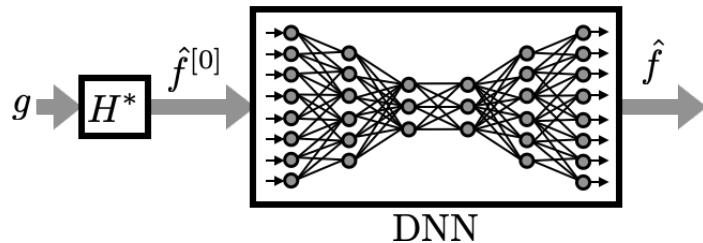
Imaging conditions

- Reduce angular scan range (reduce dimensions of g_p)
- Reduce photon budget (N_0)

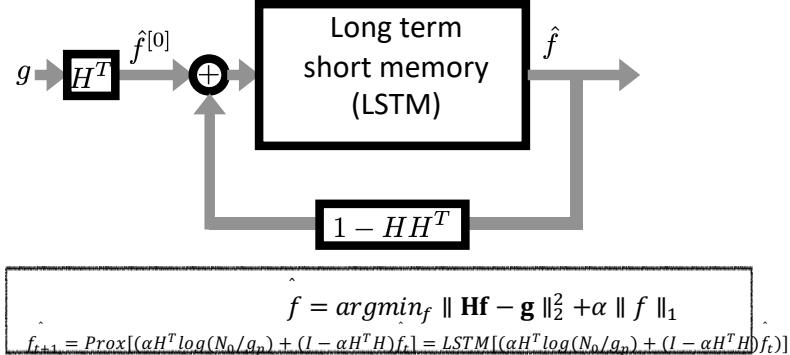
Machine learning algorithms development

Approach 1: Physics-assisted machine learning

a) Approximant-based



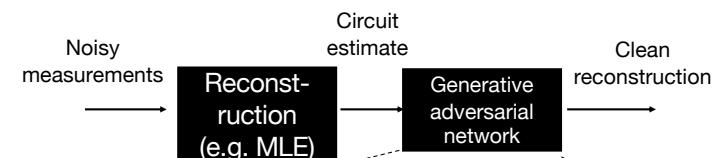
b) Iterative shrinkage algorithm with LSTM



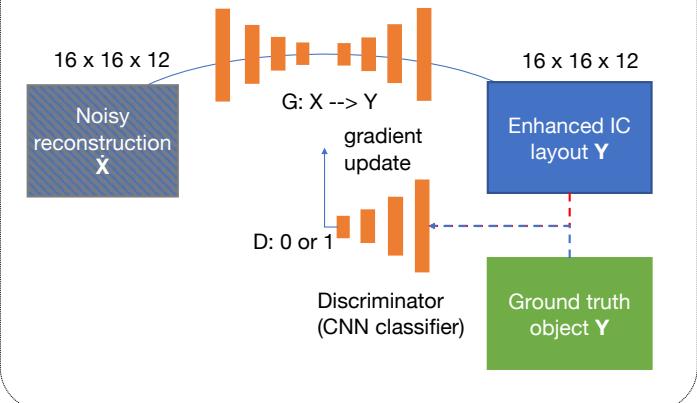
Approach 2: generative adversarial network (GAN) denoising

Reconstruction +

generative adversarial network (GAN) denoising



circuit-cGAN autoencoder architecture



Bit error rate: evaluation criteria

Frequency of wrong predictions in classifying materials in IC voxels

Maximum likelihood classifier

Step 1: Compute $p(f = 0|\hat{f})$ and $p(f = 1|\hat{f})$.

$$p(f = 0|\hat{f}) = p(\hat{f}|f = 0)p_0 : \text{Likelihood for 0}$$

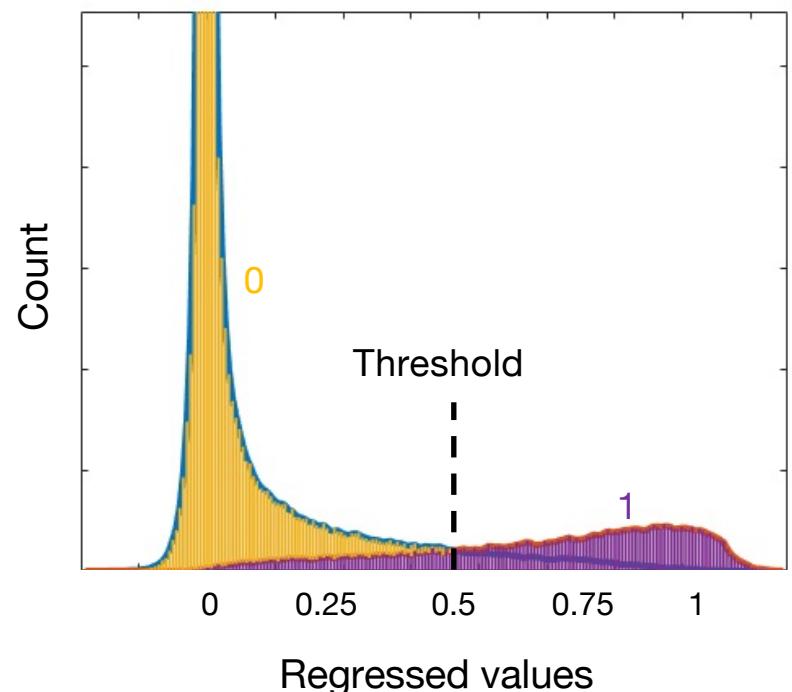
$$p(f = 1|\hat{f}) = p(\hat{f}|f = 1)p_1 : \text{Likelihood for 1}$$

$p(f = 0|\hat{f}) > p(f = 1|\hat{f})$: Classify as 0
 p_0, p_1 : Prior distribution of 0 and 1 in ICs

$p(f = 0|\hat{f}) < p(f = 1|\hat{f})$: Classify as 1

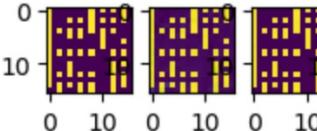
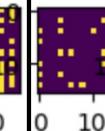
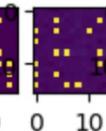
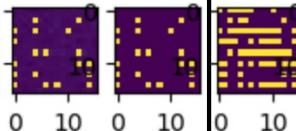
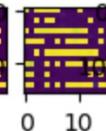
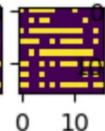
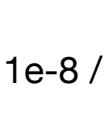
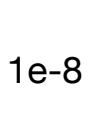
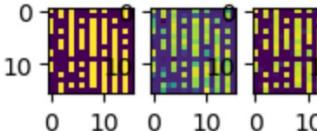
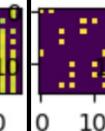
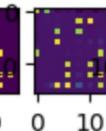
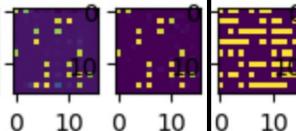
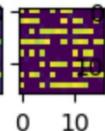
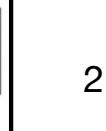
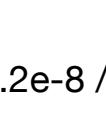
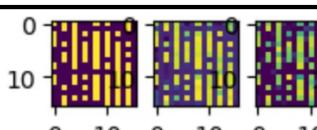
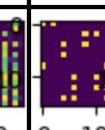
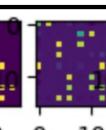
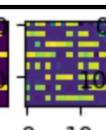
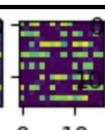
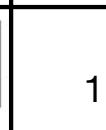
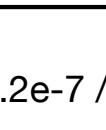
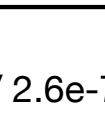
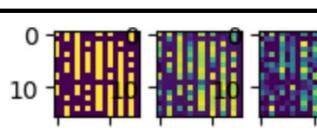
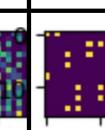
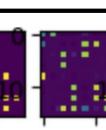
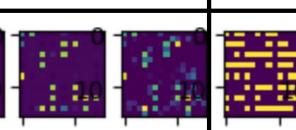
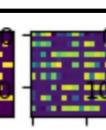
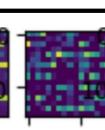
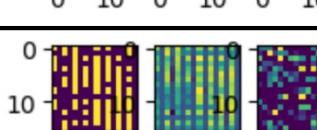
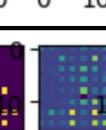
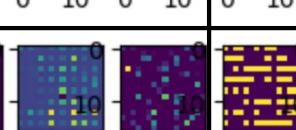
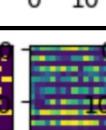
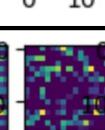
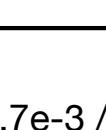
Step 2: Choose intersection point as a threshold in order to classify 0 & 1.

Step 3: Compute error rate for 0 & 1 (BER_0 and BER_1).

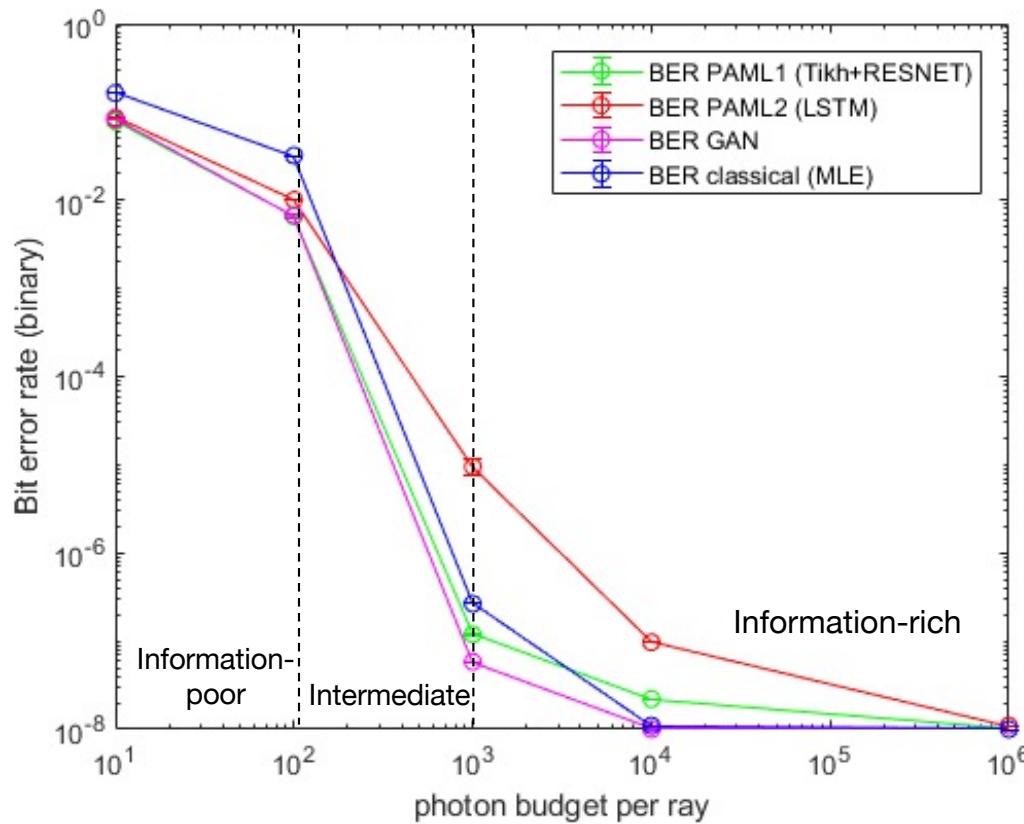


Reconstruction results

- 24 tomographic angles
- ± 90 deg

	Layer 1			Layer 2			Layer 3			Bit error rate (PAML / classical)
	Reference	PAML	Classical	Reference	PAML	Classical	Reference	PAML	Classical	
10^6 photons										$1e-8 / 1e-8$
10^4 photons										$2.2e-8 / 1.1e-8$
10^3 photons										$1.2e-7 / 2.6e-7$
10^2 photons										$6.5e-4 / 3.2e-2$
10^1 photons										$7.7e-3 / 1.6e-1$

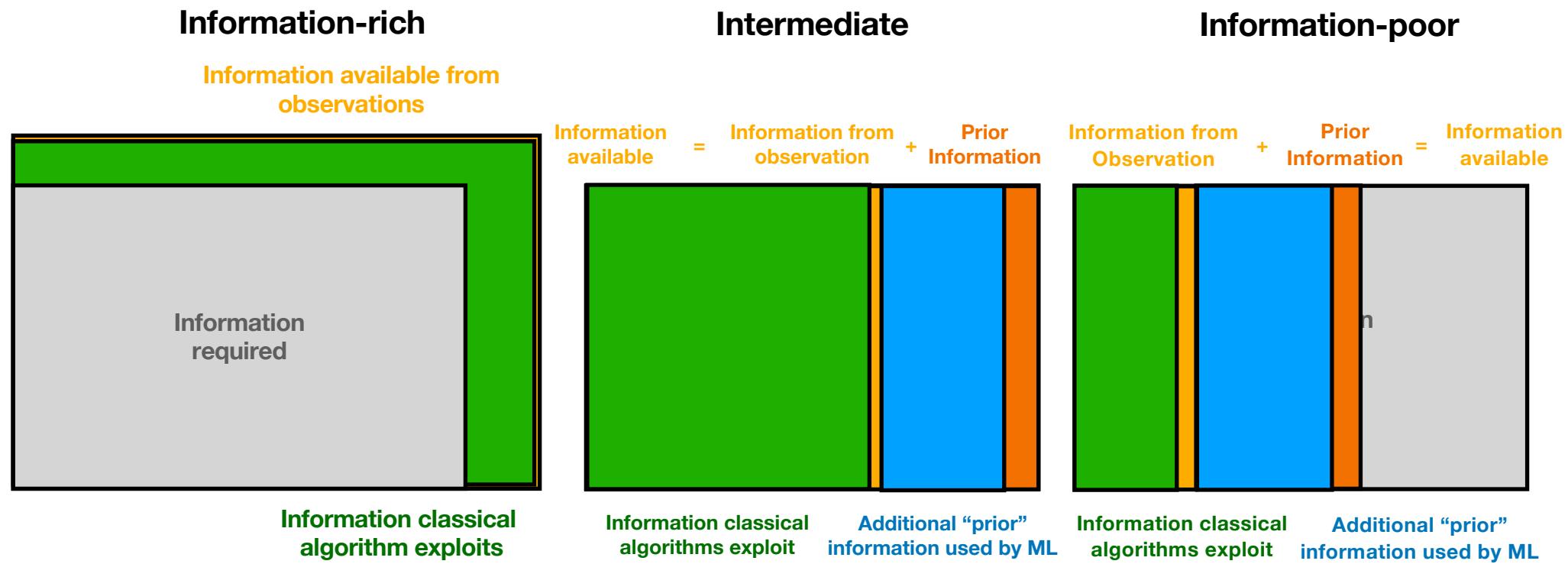
Performance summary



- **Information-rich**: classical maximum-likelihood and machine learning (ML) algorithms show comparable performance.
- **Intermediate**: ML starts to excel. Compromise between accuracy and dwell time
- **Information-poor**: ML algorithms show ~ 5 x improved error rates at low photon budget (< 100).

Information-theoretic bound for imaging

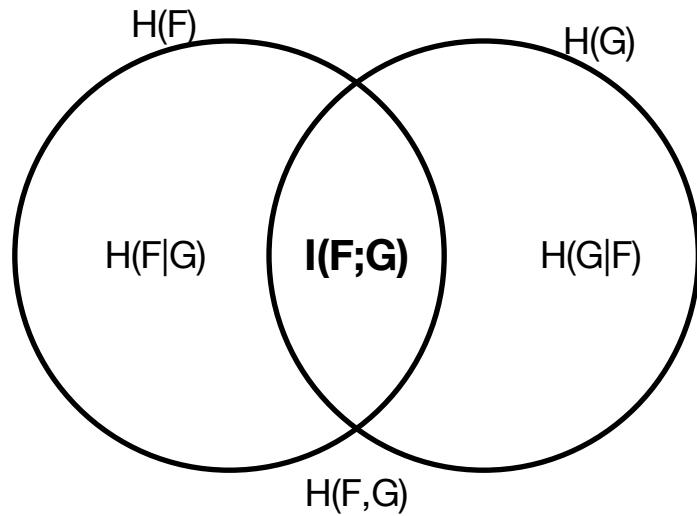
How much information can we retrieve from imaging?



How can we compute total amount of “available information”?

Information-theoretic bound for imaging

Mutual information



- $C = I(F; G) = H(F) - H(F|G) = I(G; F) = H(G) - H(G|F)$
- $H(F)$: Entropy, total amount of information to be retrieved in 3D circuits
- $H(F|G)$: Conditional entropy
 - $H(F|G) = 0$: Perfect imaging (measurement G fully retrieves information in F)
 - $H(F|G) > 0$: Imperfect imaging (measurement G can't fully retrieved information in F)

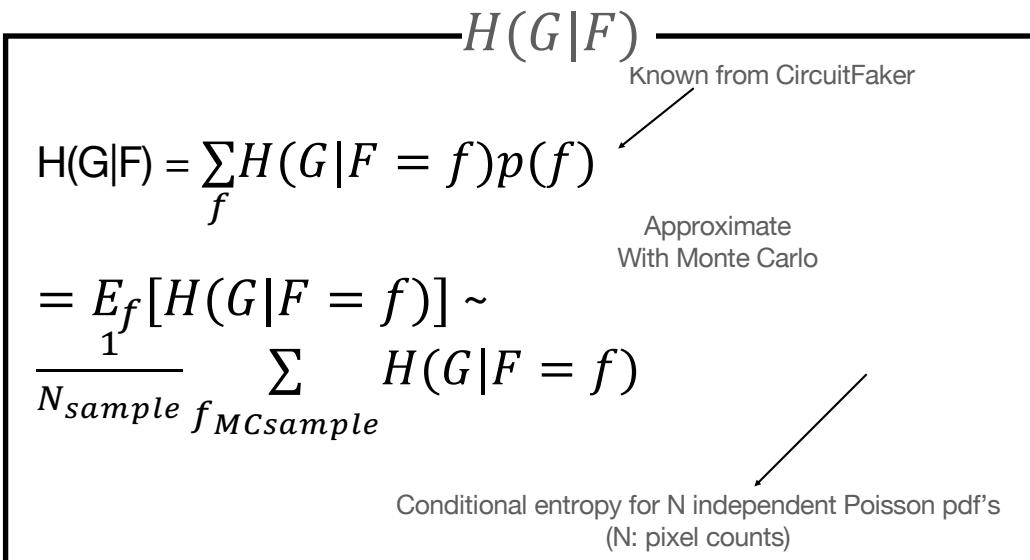
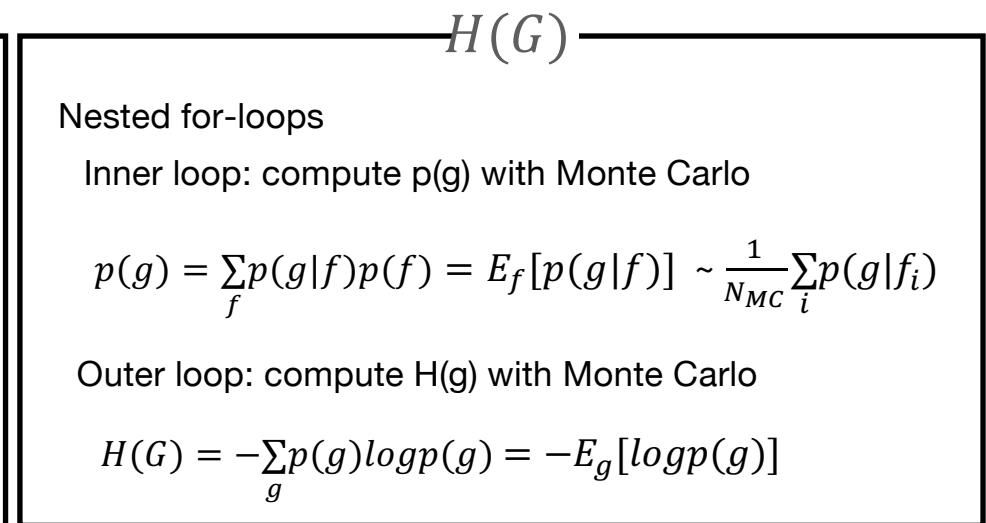
Residual uncertainty:

<p>16 x 16 x 11 rays +/-75 deg 100 photons</p> <p>Information Available: 120.8 bits</p>	<p>16 x 16 x 4 circuit</p> <p>Information required: 185.5 bits</p>
---	--

$$1 - \frac{I(F; G)}{H(F)} = 1 - \frac{2018}{185} = 0.895$$

Computation of $I(G; F) = H(G) - H(G|F)$

Monte Carlo approximation



For loop:

Sample circuit, f

Compute conditional entropy $H(G|F = f)$

End

Average over $H(G|F = f)$ to compute $H(G|F)$

Outer for-loop:

Inner for-loop:

1. sample f

2. compute $p(g|f)$'s using sampled f

end

Average over $p(g|f)$ to compute $p(g)$ (Bayes' rule + MC integration)

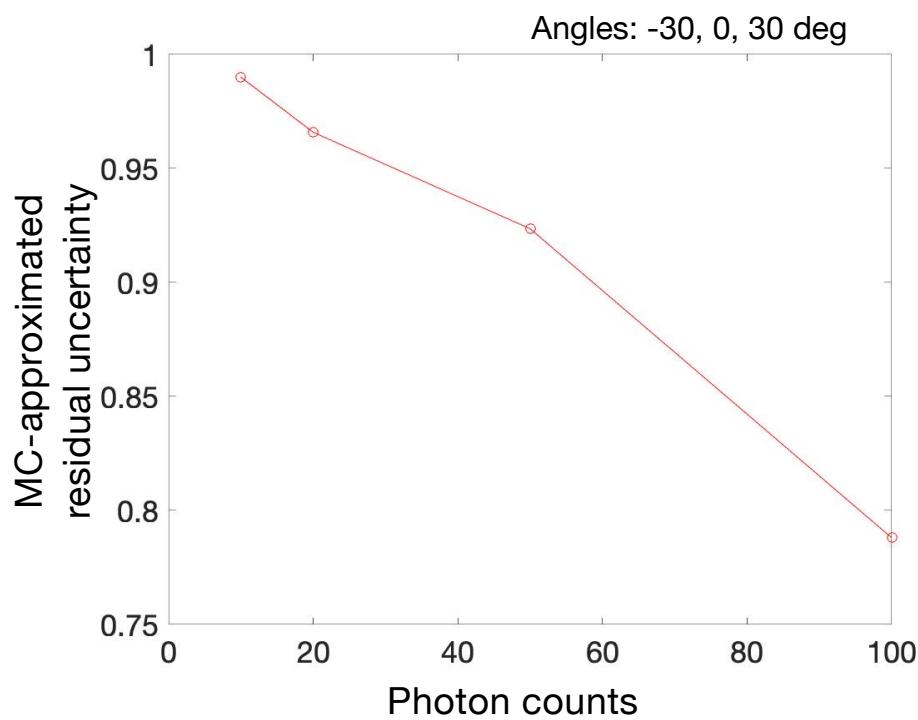
end

Average of $-\log(p(g))$'s to compute $H(g)$ (MC integration)

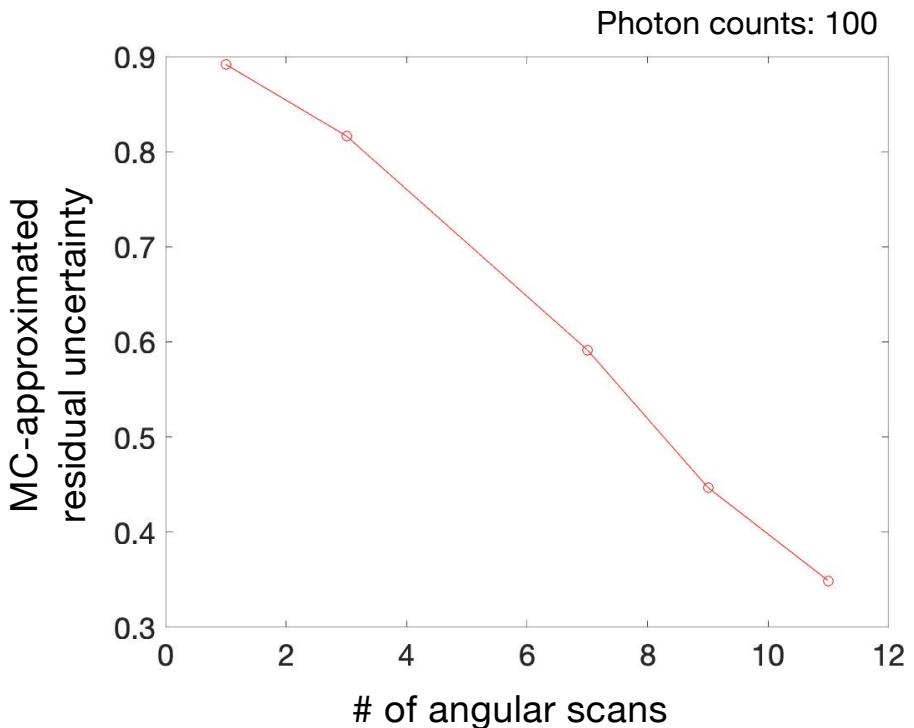
Example computation

Theoretical bound for BER in reconstruction of $16 \times 16 \times 4$ circuits

1) Changing photon counts



2) Changing number of scan



Summary

- Categorized imaging problem according to amount of information available: information-rich, intermediate, and information-poor.
- In information-rich regime, no gain from using ML compared to maximum-likelihood algorithm.
- In information-poor regime, ML excels maximum-likelihood algorithm by exploiting prior information, but not accurate enough for practical use.
- In intermediate regime, ML help reduce efforts in observations (e.g. reduce scan time) without compromising accuracy and practicality.
- Information-theoretic bound can be computed using mutual information and Monte Carlo approximation.