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ABSTRACT 

This paper provides a continuation of the results and efforts to continuously maintain and use a fleet of 120 detailed Building Energy Models (BEM) of 
the Sandia National Laboratories New Mexico and California sites. The fleet has continued to be used in new applications beyond its 1st round of site-
wide energy retrofit and climate assessments in 2014-2017. These include resilient energy systems assessments in 2018-2019 and institutional peak electric 
load characterization in 2020. The most recent work is a 2nd round site-wide energy retrofit assessment that is being planned. This paper shows the 10 
step procedure planned for this 2nd assessment and contrasts it to the 1st round of institutional energy retrofit analyses. The procedure involves calculating 
difference metrics between the various steps in the procedure that highlight the accuracy of the energy retrofit decisions being made. Here, energy retrofit 
decisions involve deciding what specific building and energy retrofit is the next best choice based on metrics such as total energy saved, carbon offset, or energy 
cost savings minus the energy retrofit implementation cost. The first difference metric 𝛥𝛥11 assesses the robustness of energy retrofit decisions with respect to 
historical, climate change, and extreme event weather futures, the second 𝛥𝛥15 assesses the robustness of energy retrofit decisions by comparing results before 
and after BEM calibration. This provides information that helps to show if the retrofit is very sensitive to other BEM input parameters that are also 
uncertain. The third metric 𝛥𝛥19 involves empirical validation of energy savings or other metrics used based on actual metered results. A demonstration of 
calculating 𝛥𝛥11 shows how important climate and future weather is to energy retrofit decisions for a 96 BEM study with 2 energy retrofits involving roof 
insulation and external wall insulation. Weather files for 2017-2020, Typical Meteorologic Year 3 (TMY3), and 3 extreme event scenarios were included 
for different weather futures. The results show that variations in energy savings are significant and the optimal decision set with baseline year 2020 is only 
stable to 30 decisions of the 192 potential energy retrofit decisions. This shows that using a single weather future is likely to lead to sub-optimal choices.     

INTRODUCTION  

Energy efficiency (EE) is an important part of a clean-energy, carbon-balanced future. Studies are increasingly 
focused on the complex tradeoffs between EE and renewables (Alqahtani and Patino-Echeverri, 2019; Almasari et. al., 
2021). Sustainability of materials and renewables versus EE are important as well (Oliveira et. al., 2021). Depending on 
the situation, EE ranges from being the best investment in terms of life cycle cost within interconnected systems to 
having high cost because there is minimal energy savings potential. Discerning the potential for energy savings can vary 
widely with slight differences in modeling approach. This is especially true for existing buildings where understanding 
the actual state of sub-systems within a building is difficult and costly to assess leaving a high probability of modeling 
errors.  
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Institutions that own hundreds to thousands of existing buildings face significant challenges in decision making 
concerning many issues interrelated with EE including: 1) How to perform energy retrofits within large groups of 
complex, aged buildings with on-going critical operations (Maia et. al., 2020); 2) How to address climate change (Villa, 
2021) and resilience (Jeffers et. al., 2020; Sun et. al., 2020) issues while performing energy retrofits; 3) How to understand 
tradeoffs between installing renewables to offset generation versus energy retrofits; 4) How to optimize decisions based 
on current and expected future energy prices; and 5) How to maximize occupant satisfaction and comfort before and 
after energy retrofits. Though studies concerning the aforementioned issues abound in the literature, combining all of 
them can become prohibitively difficult and is highly dependent on the priorities of a given institution.  

We propose that intensive modeling and data analytics should be united into a continuous process (Villa, 2019) 
to give actionable answers to many of these challenges. This is not achievable via conventional building energy modeling 
practices but requires automation of processes such as building energy model (BEM) calibration, weather data 
acquisition, running BEM, and post processing results. In accord with this proposition, Sandia National Laboratories 
(SNL) has invested since 2012 in a fleet of 120 BEM. The 120 BEM were wrapped into a software framework called 
Institutional Transformation (IX) and were used for a set of energy retrofit analyses that guided upper level management 
for SNL’s energy management goals. The final results of these energy retrofit analyses was a decision to reduce the EE 
goal of 25% reduction in energy use baselined to 2011 consumption to 19% because SNL would have to engage 
operational issues likely to interfere with institutional productivity and occupant comfort in addition to capital 
investment to achieve the goal. In making such a decision, EE was deprioritized and thermal comfort was given the 
highest value. Even so, the original analyses were undocumented and the results contained in spreadsheets were found 
to be significantly flawed with no documentation concerning compliance to ASHRAE Guideline 14 (G-14) (ASHRAE, 
2014). An audit of the 120 BEM found that 44 BEM had not been calibrated—including the entire California site of 23 
BEM and 39 did not meet G-14. Only 37 BEM complied to G-14 (Villa et. al., 2017). Five years later, SNL facilities has 
requested a second round of energy retrofit. These shortcomings have led to the design of a more thorough institution-
wide energy retrofit assessment that enables evaluation of accuracy and continued refinement of model inputs 
throughout the entire assessment cycle.  

The previous institution-wide energy retrofit assessment procedure did not convey any information concerning 
the certainty of the analysis provided. As seen by the region surrounded by red dashed lines in Figure 1, the original 
procedure involved running the DOE2 (Hirsch, 2021; York and Capiello, 1982) BEM models through several energy 
retrofit analyses in the IX software (Villa et. al., 2017). The results were accepted with no further scrutiny concerning 
the accuracy of the BEM predictions for each energy retrofit. Though this is not good modeling practice it is a ubiquitous 
error among inexperienced or hurried modelers that are under pressure. The failure to meet G-14 error metrics by the 
majority of the models previously discussed provides strong evidence that the certainty of the predictions were not very 
good. The new methodology, seen in the region surrounded by blue dashed lines in Figure 1, provides multiple steps 
that assist in assessing the stability and accuracy of energy retrofit decisions. This is especially important for cases where 
competing energy retrofits nearly tie with each other. If a near tie has high uncertainty, then there is little importance in 
choosing one retrofit over another and other considerations should guide the decision rather than the resulting energy 
savings. This new procedure greatly exceeds the requirements of G-14.  

This paper provides an overview of the procedure being proposed which combines manual BEM modeling 
practices and some new automated techniques. It then provides a demonstration for the first step of this process which 
involves precalibration analysis of two energy retrofits on 96 BEM and calculation of the decision priority metric Δ11.  

METHODS 

In this section, we provide details for each step of the new methodology seen in Figure 1 by the number within each 
rectangle. Rectangles denote procedure steps, ellipsoids represent data resources used in the assessment, and the lone 
diamond represents data products that inform the accuracy of the process. Though Figure 1 shows a once through cycle 
to emphasize the entire process, many feedback steps may be necessary as more is discovered. For example, Step 1 may 
be completed only to discover major flaws in a model in Step 2 requiring repetition of Step 1. This intensive repetition 



that can occur makes it critical that the calculations be automated. At SNL this has been handled by scripting the process 
in Python 3.8.5 (Python Software Foundation, 2021) heavily relying on the Numpy (Harris et. al., 2020), Pandas 
(McKinney, 2010) and Matplotlib (Hunter, 2007) libraries.  

Institutional Energy Retrofit Decision Metrics 

 A family of metric are derived here that guide the decisions needed for institutional energy retrofit assessments. 
The derivation involves the following steps: 1) A baseline weather year must be chosen that is assumed to represent the 
most probable future for the coming year. This can be the last year’s weather data if no better information is available. 
2) Energy savings need to be calculated. Energy savings are counted as the difference in energy between the BEM run 
without and with energy retrofit changes for a given weather history 𝑤𝑤. 

 Δ𝐸𝐸𝑠𝑠,𝑤𝑤,𝑏𝑏,𝑟𝑟 = 𝐸𝐸𝑠𝑠,𝑤𝑤,𝑏𝑏 − 𝐸𝐸𝑠𝑠,𝑤𝑤,𝑏𝑏,𝑟𝑟   (1) 
 
Here, 𝐸𝐸𝑠𝑠,𝑤𝑤,𝑏𝑏 is the total energy (sum of electric, gas, etc..) expended in 1 year by a building 𝑏𝑏 for weather history 𝑤𝑤 for 
the 𝑠𝑠𝑡𝑡ℎ step of this procedure. The 𝑟𝑟 index indicates what retrofit has been added to building 𝑏𝑏. The baseline weather 
file is designated as 𝜔𝜔. 3) The energy savings for the baseline year Δ𝐸𝐸𝑠𝑠,𝜔𝜔,𝑏𝑏,𝑟𝑟 must be sorted from greatest to least for all 
buildings, 𝑏𝑏, and energy retrofits, 𝑟𝑟, normalized by the area of the building (kWh/yr/m2 or BTU/yr/ft2). The resulting 
sets of indices form a set of decisions 𝐷𝐷 = { (𝑏𝑏1, 𝑟𝑟1), (𝑏𝑏2, 𝑟𝑟2), … , (𝑏𝑏𝑛𝑛, 𝑟𝑟𝑛𝑛)} where 𝑛𝑛 is the sum of the number of retrofits 
available over all buildings. These decisions contract the 𝑏𝑏 and 𝑟𝑟 indices into a single decision index 𝑑𝑑. This set of 
decisions, 𝐷𝐷, range from the best choice for energy retrofit and building (𝑑𝑑1) to the worst choice (𝑑𝑑𝑛𝑛) for the baseline 
weather 𝜔𝜔. A metric Δ1𝑠𝑠𝑤𝑤,𝑑𝑑 that enables evaluation of the level of variation across weather and decisions is shown below.   
 

 Δ1𝑠𝑠𝑤𝑤,𝑑𝑑 =
∑ 𝐴𝐴𝑘𝑘�Δ𝐸𝐸1,𝑤𝑤,𝑘𝑘−(1−𝛿𝛿1𝑠𝑠)Δ𝐸𝐸𝑠𝑠,𝑤𝑤,𝑘𝑘�
𝑑𝑑
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∑ 𝐴𝐴𝑘𝑘�Δ𝐸𝐸1,𝜔𝜔,𝑘𝑘−(1−𝛿𝛿1𝑠𝑠)Δ𝐸𝐸𝑠𝑠,𝜔𝜔,𝑘𝑘�
𝑑𝑑𝑛𝑛
𝑘𝑘=𝑑𝑑1

   (2) 

 
Here 𝛿𝛿 is the Kronecker delta and 𝐴𝐴𝑘𝑘 is the area of the building included in decision 𝑘𝑘. The areas are included to provide 
greater weight to decisions made concerning larger buildings. This metric indicates the fractional difference between 
energy savings predicted for Step 1 and another step 𝑠𝑠. If 𝑠𝑠 = 1 (calculating Δ11), 𝛿𝛿 contracts the formula to the sum of 
energy savings for weather 𝑤𝑤 up to decision 𝑑𝑑 divided by the total energy savings for all decisions for the baseline 
weather 𝜔𝜔.  

Institution-wide Energy Retrofit Procedure 

Many pre-existing resources must exist before the proposed institution-wide energy retrofit procedure can be carried 
out. These resources are expressed as ellipsoids in Figure 1. First, there must be a set of BEM or other models that have 
been shown to predict a reasonably good estimate of institution-wide energy consumption. These models must have 
relevant parameters to form a set of energy retrofit measures. See Villa et. al. (2016) for the set of energy retrofit measures 
available in the IX software. Second, energy meter data, weather data, and climate information from reliable sources has 
to be available and must be curated for the analysis. The process in Figure 1 excludes feedbacks that are likely to occur 
in the steps as BEM are refined and steps have to be repeated so that the flow of the entire process as a cycle can be 
emphasized. With these resources in place, the process steps are as follows: 
1. Precalibration analysis of energy retrofits: The new process starts with the same step as the previous institutional 
energy retrofit analysis. A parameter study tool is needed for running BEM over many energy retrofits. At SNL, the IX 
software is run using all relevant energy retrofit models available in each BEM. To use IX, other institutions must create 



 a fleet of DOE2 models and check them into the IX Microsoft Acccess® database (Villa et. al., 2017). This is a significant 
investment that costs tens of thousands of dollars per model followed by thousands of dollars per year of maintenance. 
The Step 1 analysis includes assessing the energy retrofit results across as many years of historical weather as available. 
Weather data products used here include on-site weather data for 2017-2020 that SNL has access to, TMY3 data 

(Wilson, 2008), and weather files that have 
expected increases in extreme events 
added. For this study extreme events using 
the Multi-scenario Extreme Weather 
Simulator (MEWS) open-source software 
(Villa, 2021: 3). The complexities of adding 
climate trends and extreme events to BEM 
weather files are not discussed here but can 
be explored in the ASHRAE 
Fundamentals new chapter 21 on climate 
change (ASHRAE, 2021) and throughout 
the BEM literature (Villa, 2021: 1-2; 
Rastogi and Andersen, 2016; Thrasher et. 
al., 2013). A plan concerning what retrofit 
decisions to make is formulated from the 
analysis of retrofits by calculating the 
previously derived site-wide energy 
assessment decision metric Δ11.       
2. Manually verify most important EE 
parameters: The bar chart at the center of 
Figure 1 shows tallest bars on the left with 
decreasing bars toward the right until some 
bars even go below zero. This signifies the 
most common output of IX calculated in 
Step 1 where buildings are sorted by the 
energy savings per area for a given retrofit.    
Typically, the highest EE potential 
building should be scrutinized the most. 
This step involves making efforts to verify 
that the highest energy savings potentials 
are accurate predictions through walk-
throughs, review of energy audit reports 
and change orders, review of Building 

Automation System (BAS) data, quality checks on associated BEM, and interviews with building engineers. Only the 
highest consequence energy retrofit decisions will be able to be scrutinized in this way. When discrepancies are found 
through this process, the BEM are updated and Step 1 repeated. Comprehensiveness in this step can be a significant 
financial investment that institutions must carefully weigh. Also, organization of information concerning a building’s 
state can allow this step to become more efficient. 

Figure 1 Institution-wide energy retrofit continuous process that is 
repeated once every several years. The blue dotted line outlines the 
updated process for SNL whereas the red dashed lines shows the original 
process for the first energy assessment. The entire process is still being 
completed at SNL.  
 

 



 3. Classify thermal sensitivity to 
weather: This step involves 
applying the work presented by 
Geng et. al. (2018) to fit up to 6 
parameters as seen in Figure 2. For 
this step, curated hourly meter data 
and output from each BEM are both 
fit to the tri-linear model shown in 
Equation 3 with physical constraints 
seen in the right hand side of Figure 
2. Here 𝑇𝑇 is average temperature 
over the time duration being used, 𝑃𝑃 
is average power over the time 
duration being used, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is the 
minimum temperature within the curated data, and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 the maximum. 

 𝑃𝑃 = �
𝑎𝑎2(𝑇𝑇 − 𝑐𝑐2) + 𝑏𝑏0 𝑐𝑐2 > 𝑇𝑇
𝑎𝑎3(𝑇𝑇 − 𝑐𝑐2) + 𝑏𝑏0 𝑐𝑐1 > 𝑇𝑇 ≥ 𝑐𝑐2

𝑎𝑎1(𝑇𝑇 − 𝑐𝑐1) + 𝑏𝑏0 + 𝑎𝑎3(𝑐𝑐1 − 𝑐𝑐2) 𝑐𝑐1 ≤ 𝑇𝑇
   (3) 

The 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑏𝑏0, 𝑐𝑐1, and 𝑐𝑐2 parameters provide a gray-box type model that distinguishes important attributes of a 
building’s performance as seen in the description column of Figure 2. It is proposed here that the residual between these 
parameters fit to the meter data and BEM model output provides an important additional metric for optimizing BEM 
fits. The G-14 measures Normalized Mean Bias Error (NMBE) and Coefficient of Variation for Root Mean Square 
Error (CVRMSE), are purely statistical measures for the 1st (average) and 2nd (standard deviation) goodness of fit 
between timeseries. On the other hand, the difference in 𝑎𝑎1 between measured and modeled thermal performance is an 
indicator of whether cooling systems between the models are aligned to actual data with filtering on the noise typically 
exhibited by operations in a building. Similar analogies exist for the other parameters. 
4. AutoTune-DOE2 calibration to G-14 + thermal sensitivity parameters: In preparation for this new analyses, a 
proprietary version of the public, open source Autotune Python library (New and Sanyal, 2015) has been created. This 
upgraded version of Autotune has a few notable changes, including the ability to run on any version of EnergyPlus. The 
original open source Autotune code is limited to EnergyPlus version 7.0. The authors also added the ability to run 
DOE2.2 (Winkelman et. al., 2015), which was critical to the work outlined in this paper. The major steps to get DOE2.2 
working with Autotune were to create an input file (INP) parser and output file (SIM) parser. A custom recursive 
descent parser was developed to parse the INP file, which created an internal representation of the input file that 
Autotune can read, modify, and write back out to a file. The SIM file parser captures the necessary information from 
the SIM file to properly run Autotune as well as provide additional outputs for reporting at the end of the calibration. 
These changes allow Autotune to calibrate BEM for the two largest simulation engines, including recent versions. Also, 
the connection of AutoTune to DOE2.2 has been developed so that every calibration provides a detailed report that 
fully documents the associated optimization and changes to BEM making the effects of the auto-calibration fully 
transparent. 

The parameters from Step 3 are planned to be interwoven with G-14 NMBE and CVRMSE to create a better 
solution. Our previous work has shown the benefits and cost savings associated with using auto-calibration for the SNL 
BEM fleet but has also shown that parameter variations tend to reach unacceptable levels in comparison to expected 
physical bounds (Villa et. al., 2019). With the addition of the parameters in Step 3, the genetic algorithms of AutoTune-
DOE2.2 is grounded more soundly in the physics of the problem and can better penalize unrealistic variations. For this 
work, the genetic algorithm will be provided with an objective function that makes NMBE, CVRMSE, and the total 
residual between the parameters of Step 3 equally important. If a model cannot meet G-14 standards, it is rejected and 

Figure 2 Regression parameters for classification of building thermal response.  
 



must be manually investigated per the quality check procedure outlined by Villa et. al. (2019). 
5. Multi-scenario calibrated BEM energy retrofit:  This step is a repeat of Step 1 except that the BEM have 
undergone steps 2, 3, and 4 such that the accuracy to meter data has been increased. In Step 1, Δ11was calculated. In 
this step, the analyses from Step 1 and Step 5 are compared to determine a similar metric, Δ15, that provides a second 
indication that focusses on whether the calibration procedure has changed the set of decisions 𝐷𝐷.   
6. Calculate tradeoff metrics: This step is included as a place holder that emphasizes the need to interface to other 
analyses that are outside the bounds of the new energy retrofit assessment procedure being proposed as depicted at the 
bottom of Figure 1. Other competing objectives besides EE should be considered to achieve optimal resilience to 
climate and man-made threats. Also, many institutions are faced with financial decisions concerning whether to invest 
in clean generation via renewables or in EE for new and existing infrastructure. These issues are all related by complex 
cost/benefit relationships that have many parameters that are usually unknown. Even so, research is showing that EE 
and resilience are not always positively correlated and exclusion of cross issues can lead to suboptimal conclusions (Sun 
et al., 2020) that overlook the needs of a competing interest. The to-be-determined metrics for such cross cutting analysis 
can take the form of the Δ metrics presented here but with a different signal than energy such as thermal comfort, grid 
availability—the percent electric load served by Distributed Energy Resources (DER), carbon emissions avoided, and 
expected cost of associated solutions. The metrics for a wide range of scenarios could then be used to form pareto 
fronts of cost-metric tradeoffs.    
7. Inform institutional decisions for investment: This step is the least analytical and the most difficult. The combined 
results of Step 6 must be able to be presented to decision makers such that a clear plan with associated level of 
confidence from the Δ15 assessment can be made. Work is needed to make the complex results understandable. 
8. Verify energy savings via BEM and meter data: In accord with G-14, a post-mortem review of changes in energy 
performance must be conducted that shows the actual energy savings associated with combinations of energy retrofits 
minus weather related variations.  
9. Evaluate process accuracy and 10. Update process, document and refine BEM: A final assessment of 
conclusion accuracy, Δ19 is calculated with the same procedure as used for Δ15 but using meter data from an energy 
analytics system and model results from Step 5 with updated weather data to adjust for weather differences. These final 
steps provide the empirical validation of the energy savings achieved.  

RESULTS 

The procedure outlined above is not complete because the pieces for its execution are currently in progress. This paper 
focusses on the New Mexico (NM) site with a demonstration of Step 1 with energy retrofit conclusions assessed by Δ11 
through multiple historic weather years (2017-2020), TMY3, and three extreme event weather files generated by MEWS 
from the TMY3 data as seen in Figure 3. The “Insulate Roof” and “Exterior Insulated Finish System (EFIS)” energy 
retrofits as described in the IX user manual (Villa, 2016) were chosen to illustrate the process of calculating Δ11. Ninety-
six NM BEM have these retrofits. Each building was given an increase to an insulated roof R value of 40 hr∙ft2∙⁰F/BTU 
(7 m2∙⁰C/W) from the previous state. Most buildings have R30 (5.3 m2∙⁰C/W) but many have lower values like R19 (3.3 
m2∙⁰C/W) and R12 (2.1 m2∙⁰C/W). For EFIS, insulation of the walls of the buildings were increased by an R value of 
20 hr∙ft2∙⁰F/BTU (3.5 m2∙⁰C/W). The level of wall insulation also varied across the buildings from 10-20 hr∙ft2∙⁰F/BTU 
(1.8-3.5 m2∙⁰C/W). The output of the models was processed to calculate energy savings for electricity, natural gas, and 
total energy. Failed DOE-2 runs were removed from the results with no further investigation for this demonstration. 
Figure 4 and Table 1 provide a perspective of the results for the 192 BEM runs. Explicit building names are not included 
to obfusticate identification of proprietary information.  
 The demonstration of Step 1 with two energy retrofits and 96 BEM provides a good illustration of the helpful 
perspective provided by calculating Δ11. The lower right corner of Figure 3 clearly depicts that cooling degree days 
(CDD) and heating degree days (HDD) vary significantly for Albuquerque and were unprecedentedly high for the 
baseline year 2020. The TMY3 weather is cooler than all of the historic years providing compelling evidence of a warmer 



climate in Albuquerque. These variations in CDD and HDD produce wide differences in energy savings as seen by the 
top 11 decisions for 2020 weather in Table 1. Less intuitive is the non-simple relationship between CDD, HDD, and 
the associated insulation retrofits. More insulation clearly saves energy for all the top choices but the amount of energy 
saved is not proportional to CDD and HDD. Figure 4 shows how different the energy savings can be for different 
weather. Δ11 is the ratio of energy savings at the current decision divided by total energy savings potential of the baseline 
2020 year. The 2018 and 2019 results outperform 2020 slightly to decision number 46 while the rest of the results 
underperform and also drop sharply at decision 46. This sharp drop is questionable with respect to the DOE2.2 result 
which predicted zero energy savings for 2017, 2018, and 2019 and lesser though significant energy savings for the 
TMY3, R0, R1, and R2 scenarios. Flat regions of the Δ11 metric indicate agreement between all weather scenarios 
concerning what decision to make next. In this demonstration it is clear that decisions past #30 do not have a strong 
basis for implementation in the buildings due to uncertainty in the model results and insignificant energy savings. An 
EE decision maker can use these results to proceed to Step 2 of the procedure presented in this paper by ordering work 
to verify that the DOE2 inputs and modeling results for decision #1 in Table 1 are correct and to make this the highest 
priority for manual verification followed by decision #2 and so forth. In this case, the drop off in EE achieved per 
decision quickly drops an order of magnitude making the first few decisions the most critical.   

 

Figure 3 MEWS weather scenario output (left), inputs (upper right), and weather file degree days (lower right) 

It is important to highlight that this demonstration used total energy (electricity + natural gas) as the metric for making 
decisions. Other alternatives can be used to calculate Δ metrics as well such as carbon avoided, total energy cost, percent 
availability of a microgrid during outage events (i.e. EE can increase the reliability of microgrids), thermal comfort 
during power outages, and combinations of these interrelated efficiency and resilience issues. 

CONCLUSION 

The procedure presented herein is still being executed but has been shown to have the potential to assess the certainty 
and successfulness of a systematic approach to energy retrofit decisions across a large stock of buildings owned by an 
institution. The variations seen in EE due to weather differences within the results clearly indicate that EE assessments 



must include as much historic weather data as available, 
climate change scenarios, and extreme event scenarios to 
understand whether one energy retrofit decision is likely to be 
better than another one for competing energy retrofit 
decisions. Also, institutional energy retrofit assessments need 
to interact with institutional sustainability, resilience, and cost 
assessments so that better informed decisions can be made. 
The Δ class of metrics proposed in this paper have been 
shown via the Δ11 demonstration to be useful for discerning 
whether EE decisions are robust on the basis of weather 
variations. Future work to complete the procedure will extend 
this to model stability through calculating Δ15 and to empirical 
validation through Δ19. Only a data and modeling intensive 
approach like this one will provide a scientific basis to evaluate 
how well BEM and data driven institutional energy retrofit 
assessments guide decision makers to the best EE decisions. 
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Table 1 First 11 decisions of 192 total (96 Buildings x 2 energy retrofits)  
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Figure 4 Δ11 for the first 60 decisions 
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