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,/ Motivation: Previous work has shown machine
learning is sensitive to measurement error

/ e ML' for MC&A has been shown to rapidly degrade in presence
of measurement error
e Considers bulk nuclear facilities (i.e. subject to MC&A rather
than simple item accounting)

e Traditional safeguards also degrade, but to a lesser degree
e Why does this behavior occur?
e Can this reduction in performance be mitigated?

'Only unsupervised approaches examined
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//Cornerstone of traditional MC&A: The material

balance

The material balance (MB), shown below and sometimes called
Material Unaccounted For (MUF) or Inventory Difference (ID), is a
simple and straightforward way to perform "audits" of nuclear
material at facilities.

Generic material balance

Min Nout

n n
MB; = <Zl li—1+ Zl Tinj; — Zl 7bl/fi,t) - Zl li¢ (1)

Under normal conditions MB; = 0, but measurement error causes
a non-zero MB as follows below.

Material balances are approximately normally distributed
(Z)J

MB; ~ N(Mtaaﬁ/lB)




//Increases in MB uncertainty (i.e. og) degrade
detection probabilities

Impact of oyg on probability of detection for
constant false alarm probability
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Where's the error come from?

Imperfect measurements result in uncertainty. Safeguards
measurements often has a multiplicative error structure, shown below.

Safeguards error model
M= Gi(1+ S+ Ri:)
where
Si ~ N(0,6%)
Ri,t ~ N(O, 5%?)

4

e S;: Short-term systematic (i.e. epistemic) error from measurement
conditions or calibrations

* R;:: Random (i.e. aleatory) error that is unpredictable but reducible
through repeated conditions

* M;;: Measured quantity
® G;,: True (but unknown) quantity




/" Key points about traditional MC&A

/ . , .
7 5 e Some technlques exist to reduce Impact of measurement

errors

® SITMUF which explicitly accounts for error
* GEMUF

¢ Ultimately at mercy of measurement error
* Operate on single set of data
* Learns measurement error structure over time
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/" Alternative machine learning approach

Goal: Learn f(x, #) that can approximate a facility process using machine
learning (neural network).

Flow in Facility Flow out o
Process * =
|Measurement| |Measurement|
. Neural Prediction ) Anomaly?
Network | Comparison = (Yes/No)
Example

e f(x,0): Function to be approximated (facility process) with input
measurement x and learned weights 6

e y: Observed measurement of process output

e y — y: Objective function to be minimized, difference between
prediction and observed value







// Machine learning algorithms are data hungry
& which comes with a cost

4 It is reasonable to assume any training dataset would, in practice,
be comprised of multiple measurement campaigns with different
biases. Aggregating these datasets results in a larger training
dataset variance due to the systematic error.

Increased variance due to multiple dataset aggregation
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/Intumon How do errors impact training of
machine learning algorithms?

Thought experiment

Training a Bayesian neural network (weights are distributions not
vectors or scalars) to learn a sine wave with increasing levels of
error.

Example

Xtrue € [—3m, 37]

Ytrue = SIN(Xtrue) + 10
Xobserved,t = xtrue(1 + Re + S)
Yobserved,t = Ytrue(1 + Rt + S)

(5)




/Increased systematic error lowers the
confidence of machine learning algorithms
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Predictions made within uncertainty bounds cannot be used for
reliable detection of anomalous behavior.



Theoretical guarantee

for poorer ML results
ompared to traditional
approaches




//Thinking statistically: comparing normal and
4 loss distributions

‘o Material losses can be thought of as a shift in an observed
distribution of measurements. Larger variances lead to a more
difficult mean shift detection problem.

Impact of 0 on mean shift
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_,/Thinking statistically: machine learning

training

In this work, the machine learning training objective is defined to be the
mean squared error (MSE), that is, the algorithm is trained to provide
more accurate predictions of a process output. It can be shown that the
MSE objective is essentially negative log-likelihood (i.e. cross-entropy)
between the empirical distribution and a Gaussian model (i.e. the learned
distribution, assumed to be normal).

MSE and KL-divergence

N

.1 .
arg{;mn N Z(yi - Xio)z = arg;nln —Ex~pusa [|08Pmodel (X)] (6)
i=1

Key takeaway

During training, the proposed ML approach attempts to have a
distribution p(y|x, #) that closely matches the training distribution




_,/ Machine learning is disadvantaged due to
£ training dataset requirements

/ * Machine learning algorithms usually require large datasets
® Reasonable to assume safeguards datasets will be from
multiple measurement campaigns
* Aggregation of multiple measurement campaigns leads to a
larger training dataset variance (in both x and y)
® Larger variance leads to poorer loss detection
e Statistical methods for safeguards operate on a single dataset
at a time (i.e. single set of systematic errors)
* Consequently, variance in dataset is smaller

e Traditional safeguards also mitigate error through some
transformations




Y

7

/

7 Key takeaway

Flow out
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As a consequence of aggregating multiple measurement campaigns,
machine learning methods are guaranteed? to have poorer performance
than traditional methods. The systematic error requires treatment
independent of traditional pre-processing techniques like scaling.

“For the proposed architecture (i.e. unsupervised regression)
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Potential future work

e Reduce required training dataset size

* Few-shot learning concepts (restriction of hypothesis search
space, dataset augmentation, etc)

e Experimental mitigation strategies for systematic error

¢ Use of models that are not deeply parameterized (i.e. classical
statistics and ML approaches)
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