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Observed geophysical anomalies at the
MTZ

Low-velocity zone atop the 410-km Dehydration melting at the top of the
seismic discontinuity in the lower mantle
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Figure modified from Bercovici and Karato (2003), Hirschmann (2006) and
Sakamaki (2013).
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Anomalous behavior of amorphous
silicates
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Motivation: Define EOS of melts to
interpret regions of low seismic velocities
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Temperature (K)

Thor uniquely mimics mantle geotherm
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Energy storage in Thor
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Pulse shaping enables access to pressure
and temperature conditions at MTZ
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Initial results on MgSiO; glasses

Experiment
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MQSi0, mmp compression experiments: drives and sample responses




MgSiO,; ramp compression experiments:
drives and sample responses
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Characterizing P dependent behavior w/
CL
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C, vs. u® in crystalline and amorphous
materials
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Lagmangan Wave Velocity (kmis)

Acoustic velocities in dynamic vs. static

compression experiments

Hgsdﬂa Lagrangian velocity as a function of longitudinal stress

=4
L i

(=]
im

i
T

ch
Ln

-
Ln

-
T

[
im

L2

—_— Ax

- H5G02

—— HSGO3| |

~~ (%) = By

\ do = Cp,(up)podu’

=]

10 5
Longitudinal sirass, - (GPa)

A
20

Balk g ] vl W5
& -

Prowidri B wnak o HnE-H:I, gl - Bl el So R W, B LS

LI PR v E

. -
r. '-.- 4.
& Vg = /VPZ — 512
' "

v Sarcheo-Viall & Doon E':-!:l.i

13



Pressure vs. density

* Densification
begins around
10 GPa,
continues
through 18 GPa

« Samples exhibit
elastic behavior
to 10 GPa
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Future work

* Continue processing data from
HSG 04, HSG 05, HSG 06 to
determine behavior above 18 GPa

* Acoustic velocity measurements on
SiO, to expand compositional range

* MgSiO5 and SiO, with increasing
water contents, up to >1.5 wt. %
H,0 to look at effect of volatiles on
seismic velocities

* Develop equation of state for
MgSiO5; and SiO, glasses
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Sandia
National
Laboratories

Thank you!

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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Thor reaches mantle PT conditions
continuously

« Ramp compression mimics geotherm more effectively than other
methods of compression

i Thor
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