SAND2021-9902PE

Fundamental Understanding of CH,-CO,-H,O
Interactions 1in Shale Nanopores under Reservoir

Conditions
Project Number FWP-14-017608

Yifeng Wang
Sandia National Laboratories

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Management and Natural Gas & Oil Research Project Review Meeting
Virtual Meetings August 2 through August 31, 2021

Sandia National Labor: a multim n labor: naged and oper: tdbth nal Techn qu&Eq qSIt fS ndia, LLC, a wholly owned
subs

tio
idia ny waIIt national Inc fth USDprtm nt of Ene ergy's National Nuclear Sec ydmlntt under contract DE-NA000S535.



Team

* Yifeng Wang (PI), Tuan Anh Ho, Guangping Xu, Philippe
Weck (Sandia National Laboratories)

e Shikha Sharma (West Virginia University)
* Bruce Brown (DOE Manager)



Presentation Outline

Goal

Accomplishments to date
Technical Status

Summary & Benefit to the Program
Lesson Learned



Goals and Objectives

* Unconventional reservoir: What Pore Size Distribution
* Nanopores (~1 - 100 nm) 5 020 07-03-52-27W8
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Accomplishments to Date

Shale sample collection

Gas sorption on clays and its implication to gas in place (Xu et al., 2015)
Full cycle gas sorption/desorption on kerogen

Interfacial chemistry and metal sorption/desorption on kerogen

FTIR, NMR, DFT and MD studies of functional groups and structures of kerogens with different
maturities (Weck et al., 2017)

MD simulations of CH, sorption/desorption and release within kerogen (Ho et al., 2016;
Cristancho et al., 2016)

Competitive sorption of CO, over CH, on kerogen (Ho et al., 2017)
MD simulations of the enhancement of water flow in a nanochannel by scCO, (Ho et al., 2018)

MD and experimental study of chemical-mechanical coupling of gas adsorption onto kerogen (Ho
et al., 2018)

Experiments on kerogen reaction with supercritical CO, (scCO,)

MD simulations of selective gas permeation through shale matrix nanopores (Ho and Wang,
2020)

Enhancement of oil flow in shale nanopores by manipulating friction and viscosity (Ho and Wang,
2019)

Fundamental study of fast advective water flow in clay interlayers (Ho et al., 2020)

Chemical and isotopic data collection and analyses of produced water from unconventional
reservoirs (Sharma et al., 2021)

Wettability alteration of subsurface porous media upon gas pressure variations (Ho and Wang,
2021) 5

Nonlinear dynamics of fluid flow in low-permeability media: porosity waves and new mechanism
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Technical Status
Q1: What controls the production decline rate?
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Q1: What controls the production decline rate?

Answer:

* The decline rate is an
Intrinsic property of a
shale formation.

* A sensible way to
Improve the decline
rate is to unlock shale
nanopores. Time

Improvement of production decline curve

Production rate
racturing
Unlocking
nanopores
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Technical Status
Q2: How to unlock shale nanopores?

Porosity (%)

Swelling is controlled by the surface layer of gas adsorbed.
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Kerogen reaction with supercritical CO,

Original kerogen

Reacted kerogen Reacted kerogen

charred kerogen concentrate

Experiment: Immature kerogen
reacted with supercritical CO,
saturated brine (1M) at 90 °C

and 2800 psi for 30 days
unractied kerogen concentrate \
\
N
Carbon Hydrogen Nitrogen Oxygen Sulfur Ash C/H C/O C/N
% wiw % wiw % wiw % wiw % wiw % wiw atom atom atom
original kerogen 73.91 7.59 2.67 8.40 2.73 3.0 0.81 0.73 32.3
reacted residual kerogen 62.68 4.54 1.64 12.36 1.49 24.10 1.15 0.42 44.6
N
Pyrolysable Residual Hydrogen . Mineral inorganic
S1 S2 S3 Tmax . . TOC . Oxygen index
organic carbon\ organic carbon index carbon
mgHC/g mgHC/g mgCO,/g °C % wt % wt %wt mgHC/gTOC mgCO,/gTOC % wt
original kerogen 5.63 412.11 6.47 431 35.24 37.97 73.21 563 9 0.93
reacted residual kerogen 1.91 181.38 13.54 424 16.23 33.90 50.13 362 27 11.89
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Q2: How to unlock shale nanopores?

Answer:

« Shale nanopores can be unlocked by
chemical displacement and chemical-
mechanical coupling.

» Supercritical CO, is a stimulating agent
for simultaneous gas extraction and
carbon sequestration.
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Technical Status
Q3: Can a fast advective flow occur in shale matrix?

MD simulations

Experiments
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Q2: Can a fast advective flow occur in shale
matrix?

Answer:

* Yes, it can be induced by
a chemical gradient.

* Such flows have
Important implications to:

— Water imbibition & loss
during stimulation

— Wellbore stability Fractre

— Enhanced oil/gas recovery
. Matrix
— Carbon sequestration

12



Technical Status
Q4: How much do we know about multicomponent and
multiphase flows in shale matrix?

High pressure

CO, thin layer = Lubricant
Water flow rate enhanced by 4 times.
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Surface wettability alteration with gas pressure
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Q4: How much do we know about multicomponent
and multiphase flows in shale matrix?

Answer:
* Much remains to be learned.

* Challenge: complex phase transition +
complex nanopore networks

15



Technical Status
Q5: How to bridge nanoscale understandings to field

observations?

MARCELLUS

(]

MW

@ Metoonic

BAKKEMN

&

| TRENTOM .
- M .- . ..- i
» e
&0 = i
£
T
23 &PW @ Meteoric
w

PN @ Mateare

1] 5
56

1 15

1]

16



. Nonlinear dynamics of fluid flow in deformable low

permeability media: Porosity waves
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Porosity waves & episodic gas release in shale

gas production
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Implications:

* New mechanism for
shale/oil release
from shale matrix?

 New method for
stimulation?

» Create porosity
waves

« Especially for
ductile shale

« Synchronized huff-
puff




Q5: How to bridge nanoscale understandings to
field observations?

Answer:

* Nanoscale understanding provides a
scientific basis for field-scale
observations.

|t also helps understand emerging
transport processes and develop a new
stimulation strategy (porosity waves).
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Project Summary

* Nanopore confinement plays a critical
role in gas disposition and release in
unconventional reservoirs. Improvement of production decline

*  Our work reveals complex e
interactions of CH,-CO,-H,0 in shale
nanopores.

* Mechanistic understanding of these
interactions will help explore possible
ways to unlock shale nanopores.

* Such understanding is critical to Bero .

. . . . eriodic shut in
design an effective stimulation, EOR \
and carbon management strategy for
shale oil/gas extraction.

Benefit to the Program

* Fewer wells with less environmental impact for shale gas production
e (Carbon management in unconventional reservoirs
* Reducing carbon footprint by simultaneous carbon sequestration for gas production
* Large capacity; much less relying on structural trapment (e.g. caprocks in conventional
reservoirs)
* Reutilization of existing infrastructures; distributed operations 20

Chemical displacement
Open up nanopores
Minimize water
blockage

Pressure management

Production rate
Unlocking
nanopores

Aactu ring

Time



Activities & Schedule

_ction & characterization
_ractions in shale nanopores
_ interactions in shale nanopores
_x hydrocarbon fluids in shale nanopores
_stimulation & carbon sequestration
_ther fluid flows in shale matrix

_topic signatures of produced waters
-ulating fluid design
_ear dynamics of fluid flows in shale

2014 2016 2018 2020 2022 5




Lessons Learned
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