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- Nonlocal models, acting at a lengthscale 4, are widely used in
engineering and scientific application[1]. The use of
integro-differential equations instead of PDE leads to greater
flexibility[2].

Nonlocal Poisson’s equation:

2 [A(x, YV Y)(U(Y) — ux)dy = f(x), x.y € RY

Local Poisson’s equation:
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- The nonlocal kernel defining the nonlocal operator is usually
unknown. We use a data-driven learning method as in [1], used
to investigate wave propagation in structural materials, to learn
the functional form of nonlocal kernel in disordered materials.

- In this project we treat the presence of disordered
microstructure by introducing randomness in our model, so that
the material properties are treated as random fields.

material 1 material 2

Figure 1: One-dimensional bar with periodic microstructure.
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In the learning procedure, we generate the training data set by using Direct
Numerical Simulations (DNS)[3] of wave propagation through a
heterogeneous elastic bar.

Material 1 Material 2

Figure 2: One-dimensional bar with disordered microstructure.

PRELIMINARY STUDY: solve the learning problem in a deterministic setting
(absence of randomness).

In Figure 2, we report an example of the type of materials considered in this
study. While one single microstructure is used for training, different
microstructures will be considered for validation purposes.
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Define a set of materials parameterized by the disorder parameter D € [0, 1] such that

each layer in material 1 or 2 has sizew ~ U((1 —
@A, where X is the mean period of the microstructure. In our

W1 :(1 —¢)A, Wy =

experiments we set L=0.2 (the bar length), E1=1, E,

D)w;, (1 + D)w;), where i = 1,2 and

=0.25 (the Young's Modulus),

p=1 (the density), and the symmetric domain Q=(—b, b) (the spatial domain
representing the bar). Two types of data are used for training:

- 1) Oscillating source. We set b = 50, v(x,0) = u(x,0) = 0,

t—1

fix,t)= e’(%)ze_(To

) cos? (%), k=1,2,...,20,tg =t, = 0.8.

- 2) Plane wave. For b = 50, f(x,t) = 0 and u(x, 0) = 0, we prescribe

v(—b,t) = sin(wt) forw = 0.35,0.7, - - -

,3.85.

Il

s “\W\

228 ‘

* MH\\H\
P \ .

:w“ J 11

o—i
o s w @ o

3 W

a0

5

02

o4 f

M‘ il Ml{
M

“91‘\" h"
HM ‘W
h‘

‘\
“ 3n o

002

Sandia
National
Laboratories


Stamp


Sandia
m National

Laboratories

Nonlocal Kernel Learning



Stamp


Sandia

Nonlocal Kernel Learning Natoral

Laboratories

- Assume that we have the following high-fidelity (HF) model
which can represent the ground truth solution of the system:

’u
W(X7 t) — Lur[u](x, t) = f(x, 1). ()

- We propose a nonlocal model to approximate the HF model:

o%u

ﬁ(x, t) _»CK[U](X’ t) :f(X7 t)? (2)

where

LUl t) = /ﬁ K(x—y) W) —u(e ) dy. ()
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- We represent K as a linear combination of Bernstein basis
polynomials:

K(x—y)) = ZW mM<ﬂ;y’). (4)

where the Bernstein basis functions are defined as

Bmm(x) = (g) XM(1 = x)M=m

for 0 < x <1and where C,, € R.

- Learning procedure: seek for parameters C,, of the nonlocal
operator whose nonlocal solution U is as close as possible to
the HF data (DNS).

1
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Numerical Result
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When learning material properties in the context of wave
propagation, it is fundamental to recover the group wave velocity
(GWV) accurately. The GWV for a disordered microsturcture will
decrease to 0 rapidly when reaching a specific frequency, see Figure
3 where the GWV over 3 different samples are reported.
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Figure 3: Group wave velocity for different samples.
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Experiment settings:

- The microstructure is fixed. The random seed used to generate

the microstructure is chosen to be the same as sample 1in
Figure 3.

- All the 20 samples of waves from oscillating source and 11
samples of waves from plane wave are used for training
procedure.

- In the first test, we set §=0.6 and regularization parameter =0.1.

In the second one, we set §=0.9 and regularization parameter
e=0.1.

14


Stamp


Learning Results for one microstructure Nonora

Laboratories

)
group vbelocty
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(a) Optimal kernel (b) Dispersion curve (c) Group velocity

Figure 4: Disordered material, 6=0.6, =01
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Figure 5: Disordered material, §=0.9, €=01
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Figure 6: Case 10, oscillating source with k = 10.


Stamp


comparison between numerical solution and DNS data Netora

Laboratories

0.18 ‘ — = = -result 0.16 1 ’»U — =~ result
ows“\‘ \" I 1 ot ;ﬁjl“\”lw
one “‘U\\w‘\ ] or ‘\ﬁ{!n‘ﬂ‘\\\“hl"\"
‘
\ A | aaf{ [N
A T
01 ‘ H‘ Il ‘ ‘\ 008 MJ}‘ il “l‘ “‘
AT R
eanll | M‘M‘;\ el LYV
- \‘M‘i“h\‘\\‘u o HHH
IR !
nm“”“w‘\‘“\‘ ‘J‘J‘ 002 H
002 J \; “ ‘} | \ o
0—50 40 -30 -20 -10 0 10 20 30 40 50 B 0260 -40 -30 -20 -10 0 10 20 30 40 50
(a) t=0.2s (b) t=2.0s

Figure 7: Case 23, plane wave with w = 1.05.
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Figure 8: Case 31, plane wave with w = 3.85.
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Process:

- We investigate the properties of wave propagation in different
samples of disordered materials.

- The optimal kernel for a specific microstructure is derived,
which could be used as a starting point for an uncertainty
quantification algorithm (e.g. MCMC).

Future Work:

- We need to better understand the mechanism behind the
mismatch of GWV, and the reason why we still do a good job
even if the optimal kernel does not recover the correct GWV.

- After fully understanding the deterministic problem, we will
apply an MCMC algorithm to the probability distribution of the
nonlocal kernel.
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Thank you! Questions?
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