
Opportunities and Challenges for Neuromorphic Computing1

Algorithms and Applications2

Catherine Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell,
Prasanna Date, and Bill Kay

Oak Ridge National Laboratory

3

August 1, 20224

Abstract5

Neuromorphic computing technologies will be important for the future of computing, but much of6

the work in neuromorphic computing has focused on hardware development. Here, we review recent7

results in neuromorphic computing algorithms and applications. We highlight characteristics of neuro-8

morphic computing technologies that make them attractive for the future of computing and we discuss9

opportunities for future development of algorithms and applications on these systems.10

1 Promises of Neuromorphic Computing11

With the end of Moore’s law approaching and Dennard scaling ending, the computing community is in-12

creasingly looking at new technologies to enable continued performance improvements. Neuromorphic com-13

puters are one such new computing technology. “Neuromorphic” was coined by Carver Mead in the late14

1980’s [63, 64], and at that time, primarily referred to mixed analog-digital implementations of brain-inspired15

computing. However, as the field has continued to evolve and with the advent of large-scale funding op-16

portunities for brain-inspired computing systems such as the DARPA Synapse project and the European17

Union’s Human Brain Project, the term neuromorphic has come to encompass a wider variety of hardware18

implementations.19

We define neuromorphic computers as non-von Neumann computers whose structure and function are20

inspired by brains and that are composed of neurons and synapses. Von Neumann computers are composed21

of central processing units (CPUs) and memory units, where data and instructions are stored. In a neu-22

romorphic computer, on the other hand, both processing and memory are governed by the neurons and23

the synapses. Rather than explicit instructions as in a von Neumann computer, programs in neuromorphic24

computers are defined by the structure of the neural network and its parameters. While Von Neumann com-25

puters encode information as numerical values represented by binary values, neuromorphic systems receive26

spikes as input, where the associated time at which they occur, their magnitude, and their shape can be used27

to encode numerical information. Binary values can be turned into spikes and vice versa, but the precise28

way to perform this conversion is still an area of study in neuromorphic computing [97].29

Given the aforementioned contrasting characteristics between the two architectures, neuromorphic com-30

puters present some fundamental operational differences:31

• Massively parallel operation: Neuromorphic computers are inherently massively parallel, where all of32

the neurons and synapses can potentially be operating simultaneously. However, the computations33

performed by neurons and synapses are relatively simple when compared with the parallelized von34

Neumann systems.35

• Collocated processing and memory: There is no notion of a separation of processing and memory36

in neuromorphic hardware. Although neurons are sometimes thought of as “processing” units and37

1



Figure 1: Comparison of the von Neumann architecture with the neuromorphic architecture.

synapses are sometimes thought of as “memory,” the neurons and synapses both perform processing and38

store values in many implementations. The collocation of processing and memory helps mitigate the von39

Neumann bottleneck i.e., the processor memory separation that causes a slowdown in the maximum40

throughput that can be achieved. Additionally, the data accesses from main memory consumes a41

significant amount of energy compared to the compute energy [110]) present in conventional computing42

systems.43

• Inherent scalability: Neuromorphic systems are meant to be inherently scalable because adding ad-44

ditional neuromorphic chips is simply increasing the number of neurons and synapses that can be45

realized. It is possible to take multiple physical neuromorphic chips and treat them as a single large46

neuromorphic implementation to run larger and larger networks. This has been successfully accom-47

plished across a variety of large-scale neuromorphic hardware systems, including SpiNNaker [62, 31]48

and Loihi [22].49

• Event-driven computation: Neuromorphic systems leverage event-driven computation (i.e., computing50

only when data is available) and temporally sparse activity to allow for extremely efficient computa-51

tion [70, 7]. Neurons and synapses only perform work when there are spikes to process, and typically,52

spikes are relatively sparse within the operation of the network.53

• Stochasticity: Neuromorphic systems can include a notion of randomness, such as in the firing of54

neurons, to allow for noise and enable different algorithms.55

The features of a neuromorphic computer are well noted in the literature and are given as motivations56

for implementing and using neuromorphic computers [98, 44, 109, 112, 23, 40]. One of the most attractive57

features of neuromorphic systems for computation is their extremely low power operation; they can often58

operate on orders of magnitude less power than traditional computing systems. This low power operation59

2



is due to their event driven nature and massively parallel nature, where typically only a small portion60

of the entire system is active at any given time and the rest is idle. Because of the increasing energy61

cost of computing, as well as applications in which there are energy constraints (such as edge computing62

applications), energy efficiency alone is a compelling reason to investigate the use of neuromorphic systems.63

Additionally, because they inherently implement neural network-style computation, neuromorphic systems64

are a natural platform for many of today’s artificial intelligence and machine learning applications. There65

is also promise to leverage the inherent computational properties of neuromorphic computers to perform a66

wide variety of different types of computation [2].67

Each of these features of neuromorphic computers are inspired by characteristics of the brain and have68

been prioritized in the implementation of neuromorphic computers in recent years. However, it is not clear69

whether they are the only aspects of biological brains that are important for performing computation. For70

example, though neurons and synapses have been chosen as the primary computational units of neuromorphic71

computers, there are a variety of other types of neural components that may be useful for computation,72

including glial cells [88, 41]. Moreover, neurons and synapses have been a convenient level of abstraction73

for neuromorphic systems, but whether they are the most appropriate level of abstraction is still an open74

question [89].75

Unlike some of future computing technologies, many physical realizations of neuromorphic hardware are76

currently under development or are even available for use to the research community. Several large-scale neu-77

romorphic systems have been developed with a variety of approaches and goals [36]. The European Union’s78

Human Brain Project sponsored the development of SpiNNaker [31] and BrainScaleS [94] to enable neu-79

roscience simulations at scale. An optimized digital neuromorphic processor called ODIN (Online-learning80

Digital spiking Neuromorphic) has also been proposed [35], allowing the use of slightly more complex neu-81

ron models. One of the neuromorphic platforms targeting more general computations for wider classes of82

applications is the Tianjic chip, a platform, that supports both neuromorphic spiking neural networks and83

the traditional artificial neural networks for different categories of problems [84]. Industry has also taken84

an interest to neuromorphic systems. Some examples include IBM’s TrueNorth [65] and Intel’s Loihi [22],85

and there are also a variety of academic efforts, including DYNAPs [69], Neurogrid [12], IFAT [112], and86

BrainScales2 [93]. The usefulness of neuromorphic hardware, such as BrainScales2, has been demonstrated87

in carrying out optimizations for learning to learn (i.e., where an optimization process is used to define how88

learning occurs) scenarios for spiking neural networks as it runs at a much accelerated timescales compared89

to biological timescales [15].90

All the aforementioned large-scale neuromorphic systems are silicon-based and implemented using con-91

ventional CMOS (Complementary Metal Oxide Semiconductor) technology. However, there is a tremendous92

amount of research in the neuromorphic community on developing new types of materials for neuromorphic93

implementations, such as phase-change, ferroelectric, nonfilamentary, topological insulators, or channel-94

doped biomembranes [42, 75, 74]. One popular approach in the literature is using memristors as the fun-95

damental device to have resistive memory to collocate processing and memory [45, 59], but other types of96

devices have also been used to implement neuromorphic systems, including optoelectronic devices [98]. Each97

device and material used to implement neuromorphic systems has unique operating characteristics, such as98

how fast they operate, their energy consumption, and the level of resemblance to biology. The diversity of99

devices and materials used to implement neuromorphic hardware today offers the opportunity to customize100

the properties required for a given application.101

Most research in the field of neuromorphic computing today fall in the realm of the aforementioned102

hardware systems, devices, and materials. However, to most effectively use neuromorphic computers in the103

future, exploit all their unique computational characteristics, and help drive their hardware design, they must104

be connected to neuromorphic algorithms and applications. From this perspective, we provide an overview105

of the current state of the art in neuromorphic algorithms and applications and provide a forward-looking106

view on opportunities for the future for neuromorphic computing in computer science and computational107

science.108

Additionally, it is worth noting that the term neuromorphic computing has been used for a wide array of109

different types of technologies. As noted previously, the original definition only encompassed mixed analog-110

3



digital implementations. In this work, we consider all types of hardware implementations (digital, mixed111

analog-digital, analog) as neuromorphic, but we restrict our attention to spiking neuromorphic systems, i.e.,112

those that implement spiking neural networks.113

2 Neuromorphic Algorithms and Applications114

Programming a neuromorphic computer entails creating a spiking neural network (SNN) that can be deployed115

to that neuromorphic system (see Box 1). SNNs take an additional level of inspiration from biological neural116

systems in the way that they perform computation. In particular, SNNs include time in the way that they117

perform computation; neurons and synapses both include notions of time within most neuromorphic systems.118

For example, spiking neurons might leak charge over time based on a particular time constant, and neurons119

and/or synapses in SNNs might have an associated time delay.120

Algorithms for neuromorphic implementations often entail how to define an SNN for a given application.121

There are a wide variety of algorithmic approaches for neuromorphic computing systems that fall into two122

broad categories: (1) algorithms for training or learning an SNN to be deployed to a neuromorphic system123

(Figure 2) and (2) non-machine learning algorithms in which SNNs are hand-constructed to solve a particular124

task. It is worth noting that here training and learning algorithms refer to the mechanism of optimizing the125

parameters of an SNN (typically the synaptic weights) for a particular problem.126

This section provides an overview of some state-of-the-art approaches for neuromorphic computing algo-127

rithms, both on benchmarking datasets and demonstrating their potential applicability to real-world appli-128

cations.129

4



Spiking Neural Networks

Spiking neural networks (SNNs) are a particular type of artificial neural network in which the
function of the neurons and the synapses in the network are more inspired by biology than
other types of artificial neural networks, such as multi-layer perceptrons. The key difference
between traditional artificial neural networks and SNNs is that SNNs take into account timing
in their operation. Neuron models implemented in SNNs in the literature range from simpler
integrate and fire models, in which charge is integrated over time until a threshold value is
reached, to much more complex and biologically plausible models, such as the Hodgkin-Huxley
neuron model, which approximates the functionality of specific aspects of biological neurons
such as ion channels [98]. Both neurons and synapses in SNNs can include time components
that affect their functionality.

Neurons in spiking neural networks accumulate charge over time from either the environment
(via input information to the network) or from internal communications (usually via spikes
from other neurons in the network). Neurons have an associated threshold value, and when
the charge value on that neuron reaches the threshold value, it fires, sending communications
along all of its outgoing synapses. Neurons may also include a notion of “leak,” where the
accumulated charge that is not above the threshold dissipates as time passes. Additionally,
neurons may have an associated axonal delay, in which outgoing information from the neuron is
delayed before it affects its outgoing synapses. Synapses form the connections between neurons,
and each synapse has a pre-synaptic neuron and a post-synaptic neuron. Synapses have an
associated weight value, and that value may be positive (excitatory) or negative (inhibitory).
Synapses may have an associated delay value such that communications from the pre-synaptic
neuron are delayed in reaching the post-synaptic neuron. Synapses also commonly include a
learning mechanism in which the weight value of the synapse changes over time based on activity
in the network. Neuromorphic systems often realize a particular fabric of connectivity, but the
synapses may be turned on and off to realize a network structure within that connectivity.
Additionally, parameters of the neurons and synapses such as neuron thresholds, synaptic
weights, axonal delays, and synaptic delays are often programmable within a neuromorphic
architecture.

Unlike in traditional artificial neural networks where information is received at the input and
then synchronously passed between layers in the network, in SNNs, even if input information
is received at the same time and the SNN is organized in layers, because the delays on each
synapse and neuron may be different, information is propagated asynchronously throughout
the network, arriving at different times. Thus, this is beneficial while realizing SNNs on a
neuromorphic hardware, which can be designed to operate in an event-driven or asynchronous
manner that fits well with the temporal dynamics of spiking neurons and synapses. An exam-
ple SNN and how it operates in the temporal domain is shown in the figure. In this example,
synapses are shown with a time delay. Information is communicated by spikes passed through-
out the network. In this example, the network’s operation at time t (left) and time t+1 (right)
is shown, to show how the network’s state changes with time.

130

2.1 Machine Learning Algorithms131

2.1.1 Spike-Based Quasi-Back-Propagation132

Back-propagation and stochastic gradient descent have shown impressive performance in the field of deep133

learning. However, these approaches do not map directly to SNNs because spiking neurons do not have134

differentiable activation functions (i.e., many spiking neurons use a threshold function, which is not directly135

differentiable). Additionally, the temporal processing component of SNNs can add another difficulty in train-136

ing and learning for these approaches. Algorithms that have been successful for deep learning applications137

5



t Currently 
Firing

Partially 
Accumulated 

Charge

Synapses with 
Different Delays

Incoming 
Spikes

Leaked 
Charge

New 
Spikest+1

Charge 
Increased 
from Spike

Spikes 
propagating

must be adapted to work with SNNs (top-left in Figure 2), and these adaptations can reduce the accuracy138

of the SNN compared with a similar artificial neural network [117, 53, 8, 9].139

Some of the approaches that adapt deep learning-style training include using a surrogate gradient and140

having a smoothed activation function to compute the error gradients while performing weight adjustments141

in each of the successive layers [76, 119]. There have also been a few demonstrations on computing the142

spike error gradient [34, 57, 56] that have shown close to state-of-the-art classification performance on the143

Modified National Institute of Standards and Technology (MNIST) handwritten digits dataset. To make use144

of the inherent temporal dimension in SNNs, there have been efforts attempting to employ rules that have145

been used to train recurrent neural networks, albeit with several approximations. As surveyed by Zenke146

and Neftci [121], approaches such as backpropagation through time and real-time recurrent learning have147

been demonstrated on neuromorphic datasets, such as the Spiking Heidelberg Digits (SHD) and the Spiking148

Speech Command (SSC) dataset [20].149

2.1.2 Mapping a Pre-Trained Deep Neural Network150

Because deep neural networks (DNNs) have an established training mechanism, several efforts to deploy a151

neuromorphic solution for a problem begin by training a DNN and then performing a mapping process to152

convert it to an SNN for inference purposes (see top-right in Figure 2). Most of these approaches have yielded153

near state-of-the-art performance with potential for significant energy reduction in computation due to the154

use of only accumulate computations (AC) over multiply and accumulate computations (MAC) in DNNs on155

several commonly employed datasets, such as MNIST, Canadian Institute For Advanced Research (CIFAR)-156

10, and ImageNet [27, 39, 99, 101]. Most initial conversion techniques used weight normalization or activation157

normalization or employed average pooling instead of max pooling [27, 90, 99]. Other approaches involve158

training DNNs in a constrained manner so that the neuron’s activation function iteratively starts resembling159

that of a spiking neuron [39, 101]. Stockl et al., have proposed a new mapping strategy where SNNs make use160

of Few Spikes neuron model (FS-neuron) that can represent complex activation functions temporally with161

at most two spikes [108]. They have shown close to deep neural network accuracies on benchmark image162

classification datasets with significantly fewer time-steps per inference compared to previously demonstrated163

conversion strategies. Several applications demonstrated on neuromorphic hardware have employed some164

of the aforementioned mapping techniques. Tasks such as keyword spotting, medical image analysis, and165

object detection have been demonstrated to run efficiently on existing platforms such as Intel’s Loihi and166

IBM’s TrueNorth [14, 32, 103].167

It is worth noting that training a conventional DNN and then mapping to neuromorphic hardware,168

especially emerging hardware systems, can see a reduction in accuracy not only because of the change from169

DNNs to SNNs, but also because of the neuromorphic hardware itself. Often neuromorphic hardware systems170

that are implemented with emerging hardware devices such as a memristors will have reduced precision in171

the synaptic weight values they can realize, and they may also have cycle-to-cycle and device variation.172

When creating a mapping technique, it is important to take into account how these characteristics might173

influence the inference performance of a mapped network.174

Algorithms that use deep learning-style training to train SNNs often do not leverage all the inherent175

computational capabilities of SNNs, and using those approaches limits the capabilities of SNNs to what176

6



Figure 2: Common training approaches for SNNs. In the top-left panel, the structure of a network for a
spike-based quasi-backpropagation is depicted. In this case, the training approach is performed directly on
the SNN. The top-right panel shows the procedure for mapping approaches, where a traditional ANN is
trained and then mapped into an SNN. The bottom-left panel shows the structure of a typical reservoir
computing solution, including the input layer, the reservoir, and the readout layer. The bottom-right panel
shows an evolutionary approach to evolving the structures and parameters of an SNN over time.

7



traditional artificial neural networks can already achieve. For example, most gradient descent style rules,177

including mapping approaches, do not focus on the temporal aspect of SNN computation.178

2.1.3 Reservoir Computing179

Another common algorithm used in SNNs is reservoir computing or liquid state machines (see bottom-left in180

Figure 2). In reservoir computing, a sparse recurrent SNN is defined to function as the “liquid” or reservoir.181

This liquid is typically randomly defined, but is required to have two properties: input separability, which182

requires that different inputs result in different outputs, and fading memory, which requires that signals do183

not continue to propagate infinitely through the reservoir and instead will eventually die out. In addition to184

the liquid itself, which is untrained, a reservoir computing approach also includes a readout mechanism, such185

as a linear regression, is trained to recognize the output of the reservoir. The key advantage of a reservoir186

computing is approach is that is does not require any training of the SNN component. Reservoir computing187

in SNNs uses the sparse and recurrent connections with synaptic delays in networks of spiking neurons188

to cast the input to a spatially and temporally higher dimensional space [111]. Several demonstrations189

of spike-based reservoir computing have shown their effectiveness at processing temporally varying signals190

[51, 29, 116]. Variants of this computing framework have ranged from simple reservoir networks for bio-signal191

processing and prosthetic control applications [51] to using hierarchical layers of liquid state machines—a192

type of reservoir network—interconnected with layers trained in supervised mode for video [106] and audio193

signal processing applications [116].194

2.1.4 Evolutionary Approaches195

Evolutionary approaches to training or designing SNNs (see bottom-right in Figure 2) have also been used [96,196

92, 95]. In an evolutionary algorithm, a random collection of potential solutions is created to form an initial197

population. Each member of the population is evaluated and assigned a score, which are then used to perform198

selection (preferentially selecting better performing individuals) and reproduction (creating new individuals199

through recombination of old individuals and mutations) to produce a new population. In the context of200

SNNs for neuromorphic computing, evolutionary approaches can be used to determine parameters of the201

SNN, such as neuron thresholds or synaptic delays, or the structure of the network, such as the number of202

neurons and how they are connected to each other with synapses. These approaches are attractive because203

they do not require differentiability in the activation functions and do not rely on any particular network204

structure (i.e., feed-forward, recurrent). Additionally, they can be used to evolve the structure of the network205

and the parameters. However, their flexibility has a cost: evolutionary approaches can be slow to converge206

compared with other training approaches. Evolutionary approaches have been most successfully applied to207

control applications, such as video games [86] and autonomous robot navigation [92, 67].208

2.1.5 Plasticity209

Several neurobiological studies have reported the modulation of synaptic strength based on the activity of the210

connected neurons, which has been postulated as a learning mechanism for various tasks [13]. Spike timing-211

dependent plasticity (STDP), which operates on the underlying principle of adjusting the weights based212

on relative spike timings from pre- and post-synaptic neurons, is the most commonly implemented synaptic213

plasticity mechanism in neuromorphic literature [98]. Several different mathematical formulations of this rule214

have been demonstrated on the MNIST, CIFAR-10, and ImageNet datasets [102, 72, 55, 46, 11, 61]. Shrestha215

et al. presents a hardware-friendly modification of the exponential STDP rule, albeit the classification216

performance on MNIST was lower than the best results achieved so far with SNNs [102]. STDP-style rules217

have also been shown to approximate several machine learning approaches, such as clustering and Bayesian218

inference [73, 77]. STDP as a clustering mechanism has been demonstrated as a spike sorter in brain219

machine interface applications [73]. Combinations of spiking reservoirs and STDP have also been employed220

in an SNN approach called NeuCube [48]. NeuCube has been used to process electroencephalograms and221

8



functional magnetic resonance imaging signals in applications such as sleep state detection and prosthetic222

controllers [48, 17, 54].223

A much broader class of SNNs for modeling dynamical systems are the recurrent networks with delays224

and synaptic plasticity. One such class of networks are the polychronization networks [43], which have been225

employed for different spatio-temporal classification tasks [114]. Alemi, et al. demonstrate a local learning226

rule with recurrent SNNs with fewer spikes to realize non-linear dynamical systems [4]. Such recurrent SNNs227

have shown greater classification ability with winner-take-all models [60, 79, 47]. To leverage the temporal228

dimension of SNN, some learning algorithms aim at generating single or multiple spikes at desired times,229

which have been applied in classification tasks [36, 16, 115, 58, 120]. Most of these algorithms also depend230

on the spike representation used to encode the input signals. There have been several approaches to encode231

signals in terms of spike rates, latency, and neuron population, etc. [97, 85].232

2.2 Non-Machine Learning Algorithms233

The typical use cases for neuromorphic computing have been mainly machine learning, but neuromor-234

phic computers have also recently been considered for non-machine learning algorithms. One common235

class of algorithms that have been mapped onto neuromorphic implementations comes from graph theory236

[38] [19][49] [5]. A graph is a model that consists of vertices, or nodes, along with directed pairwise rela-237

tionships between nodes called edges. The underlying architecture of a neuromorphic system is a directed238

graph, so when there is a graph of interest, it can be embedded directly into a neuromorphic architecture239

with suitable parameter settings, and the spike raster can reveal graph properties. For example, with the240

correct parameter sets, a given node can be spiked, and the time at which other nodes spike corresponds241

exactly with the length of the shortest path from the source node [3]. During the COVID-19 pandemic,242

neuromorphic computing was coupled with graph theory as a tool for analyzing the spread of disease [37].243

Random walks have also been implemented within neuromorphic systems. In a random walk, a random244

node is selected as a starting point, and an agent moves along an edge departing from that node selected245

at random. The process is repeated for several steps, and the locations visited by the random agent can246

reveal an important characteristic related to the underlying network. Random walk analyses frequently247

involve performing many random walks and then aggregating the results for analysis. Although traditional248

hardware performs the parallel step well, the aggregation and analysis step requires high energy usage249

sequential operation and does not always benefit from parallel architectures, such as GPUs. Severa et al. [100]250

showed that in certain settings, random walks could be studied in low-energy neuromorphic settings and that251

the analysis can be done in an inherently parallel fashion. Random walks are central to many problems in252

computational physics. Smith, et.al. [105] used neuromorphic deployments of discrete time Markov chains to253

approximate solutions for both particle transport problems and heat flow on complex geometries with energy254

efficient time scalable approaches. Given that graphs are a special class of objects called relational structures,255

foundational work of Cook [18] on relational structures has proven to be compatible with neuromorphic256

hardware, finding application to learning in cortical networks [26] and unsupervised learning tasks [25].257

Neuromorphic computing have also been used to find approximate solutions to NP-complete problems,258

which are some of the most difficult problems in computation. Neuromorphic systems can perform compa-259

rably in terms of time-to-solution and accuracy of the solution to their conventional counterparts, which use260

CPUs and GPUs to approximately solve NP-complete problems. The energy efficiency of the neuromorphic261

approaches makes them amenable to be used in edge computing applications. Thus, a considerable amount262

of energy can potentially be saved using a neuromorphic computer to address NP-complete problems without263

compromising on the time-to-solution and the accuracy of the solution. Several neuromorphic approaches264

for approximating NP-complete problems have been proposed in the literature. Alom et al. used the IBM265

TrueNorth Neurosynaptic system to approximately solve the quadratic unconstrained binary optimization266

(QUBO) problem, which is NP-hard [6].267

Mniszewski converted the NP-complete graph partitioning problem to the QUBO problem and used the268

IBM TrueNorth system to solve it approximately [68]. In some cases, their solutions are more accurate269

than the solutions returned by the D-Wave quantum computer, which was designed to approximately solve270

the QUBO problem. Yakopcic et al. leveraged Intel Loihi to approximately solve the boolean satisfiablity271

9



(SAT) problem [118]. They were able to obtain the solutions of many different SAT problems with varying272

sizes on the Loihi chip. Earlier work of Mostafa et al. developed neural network techniques for approxi-273

mately solving many constraint satisfaction problems [71], later on dedicated neuromorphic hardware [70].274

Fonseca and Furber develop a software framework for solving NP-complete constraint SAT problems on275

the SpiNNaker architecture [30]. Pecevski et al. [83] used neuromorphic hardware to perform inference and276

sampling on general graphical structures, such as Bayes’ nets, which is NP complete for random variables277

with probabilities not bounded away from 0 [21].278

3 Closing the Gap Between Promises and Reality279

Though neuromorphic hardware is available in the research community and there have been a wide variety280

of algorithms proposed, the applications have been primarily targeted towards benchmark datasets and281

demonstrations. Neuromorphic systems are not currently being used in real-world applications, and there282

are still a wide variety of challenges that restrict or inhibit rapid growth in algorithmic and application283

development.284

3.1 Limiting of Algorithmic Focus285

There has yet to be a machine learning algorithm/application combination for which neuromorphic com-286

puting substantially outperforms deep learning approaches in terms of accuracy, though there have been287

compelling demonstrations in which neuromorphic solutions outperform other hardware implementations288

such as neural hardware and edge GPUs in terms of energy efficiency [14]. This has led to the argument that289

neuromorphic systems are primarily interesting because of their low power computing abilities. However, we290

believe that there is tremendous algorithmic opportunity for neuromorphic systems as well. There has been291

a focus on backpropagation-based training approaches because of their state-of-the-art performance in deep292

learning. By limiting focus to those algorithms, however, we may also be limiting ourselves to achieving293

results that are only comparable with (rather than surpassing) deep learning approaches. We believe that294

there is more opportunity to develop approaches that utilize the inherent features of spiking neuromorphic295

systems, such as evolutionary algorithms or neuroscience-inspired approaches. At the same time, though296

these approaches have also been iterated on for decades, they similarly have not achieved state-of-the-art re-297

sults. Since these approaches use the native features of SNNs and thus require computing SNNs, iterating on298

and refining these algorithms is inherently bound by how efficiently SNNs can be computed. Neuromorphic299

computers have the opportunity to significantly speed up SNN evaluation and thus, provide the opportunity300

to accelerate development of SNN-based algorithms.301

3.2 Limited Access to and Usability of Existing Hardware and Software302

One key issue that inhibits algorithmic and application development for neuromorphic systems is the lack303

of readily accessible and usable software and hardware systems for the entire computational and computer304

science communities. Several neuromorphic systems are available; however, there are a limited number of305

these systems and they are typically only available via cloud access to the broader community. Several306

open-source neuromorphic simulators have support for different hardware back ends, such as multinode307

CPUs, GPUs, and emerging neuromorphic hardware (e.g., SpiNNaker [50]). Although simulators such308

as NEST [33], Brian [35], and Nengo [10] are available, none are universally used, and they are often309

built for a specific purpose. For example, NEST targets primarily computational neuroscience workloads,310

whereas Nengo implements computation as framed by the Neural Engineering Framework [107]. Because311

these software systems are developed for particular communities and use cases, their broader usability and312

accessibility are limited outside those communities. In the future, to enable broader usability, development313

of neuromorphic simulators, hardware, and software should take into account the more broad applicability of314

these systems. Many of these simulators also have limited performance when operating at scale [52]. With the315

current data explosion comes the need to process data quickly enough to keep up with data generation speeds,316

10



hence emphasising the need for highly performant and scalable neuromorphic simulators that can effectively317

leverage current high-performance computing systems to develop and evaluate neuromorphic workloads.318

The above mentioned limitations of simulators and also the large training times of current neuromorphic319

algorithms compared to non-spiking approaches have limited the usage of neuromorphic solutions to real-320

world applications, which actively needs to be addressed. Additionally, because the simulators are slow, it321

is very difficult to rapidly evaluate new algorithmic approaches, leading to slow algorithmic evolution. To322

enable more rapid advancement, the community needs performant hardware simulators or emulators that323

can be used when hardware is difficult or impossible to access.324

3.3 Incorporation of Neuromorphic Computers into Broader Computing Envi-325

ronments326

In addition to the lack of availability for neuromorphic hardware and performant simulators, many future327

use cases of neuromorphic computers are likely to be included as part of a broader heterogeneous computing328

environment rather than be operated in isolation. Because of performance constraints (e.g., energy usage329

or processing speed) in existing hardware, more exotic hardware systems, such as neuromorphic and quan-330

tum computers, will increasingly be included in the computing landscape to accelerate particular types of331

computation. Since neuromorphic computing is likely not the best accelerator for all possible computations332

but is likely to be the most performant on certain applications and certain metrics (i.e., energy efficiency for333

neural network computation and speed for neuroscience simulations), they will potentially be used alongside334

other accelerators or specialized hardware for other applications. For example, a neuromorphic system could335

be operating as a co-processor with a CPU with other nontraditional computing systems—such as reconfig-336

urable, quantum, and approximate computing systems—also possibly operating as co-processors. Integrating337

these diverse systems into a single compute environment and developing programming models that enable338

the effective use of diverse heterogeneous systems is an ongoing challenge [113]. Additionally, neuromorphic339

systems are heavily reliant on host machines for defining the software structure that is deployed to the neu-340

romorphic implementation and often for communication to and from the outside world (i.e., interfacing with341

sensors and actuators for real-world applications). This reliance can have a significant impact on the perfor-342

mance benefits of using a neuromorphic computer, to the point where factoring in communication and host343

machine costs eliminates the benefits of using a neuromorphic computer to implement an application [24].344

A key challenge moving forward is how to minimize this reliance on traditional computers, as well as to345

optimize communication between them.346

3.4 Lack of Benchmarks and Metrics347

Another key challenge for neuromorphic algorithmic development is the lack of clearly established bench-348

marks, metrics, and challenge problems. Without common benchmarks and metrics, it is extremely difficult349

to evaluate which hardware system is most suitable for a given algorithm or application. Moreover, evalu-350

ating whether a new algorithm performs well can be extremely difficult without commonly defined metrics.351

Challenge problems, such as the ImageNet task for deep learning, drove significant advances in the field [66].352

The field of neuromorphic computing does not have a well-defined task or set of tasks that the entire com-353

munity is attempting to solve. Several groups have created datasets with event/spike based representation354

and having temporal dimension specifically for benchmarking neuromorphic training algorithms, such as the355

neuromorphic MNIST [78], DVS Gesture [7], and the Spiking Heidelberg audio datasets [20]. Though there356

are an increasing number of these neuromorphic-targeted datasets, these datasets have not yet been broadly357

adopted by the field at large as common benchmarks, limiting their utility at present. Datasets such as358

MNIST, CIFAR-10, and ImageNet dominate the benchmarks in neuromorphic, but these datasets do not359

require the native temporal processing capabilities present in neuromorphic systems, and as such, do not360

showcase the full capabilities of neuromorphic systems. Though the field needs benchmarks and challenge361

problems to target, it is also worth noting that creating a single challenge problem can also be dangerous362

because it may result in advances that target only that application, which can narrow the broader utility of363

the technology (an issue that affects the field of machine learning as a whole). Because of the wide variety of364

11



algorithms and applications of neuromorphic systems as detailed in the previous sections, we propose that365

instead of a single benchmark or challenge problem, there should instead be a suite of challenge problems,366

drawing from both machine learning and non-machine learning use cases.367

3.5 Lack of Programming Abstractions368

Finally, an additional challenge specific to the development of non-machine learning algorithms for neuro-369

morphic deployment is the lack of programming abstractions for neuromorphic implementations. Currently,370

these approaches require that the programmer design the SNN for a particular task at the neuron and371

synapse level, defining all parameter values of those elements and how they are connected. Not only is this372

a fundamentally different way of thinking about how programming is performed but it is often also very373

time consuming and error prone to implement operations at this level. It is no coincidence that many of the374

non-machine learning algorithms for neuromorphic are centered on graph algorithms, because there is a very375

clear approach for mapping a graph into a network (i.e., nodes to neurons and edges to synapses). There376

have been attempts to describe programming abstractions at a higher level, such as the Neural Engineering377

Framework (NEF) [107] and Dynamic Neural Fields (DNF) [91]. However, these are often restricted to spe-378

cific use cases and algorithms, such as biologically-plausible neural models in the case of NEF and modeling379

embodied cognition for DNF. We believe both NEF and DNF are important abstractions for neuromorphic,380

but we also believe that there is still a gap in defining abstractions for using neuromorphic computers more381

broadly. One approach that could be taken is defining subnetworks of spiking neurons and synapses to per-382

form specific tasks that are familiar to programmers, such as binary operations, conditionals, and loops, in383

addition to those defined by NEF and DNF, as well as guidance for composing these subnetworks into larger384

networks capable of more complex tasks. There has been some initial work in this direction. In particular,385

Plank, et al. describe subnetworks that perform basic tasks such as AND, OR, and XOR using different386

spike encoding schemes [87]. However, there is still tremendous opportunity to influence how these subsys-387

tems should be defined and composed. It is clear that they can be used for more than just neural network388

computation; however, until clearer program abstractions are defined and/or the broader computing com-389

munity becomes more familiar with the computational primitives of neuromorphic computing, non-machine390

learning neuromorphic algorithms will be slow to develop. It is also worth noting that although it is possible391

to implement a variety of different types of computations on neuromorphic computers, this does not mean392

that every problem should be mapped onto a neuromorphic computer because not every problem is likely to393

benefit from the computational characteristics of neuromorphic systems described in Section 1. It is better394

to think of neuromorphic computers as specialized processors than general purpose computer. However, we395

do want to emphasize with this work that the scope of specialized processors is not just neuroscience or396

machine learning algorithms, but a wide variety of other types of computation as well.397

4 Outlook398

Neuromorphic processors are energy efficient and adept at performing machine learning and some non-399

machine learning computations. They offer tremendous potential for computing beyond Moore’s law. We400

envision at least three use cases for neuromorphic processors. First, because of their low power consumption,401

neuromorphic processors will be indispensable for edge computing applications, such as autonomous sys-402

tems (e.g., vehicles, drones), robotics, remote sensing, wearable technology, and IoT. Second, neuromorphic403

computers are well poised to become the artificial intelligence accelerators and co-processors in personal404

computing devices, such as smart phones, laptops, and desktops. Accelerators and specialized architectures405

have already been widely adopted in mobile phones, and the need for extremely energy efficient operations406

to improve battery life in those systems as well as laptops continues to be an important factor. Neuro-407

morphic systems can help realize those operations with potentially orders of magnitude less power than408

today’s accelerators. Finally, because of their ability to perform certain non-machine learning computations,409

we envision that neuromorphic computers will be added on as co-processors in next-generation extremely410

heterogeneous high-performance computing systems. In this scenario, neuromorphic computers would be ex-411

12



pected to enable spike-based simulations [37], run graph algorithms [49, 38], solve differential equations [104],412

and efficiently approximate NP-complete problems [68]. It is worth noting that the different use cases of413

neuromorphic computers, from edge devices to accelerators and co-processors are likely to look very different414

in their implementations. Neuromorphic systems deployed at the edge may be specialized to operate with415

one particular application and have a focus on, for example, extremely low power inference performance,416

whereas neuromorphic systems for broader types of computations in an HPC setting will have a focus on417

enabling reconfigurability and training acceleration. Though neuromorphic systems are not currently present418

in these use cases, we do expect that they will begin to emerge in these technologies in the future, likely first419

in the edge computing space as specialized processors, and later into future heterogeneous computers.420

Although several large-scale neuromorphic hardware systems are already available to the research com-421

munity, these systems are all being actively developed. Moreover, there is a wide variety of research efforts422

in developing new materials and devices to implement neuromorphic hardware. As such, there is an oppor-423

tunity to engage in a software-hardware codesign process in the development of neuromorphic hardware [1].424

Currently, most neuromorphic hardware design begins from the bottom of the compute stack (i.e., materials425

and devices) up to the algorithms and applications. That is, the hardware substrate is defined first, and426

the onus is then on the algorithms and applications developers to map them onto that particular hardware427

implementation. However, because the hardware is being actively developed and new materials and devices428

for neuromorphic computing are being actively investigated, there is tremendous opportunity to engage in429

codesign all across the compute stack, for example, so that the algorithms and applications can influence430

the underlying hardware design (Figure 3). There is an opportunity to tailor the underlying hardware im-431

plementation to suit a particular application’s needs or constraints. This opens up new horizons to not only432

focus on digital computing, but also to rethink using analog, approximate, and mixed-signal computing [28],433

since biological neural computation itself is inherently analog and stochastic. Among several approaches434

proposed in the literature on software-hardware codesign, one is using Bayesian optimization and Neural435

Architecture Search approaches in which several stacks of computing that range from materials and devices436

to algorithm and applications are codesigned to optimize overall system performance [82, 80, 81]. For ex-437

ample, in a memristive crossbar-based accelerator, an automatic codesign optimization approach has the438

opportunity to define the number and sizes of crossbars to optimize the accuracy and energy efficiency of439

the design for different applications or datasets. In addition to the opportunity for whole-stack co-design440

driven by algorithms and applications noted here and by Aimone in [1], there is also the opportunity to441

allow for emerging materials and devices for neuromorphic computers to inspire our algorithmic approaches,442

for example, in the implementation of plasticity. Today, the process of implementing synaptic plasticity443

on devices begins with the inspiration of plasticity in biological brains, is implemented and demonstrated444

on emerging devices (top-down co-design), and then the specific plasticity algorithm is adapted to however445

plasticity functions on that device (bottom-up co-design). However, plasticity mechanisms in biological brain446

evolved to use biological materials and components. We believe there may be opportunities to look at the447

underlying physical behaviors of other devices and materials to inform new neuromorphic algorithms.448

The potential of neuromorphic computers in the future of computing and computational science is only449

beginning to be understood, and there is tremendous opportunity to leverage the inherent computational450

characteristics of these systems for machine learning and certain non-machine learning computations as well.451

Using neuromorphic computers most effectively will require a paradigm shift in how researchers think about452

programming. We believe that there are opportunities to achieve unprecedented algorithmic performance in453

terms of speed and energy efficiency on many applications with neuromorphic computers. In particular, in454

addition to their clear benefits for neural network-style computation, we believe that two areas that have the455

opportunity to see tremendous benefits from neuromorphic computers are graph algorithms and optimization456

tasks. Both of these types of algorithms and applications have the opportunity to benefit from the massively457

parallel, event-driven, and/or stochastic operation of neuromorphic systems. With the confluence of many458

different types of algorithms and applications in neuromorphic, along with the active development of large-459

scale neuromorphic hardware and emerging devices and materials, now is the time for the greater computing460

community to begin considering neuromorphic computers a part of the greater computing landscape.461

13



Figure 3: Opportunity for full compute stack co-design in neuromorphic systems. The current approach
(shown on the left) is a bottom-up approach, where materials and devices are defined first, and those inform
the architectures, algorithms, and applications sequentially. The opportunity for a future co-design approach
(shown on the right) is for all aspects of the design stack to influence other components directly, e.g., for
applications to directly influence the materials chosen or for the algorithms to directly influence the circuits
used.

14



Acknowledgments462

This material is based upon work supported by the US Department of Energy, Office of Science, Office of463

Advanced Scientific Computing Research, Robinson Pino, program manager, under contract number DE-464

AC05-00OR22725.465

We would like to thank Nathan Armistead for his aid in creating the graphics for this manuscript.466

References467

[1] James B Aimone. A roadmap for reaching the potential of brain-derived computing. Advanced Intel-468

ligent Systems, 3(1):2000191, 2021.469

[2] James B Aimone, Kathleen E Hamilton, Susan Mniszewski, Leah Reeder, Catherine D Schuman, and470

William M Severa. Non-neural network applications for spiking neuromorphic hardware. In Proceedings471

of the Third International Workshop on Post Moores Era Supercomputing, pages 24–26, 2018.472

[3] James B Aimone, Yang Ho, Ojas Parekh, Cynthia A Phillips, Ali Pinar, William Severa, and Yipu473

Wang. Provable neuromorphic advantages for computing shortest paths. In Proceedings of the 32nd474

ACM Symposium on Parallelism in Algorithms and Architectures, pages 497–499, 2020.475

[4] Alireza Alemi, Christian Machens, Sophie Deneve, and Jean-Jacques Slotine. Learning nonlinear476

dynamics in efficient, balanced spiking networks using local plasticity rules. In Proceedings of the477

AAAI Conference on Artificial Intelligence, volume 32, 2018.478

[5] Abdullahi Ali and Johan Kwisthout. A spiking neural algorithm for the network flow problem. arXiv479

preprint arXiv:1911.13097, 2019.480

[6] Md Zahangir Alom, Brian Van Essen, Adam T Moody, David Peter Widemann, and Tarek M Taha.481

Quadratic unconstrained binary optimization (qubo) on neuromorphic computing system. In 2017482

International Joint Conference on Neural Networks (IJCNN), pages 3922–3929. IEEE, 2017.483

[7] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan484

Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael Debole,485

Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha. A low power, fully event-based486

gesture recognition system. In 2017 IEEE Conference on Computer Vision and Pattern Recognition487

(CVPR), pages 7388–7397, 2017.488

[8] Navin Anwani and Bipin Rajendran. Training multi-layer spiking neural networks using normad based489

spatio-temporal error backpropagation. Neurocomputing, 380:67–77, 2020.490

[9] Alireza Bagheri, Osvaldo Simeone, and Bipin Rajendran. Training probabilistic spiking neural networks491

with first-to-spike decoding. In 2018 IEEE International Conference on Acoustics, Speech and Signal492

Processing (ICASSP), pages 2986–2990. IEEE, 2018.493

[10] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C Stewart, Daniel Ras-494

mussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith. Nengo: a python tool for building large-scale495

functional brain models. Frontiers in neuroinformatics, 7:48, 2014.496

[11] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,497

and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.498

Nature communications, 11(1):1–15, 2020.499

[12] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chandrasekaran,500

Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A Merolla, and Kwabena Boahen.501

Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proceedings of502

the IEEE, 102(5):699–716, 2014.503

15



[13] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons: dependence504

on spike timing, synaptic strength, and postsynaptic cell type. Journal of neuroscience, 18(24):10464–505

10472, 1998.506

[14] Peter Blouw, Xuan Choo, Eric Hunsberger, and Chris Eliasmith. Benchmarking keyword spotting507

efficiency on neuromorphic hardware. In Proceedings of the 7th Annual Neuro-inspired Computational508

Elements Workshop, pages 1–8, 2019.509

[15] Thomas Bohnstingl, Franz Scherr, Christian Pehle, Karlheinz Meier, and Wolfgang Maass. Neuromor-510

phic hardware learns to learn. Frontiers in neuroscience, 13:483, 2019.511

[16] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally encoded512

networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.513

[17] Sugam Budhraja, Basabdatta Sen Bhattacharya, Simon Durrant, Zohreh Doborjeh, Maryam Doborjeh,514

and Nikola Kasabov. Sleep stage classification using neucube on spinnaker: a preliminary study. In515

2020 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2020.516

[18] Matthew Cook. Networks of* relations. California Institute of Technology, 2005.517

[19] Kevin Corder, John V Monaco, and Manuel M Vindiola. Solving vertex cover via ising model on a518

neuromorphic processor. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),519

pages 1–5. IEEE, 2018.520

[20] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg521

spiking data sets for the systematic evaluation of spiking neural networks. IEEE Transactions on522

Neural Networks and Learning Systems, 2020.523

[21] Paul Dagum and Michael Luby. An optimal approximation algorithm for bayesian inference. Artificial524

Intelligence, 93(1-2):1–27, 1997.525

[22] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Cho-526

day, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore527

processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.528

[23] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca Guerra, Prasad529

Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic computing with loihi: A survey530

of results and outlook. Proceedings of the IEEE, 109(5):911–934, 2021.531

[24] Alan Diamond, Thomas Nowotny, and Michael Schmuker. Comparing neuromorphic solutions in action:532

implementing a bio-inspired solution to a benchmark classification task on three parallel-computing533

platforms. Frontiers in neuroscience, 9:491, 2016.534

[25] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-535

dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.536

[26] Peter U Diehl and Matthew Cook. Learning and inferring relations in cortical networks. arXiv preprint537

arXiv:1608.08267, 2016.538

[27] Peter U Diehl, Guido Zarrella, Andrew Cassidy, Bruno U Pedroni, and Emre Neftci. Conversion of539

artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware.540

In 2016 IEEE International Conference on Rebooting Computing (ICRC), pages 1–8. IEEE, 2016.541

[28] Rodney Douglas, Misha Mahowald, and Carver Mead. Neuromorphic analogue vlsi. Annual review of542

neuroscience, 18(1):255–281, 1995.543

16



[29] Chao Du, Fuxi Cai, Mohammed A Zidan, Wen Ma, Seung Hwan Lee, and Wei D Lu. Reservoir544

computing using dynamic memristors for temporal information processing. Nature communications,545

8(1):1–10, 2017.546

[30] Gabriel A Fonseca Guerra and Steve B Furber. Using stochastic spiking neural networks on spinnaker547

to solve constraint satisfaction problems. Frontiers in neuroscience, 11:714, 2017.548

[31] Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project. Pro-549

ceedings of the IEEE, 102(5):652–665, 2014.550

[32] Neil Getty, Thomas Brettin, Dong Jin, Rick Stevens, and Fangfang Xia. Deep medical image analysis551

with representation learning and neuromorphic computing. Interface Focus, 11(1):20190122, 2021.552

[33] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool). Scholarpedia, 2(4):1430,553

2007.554

[34] Julian Göltz, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Dominik Dold, Laura555

Kriener, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel, Karlheinz Meier, et al. Fast and deep556

neuromorphic learning with time-to-first-spike coding. arXiv preprint arXiv:1912.11443, 2019.557

[35] Dan FM Goodman and Romain Brette. Brian: a simulator for spiking neural networks in python.558

Frontiers in neuroinformatics, 2:5, 2008.559

[36] Robert Gütig and Haim Sompolinsky. The tempotron: a neuron that learns spike timing–based deci-560

sions. Nature neuroscience, 9(3):420–428, 2006.561

[37] Kathleen Hamilton, Prasanna Date, Bill Kay, and Catherine Schuman D. Modeling epidemic spread562

with spike-based models. In International Conference on Neuromorphic Systems 2020, pages 1–5, 2020.563

[38] Kathleen E Hamilton, Tiffany M Mintz, and Catherine D Schuman. Spike-based primitives for graph564

algorithms. arXiv preprint arXiv:1903.10574, 2019.565

[39] Eric Hunsberger and Chris Eliasmith. Training spiking deep networks for neuromorphic hardware.566

arXiv preprint arXiv:1611.05141, 2016.567

[40] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André Van Schaik, Ralph Etienne-568

Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie Renaud, et al. Neu-569

romorphic silicon neuron circuits. Frontiers in neuroscience, 5:73, 2011.570

[41] Yilda Irizarry-Valle and Alice Cline Parker. An astrocyte neuromorphic circuit that influences neuronal571

phase synchrony. IEEE transactions on biomedical circuits and systems, 9(2):175–187, 2015.572

[42] Raisul Islam, Haitong Li, Pai-Yu Chen, Weier Wan, Hong-Yu Chen, Bin Gao, Huaqiang Wu, Shimeng573

Yu, Krishna Saraswat, and HS Philip Wong. Device and materials requirements for neuromorphic574

computing. Journal of Physics D: Applied Physics, 52(11):113001, 2019.575

[43] Eugene M Izhikevich. Polychronization: computation with spikes. Neural computation, 18(2):245–282,576

2006.577

[44] Conrad D James, James B Aimone, Nadine E Miner, Craig M Vineyard, Fredrick H Rothganger,578

Kristofor D Carlson, Samuel A Mulder, Timothy J Draelos, Aleksandra Faust, Matthew J Marinella,579

et al. A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic580

computing applications. Biologically Inspired Cognitive Architectures, 19:49–64, 2017.581

[45] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki Mazumder, and Wei582

Lu. Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 10(4):1297–1301,583

2010.584

17



[46] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continuous585

local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.586

[47] David Kappel, Bernhard Nessler, and Wolfgang Maass. Stdp installs in winner-take-all circuits an587

online approximation to hidden markov model learning. PLoS computational biology, 10(3):e1003511,588

2014.589

[48] Nikola K Kasabov. Neucube: A spiking neural network architecture for mapping, learning and under-590

standing of spatio-temporal brain data. Neural Networks, 52:62–76, 2014.591

[49] Bill Kay, Prasanna Date, and Catherine Schuman. Neuromorphic graph algorithms: Extracting longest592

shortest paths and minimum spanning trees. In Proceedings of the Neuro-inspired Computational593

Elements Workshop, pages 1–6, 2020.594

[50] James C Knight and Thomas Nowotny. Gpus outperform current hpc and neuromorphic solutions in595

terms of speed and energy when simulating a highly-connected cortical model. Frontiers in neuro-596

science, 12:941, 2018.597

[51] Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant Wysocki. Design598

and analysis of a neuromemristive reservoir computing architecture for biosignal processing. Frontiers599

in neuroscience, 9:502, 2016.600

[52] Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, and Catherine D Schuman. Benchmarking the601

performance of neuromorphic and spiking neural network simulators. Neurocomputing, 2021.602

[53] Shruti R Kulkarni and Bipin Rajendran. Spiking neural networks for handwritten digit recogni-603

tion—supervised learning and network optimization. Neural Networks, 103:118–127, 2018.604

[54] Kaushalya Kumarasinghe, Mahonri Owen, Denise Taylor, Nikola Kasabov, and Chi Kit. Faneurobot:605

A framework for robot and prosthetics control using the neucube spiking neural network architecture606

and finite automata theory. In 2018 IEEE International Conference on Robotics and Automation607

(ICRA), pages 4465–4472. IEEE, 2018.608

[55] Chankyu Lee, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik Roy. Training deep609

spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised610

fine-tuning. Frontiers in neuroscience, 12:435, 2018.611

[56] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and Kaushik612

Roy. Enabling spike-based backpropagation for training deep neural network architectures. Frontiers613

in neuroscience, 14, 2020.614

[57] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using615

backpropagation. Frontiers in neuroscience, 10:508, 2016.616

[58] Shenglan Li and Qiang Yu. New efficient multi-spike learning for fast processing and robust learning.617

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4650–4657, 2020.618

[59] Yibo Li, Zhongrui Wang, Rivu Midya, Qiangfei Xia, and J Joshua Yang. Review of memristor devices619

in neuromorphic computing: materials sciences and device challenges. Journal of Physics D: Applied620

Physics, 51(50):503002, 2018.621

[60] Wolfgang Maass. On the computational power of winner-take-all. Neural computation, 12(11):2519–622

2535, 2000.623

[61] Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz, Teodora Petrisor,624

and Julie Grollier. Eqspike: spike-driven equilibrium propagation for neuromorphic implementations.625

Iscience, 24(3):102222, 2021.626

18



[62] Christian Mayr, Sebastian Hoeppner, and Steve Furber. Spinnaker 2: A 10 million core processor627

system for brain simulation and machine learning. arXiv preprint arXiv:1911.02385, 2019.628

[63] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636, 1990.629

[64] Carver Mead. How we created neuromorphic engineering. Nature Electronics, 3(7):434–435, 2020.630

[65] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp631

Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-neuron632

integrated circuit with a scalable communication network and interface. Science, 345(6197):668–673,633

2014.634

[66] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of convolution neural635

network advances on the imagenet. Computer Vision and Image Understanding, 161:11–19, 2017.636

[67] J Parker Mitchell, Grant Bruer, Mark E Dean, James S Plank, Garrett S Rose, and Catherine D637

Schuman. Neon: Neuromorphic control for autonomous robotic navigation. In 2017 IEEE International638

Symposium on Robotics and Intelligent Sensors (IRIS), pages 136–142. IEEE, 2017.639

[68] Susan M Mniszewski. Graph partitioning as quadratic unconstrained binary optimization (qubo) on640

spiking neuromorphic hardware. In Proceedings of the International Conference on Neuromorphic641

Systems, pages 1–5, 2019.642

[69] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore architecture643

with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps).644

IEEE transactions on biomedical circuits and systems, 12(1):106–122, 2017.645

[70] Hesham Mostafa, Lorenz K Müller, and Giacomo Indiveri. An event-based architecture for solving646

constraint satisfaction problems. Nature communications, 6(1):1–10, 2015.647

[71] Hesham Mostafa, Lorenz K Müller, and Giacomo Indiveri. Rhythmic inhibition allows neural networks648

to search for maximally consistent states. Neural computation, 27(12):2510–2547, 2015.649

[72] Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier, Abbas Nowzari-Dalini, and Mo-650

hammad Ganjtabesh. First-spike-based visual categorization using reward-modulated stdp. IEEE651

transactions on neural networks and learning systems, 29(12):6178–6190, 2018.652

[73] Anand Kumar Mukhopadhyay, Atul Sharma, Indrajit Chakrabarti, Arindam Basu, and Mrigank653

Sharad. Power-efficient spike sorting scheme using analog spiking neural network classifier. ACM654

Journal on Emerging Technologies in Computing Systems (JETC), 17(2):1–29, 2021.655

[74] Joseph S Najem, Graham J Taylor, Ryan J Weiss, Md Sakib Hasan, Garrett Rose, Catherine D656

Schuman, Alex Belianinov, C Patrick Collier, and Stephen A Sarles. Memristive ion channel-doped657

biomembranes as synaptic mimics. ACS nano, 12(5):4702–4711, 2018.658

[75] SR Nandakumar, Shruti R Kulkarni, Anakha V Babu, and Bipin Rajendran. Building brain-inspired659

computing systems: Examining the role of nanoscale devices. IEEE Nanotechnology Magazine,660

12(3):19–35, 2018.661

[76] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking neural662

networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal663

Processing Magazine, 36(6):51–63, 2019.664

[77] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolfgang Maass. Bayesian computation665

emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput666

Biol, 9(4):e1003037, 2013.667

19



[78] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image668

datasets to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.669

[79] Matthias Oster, Rodney Douglas, and Shih-Chii Liu. Computation with spikes in a winner-take-all670

network. Neural computation, 21(9):2437–2465, 2009.671

[80] Maryam Parsa, Aayush Ankit, Amirkoushyar Ziabari, and Kaushik Roy. Pabo: Pseudo agent-based672

multi-objective bayesian hyperparameter optimization for efficient neural accelerator design. In 2019673

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8, 2019.674

[81] Maryam Parsa, J Parker Mitchell, Catherine D Schuman, Robert M Patton, Thomas E Potok, and675

Kaushik Roy. Bayesian-based hyperparameter optimization for spiking neuromorphic systems. In 2019676

IEEE International Conference on Big Data (Big Data), pages 4472–4478. IEEE, 2019.677

[82] Maryam Parsa, John P Mitchell, Catherine D Schuman, Robert M Patton, Thomas E Potok, and678

Kaushik Roy. Bayesian multi-objective hyperparameter optimization for accurate, fast, and efficient679

neural network accelerator design. Frontiers in neuroscience, 14:667, 2020.680

[83] Dejan Pecevski, Lars Buesing, and Wolfgang Maass. Probabilistic inference in general graphical681

models through sampling in stochastic networks of spiking neurons. PLoS computational biology,682

7(12):e1002294, 2011.683

[84] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe Zou,684

Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip architecture.685

Nature, 572(7767):106–111, 2019.686

[85] Balint Petro, Nikola Kasabov, and Rita M Kiss. Selection and optimization of temporal spike encoding687

methods for spiking neural networks. IEEE transactions on neural networks and learning systems,688

31(2):358–370, 2019.689

[86] J. S. Plank, C. Rizzo, K. Shahat, G. Bruer, T. Dixon, M. Goin, G. Zhao, J. Anantharaj, C. D.690

Schuman, M. E. Dean, G. S. Rose, N. C. Cady, and J. Van Nostrand. The TENNLab suite of LIDAR-691

based control applications for recurrent, spiking, neuromorphic systems. In 44th Annual GOMACTech692

Conference, Albuquerque, March 2019.693

[87] J. S. Plank, C. Zheng, C. D. Schumann, and C. Dean. Spiking neuromorphic networks for binary tasks.694

In International Conference on Neuromorphic Computing Systems (ICONS), pages 1–8. ACM, 2021.695

[88] Ioannis Polykretis, Guangzhi Tang, and Konstantinos P Michmizos. An astrocyte-modulated neu-696

romorphic central pattern generator for hexapod robot locomotion on intel’s loihi. In International697

Conference on Neuromorphic Systems 2020, pages 1–9, 2020.698

[89] Thomas Potok, Catherine Schuman, Robert Patton, and Hai Li. Neuromorphic computing, architec-699

tures, models, and applications. A Beyond-CMOS Approach to Future Computing, The Department700

of Energy (DOE) Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, 2016.701

[90] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conversion702

of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers703

in neuroscience, 11:682, 2017.704

[91] Yulia Sandamirskaya. Dynamic neural fields as a step toward cognitive neuromorphic architectures.705

Frontiers in neuroscience, 7:276, 2014.706

[92] J David Schaffer. Evolving spiking neural networks for robot sensory-motor decision tasks of varying707

difficulty. In Proceedings of the Neuro-inspired Computational Elements Workshop, pages 1–7, 2020.708

20



[93] Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, and Johannes Weis. Accelerated analog709

neuromorphic computing. arXiv preprint arXiv:2003.11996, 2020.710

[94] Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz Meier, and Sebastian711

Millner. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In 2010 IEEE712

International Symposium on Circuits and Systems (ISCAS), pages 1947–1950. IEEE, 2010.713

[95] Stefan Schliebs and Nikola Kasabov. Evolving spiking neural network—a survey. Evolving Systems,714

4(2):87–98, 2013.715

[96] Catherine D Schuman, J Parker Mitchell, Robert M Patton, Thomas E Potok, and James S Plank. Evo-716

lutionary optimization for neuromorphic systems. In Proceedings of the Neuro-inspired Computational717

Elements Workshop, pages 1–9, 2020.718

[97] Catherine D Schuman, James S Plank, Grant Bruer, and Jeremy Anantharaj. Non-traditional input719

encoding schemes for spiking neuromorphic systems. In 2019 International Joint Conference on Neural720

Networks (IJCNN), pages 1–10. IEEE, 2019.721

[98] Catherine D Schuman, Thomas E Potok, Robert M Patton, J Douglas Birdwell, Mark E Dean, Gar-722

rett S Rose, and James S Plank. A survey of neuromorphic computing and neural networks in hardware.723

arXiv preprint arXiv:1705.06963, 2017.724

[99] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking725

neural networks: Vgg and residual architectures. Frontiers in neuroscience, 13:95, 2019.726

[100] William Severa, Rich Lehoucq, Ojas Parekh, and James B Aimone. Spiking neural algorithms for727

markov process random walk. In 2018 International Joint Conference on Neural Networks (IJCNN),728

pages 1–8. IEEE, 2018.729

[101] William Severa, Craig M Vineyard, Ryan Dellana, Stephen J Verzi, and James B Aimone. Training deep730

neural networks for binary communication with the whetstone method. Nature Machine Intelligence,731

1(2):86–94, 2019.732

[102] Amar Shrestha, Khadeer Ahmed, Yanzhi Wang, and Qinru Qiu. Stable spike-timing dependent plas-733

ticity rule for multilayer unsupervised and supervised learning. In 2017 international joint conference734

on neural networks (IJCNN), pages 1999–2006. IEEE, 2017.735

[103] Rohit Shukla, Mikko Lipasti, Brian Van Essen, Adam Moody, and Naoya Maruyama. Remodel:736

Rethinking deep cnn models to detect and count on a neurosynaptic system. Frontiers in neuroscience,737

13:4, 2019.738

[104] J Darby Smith, William Severa, Aaron J Hill, Leah Reeder, Brian Franke, Richard B Lehoucq, Ojas D739

Parekh, and James B Aimone. Solving a steady-state pde using spiking networks and neuromorphic740

hardware. In International Conference on Neuromorphic Systems 2020, pages 1–8, 2020.741

[105] John Darby Smith, Aaron Jamison Hill, Leah Reeder, Brian C Franke, Richard B Lehoucq, Ojas D742

Parekh, William Mark Severa, and James Bradley Aimone. Neuromorphic scaling advantages for743

energy-efficient random walk computations. Technical report, Sandia National Lab.(SNL-NM), Albu-744

querque, NM (United States), 2020.745

[106] Nicholas Soures and Dhireesha Kudithipudi. Deep liquid state machines with neural plasticity for video746

activity recognition. Frontiers in neuroscience, 13:686, 2019.747

[107] Terrence C Stewart. A technical overview of the neural engineering framework. University of Waterloo,748

2012.749

21



[108] Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high750

accuracy through temporal coding with two spikes. Nature Machine Intelligence, 3(3):230–238, 2021.751

[109] Dmitri Strukov, Giacomo Indiveri, Julie Grollier, and Stefano Fusi. Building brain-inspired computing.752

Nature Communications, (10):4838–2019, 2019.753

[110] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang. Hardware for machine754

learning: Challenges and opportunities. In 2017 IEEE Custom Integrated Circuits Conference (CICC),755

pages 1–8. IEEE, 2017.756

[111] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki Kanazawa, Seiji757

Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent advances in physical reservoir758

computing: A review. Neural Networks, 115:100–123, 2019.759

[112] Chetan Singh Thakur, Jamal Lottier Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan Kumar,760

Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer Olson Hasler, et al. Large-761

scale neuromorphic spiking array processors: A quest to mimic the brain. Frontiers in neuroscience,762

12:891, 2018.763

[113] Jeffrey S Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John Shalf, Katie Antypas,764

David Donofrio, Travis Humble, Catherine Schuman, et al. Extreme heterogeneity 2018-productive765

computational science in the era of extreme heterogeneity: Report for doe ascr workshop on extreme766

heterogeneity. Technical report, USDOE Office of Science (SC), Washington, DC (United States),767

2018.768

[114] Felix Wang, William M Severa, and Fred Rothganger. Acquisition and representation of spatio-769

temporal signals in polychronizing spiking neural networks. In Proceedings of the 7th Annual Neuro-770

inspired Computational Elements Workshop, pages 1–5, 2019.771

[115] Quan Wang, Constantin A Rothkopf, and Jochen Triesch. A model of human motor sequence learn-772

ing explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS773

computational biology, 13(8):e1005632, 2017.774

[116] Parami Wijesinghe, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Analysis of775

liquid ensembles for enhancing the performance and accuracy of liquid state machines. Frontiers in776

neuroscience, 13:504, 2019.777

[117] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for training778

high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.779

[118] Chris Yakopcic, Nayim Rahman, Tanvir Atahary, Tarek M Taha, and Scott Douglass. Solving con-780

straint satisfaction problems using the loihi spiking neuromorphic processor. In 2020 Design, Automa-781

tion & Test in Europe Conference & Exhibition (DATE), pages 1079–1084. IEEE, 2020.782

[119] Shihui Yin, Shreyas K Venkataramanaiah, Gregory K Chen, Ram Krishnamurthy, Yu Cao, Chaitali783

Chakrabarti, and Jae-sun Seo. Algorithm and hardware design of discrete-time spiking neural networks784

based on back propagation with binary activations. In 2017 IEEE Biomedical Circuits and Systems785

Conference (BioCAS), pages 1–5. IEEE, 2017.786

[120] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural787

networks. Neural computation, 30(6):1514–1541, 2018.788

[121] Friedemann Zenke and Emre O Neftci. Brain-inspired learning on neuromorphic substrates. Proceedings789

of the IEEE, 2021.790

22


