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Overview
Develop inverse algorithms for x-ray imaging 3D integrated circuits

Collaboration between 
MIT, NIST, and Sandia National Laboratory

• How much information is required for 3D imaging?
• How do machine learning algorithms perform compared to classical maximum-

likelihood estimation algorithm?
- information-rich, intermediate, and information-poor

• What is an information-theoretic bound for imaging, and how can we compute it?
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Questions to address



Research routine

• Generate binary circuits

• Compute entropy of the circuit

• Tomographic measurements

• Control photon budget 
(Information-rich, intermediate, 

information-poor)

Layer 1 Layer 2

Layer 3 Layer 4

Computational 
inverse

Noisy 
measurements

Accurate
Reconstruction

• Maximum-likelihood (classical algorithm)
• Physics-assisted machine learning (PAML)
• Generative adversarial network (GAN)

Generate fake 3D circuits Simulate x-ray imaging of 3D integrated circuits

Design inverse algorithms Performance test (classical vs ML)

• Define evaluation criteria: bit error rate
• Compare classical vs ML algorithms
• Find information-rich, intermediate, and 

information-poor regime

CircuitFaker

Acknowledgement: Dr. Courtenay Vaughn

Cu
SiO2

Compute information bound

• Mutual information
• Monte Carlo approximation
• Theoretic bound in reconstruction quality at a

given photon budget

Collaboration between 
MIT, NIST, and Sandia National Laboratory
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Step 3: Connect vertically with vias

`
• Generate binary circuits (Cu or SiO2) that emulate real-world integrated circuits
• Can compute amount of information within the circuit

Layer 1
(vertical wire)

Layer 2
(vias)

Layer 3
(horizontal 

wire)

Layer 1 Layer 2

Layer 3 Layer 4

CircuitFaker: generate circuit with pre-defined design rule

Step 1: Seed layers
Sequence

N Bernoulli trials
Step 2: Wire the odd layers 

vertically/horizontally 𝑚! Bernoulli trials
(j=x,y,z)

Information 
required 185.5 bits

For 16 x 16 x 4 circuits according 
to circuitFaker

Example computation



Simulate x-ray imaging of 3D integrated circuit

𝑙𝑜𝑔(𝑁!/𝑔") = 𝐻𝑓

𝐻: ray propagation operator (distance the ray travels inside each voxel)
𝑓: 3D circuit (attenuation coefficient)
𝑁!: Initial number of photons per ray
𝑔" : Poisson-contaminated measurements

Linear system

Attenuation of x-ray (no scattering)

𝑔" = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁#𝑒$%&)

Electrons

Fluorescent 
x-rays

CameraMetal 
target Rotation scan

Inversion

• Reduce angular scan range (reduce dimensions of 𝑔")

• Reduce photon budget (𝑁#)

Imaging conditions



Machine learning algorithms development
Reconstruction +

generative adversarial network 
(GAN) denoising

Approach 1:  Physics-assisted machine learning

𝑓
̂
= 𝑎𝑟𝑔𝑚𝑖𝑛" ∥ 𝐇𝐟 − 𝐠 ∥## +𝛼 ∥ 𝑓 ∥$

𝑓!"#
̂
= 𝑃𝑟𝑜𝑥[(𝛼𝐻%𝑙𝑜𝑔(𝑁&/𝑔') + (𝐼 − 𝛼𝐻%𝐻)𝑓!

̂
] = 𝐿𝑆𝑇𝑀[(𝛼𝐻%𝑙𝑜𝑔(𝑁&/𝑔') + (𝐼 − 𝛼𝐻%𝐻)𝑓!

̂
)]

Long term
short memory

(LSTM)

Approach 2: 

Rivenson et al, Light 7, 17141, 2018
Goy et al, Phys Rev Le- 121:243902, 2018

Noisy
reconstruction 

Ẋ

Enhanced IC 
layout Y

G: X --> Y 

16 x 16 x 12

D: 0 or 1 

Ground truth 
object Y

gradient 
update

Discriminator 
(CNN classifier) 

16 x 16 x 12

circuit-cGAN autoencoder architecture
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(e.g. MLE)
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Clean
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Circuit
estimate

a) Approximant-based

b) Iterative shrinkage algorithm with LSTM



Maximum likelihood classifier

Threshold
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1
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Step 1: Compute 𝑝(𝑓 = 0|𝑓
̂
) and 𝑝(𝑓 = 1|𝑓

̂
).

𝑝(𝑓 = 0|𝑓
̂
) = 𝑝(𝑓

̂
|𝑓 = 0)𝑝! : Likelihood for 0

𝑝(𝑓 = 1|𝑓
̂
) = 𝑝(𝑓

̂
|𝑓 = 1)𝑝3 : Likelihood for 1

𝑝(𝑓 = 0|𝑓
̂
) > 𝑝(𝑓 = 1|𝑓

̂
) : Classify as 0

𝑝(𝑓 = 0|𝑓
̂
) < 𝑝(𝑓 = 1|𝑓

̂
) : Classify as 1

Step 2: Choose intersection point as a threshold in order to classify 0 & 1.

Step 3: Compute error rate for 0 & 1 (𝐵𝐸𝑅! and 𝐵𝐸𝑅").

Step 4: Derive (total) bit error rate: 𝐵𝐸𝑅 = 𝐵𝐸𝑅!𝑝! + 𝐵𝐸𝑅3𝑝3

𝑝#, 𝑝': Prior distribution of 0 and 1 in ICs

Bit error rate: evaluation criteria
Frequency of wrong predictions in classifying materials in IC voxels

Regressed values

10 0.50.25 0.75



Reconstruction results

102 photons

101 photons

104 photons

103 photons

Layer 1 Layer 2 Layer 3 Bit error rate
(PAML / classical)

106 photons 1e-8 / 1e-8

2.2e-8 / 1.1e-8

1.2e-7 / 2.6e-7

6.5e-4 / 3.2e-2

7.7e-3 / 1.6e-1

Reference PAML ClassicalReference PAML ClassicalReference PAML Classical

• 24 tomographic angles
• +/-90 deg



Performance summary

Information-
poor Intermediate

Information-rich

• Information-rich: classical maximum-likelihood and machine 
learning (ML) algorithms show comparable performance.

• Intermediate: ML starts to excel. Compromise between 
accuracy and dwell time

• Information-poor: ML algorithms show ~5x improved error 
rates at low photon budget (<100).



Information available from 
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Information classical
algorithm exploits
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Observation
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required

Information-theoretic bound for imaging
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required

Intermediate
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Information classical
algorithms exploit

Information classical
algorithms exploit

Prior
Information

Information 
available = + Prior

Information
Information 

available=+

How much information can we retrieve from imaging?

How can we compute total amount of “available information”?

Additional “prior” 
information used by ML

Additional “prior” 
information used by ML



Information-theoretic bound for imaging

H(F) H(G)

H(G|F)H(F|G) I(F;G)

H(F,G)

• 𝐶 = 𝐼(𝐹; 𝐺) = 𝐻(𝐹) − 𝐻(𝐹|𝐺)
= 𝐼(𝐺; 𝐹) = 𝐻(𝐺) − 𝐻(𝐺|𝐹)

• 𝐻(𝐹): Entropy, total amount of information to be retrieved in 3D circuits

• 𝐻(𝐹|𝐺) : Conditional entropy

Information required: 185.5 bits
16 x 16 x 4 circuit

Mutual information

𝐻(𝐹|𝐺) = 0 : Perfect imaging (measurement G fully retrieves information in F)
𝐻(𝐹|𝐺) > 0 : Imperfect imaging (measurement G can’t fully retrieved information in F)

Residual uncertainty:

1 −
𝐼(𝐹; 𝐺)
𝐻(𝐹)

16 x 16 x 1 rays
Normal incidence

100 photons

Information
Available: 20.11 bits

= 1−
20.1
185 = 0.89

16 x 16 x 7 rays
+/- 45 deg

100 photons

Information
Available: 75.77 bits

= 1−
20.1
185 = 0.59

16 x 16 x 11 rays
+/-75 deg

100 photons

Information
Available: 120.8 bits

= 1−
120.8
185 = 0.35



Computation of 𝐼(𝐺;𝐹) = 𝐻(𝐺) − 𝐻(𝐺|𝐹)
Monte Carlo approximation 

H(G|F) = ∑
@
𝐻(𝐺|𝐹 = 𝑓)𝑝(𝑓)

= 𝐸%[𝐻(𝐺|𝐹 = 𝑓)] ~ 
A

B#$%&'(
∑

@)*#$%&'(

𝐻(𝐺|𝐹 = 𝑓)

Conditional entropy for N independent Poisson pdf’s
(N: pixel counts)

Known from CircuitFaker

Approximate
With Monte Carlo

For loop:
Sample circuit, f
Compute conditional entropy𝐻(𝐺|𝐹 = 𝑓)

End
Average over 𝐻(𝐺|𝐹 = 𝑓) to compute𝐻(𝐺|𝐹)

𝐻(𝐺|𝐹) 𝐻(𝐺)

𝑝(𝑔) = ∑
4
𝑝(𝑔|𝑓)𝑝(𝑓) = 𝐸+[𝑝(𝑔|𝑓)] ~ 

"
,!"

∑
-
𝑝(𝑔|𝑓-)

Nested for-loops
Inner loop: compute p(g) with Monte Carlo

Outer loop: compute H(g) with Monte Carlo

𝐻(𝐺) = −∑
5
𝑝(𝑔)𝑙𝑜𝑔𝑝(𝑔)= −𝐸.[𝑙𝑜𝑔𝑝(𝑔)]

Outer for-loop:
Inner for-loop:

1. sample f
2. compute  p(g|f)’s using sampled f

end
Average over p(g|f) to compute p(g) (Bayes’ rule + MC integration)

end
Average of -log(p(g))’s to compute H(g) (MC integration)



Example computation
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Photon counts

Angles: -30, 0, 30 deg

# of angular scans

Photon counts: 100
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1) Changing photon counts 2) Changing number of scan

Theoretical bound for BER in reconstruction of 16 x 16 x 4 circuits



Summary

• Categorized imaging problem according to amount of information available: 
information-rich, intermediate, and information-poor.

• In information-rich regime, no gain from using ML compared to maximum-likelihood 
algorithm.

• In information-poor regime, ML excels maximum-likelihood algorithm by exploiting 
prior information, but not accurate enough for practical use.

• In intermediate regime, ML help reduce efforts in observations (e.g. reduce scan 
time) without compromising accuracy and practicality.

• Information-theoretic bound can be computed using mutual information and Monte 
Carlo approximation.


