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Abstract—With the increasing penetration of renewable en-
ergy, frequency response and its security are of significant
concerns for reliable power system operations. Frequency-
constrained unit commitment (FCUC) is proposed to address
this challenge. Despite existing efforts in modeling frequency
characteristics in unit commitment (UC), current strategies can
only handle oversimplified low-order frequency response models
and do not consider wide-range operating conditions. This paper
presents a generic data-driven framework for FCUC under high
renewable penetration. Deep neural networks (DNNs) are trained
to predict the frequency response using real data or high-fidelity
simulation data. Next, the DNN is reformulated as a set of mixed-
integer linear constraints to be incorporated into the ordinary
UC formulation. In the data generation phase, all possible power
injections are considered, and a region-of-interest active sampling
is proposed to include power injection samples with frequency
nadirs closer to the UFLC threshold, which enhances the ac-
curacy of frequency constraints in FCUC. The proposed FCUC
is investigated on the IEEE 39-bus system. Then, a full-order
dynamic model simulation using PSS/E verifies the effectiveness
of FCUC in frequency-secure generator commitments.

Index Terms—Unit commitment, renewable integration, fre-
quency response, mixed-integer programming, deep learning,
active learning.

I. INTRODUCTION

With the increasing penetration of renewable energy, power
system frequency stability is of significant concern for reliable
system operations. Federal Energy Regulatory Commission
(FERC) has suggested that conventional unit scheduling, com-
mitment and dispatch will need to take into account primary
and secondary frequency control capabilities in addition to
the traditional economic and security constraints [1]. The
frequency-constrained unit commitment (FCUC) is proposed
to address this challenge [2]. There are mainly two types
of frequency nadir approximation models. The first approach
uses the swing equation with a piecewise linear mechanical
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power approximation. In this case, the mechanical power is not
governed by a closed-loop control but is assumed to follow a
piecewise linear function with respect to time. Then, different
versions of frequency security conditions can be derived and
embedded into the optimization formulation. With this model,
the frequency constrained stochastic economic dispatch is con-
sidered in [3]. The optimal power flow with primary frequency
response adequacy constraint is investigated in [4], where the
minimum required governor response is derived. The stochas-
tic unit commitment (UC) is studied in [5]. Ref. [6] employed
the formulation in [5] for the interval scheduling problem. In
[7] [8] [9], multiple frequency services are considered, where
the supported power is approximated by integrator dynamics.
However, such a model does not capture the interaction be-
tween frequency and mechanical power dynamics. The second
type employs the so-called system frequency response (SFR)
model. Refs. [10], [11] derived the analytical expression of the
SFR under a step input and proposed an efficient piecewise
linearization that converts the analytical solution into a set
of constraints. This strategy has been fully extended into
microgrid scheduling [12], hierarchical frequency control [13],
optimal power flow [14], and unit commitment with renewable
energy resources [15], respectively. Despite these excellent
efforts of modeling SFR in mathematical programming-based
(MP-based) scheduling, these methods rely on the low-order
model approximation that cannot be able to capture the entire
SFR characteristics. In the classic SFR [10] [11], individual
generator speeds deviate from the center of inertia (COI)
frequency depending on the electric distances of generators.
Therefore, only considering COI frequency can ignore inse-
cure responses of certain generators. These methods cannot
incorporate high-order models since there are no analytical
solutions for the step response. In addition, nonlinearities in
SFR such as deadbands and saturations cannot be taken into
considerations by the existing approaches, which, however,
have significant impacts on SFR [16]. On the other hand,
directly incorporating frequency dynamics will result in highly
complex MP problems [17] [18].

A pioneering data driven approaches have been proposed
in [19] for FCUC, where a classification decision tree for
frequency security was designed. In this paper, we propose
a deep neural network (DNN)-based trajectory constraint
encoding framework as deep neural networks (DNN) have
shown strong representation power to amend the limitations
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of model-based approaches [20]–[22]. The framework will
first train a DNN-based frequency nadir predictor using real
operation data or high-fidelity simulation data. In this case,
the frequency nadir predictor can reflect a variety of model
types and corresponding nonlinearities. Then, the DNN will
be reformulated into a set of mixed-integer linear constraints
and further incorporated into the unit commitment program.
It is worth mentioning that this re-formulation is exact if
the rectified linear unit (ReLU) is employed as the activation
function [23]. The idea has been proposed in our previous
work in [24]. But it is worth mentioning that the FCUC that we
are addressing is a significantly different problem compared
with the previous work in [24] in terms of transmission sys-
tem’s stability, heterogeneity, and sampling complexity under
varying operating conditions. The methodology and working
pipeline in [24] cannot be directly applied. A systematic
methodology and working pipeline are needed. The challenges
of the FCUS and our contribution are concluded as follows

1) First, although both papers consider post-contingency
system performance, [24] does not consider the system
stability issue. Post-contingency stability issue includes
transient stability, small-signal stability, and voltage sta-
bility, and they include non-trivial difficulty to schedul-
ing problems as directly training the frequency nadir
predictor over all scenarios is not applicable. To tackle
this issue, we build a series of post-processing criteria to
group different scenarios. Then, we use another neural
network to predict the stability and filter out unstable
operating conditions for the frequency nadir predictor.

2) Secondly, unlike [24], we consider varying disturbance
locations and heterogeneous responses from generators.
Feature construction to take the heterogeneity into ac-
count is essential for the prediction performance. In
this paper, based on the generator frequency response
characteristics and empirical studies, we construct ap-
propriate and concise feature vectors and propose asso-
ciated embedding mixed-integer linear program (MILP)
formulations.

3) Thirdly, in this paper, we propose a new region-of-
interest active sampling method to allow us to consider
wide-range operation conditions to ensure the reliability
of our method. This active sampling method allows us
to select the most informative samples without labeling
efforts and thus resolves the labeling bottleneck.

The limitations of existing methods and the improvements
of our approach can be concluded as follows

• As discussed before, existing methods are not sufficient
in capturing the frequency dynamics and not capable of
embedding more complicated models. Our data-driven
approach overcomes this challenge.

• Existing methods will introduce considerable integer
variables since they rely on piecewise linearization of
the analytical frequency nadir for constraint embedding.
Additionally, their embedding procedure will introduce
approximation error. Although our approach will intro-
duce integer variables, there is no approximation error
during our embedding procedure since the reformulation

of the DNN is exact if the ReLU is used.
• Compared with our method, existing model-based meth-

ods cannot consider possible unstable scenarios.
The remainder of the paper is organized as follows. Section

II describes the problem setup. Section III describes the DNN-
based predictors for frequency trajectory and stability with
feature selections. Section IV describes the data generation
using the region-of-interest active sampling strategy. Section
V express the FCUC formulation, followed by the case study
in Section VI, discussions in Section VII, and conclusions in
Section VIII.

II. PROBLEM STATEMENT

Given the load forecast d, the ordinary UC problem in Eq.
(1) aims to calculate the optimal dispatch command u ∈ U
such that the operating cost is minimized while the system
states s respect the constraints

min
ut∈U

C(st,ut)

s.t. fu(st,ut,dt) = 0,gu(st,ut,dt) ≤ 0 ∀t ∈ T
(1)

where fu and gu denotes the equality and inequality con-
straints, respectively. Assume a disturbance $ occurs at
scheduling period τ , which results in power imbalance and the
decline of frequency. Let the frequency nadir of the system be
denoted as fndr, which can be assumed to admit a nonlinear
relation with respect to the disturbance, system states, dispatch
command, and load condition

fndr = hf(sτ ,uτ ,dτ , $) (2)

The frequency-constrained UC (FCUC) searches the optimal
dispatch command such that the resulting system states ensure
a secure frequency response for any disturbance from a pre-
defined set W occurring within the scheduling period T . The
FCUC reads as follows

min
ut∈U

C(st,ut) (3a)

s.t. fu(st,ut,dt) = 0,gu(st,ut,dt) ≤ 0 ∀t ∈ T (3b)

hf(st,ut,dt, $) ≥ fmin ∀t ∈ T ,∀$ ∈ W (3c)

where fu and gu denotes the equality and inequality con-
straints, respectively. The disturbance set W is defined to be
the N−1 generator loss. It is almost guaranteed that the largest
generator outage will result in the worse frequency nadir. Thus,
we consider the worst-case contingency in the FCUC problem
to be the loss of the generator with the largest power output,
which changes within the scheduling period T .

The underlying assumption for the existence of (2) is that
the system after the worst-case disturbance will admit a stable
trajectory. Since we are considering the full power injection
space, this assumption may not hold. There are two prerequi-
sites for us to consider the frequency trajectory constraint:
(1) the post-disturbance system should have a power flow
solution, which is closely related to voltage stability; (2) the
post-disturbance system should hold the rotor angle stability
condition. In other words, Eq. (3c) may provide incorrect
outputs under voltage and rotor angle instable cases and
mislead the feasibility of the entire UC program in (3). To
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tackle this issue, we assume there exist a function that can
map from st,ut,dt to the probability of stability under the
worst-case disturbance as shown in (4)

min
ut∈U

C(st,ut) (4a)

s.t. fu(st,ut,dt) = 0,gu(st,ut,dt) ≤ 0 (4b)

hf(st,ut,dt, $) ≥ fmin (4c)
hp(st,ut,dt, $)[2] ≥ hp(pt,ut,dt, $)[1] (4d)
∀t ∈ T , $ ∈ W (4e)

where hp is the probabilistic stability descriptor that outputs a
two-dimensional real-valued vector. The first entry denotes the
predicted probability of a case being unstable, and the second
entry denotes the predicted probability of a case being stable.
The subscript [s] denotes the sth entry of the output vector. The
ultimate goal of this paper is to construct (4), which will be
described in the following sections using the working pipeline
shown in Fig. 1.
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Fig. 1. Overview of the proposed FCUC framework and working pipeline.

III. DEEP LEARNING-BASED TRAJECTORY CONSTRAINT
APPROXIMATION

A. DNN-Based Frequency Nadir Predictor

Let this neural network frequency nadir predictor for hf be
expressed as

f̂ndr = ĥf(xf;Wf,bf) (5)

where xf denotes the feature vector, and Wf and bf denote
the neural network parameters to be trained. To fully represent
all possible operating conditions, a sufficient sample set NS
will be created1. Let fndr,s and f̂ndr,s denote the actual and
predicted frequency nadirs of sample xf

s. Now consider a
fully connected neural network with N f

Y hidden layers. Each
layer uses a rectified linear unit (ReLU) activation function
denoted as σ(·) = max(·, 0), and the output layer uses a linear
activation function. The predicted nadir can be expressed as
follows

zf
1 = xf

sW
f
1 + bf

1 (6a)

ẑf
m = zf

m−1W
f
m + bf

m (6b)

zf
m = max(ẑf

m, 0) (6c)

fndr,s = zf
N f

Y
Wf

N f
Y+1 + bf

N f
Y+1 (6d)

1The subscripts s and t are essentially the same as they both denote different
system operating scenarios. Following the convention, we use s in the machine
learning problem and t in the UC problem.

where matrix Wf
m and vector bf

m for m = 1, · · · , N f
Y

represent the set of weight and bias across all hidden layers,
and Wf

N f
Y+1

and bf
N f

Y+1
represent the set of weight and bias

of the output layer. We would like to minimize the total mean
squared error between the predicted output and the labeled
outputs of all samples as follows

min
Wf

m,b
f
m

1

N f
S

N f
S∑

s=1

(fndr,s − f̂ndr,s)
2 (7)

There are two essential prerequisites: (1) making correct
choice of input features among s, u, d and $; (2) gener-
ating representative samples under different system operating
conditions.

1) Feature Selection: The frequency response from a syn-
chronous generator (SG) is less dependent on its output unless
there is not enough headroom, which will be avoided in the
UC problem. In addition, we assume the droop control of the
turbine governor for all SGs will not change. Therefore, it is
sufficient to select the status of each SG uG

g,s as the input
features. Both the magnitude and location of the disturbance
will have impacts on the frequency response. Based on our
discussion regarding the disturbance in Section II, the distur-
bance magnitude can be expressed as

P$s = max
g∈NG

(PG
1,s, · · · , PG

g,s, · · · , PG
NG,s) (8)

We use the bus index to represent the location information as

g$s = arg max
g∈NG

(PG
1,s, · · · , PG

g,s, · · · , PG
NG,s) (9)

We encode both information into one vector as

x$s =

 0, · · · , 0︸ ︷︷ ︸
g$s −1 element

, P$s︸︷︷︸
g$s th element

, 0, · · · , 0

 (10)

Then, the feature vector of sample s reads as

xf
s =

[
uG
1,s, · · · , uG

NG,s,x
$
s

]
(11)

B. DNN-Based Stability Predictor

Similar to the frequency nadir predictor, we construct a
neural network ĥp to approximate the probabilistic stability
descriptor hp. To do this, we denote the classes of unstable and
stable as Cq for q = 1, 2, respectively. The label data after one-
hot encoding reads c∗s = c∗s,1, c

∗
s,2, where c∗s,q = 1 indicates

that sample s belongs to class q. We then apply probabilistic
smoothing approximations to the discrete label values. It is
well known that when the targets are one-hot encoded and an
appropriate loss function is used, an neural network directly
estimates the posterior probability of class membership Cq
conditioned on the input variables xp, denoted by p(Cq|xp).
Then, the stability predictor can be expressed as follows

pstab =
[
p(C1|xp), p(C2|xp)

]
= ĥp(xp;Wp,bp) (12)
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where ĥp reads as follows

zp
1 = xp

sW
p
1 + bp

1 (13a)
ẑp
m = zp

m−1W
p
m + bp

m (13b)
zp
m = max(ẑp

m, 0) (13c)
pstab,s = zp

N p
Y
Wp

N p
Y+1

+ bp
N p

Y+1
(13d)

where m = 1, · · · , N p
Y represent the indices for all hidden

layers, and N p
Y +1 is the output layer. The network parameters

can be calculated using the maximum likelihood estimation.
Therefore, we minimize the negative logarithm of the likeli-
hood function, known as the cross-entropy loss, as follows

L = − 1

N p
s

N p
s∑

s=1

2∑
q=1

c∗s,q log ps(Cq|xp) (14)

1) Feature Selection: The disturbance information is also
essential for the stability predictor. The same encoding method
in (8)-(10) is used. Considering that only online SGs will
respond to disturbances, their commitment status is also em-
ployed. The voltage stability is highly related to the loading
condition of the system. Since we relax the generator Var
power limits, the active power will have a dominant impact.
The transient stability margin depends on the power-angle
characteristics, which are determined by the active power
injection. Thus, the active power injection of all SGs will be
encoded into the feature vector. And the overall feature reads

xp
s = [uG

1,s, · · · , uG
NG,s,x

$
s , P

G
1,s, · · · , PG

NG,s] (15)

IV. DATA GENERATION AND REGION-OF-INTEREST
ACTIVE SAMPLING

Consider a power network with NG SGs, NW WTGs, and
ND loads. Let NG, NW, and ND denote the set of SGs, WTGs
and loads, respectively. The full dimension injection samples
are

Φ =[PW
1 , · · · ,PW

NW
,PG

1 , · · · ,PG
NG
,QG

1 , · · · ,QG
NG
,

PD
1 , · · · ,PD

ND
,QG

1 , · · · ,QG
ND

]
(16)

where PG
g and QG

g are samples of active and reactive power
injections for SG g; PW

w are samples of active power injections
for WTG w; PD

k and QD
k are samples of load active and

reactive power injections for load k. Each sample in Φ is
denoted as φs = Φ[s,:]

2, and the corresponding nadir (label)
is denoted as fndr,s.

Unlike many works that sample around a narrow operation
range, we consider the wide-range space of all power injec-
tions in (16) to ensure reliability under vast ranges of operating
conditions. In this case, not every sample admits a meaningful
frequency nadir. In fact, many sampled power injections are
not stable under the worst-case disturbance. Furthermore, what
we are concerned about the most is the frequency nadir close
to the underfrequnecy load shedding (UFLS) threshold. The
rationale behind this is that a larger prediction error may
not impact the UC result if the real frequency nadir is far
from the UFLS, but a smaller error may cause inappropriate

2The subscript [s, :] denotes the sth row of a matrix.

relay actions if the actual frequency nadir is close to the
UFLS. When the actual frequency nadir is far from the
UFLS threshold, whether the frequency security is a binding
constraint or not to the FCUC will not be changed by the
prediction error. Thus, under limited computation resources, it
is reasonable to focus on improving the accuracy of frequency
nadir prediction near the critical threshold. To train such a
predictor, the distribution of the training dataset should contain
denser samples where the frequency nadirs are closer to the
UFLS threshold, as illustrated in Fig. 2. To generate such

Frequency 

Nadir

Sample 

Numbers

Under-Frequency Load 

Shedding Threshold

59.0 59.558.5

SecureInsecure

Fig. 2. A conceptual illustration of a desired training dataset.

a training set, traditional methods will first perform uniform
sampling over all power injections, label all samples to retrieve
the nadir information, and then select labeled samples based on
desired distributions. However, the labeling procedure needs
time-domain simulation with full-order differential-algebraic
equations. Labeling adequate samples to achieve desired dis-
tributions requires significant computation resources and time,
which is known as the labeling bottleneck. In other words,
how to sample the power injections whose labels are within
the region-of-interest without labeling efforts is essential.

The proposed active sampling method can proceed as fol-
lows. We first define the sample as secure if the corresponding
frequency nadir is above the UFLS threshold and insecure
otherwise, as illustrated in Fig. 2. Second, we train a frequency
security discriminator using the active learning method. The
discriminator will output the predicted probability of a sample
being secure. Then, we employ the active learning method
to train this discriminator. Compared with the traditional
passive learning approaches, the active learning method will
actively select unlabeled samples, query their labels, and then
perform the training on these data instances [25]. During this
procedure, samples whose label values are closer to the UFLS
are easier to be selected. The rationale lies in the fact that it is
more difficult for the discriminator to classify samples that are
closer to the decision boundary, which is the UFLS threshold
in our case. Therefore, we need to select samples whose
posterior probability provided by the discriminator is the
closest to 0.5 [25]. In other words, the selected sample is the
least confident to the discriminator. Let the frequency security
discriminator be denoted as Clf(·), the UFLS threshold be
denoted as fUFLS, the security label of a sample φs be denoted
as fscr,s, where fscr,s = 1 if fndr,s ≥ fUFLS and fscr,s = 0
otherwise. The details of the region-of-interest active sampling
algorithm is illustrated in Algorithm 1. The overall strategy is
introduced as follows

1) Define the frequency security discriminator Clf(·);
Among all the samples Φ, label a small portion denoted
as L for frequency security discriminator training

2) Initialize the set denoted as A to store acquisition
samples for frequency nadir predictor training ĥf(·)
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Algorithm 1: Region-of-Interest Active Sampling
input : Labeled set L, unlabeled set U , sampling

strategy a(·, ·), sampling batch size B, sample
labeling function Label(·), frequency
security discriminator Clf(·), discriminator
training function Train(·, ·)

1 A ← ∅ // initialize the set to store
acquisition samples

2 repeat
3 Clf(·)← Train(L,Clf(·)) // train the

discriminator using current L
4 for s← 1 to B do
5 φs ← arg max a(U ,Clf(·)) // active

sampling using discriminator
6 fndr,s, fscr,s ← Label(φs)
7 L ← L ∪<φs, fscr,s>
8 A ← A∪<φs, fndr,s>
9 U ← U − φs

10 end
11 until some stopping criterion;

output: All acquisition instances A

3) Train the discriminator using current labeled dataset L
4) Perform the active sampling using the discriminator; The

active sampling function a(U ,Clf(·)) reads as follows

φs = argmax
U

(a(U ,Clf(·)))

= argmax
U

(
−

1∑
i=0

p(i|U) log p(i|U)

)
(17)

where p(i|U) is the predicted posterior probability of
class membership (0 for insecure and 1 for secure)
conditioned on the sample inputs.

5) Retrieve both nadir and security labels; Add the nadir
label fndr,s with the acquired sample φs to A; Add the
security label fscr,s with the acquired sample φs to L;
Remove the sample from the unlabeled pool.

6) Repeat (4) and (5) to reach the batch number; Repeat
(3)-(5) for the entire process

It is worth mentioning that Eq. (17) entails only a simple
sorting problem that finds the largest from a finite set of
numerical values. Efficient algorithms to solve such problems
have been extensively studied, especially in the realm of
computer science. To select the most informative samples
globally, we will perform this operation on all samples. But
the algorithm can be flexible to operate on randomly grouped
subsets of the overall sample set to increase the computation
time if the entire sample size is too large. The ultimate goal
of Algorithm 1 is to generate the dataset A for training the
frequency nadir predictor ĥf. By calculating the entropy of
the security discriminator outputs and selecting the extreme
value, the corresponding samples will be closer to the decision
boundary, that is, the UFLS threshold.

V. FREQUENCY CONSTRAINED UNIT COMMITMENT

In this section, we will introduce the FCUC formulation.
Consider an NB-bus power network. Consider the scheduling
period from 1 to NT. Each SG should be dispatched with the
permissible limits

0 ≤ pG
g,t ≤ (P

G
g − P

G
g )uG

g,t ∀g (18a)

QG
g
uG
g,t ≤ QG

g,t ≤ Q
G
gu

G
g,t ∀g (18b)

PG
g,t = pG

g,t + PG
gu

G
g,t ∀g (18c)

t = 1, · · · , NT (18d)

The dispatch changes should respect the ramp-up and ramp-
down limits

PG
g,t − PG

g,t−1 ≤ R
G
gu

G
g,t−1 + PG

g (uG
g,t − uG

g,t−1)∀g (19a)

PG
g,t−1 − PG

g,t ≤ R
G
gu

G
g,t−1 + PG

g (uG
g,t−1 − uG

g,t)∀g (19b)

t = 2, · · · , NT (19c)

The commitment commands should meet the minimum-up and
-down time constraints

uG
g,t − uG

g,t−1 ≤ uG
g,τ up ∀g (20a)

uG
g,t−1 − uG

g,t ≤ 1− uG
g,τ down ∀g (20b)

t = 2, · · · , NT (20c)
τ up = t+ 1, · · · ,min(t+ tup

g − 1, NT) (20d)

τ down = t+ 1, · · · ,min(t+ tdown
g − 1, NT) (20e)

And for t = 1, the minimum-up and -down time constraints
read as follow

uG
g,1 ≤ uG

g,τ up ∀g (21a)

uG
g,1 ≤ 1− uG

g,τ down ∀g (21b)

τ up = 2, · · · ,min(t+ tup
g − 1, NT) (21c)

τ down = 2, · · · ,min(t+ tdown
g − 1, NT) (21d)

The linearized AC power flow equations and the voltage
constraints are expressed as follows [26]

P inj
i,t =

∑
j∈σb(i)

[Gij(2Vi,t − 1)−Gij(Vi,t + Vj,t − 1)

−Bij(θi,t − θj,t)] ∀i, j, i 6= j,∀t
(22a)

Qinj
i,t =

∑
j∈σb(i)

[Bij(1− 2Vi,t) +Bij(Vi,t + Vj,t − 1)

−Gij(θi,t − θj,t)] ∀i, j, i 6= j,∀t
(22b)

V ≤ Vi,t ≤ V ∀i,∀t (22c)

where

P inj
i,t =

∑
g∈σg(i)

PG
g,t +

∑
w∈σw(i)

PW
w,t −

∑
k∈σd(i)

PD
k,t ∀i,∀t

(23a)

Qinj
i,t =

∑
g∈σg(i)

QG
g,t −

∑
k∈σd(i)

QD
k,t ∀i,∀t (23b)

The linearization terms are explained in Appendix A.
To encode the DNN into the MILP, we will first build the

feature vectors in terms of the decision variables in the UC
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problem. Then, we will express the trained neural networks
as MILP models. As discussed before, we replace the sample
index with the scheduling period index. The feature vectors
for the frequency nadir and stability predictors defined in
terms of the decision variables are expressed in (11) and (15),
respectively. Unfortunately, x$t contains the max operator, and
xf
t and xp

t cannot be directly used in the encoding formulation.
Thus, we introduce the supplementary variables νG

g,t to indicate
if generator g outputs the largest active power in scheduling
period t. The re-formulations are expressed as follows

PG
%,t − PG

g,t ≤M(1− νG
g,t) ∀%, g ∈ NG,∀t (24a)∑

g∈NG

νG
g,t = 1 ∀t (24b)

where M is a big number. Eq. (24a) enforces νG
g,t to be zero

if the output of any generators % is greater than g during
period t. Eq. (24b) ensures that there should be only one
largest generator during t. The combination of both constraints
will ensure generator g has the largest output if νG

g,t = 1. To
further encode the magnitude information, we define another
supplementary variables ϑ$g,t and let ϑ$g,t = PG

g,t if νG
g,t = 1,

and ϑ$g,t = 0 otherwise. The corresponding constraints are
expressed as follows

ϑ$g,t − PG
g,t ≥ −M(1− νG

g,t) ∀g ∈ NG,∀t (25a)

ϑ$g,t − PG
g,t ≤M(1− νG

g,t) ∀g ∈ NG,∀t (25b)

0 ≤ ϑ$g,t ≤MνG
g,t ∀g ∈ NG,∀t (25c)

Finally, the feature vector for frequency nadir prediction can
be re-written as follows

xf
t =

[
uG
1,t, · · · , uG

NG,t, ϑ
$
1,t, · · · , ϑ$NG,t

]
(26)

And the feature vector for stability prediction can be re-written
as follows

xp
t =

[
uG
1,t, · · · , uG

NG,t, ϑ
$
1,t, · · · , ϑ$NG,t, P

G
1,t, · · · , PG

NG,t

]
(27)

Then, we can express the trained frequency nadir predictor
ĥf in (6) and stability predictor ĥp in (13) as MILP models
to encode the predictions of decision variables and indirectly
impose frequency security and stability constraints on decision
variables. Since most parts of the model are similar, we use
the superscript α to denote the types of the neural networks,
where α ∈ {f, p}. The MILP formulations read as follows

zα1,t = xαt W
α
1 + bα1 ∀t (28a)

ẑαm,t = zαm−1,tW
α
m + bαm ∀m,∀n, ∀t (28b)

zαm[n],t ≤ ẑαm[n],t − hαm[n](1− aαm[n],t) ∀m,∀n, ∀t (28c)

zαm[n],t ≥ ẑαm[n],t ∀m,∀n, ∀t (28d)

zαm[n],t ≤ h
α

m[n]a
α
m[n],t ∀m,∀n, ∀t (28e)

zαm[n],t ≥ 0 ∀m,∀n, ∀t (28f)

aαm,t ∈ {0, 1}, α ∈ {f, p} (28g)

f̂ndr,t = zf
N f

Y,t
Wf

N f
Y+1 + bf

N f
Y+1 ∀t (28h)

pstab,t = zp
N p

Y,t
Wp

N p
Y+1

+ bp
N p

Y+1
∀t (28i)

As shown, except for the final layers in (28h) and (28i),
the rest parts of the neural networks admit the same re-
formulations for both ĥf and ĥp. A binary vector aαm for
α ∈ {f, p} represents the activation status of ReLU at mth
hidden layer, and aαm[n] represents the status of the nth neuron
at the mth layer. Let [hαm[n],h

α

m[n]] be an interval that is
large enough to contain all possible values of ẑαm[n], where
hαm[n] < 0 and h

α

m[n] > 0. When ẑαm[n] is less than or equal
to zero, constraints (28c) and (28f) will force aαm[n] to be zero.
In this case, constraints (28e) and (28f) imply that zαi[k] = 0,
so we have ẑαi[k] ≤ 0 =⇒ aαm[n] = 0 =⇒ ẑαm[n] = 0. When
ẑαm[n] is greater than zero, constraints (28c) and (28f) will force
aαm[n] to be 1. In this case, constraints (28c) and (28d) imply
that zαm[n] = ẑαm[n], so we have ẑαm[n] > 0 =⇒ aαm[n] =
1 =⇒ zαm[n] = ẑαm[n]. Obviously, this formulation contains
no approximation of the original model. In addition, this is the
tightest possible formulation with respect to its LP relaxation
if no future information about ẑαm[n] is revealed [23].

Finally, we impose the frequency security constraint and
stability constraint on the predictions

f̂ndr,t ≥ fUFLS ∀t (29a)
(pstab,t)[2] ≥ (pstab,t)[1] + εstab,t ∀t (29b)

where εstab,t is the supplementary variable to relax the pre-
dicted stability condition. Since only the steady-state infor-
mation is used for dynamic stability prediction, the accuracy
is relatively low. Therefore, strictly enforcing the predicted
stability condition requires significant searches for feasible
solutions and is not computationally efficient. Essentially, the
stability predictor tries to filter out as many samples as possible
that the frequency nadir predictor does not encounter. The
relaxed formulation can sufficiently minimize this risk.

The two-segment cost function, consisting of the fixed and
marginal costs, is employed. The scheduling objective is to
minimize the total operational cost, expressed as follows

min
NT∑
t=1

NG∑
g=1

[
λM
g p

G
g,t + λF

gu
G
g,t

]
(30a)

+

NT−1∑
t=2

NG∑
g=1

λS
gw

G
g,t (30b)

+

NT∑
t=1

Γεstab,t (30c)

where pG
g,t denotes the incremental outputs of SG g, λF and

λM denote the fixed and marginal costs, respectively. Terms
(30a) and (30b) represent the fuel and start-up costs of SGs,
respectively. Terms (30c) represents the stability risk with a
weighting factor Γ . It is worth noting that reformulation of
the start-up cost has already been carried out in (30b), where
wG
g,t is the slack binary variable. In addition, wG

g,t and uG
g,t are

subject to the following constraints

wG
g,t ≥ 0, wG

g,t ≥ uG
g,t − uG

g,t−1 ∀g, t = 2, · · · , NT (31)

VI. CASE STUDY

We use the IEEE 39-bus system to demonstrate the frame-
work. The PSS/E software has been widely used in the power
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industry for dynamic security assessment in daily operations
and thus is chosen for labeling the samples. We use full-
scale models for the dynamic simulation during the labeling
process: GENTPJU1 for the synchronous machine; IEEEX1
for the excitation system; IEESGO for the turbine-governor;
PSS2A for the power system stabilizer. We assume there are
four WTGs installed at Buses 2, 10, 20, 25, respectively.
Each WTG is an equivalent representation of 600 1.5MW
realistic Type-3 WTGs. Standard WTG and corresponding
control modules are employed: WT3G2 for the doubly-fed
induction machine, WT3E1 for the electric control, WT3T1 for
the mechanical model, WT3P1 for the pitch control. Details
of these models can be found in [27]. The forecast aggregated
load and wind power are plotted in Fig. 3. The aggregated
load is distributed to each bus based on the ratio of demand
in the power flow data.
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(a) System Load Forecast
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(b) WTG Power Forecast
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Fig. 3. (a) System load forecast. (b) WTG power forecast.

0 1 2 3 4 5 6 7 8 9 10
Iteration

(-0.8, -0.1]

(-1.0, -0.8]

(-1.2, -1.0]

(-3.001, -1.2]Fr
eq

ue
nc

y 
N

ad
ir 

R
an

ge
s 8 3 8 8 4 11 8 7 8 8 11

21 15 13 14 19 16 19 15 13 16 17

16 16 14 15 14 17 16 17 14 16 12

55 66 65 63 63 56 57 61 65 60 60

Randomly Selected Samples

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10
Iteration

(-0.8, -0.1]

(-1.0, -0.8]

(-1.2, -1.0]

(-3.001, -1.2]Fr
eq

ue
nc

y 
N

ad
ir 

R
an

ge
s 8 13 10 8 12 14 5 5 9 9 5

21 20 42 40 39 35 38 38 35 37 36

16 28 24 33 31 33 34 22 19 28 23

55 39 24 19 18 18 23 35 37 26 36

Actively Selected Samples

0

10

20

30

40

50

60

Fig. 4. Samples selected by active and random strategies. The number in each
box represents how many samples whose label values are within the interval
are selected in this iteration. The active method selects more samples within
the region of interest, that is, close to the UFLS threshold.

A. Post-Processing for Sample Labeling

To learn the underlying frequency characteristics of the sys-
tem, it is important that turbine-governor modes are dominant
in the collected dynamics responses. Generator tripping is
the ideal event and has been used in most FCUC studies.
However, the post-disturbance trajectories can still exhibit
different unstable scenarios and possible numerical issues.

Post-processing is essential after each simulation to create
correct and consistent labels. It is worth mentioning that the
minimum bus frequency deviation nadir is used to label the
samples. The bus frequencies are considered to be the most
robust measure to avoid UFLS events since the UFLS relay
is installed at each load bus. Let T0 be the time instant when
the disturbance is imposed, T1 be the time instant when the
turbine-governor response reaches the steady-state, and T2 be
the end instant of the simulation. The following steps are
performed for post-processing

1) If the network does not converge during the simulation,
mark the sample as unstable. This information indicates
that the system does not have a power flow solution after
the disturbance.

2) If the simulation successfully completes, check the
maximum rotor angle difference of the system. If the
maximum rotor angle difference is greater than 360
degrees, mark the sample as unstable. This indicates the
system is transient unstable.

3) If the simulation is transient stable, check the minimum
voltage nadir of all buses. If the minimum voltage nadir
is below 0.65 per unit, mark the sample as unstable. The
reason is that when the system voltage is too low, many
existing models cannot represent the true behaviors of
the system and the simulated trajectories are no longer
accurate.

4) Check the distances between the maximum and mini-
mum rotor angles for all generators in time windows
T1 + ∆T and T2 − ∆T , denoted as D1 and D2,
respectively. If D2 > D1, the system is small-signal
unstable.

5) If the sample is stable, obtain simulated trajectory data
of all bus frequencies. Remove the first 0.1 second data
after the disturbance for all bus frequencies and get the
frequency nadir as the label. The reason to remove the
data in that time frame is to filter out the numerical issue
of washout filter-based bus frequency computation. A
detailed discussion of this issue can be found in [28].

B. Region-of-Interest Active Sampling and DNN Training

We first generate 5000 power injection samples as described
in (16) with negligible computation efforts. For generators, the
active power injections are uniformly sampled over the lower
and upper bounds. We assume SGs have adequate reactive
power capacity, and WTGs are controlled with a unity power
factor. Therefore, we do not need to sample the reactive power
of all generators. For loads, both active and reactive power
are sampled based on the Gaussian distribution. The means
are equal to the demand values in the power flow data, and
deviations are equal to 30% of their nominal values. It is
worth noting that the iteration number and the batch sampling
number in each iteration are two important hyperparameters in
the active sampling framework. A trial-and-error process and
empirical studies will be needed to determine the best param-
eters. As we know, training performance is not proportional
to the sample size and will reach a limit after a specific size
of samples. Therefore, in this paper, we will set the target
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training performance, which is 0.9 R2 score, and try to use a
minimal number of samples to achieve the target.

With all these unlabeled samples, we employ the actively-
select-then-label strategy described in Section IV to gen-
erate the training dataset. For comparison, another dataset
is generated using the randomly-select-then-label procedure.
In each iteration, 100 samples will be selected for PSS/E
to label. We divide the nadir values of frequency deviation
into four intervals: [−3,−1.2], [−1.2,−1.0], [−1.0,−0.8],
[−0.8,−0.1]. The regions of interest are [−1.2,−1.0] and
[−1.0,−0.8] since they are closer to the UFLS threshold. The
heatmap of the selected samples with both active and random
methods is shown in Fig. 4. The number in each box represents
how many samples whose label values are within the interval
are selected in this iteration. As shown, the active method
selects more samples within the region of interest. In addition,
if we use random sampling, more than 50% of the samples
are unstable and not available for frequency nadir predictor
training. This number will reduce to around 25% if the active
sampling strategy is employed and improve labeling efficiency.

We use actively-select-then-label and randomly-select-then-
label strategies to train two frequency nadir predictor, respec-
tively. We demonstrate the out-of-sample validation under both
region-of-interest and full-range sample sets. To do this, we
first generate another 5000 randomly selected samples, label
these samples using simulations, and select stable ones based
on the post-processing criterion in Section VI-A. To vali-
date the region-of-interest prediction, we select post-processed
samples whose label values are within the most concerning
ranges, which is [-1.2, 0] Hz. For full-range validation, we
can directly plug in all post-processed samples. The following
metrics are used to demonstrate the prediction accuracy: (1)
maximum error (MAX-E), (2) median absolute error (MED-
E), (3) mean absolute error (MEA-E), and (4) R2 score, which
is defined as follows

R2(fndr,s, f̂ndr,s) = 1−
∑NS
s=1(fndr,s − f̂ndr,s)

2∑NS
s=1(fndr,s − f ndr)

2
(32)

where f ndr is the mean of all actual labels. R2 score gives some
information about the goodness of model fitting. In regression,
the R2 coefficient of determination is a statistical measure of
how well the regression predictions approximate the real data
points. An R2 of 1 indicates that the regression predictions
perfectly fit the data.

The region-of-interest and full-range out-of-sample predic-
tion results are shown in Fig. 5 and Fig. 6, respectively.
Their statistical information is concluded in Table I and II,
respectively. In both cases, the predictor trained by actively
sampled data is compared with the one trained by randomly
sampled data. As we expected, in region-of-interest prediction,
the predictor trained by actively sampled data significantly
outperforms the one trained by randomly sampled data as
shown in Table I. This superiority can also be seen in Fig.
7, where all prediction errors are re-organized in descending
order. As for the full-range prediction, the predictor trained
by actively sampled data slightly outperforms the predictor
built by randomly sampled data in terms of MAX-E, MEA-E,
and R2, as shown in Table II and Fig. 8. But the predictor

trained by actively sampled data admits a larger MAX-E. It
is reasonable since actively sampled data may lack samples
outside the region-of-interest for generalizing the predictor.
Fortunately, this large error occurs when the true frequency
deviation is far from the UFLS threshold and will have little
impact on the UC since it will induce a binding constraint
anyway. We have also compared the out-of-sample prediction
results between the DNN, linear regression, support vector
regression (SVR), and random forest (RF) in Table III. As we
can see, the DNN model outperforms other models in most of
the metrics, especially in MAX-E.

In this paper, we use the same structure for the frequency
and stability predictors, that is, m = 1 and n = [256] (number
of neutrons in each hidden layer). For the neural network used
for active sampling, m = 2 and and n = [512, 128].
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Fig. 5. Region-of-interest out-of-sample prediction. The upper plot is the
predictor trained by randomly sampled data, and lower plot is the predictor
trained by actively sampled data.
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Fig. 6. Full-range out-of-sample prediction. The upper plot is the predictor
trained by randomly sampled data, and lower plot is the predictor trained by
actively sampled data.

TABLE I
REGION-OF-INTEREST OUT-OF-SAMPLE PREDICTION

Case MAX-E MED-E MEA-E R2

Active 0.1814 (Hz) 0.0250 (Hz) 0.0314 (Hz) 0.9237
Random 0.2536 (Hz) 0.0368 (Hz) 0.0445 (Hz) 0.8536
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TABLE II
FULL-RANGE OUT-OF-SAMPLE PREDICTION

Case MAX-E MED-E MEA-E R2

Active 0.3883 (Hz) 0.0277 (Hz) 0.0395 (Hz) 0.9583
Random 0.2925 (Hz) 0.0393 (Hz) 0.0486 (Hz) 0.9477
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Fig. 7. Region-of-interest out-of-sample absolute prediction errors. All
absolute prediction errors are re-organized in descending order.

0 250 500 750 1000 1250 1500
Sample

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
eq

ue
nc

y 
de

vi
at

io
n 

(H
z)

Random sampling
Active sampling

Fig. 8. Full-range out-of-sample absolute prediction errors. All absolute
prediction errors are re-organized in descending order.

TABLE III
FULL-RANGE OUT-OF-SAMPLE PREDICTION WITH DIFFERENT METHODS

Case MAX-E MED-E MEA-E R2

DNN 0.3883 (Hz) 0.0277 (Hz) 0.0395 (Hz) 0.9583
Linear 0.4282 (Hz) 0.0334 (Hz) 0.0411 (Hz) 0.9605
SVR 0.5691 (Hz) 0.0704 (Hz) 0.0859 (Hz) 0.8413
RF 0.8070 (Hz) 0.0411 (Hz) 0.0620 (Hz) 0.8882

C. FCUC Results

The voltages are allowed to variate between 0.8 and 1.2
p.u. The unit commitment results of ordinary formulations
(Eqs. (18)-(22)) and (30) are shown in Fig. 9. While, the
results of FCUC formulations (Eqs. (18)-(30)) are shown in
Fig. 10, where the frequency security limit is set to be 59
Hz. A stability predictor with 78% accuracy is trained and
incorporated. As we can see, FCUC formulation enforces
more SGs to be committed such that adequate responsive
active and reactive power is online to ensure both stability
and dynamic frequency security. The FCUC also makes the
outputs of different SGs to be more equalized to reduce the
risk of stability and security under the worst-case contingency.
Particularly, the system under ordinary dispatch strategy is
vulnerable to the N − 1 generator outage event during nights.

These are periods when the wind power is abundant and
demand is deficient, resulting in less committed SGs. For
example, in the scheduling periods 23 and 24, ordinary UC
only schedules four SGs shown in Fig. 9. In contrast, FCUC
formulation commits seven SGs illustrated in Fig. 10.
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Fig. 9. UC results using ordinary formulations. (a) Power outputs of SGs.
(b) Commitment of SGs.
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(b) Commitment of Generators

Fig. 10. UC results with frequency trajectory constraints. (a) Power outputs
of SGs. (b) Commitment of SGs.

We assume the worst-case contingency takes place in period
24, and the generator outputting the largest power is tripped.
The system under the ordinary UC schedules does not have a
power flow solution after the disturbance. While, the system
frequency responses following the FCUC dispatch are shown
in Fig. 11, which satisfies the frequency trajectory constraint.
The voltage dynamics and active power outputs of generators
are plotted in Fig. 12 (a) and (b), respectively. Fig. 12 (a)
indicates that the FCUC dispatch also satisfy the voltage limits.
Fig. 12 (b) illustrates the generator tripping and responses from
other generators except for the WTGs.
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Fig. 11. Frequency response under the FCUC dispatch and worst-case
contingency during the scheduling period 24.
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Fig. 12. System dynamic response under the FCUC dispatch and worst-case
contingency during the scheduling period 24. (a) Bus voltages. (b) Generator
active power outputs.

The systematic verification using PSS/E is shown in Table
IV. The first column is the predicted deviated frequency nadir
by the FCUC. The second column is the corresponding PSS/E
verification. The third column is the PSS/E simulation of
the ordinary UC dispatch. The term ”NA” denotes instability
cases. As we can see, ordinary UC dispatch is severely
insecure as most dispatched conditions cannot withstand the
worst-case contingency. Meanwhile, the FCUC significantly
improves stability and security with satisfactory prediction
accuracy.

TABLE IV
COMPARISON OF DEVIATED FREQUENCY NADIRS IN HZ FROM FCUC

PREDICTION AND PSS/E VERIFICATION

Period Pred. FCUC UC Period Pred. FCUC UC

1 -0.75 -0.61 NA 13 -0.99 -0.99 NA
2 -0.90 -0.84 NA 14 -1.00 -0.98 NA
3 -1.00 -0.72 NA 15 -1.00 -1.04 NA
4 -1.00 -0.93 NA 16 -1.00 -0.99 NA
5 -0.94 -0.91 -1.66 17 -0.99 -0.99 NA
6 -0.98 NA NA 18 -1.00 -0.98 NA
7 -0.98 NA NA 19 -1.00 -0.98 NA
8 -0.99 -0.96 NA 20 -0.98 -0.99 NA
9 -1.00 -0.99 NA 21 -1.00 -1.00 NA
10 -0.89 -0.88 NA 22 -0.89 -0.87 NA
11 -1.00 -1.02 NA 23 -1.00 -0.75 NA
12 -0.98 -1.01 NA 24 -1.00 -0.76 NA

VII. DISCUSSIONS

A. On Different System Frequency Response Models in FCUC

Essentially, it is the frequency response models encoded in
the UC that differentiate existing FCUC methods. Therefore, it
is important to compare these models. As we discussed in the
introduction, the SFR models in existing FCUC mainly focus
on approximation of the system frequency or so-called center-
of-inertia (COI) frequency. Currently, there are mainly two
types of models to approximate the COI frequency nadir: (1)
swing equation with a piecewise linear mechanical power ap-
proximation [3]–[9], (2) swing-turbine-governor model [11]–
[15]. The first type considers the turbine governor dynamics
as an open-loop piecewise linear function in time. It can result
in considerable approximation error as it omits the interaction

between mechanical power and frequency. A typical approxi-
mation can be found below [4]

∆Pm(t) =


0 if t < tDB
Rg

Td
(t− tDB) if Td + tDB ≥ t ≥ tDB

Rg t ≥ Td + tDB

(33a)

where tDB represents the time when frequency deviation
reaches the dead-band, Td is the delivery time of frequency
response, and Rg is the primary frequency response provision.
And the system frequency is derived using the swing equation

d∆f

dt
=

1

2Hcoi
(∆Pm −∆Pd) (34a)

where ∆Pd denotes the disturbance and Hcoi is the COI inertia
constant. The COI inertia constant Hcoi is calculated as

Hcoi =

∑Ns

i∈S(SsiH
s
i )∑Ns

i∈S S
s
i

(35)

where Ssi and Hs
i are the base and inertia constant of syn-

chronous generator i, respectively. The second type uses the
classic SFR model to capture the COI frequency. The SFR
model usually connects the swing equation with an aggregated
turbine-governor response model. A typical model can be
found below

d∆f

dt
=

1

2Hcoi
(∆Pm −∆Pd) (36a)

d∆Pm
dt

=
1

T3
[−∆Pm + ∆Pv +

T2
T1

(−∆Pv −
1

R
∆f)] (36b)

d∆Pv
dt

=
1

T1
(−∆Pv −

1

R
∆f) (36c)

We compare the frequency dynamics that are captured by the
aforementioned model-based approximation methods and the
DAE model, which our data-driven approach is able to encode
into the FCUC. To do this, we simulate the system under
a generator outage disturbance and plug the electric power
deviation obtained from the DAE simulation into the two
approximation models. The mechanical power and frequency
dynamics are compared in Fig. 13 and Fig. 14, respectively. As
shown, the first method admits significant error since it does
not capture the full dynamic characteristics of the mechanical
power. The second method outperforms the first one but still
has around 0.1 Hz error. Besides the approximation error, other
limitations of these encoding models have been discussed in
the introduction.

B. On Larger Test Systems

Efforts have been made to apply the FCUC on large-scale
test systems, including NPCC 140-bus system [29] [30] and
WECC 179-bus system [31] 3. However, in such systems, the
generators are dense aggregations of original small generators,
and in most cases, the system cannot withstand the worst-
case generation outage if there are up to three de-committed
generators. The labeling results of the NPCC system for

3The open-source system data can be found https://github.com/cuihantao/
andes/tree/master/andes/cases.

https://github.com/cuihantao/andes/tree/master/andes/cases
https://github.com/cuihantao/andes/tree/master/andes/cases
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Fig. 13. Mechanical power captured by two typical model-based approx-
imation methods. Our approach can directly encode the mechanical power
dynamics of the full DAE model.

Fig. 14. Frequency responses captured by two typical existing model-based
approximation methods. Our approach can directly encode the bus frequency
responses of the full DAE model.

5000 samples are shown in Table V. As we can see, the
stability condition becomes the binding constraint rather than
the frequency security, which is because of the generator
aggregations. FCUC, or more generally dynamic-constrained
operation, on such systems, can result in overly conservative
results. Open-source large-scale test systems that are suitable
for studying FCUC and the interaction between dynamics and
operation under high renewable penetration are needed by the
research community.

TABLE V
LABELING RESULTS OF THE NPCC SYSTEM

Total Unsolvable Unstable Stable Averaged Freq. Nadir

5000 2293 2647 60 -0.4988 (Hz)

C. On Prediction Error

It is worth noting the prediction error with negative residual
error (fndr − f̂ndr < 0, where fndr < 0 and f̂ndr < 0 are the
actual and predicted frequency deviation nadirs from the nom-
inal value) could possibly compromise the frequency security
and trigger UFLS. One immediate remedy is to collect the
empirical prediction errors and add an extra security margin
in the FCUC in Eq. (29a). As for the stability prediction, our
observation is that predicting post-fault stability only using
the steady-state operation information can be challenging.
Most of the machine learning-based dynamic security/stability
prediction methods will require on-fault trajectories and the
beginning of the post-fault trajectories. Due to this prediction
challenge, strictly enforcing Eq. (4d) may result in overly

conservative results, and relaxation as conducted in Eq. (29b)
is needed.

D. On Cost Benefit

Based on Table IV, the post-contingency frequency re-
sponses are just above the UFLS threshold, indicating that
the minimum adequate generators are committed and a good
trade-off between cost and security. The FCUC will result
in a higher day-ahead UC cost when wind power in the
system is abundant but may lead to a lower intra-day operation
cost, especially for secondary and tertiary frequency control,
depending on the uncertainty realization of the renewable
sources. Traditional UC may rely on fast responsive units
to compensate for uncertainty, which is expensive and have
limited capacity. With an insufficient number of responsive
units, generator outages can result in catastrophic outcomes
and lead to more costs in customer interruption and restoration
[32].

E. On Data Bias

The data bias issue can compromise the generalization of
the prediction models. Two typical data biases that we possibly
face are sample bias and recall bias. Sample bias occurs when
a dataset does not reflect the realities of the environment
in which a model will run. Recall bias arises when you
label similar types of data inconsistently. We can resolve the
sample bias issue by sampling from wide-range operation
conditions. To traverse as many conditions as possible, we
sample generator power from their dispatch intervals in the
uniform distribution and load consumption in the normal
distribution with a large variance, as discussed in Section IV.
As for the recall bias, a post-process is proposed to filter out
numerical transients in bus frequencies from physical ones
such that incorrect label values are prevented, as discussed
in Section VI-A.

F. On Computation Performance

The high-fidelity power system simulation is conducted
using PSS/E on a window laptop with an Intel Core i7 1.9
GHz CPU and a 16 GB RAM. The neural network training
and FCUC are performed using Tensorflow 1.14 and Gurobi
9.1, respectively, on a MacBook Pro with an Intel Core i9 2.3
GHz CPU and a 16 GB RAM. The averaged computation time
is given as follows
• 2.53[s] in labeling each sample
• 188.61[s] in a 3000-epoch training for each predictor
• 269.49[s] in FCUC

Considering the fact that this effort is to replace part of
the iterative process between traditional UC and DSA, the
computation performance is satisfactory.

VIII. CONCLUSIONS

The UC formulation without frequency response constraints
will lead to insecure and unstable dynamic responses under
contingencies when the renewable penetration becomes high.
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The existing FCUC methods are either incapable of consid-
ering realistic models and corresponding stability conditions.
The paper presents a generic deep learning-based framework
for FCUC. Two neural network models are constructed to
represent the frequency nadir and stability characteristics given
a specific operating condition and a worst-case contingency.
The proposed region-of-interest active sampling effectively
selects power injection samples whose frequency nadirs are
closer to the UFLS threshold. Such a dataset later proves to be
beneficial for training accuracy improvement. The FCUC for-
mulation can effectively schedule frequency secure generator
commitments, which is verified using the PSS/E simulation.

APPENDIX A
LINEARIZED AC POWER FLOW

Consider the original AC power flow equation as follows

Pij,t = Gij(Vi,t)
2 −Gij [Vi,tVj,t cos(θij,t))]

−Bij [Vi,tVj,t cos(θij,t)] ∀i, j, i 6= j,∀t
(37a)

Qij,t = −Bij(Vi,t)2 +Bij [Vi,tVj,t cos(θij,t)]

−Gij [Vi,tVj,t sin(θij,t)] ∀i, j, i 6= j,∀t
(37b)

Note that Gij and Bij are the line conductance and suscep-
tance, respectively, instead of the entry of the Y matrix. The
following linearization terms in [26] are considered

V 2
i,t ≈ 2Vi,t − 1 (38a)

Vi,tVj,t cos(θij,t) ≈ Vi,t + Vj,t − 1 (38b)
Vi,tVj,t sin(θij,t) ≈ θij,t = θi,t − θj,t (38c)

Substituting these terms into the AC power flow equations
yields

Pij,t = Gij(2Vi,t − 1)−Gij(Vi,t + Vj,t − 1)

−Bij(θi,t − θj,t) ∀i, j, i 6= j,∀t
(39a)

Qij,t = −Bij(2Vi,t − 1) +Bij(Vi,t + Vj,t − 1)

−Gij(θi,t − θj,t) ∀i, j, i 6= j,∀t
(39b)
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