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Information-based approach towards imaging

Classification of imaging problems based on information amount
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Overview

Develop inverse algorithms for x-ray imaging 3D integrated circuits
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Questions to address
 How much information is required for 3D imaging?
 How do machine learning algorithms perform compared to classical maximum-
likelihood estimation algorithm?
- information-rich, intermediate, and information-poor
« What is an information-theoretic bound for imaging, and how can we compute it?



Research routine
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Generate fake 3D circuits

CircuitFaker

— Simulate x-ray imaging of 3D integrated circuits —
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* Tomographic measurements
» Control photon budget

(Information-rich, intermediate,
] information-poor)
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~——Design inverse algorithms ——

Noisy Accurate

measurements . Reconstruction
Computational
inverse

*  Maximume-likelihood (classical algorithm)
* Physics-assisted machine learning (PAML)

Performance test (classical vs ML)

* Generative adversarial network (GAN)
- J

» Define evaluation criteria: bit error rate

» Compare classical vs ML algorithms

* Find information-rich, intermediate, and
information-poor regime
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~—1Compute information bound —

* Mutual information

* Monte Carlo approximation

* Theoretic bound in reconstruction quality at a
given photon budget




CircuitFaker: generate circuit with pre-defined design rule

» Generate binary circuits (Cu or SiO2) that emulate real-world integrated circuits
« Can compute amount of information within the circuit

Sequence
Step 1: Seed layers N Bernoulli trials
Layer 1 Step 2: Wire the odd layers o
(vertical wire) vertically/horizontally m; Bernoulli trials

(=x,y,2)

Step 3: Connect vertically with vias

.
H .:E Laver 1 Laver 2 Example computation

Layer 2 il H For 16 x 16 x 4 circuits according
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Simulate x-ray imaging of 3D integrated circuit
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Imaging conditions

Attenuation of x-ray (no scattering)

gp = Poisson(Nge ™) » log(No/gp) = Hf

= Inversion

Linear system

H: ray propagation operator (distance the ray travels inside each voxel)
f: 3D circuit (attenuation coefficient)

Ny: Initial number of photons per ray

gp: Poisson-contaminated measurements

* Reduce angular scan range (reduce dimensions of g;)

* Reduce photon budget (Nj)



Machine learning algorithms development

Reconstruction +
Approach 1: Physics-assisted machine learning Approach 2: generative adversarial network

(GAN) denoising
a) Approximant-based
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circuit-cGAN autoencoder architecture
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Bit error rate: evaluation criteria

Frequency of wrong predictions in classifying materials in IC voxels

Maximum likelihood classifier

Step 1: Compute p(f = 0|f) and p(f = 1|f).
p(f =0|f) =p(f|f = 0)p, : Likelihood for 0 =
. ) >
p(f = 1|f) = p(fIf = 1)p; : Likelihood for 1 8
i Threshold
pU = Olf) > p(f N 1|f)Pr|%|ra<Sj?grl Bution of 0 and 1 in ICs :
p(f =0|f) < p(f = 1|f) : Classify as 1 - I
_ 1
, , _ , , 0 0.25 0.5 0.75 1
Step 2: Choose intersection point as a threshold in order to classify 0 & 1.

Regressed values
Step 3: Compute error rate for 0 & 1 (BER, and BER;).



Reconstruction results

* 24 tomographic angles

* +/-90 deg
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Bit error rate (binary)

Performance summary
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Information-rich: classical maximume-likelihood and machine
learning (ML) algorithms show comparable performance.

Intermediate: ML starts to excel. Compromise between
accuracy and dwell time

Information-poor: ML algorithms show ~5x improved error
rates at low photon budget (<100).



Information-theoretic bound for imaging

How much information can we retrieve from imaging?

Information-rich Intermediate Information-poor

Prior Prior
Information Information

Information
required
Information classical Information classical Additional “prior” Information classical  Additional “prior”
algorithm exploits algorithms exploit  information used by ML  algorithms exploit information used by ML

How can we compute total amount of “available information”?



Information-theoretic bound for imaging

Mutual information

e C=I(F;G)=H(F)—H(F|G)
=I1(G;F)=H(G) — H(G|F)
® H(F): Entropy, total amount of information to be retrieved in 3D circuits
® H(F|G) : Conditional entropy
H(F|G) = 0 : Perfect imaging (measurement G fully retrieves information in F)
H(F|G) > 0 : Imperfect imaging (measurement G can’t fully retrieved information in F)
H(F,G) Residual uncertainty:
I(F;G)
16 x 16 x 11 rays — H(F)
+/=75 deg 16 x 16 x 4 circuit
100 photons 20018
Information required: 185.5 bits =1 - —=0(895
Information 185
Available: 120.8 bits




Computation of [(G; F) = H(G) — H(G|F)

Monte Carlo approximation

H(GIF) = ;H(GIF = pr(f)

H(G|F)

Known from CircuitFaker

Approximate
With Monte Carlo

= E[H(GIF = f)] -

N
sample fMCsample

>, HGIF=f) /

Conditional entropy for N independent Poisson pdf’s

(N: pixel counts)

H(G)

Nested for-loops
Inner loop: compute p(g) with Monte Carlo

p@) = 2p@INP() = Erlp(gIN] ~ 5 -Tp(9lf)

Outer loop: compute H(g) with Monte Carlo

H(G) = —%p(g)logp(g) = —E4[logp(9)]

For loop:
Sample circuit, f

Compute conditional entropy H(G|F = f)

End

Average over H(G|F = f) to compute H(G|F)

Outer for-loop:
Inner for-loop:
1. sample f
2. compute p(glf)’s using sampled f
end
Average over p(glf) to compute p(g) (Bayes’ rule + MC integration)
end
Average of -log(p(g))’s to compute H(g) (MC integration)




Example computation

Theoretical bound for BER in reconstruction of 16 x 16 x 4 circuits
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Summary

* Categorized imaging problem according to amount of information available:
information-rich, intermediate, and information-poor.

* In information-rich regime, no gain from using ML compared to maximum-likelihood
algorithm.

* In information-poor regime, ML excels maximum-likelihood algorithm by exploiting
prior information, but not accurate enough for practical use.

* In intermediate regime, ML help reduce efforts in observations (e.g. reduce scan
time) without compromising accuracy and practicality.

* Information-theoretic bound can be computed using mutual information and Monte
Carlo approximation.



