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Introduction

• Nonlocal models, acting at a lengthscale δ, are widely used in
engineering and scientific application[1]. The use of
integro-differential equations instead of PDE leads to greater
flexibility[2].
Nonlocal Poisson’s equation:

2
∫
d
A(x, y)γ(x, y)(u(y)− u(x))dy = f(x), x, y ∈ Rd.

Local Poisson’s equation:

−∇ · (a(x)∇(u(x))) = f(x)
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Introduction

• The nonlocal kernel defining the nonlocal operator is usually
unknown. We use a data-driven learning method as in [1], used
to investigate wave propagation in structural materials, to learn
the functional form of nonlocal kernel in disordered materials.

• In this project we treat the presence of disordered
microstructure by introducing randomness in our model, so that
the material properties are treated as random fields.

Figure 1: One-dimensional bar with periodic microstructure.
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High-fidelity data

In the learning procedure, we generate the training data set by using Direct
Numerical Simulations (DNS)[3] of wave propagation through a
heterogeneous elastic bar.

Figure 2: One-dimensional bar with disordered microstructure.

PRELIMINARY STUDY: solve the learning problem in a deterministic setting
(absence of randomness).

In Figure 2, we report an example of the type of materials considered in this
study. While one single microstructure is used for training, different
microstructures will be considered for validation purposes.
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High-fidelity data

Define a set of materials parameterized by the disorder parameter D ∈ [0, 1] such that
each layer in material 1 or 2 has size w ∼ U((1−D)wi, (1+D)wi), where i = 1, 2 and
w1 = (1− ϕ)λ, w2 = ϕλ, where λ is the mean period of the microstructure. In our
experiments we set L=0.2 (the bar length), E1=1, E2=0.25 (the Young’s Modulus),
ρ=1 (the density), and the symmetric domain Ω=(−b, b) (the spatial domain
representing the bar). Two types of data are used for training:

• 1) Oscillating source. We set b = 50, v(x, 0) = u(x, 0) = 0,

f(x, t)= e−( 2x
5kL )

2
e
−
(
t−t0
tp

)2

cos2
( 2πx
kL

)
, k = 1, 2, . . . , 20, t0 = tp = 0.8.

• 2) Plane wave. For b = 50, f(x, t) = 0 and u(x, 0) = 0, we prescribe
v(−b, t) = sin(ωt) for ω = 0.35, 0.7, · · · , 3.85.

8

Stamp



Nonlocal Kernel Learning

Stamp



Nonlocal Kernel Learning

• Assume that we have the following high-fidelity (HF) model
which can represent the ground truth solution of the system:

∂2u
∂t2 (x, t)− LHF[u](x, t) = f(x, t). (1)

• We propose a nonlocal model to approximate the HF model:

∂2u
∂t2 (x, t)− LK[u](x, t) = f(x, t), (2)

where

LK[u](x, t) =
∫
Ω

K(|x− y|) (u(y, t)− u(x, t)) dy. (3)
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Nonlocal Kernel Learning

• We represent K as a linear combination of Bernstein basis
polynomials:

K (|x− y|) =
M∑

m=0

Cm
δd+2

Bm,M

(����x− y
δ

����). (4)

where the Bernstein basis functions are defined as

Bm,M(x) =
(
M
m

)
xm(1− x)M−m

for 0 ≤ x ≤ 1 and where Cm ∈ R.
• Learning procedure: seek for parameters Cm of the nonlocal
operator whose nonlocal solution ū is as close as possible to
the HF data (DNS).
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Numerical Result
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Group Wave Velocity from Disordered DNS data

When learning material properties in the context of wave
propagation, it is fundamental to recover the group wave velocity
(GWV) accurately. The GWV for a disordered microsturcture will
decrease to 0 rapidly when reaching a specific frequency, see Figure
3 where the GWV over 3 different samples are reported.

Figure 3: Group wave velocity for different samples.
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Learning Results for one microstructure

Experiment settings:

• The microstructure is fixed. The random seed used to generate
the microstructure is chosen to be the same as sample 1 in
Figure 3.

• All the 20 samples of waves from oscillating source and 11
samples of waves from plane wave are used for training
procedure.

• In the first test, we set δ=0.6 and regularization parameter ϵ=0.1.
In the second one, we set δ=0.9 and regularization parameter
ϵ=0.1.
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Learning Results for one microstructure

(a) Optimal kernel (b) Dispersion curve (c) Group velocity

Figure 4: Disordered material, δ=0.6, ϵ=0.1
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Learning Results for one microstructure

(a) Optimal kernel (b) Dispersion curve (c) Group velocity

Figure 5: Disordered material, δ=0.9, ϵ=0.1
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comparison between numerical solution and DNS data

(a) t=0.2s (b) t=2.0s

Figure 6: Case 10, oscillating source with k = 10.
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comparison between numerical solution and DNS data

(a) t=0.2s (b) t=2.0s

Figure 7: Case 23, plane wave with ω = 1.05.
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comparison between numerical solution and DNS data

(a) t=0.2s (b) t=2.0s

Figure 8: Case 31, plane wave with ω = 3.85.
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Conclusion

Process:

• We investigate the properties of wave propagation in different
samples of disordered materials.

• The optimal kernel for a specific microstructure is derived,
which could be used as a starting point for an uncertainty
quantification algorithm (e.g. MCMC).

Future Work:

• We need to better understand the mechanism behind the
mismatch of GWV, and the reason why we still do a good job
even if the optimal kernel does not recover the correct GWV.

• After fully understanding the deterministic problem, we will
apply an MCMC algorithm to the probability distribution of the
nonlocal kernel.
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Thank you! Questions?
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