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1. Introduction

This progress report (Level 4 Milestone Number M4SF-221.1.010301062) summarizes
research conducted at Lawrence Livermore National Laboratory (LLNL) within the
Argillite International Collaborations Activity Number Activity SF-22LL01030106. The
activity is focused on our long-term commitment to engaging our partners in international
nuclear waste repository research. The focus of this milestone is the establishment of
international collaborations for surface complexation modeling and the associated
impacts of unlocking larger, community-based datasets. More specifically, we are
developing a database framework for Spent Fuel and Waste and Science Technology
(SFWST) that is aligned with the Helmholtz Zentrum Dresden Rossendorf (HZDR)
sorption database development group in support of the database needs of the SFWST
program.

The FY21 effort focused primarily on building out the Access database of raw sorption
data and developing a framework for surface complexation/ion exchange data fitting
methods and surface complexation/ion exchange database development. Effort was
coordinated with international partners involved in similar database development efforts
(e.9. HZRD RES®T). In FY22, significant effort has been placed in the buildout of a large
set of surface complexation and ion exchange reactions constants for radionuclides and
minerals of interest to nuclear waste repository performance assessment. A second effort
included the expansion of our data interrogation effort by applying modern data science
methods (e.g. machine learning (ML)). The combination of ML approaches with more
traditional aqueous speciation calculations from PHREEQC modeling has yielded a new
hybrid code that enhances GDSA efforts. By taking advantage of historically-well
established aqueous speciation models of radionuclide solution chemistry and building
ML models that can accept this information in a fully automated manner, we present a
new hybrid ML method that successfully incorporates geochemistry knowledge. This
effort has yielded a new capability to process large sets of sorption data. It is in this
context that we suggest the continued support in the expansion of the surface
complexation/ion exchange database work; with the growth of ‘big data’ in geochemistry,
our hybrid ML model will demonstrate increased power in quantifying radionuclide-
mineral partitioning (Kd values) under a variety of different geochemical conditions (e.g.
pH, ionic strength, temperature).

2. Status of LLNL SCIE Sorption Database

To develop a comprehensive surface complexation database in support of the SFWST
program, we continued to build a digital sorption database to support surface
complexation database development. The LLNL SCIE (L-SCIE) digital sorption database
and workflow was developed in Microsoft Access with a series of linked tables as
reported previously. The structure of the database was recently reported in Zavarin et al.
(2022) and will not be reported here. However, some enhancements to the database and
workflow were pursued in FY22 and are highlighted below.
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Our LLNL SCIE digital sorption database continues to expand. At present, it includes
243 references, 2318 datasets, and 27,000 individual data points. The database was
recently linked to a large fraction of Kd data available from the JAEA Kd database. A
python code was written to automate the import of JAEA Kd data into the L-SCIE
workflow which increased our total data holdings to 44,000 data points. Details regarding
international collaboration efforts in the development of L-SCIE are reported in the
Argillite International milestone report M4SF-221L.1.010302062.

The L-SCIE workflow, written in R and associated with the database went through a
large revision, particularly in terms of uncertainty quantification. The code no longer
relies on a web hosted interface and can be run directly and locally from a web browser
window. Table 1 lists the data density by element and/or species. Most data are focused
on radionuclides relevant to the nuclear waste program. For example, over 8000 data are
associated with uranium and over 3000 data are associated with various oxidation states
of selenium. Nevertheless, the data density for some elements is quite low (e.g.
technetium, iodine) for which additional data are needed. As our workflows begin to
work toward a holistic analysis of radionuclide-mineral surface complexation and hybrid
models, we will need to identify areas of low data density. We are presently working on
python code to visualize data density across the range of radionuclides, minerals, and
geochemical conditions to allow us to strategically fill in data gaps in low data density
regions.
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Table 1. Number of datapoints by sorbate species

Species # Species #
Am(+3) 1000 P(+5) 211
As(+5) 52 Pa(+5) 117
Ba(+2) 89 Pa(n.r.)? 6
Bi(+3) 20 Pb(+2) 1506
C(+4) 227 Pd(+2) 16
Ca(+2) 403 Po(+4) 6
Cd(+2) 357 Pu 24
Ce(+3) 5 Pu(+4) 369
Cm(+3) 51 Pu(+5) 282
Co(+2) 510 Pu(n.r.) 93
Cr(+3) 26 Ra(+2) 152
Cr(+6) 74 Ra(+4) 3
Cs(+1) 4357 Rb(+) 87
Cu(+2) 317 Rb(+1) 7
Eu(+3) 1948 S(+6) 96
Fe(+2) 90 Sh(+5) 1
Fe(+3) 3 Se(+4) 2770
Fulvic_acid 9 Se(+6) 831
H(+1) 8150 Se(-2) 220
Humic_acid 11 Se(n.r.) 131
1(-1) 90 Sm(+3) 80
K(+1) 68 Sn(+4) 97
Mg(+2) 126 Sn(n.r.) 3
Mn(+2) 92 Sr(+2) 925
Na(+1) 6 Tc(+4) 5
Nb(+5) 8 Te(+7) 131
Ni(+2) 3566 Te(n.r.) 27
Np(+4) 230 Th(+4) 836
Np(+4,5) 35 U(+4) 34
Np(+5) 3189 U(+6) 8335
Np(+5,4) 2 u(n.r) 110
Np(+6) 1 Yb(+3) 59
Np(n.r.) 92 Zn(+2) 958
Zn(n.r.) 15
Zr(+4) 25

an.r. = not reported
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3. A Community Data Mining Approach for Surface Complexation
Database Development

Zavarin, M., Chang, E., Wainwright, H., Parham, N., Kaukuntla, R., Zouabe, J., Deinhart,
A., Genetti, V., Shipman, S., Bok, F., and Brendler, V. 2022. A Community Data Mining
Approach for Surface Complexation Database Development, Env. Sci. Technol. 56 (4),
2827-2838. https://doi.org/10.1021/acs.est.1c07109.

Journal CSV file Mineral_ref table Data
Manuscript ﬂ Export (general mineral Unification
properties table)
Unified Data Table (with error
Microsoft ACCESS database / Dataset Table estimates)
* Dol Dataset experimental *  Fluid composition
Original Image conditions *  Gas composition
Digitized txt files * Background * Solid:solution ratio
Metadata electrolyte +  Surface area
Data (variable parameters) — Gas composition — Total metal concentration
* Kd * Solid:solution ratio * Total aqueous
logKd *  Surface area concentration
%sorbed ¢ Xaxis units * Total solid phase
Mol/g * Y axis units concentration
\ Data Table (digitized 2D
figures)
* Xdata Data
L Filtration
PEST/PHREEQC PEST/PHREEQC Formatting

PEST Control File

Optimized SCM Subset Data Table (with error
donstarts _ PEST Instructions File — estimates)

PHREEQC input file *  Minerals of interest
Metal of interest

ML-based SC Machine Learning
model

The information presented below is a summary from a manuscript published in January,
2022 in Environmental Science and Technology (Zavarin et al., 2022). The publication
describes our L-SCIE sorption database, the workflow used to fit surface complexation
constants using these data, and an overall approach to surface complexation model
database development.

This manuscript presents a comprehensive data-to-model workflow, including a findable,
accessible, interoperable, reusable (FAIR) community sorption database (newly
developed L-SCIE database) along with a data fitting workflow to efficiently optimize
surface complexation reaction constants with multiple surface complexation model
(SCM) constructs. This workflow serves as a universal framework to mine, compile, and
analyze large numbers of published sorption data as well as to estimate reaction constants
for parameterizing reactive transport models. The framework includes (1) data
digitization from published papers, (2) data unification including unit conversions, (3)
data-model integration and reaction constant estimation using geochemical software
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PHREEQC coupled with the universal parameter estimation code PEST. We demonstrate
our approach using an analysis of U(VI) sorption to quartz based on a first L-SCIE
implementation, concluding that a multi-site SCM construct with carbonate surface
species yielded the best fit to community data. It yielded surface complexation reaction
constants that capture all available sorption data available in the literature and provide
insight into previously published reaction constants and surface complexation model
constructs. The L-SCIE sorption database presented herein allows for automating this
approach across a wide range of metals and minerals and implementing novel machine
learning approaches to reactive transport in the future.

This work presents a comprehensive data analytics workflow for the mining of
community sorption data from the literature, evaluation of published SCM constructs
using a global fitting approach, and comparison of the performance metrics of different
SCMs. Based on our U(VI)-quartz test case, we conclude that a uranyl carbonate species
likely plays a role in uranium sorption to quartz and that multisite sorption significantly
improves global data fits. However, a limitation that exists for all SCMs still remains: the
non-uniqueness of SCM constructs and associated reaction constants. Nevertheless, our
FAIR data approach, combined with automated workflows, provides a guide for
developing surface complexation reaction databases that are flexible and easily updated
as SCM constructs, thermodynamic databases, and reactive transport modeling codes
evolve.

Ultimately, the work presented here provides the necessary tools and advancements in
data mining and data processing to conduct novel sorption data analyses that are the
ultimate goal of the FAIR data approach. The application of data-driven approaches to
sorption and retardation processes could significantly increase model robustness, reduce
the computational costs in modeling Earth systems, allow for uncertainty quantification
and progressive model improvement when new data become available, and could help to
bring consensus to the application of SCMs in reactive transport modeling.

4. A Chemistry-Informed Hybrid Machine Learning Approach to
Quantify Mineral-Based Radionuclide Retardation

4.1 Introduction

The high reactivity of mineral surfaces (Dong and Wan, 2014; Durrant et al., 2018)
enable radionuclides to adsorb to soils and sediments, limiting their bioavailability and
influencing their overall mobility. Scientists have traditionally used surface complexation
models (SCMs) to quantify this adsorption phenomenon and to predict metal partitioning
in immobile solid versus mobile aqueous phases (Appelo et al., 2002; Goldberg, 1992;
Nair et al., 2014). While SCMs calibrated to batch adsorption experiments yield valuable
aqueous- and surface-speciation predictions under the investigated geochemical
conditions, the implementation of SCMs also poses some key limitations. The most
notable of these challenges is the non-uniqueness of SCMs that implement various
divergent assumptions regarding the nature of the surface electrostatic potential. Because
the sorbate-sorbent stability constants extracted from these SCMs are model-dependent, a
significant present-day challenge exists in comparing and co-utilizing various historic
SCMs and associated reaction constants that have very different underlying assumptions.
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In contrast to the increasing amount of SCMs calibrated to different datasets and
underpinned by divergent assumptions, machine learning (ML) methods may provide a
new path forward in directly exploiting the continual growth of adsorption data available
in the literature while avoiding the need to assume a specific numerical representation of
electrostatics and reaction stoichiometries. Among ML techniques, the random forest
(RF) algorithm has received significant attention for providing a flexible learning
framework that can effectively capture nonlinear behavior commonly found in adsorption
dynamics.

The RF algorithm, acting as a black-box, data-driven approach, suffers from the inability
to deduce mechanistic underpinnings of sorption processes altogether. This highlights a
major distinction from quasi-mechanistic SCM constructs. The Lawrence Livermore
National Laboratory-Speciation Updated Random Forest (L-SURF) model operates as a
new, alternative hybrid approach. Our new method is described as a hybrid-ML approach
because the initial steps involve performing thermodynamic aqueous speciation
calculations while the later steps include RF-ML regression modeling of the mineral-fluid
interface. Because SCMs effectively simulate aqueous speciation but suffer from
diverging descriptions of surface reactions (e.g. electrostatics, reaction stoichiometries,
etc.), we exploit the solution chemistry description found in traditional thermochemical
databases while replacing the SCM interfacial chemical modeling with a data-driven, RF-
ML approach. By doing so, we develop a new model that is not hindered by limitations of
explicit surface descriptions: we eliminate challenges associated with assumptions on
electrostatic surface effects and complicated permutations of relevant reaction
stoichiometries that potentially convolute overall mechanism.

4.2 Methods
4.2.1 Data Acquisition and Pre-Processing

Extensive raw adsorption data in addition to an aqueous speciation database are needed
for the application of L-SURF. The Lawrence Livermore National Laboratory-Surface
Complexation/lon Exchange (L-SCIE) database, a recent effort to unify community
adsorption experiments and metadata in a findable, accessible, interoperable, and
reusable (FAIR) format (Zavarin et al., 2022) is discussed in Section 3 of this report.

4.2.2 L-SURF Part 1: Aqueous Speciation Modeling of Raw Sorption Data

The first step of L-SURF requires an agueous speciation database and compilation raw
adsorption data for a given metal-mineral pair (Figure 1) to perform aqueous speciation
calculations. Here, aqueous speciation calculations were performed using the PHREEQC
software. Notably, other speciation codes may also be implemented if desired. We used
the “llnl.dat” thermodynamic database that is provided with PHREEQC and is derived
from LLNL’s SUPCRT (Johnson and Lundeen, 1997) database but updated with missing
and revised U(VI) reaction constants taken from the latest NEA-TDB effort (Ragoussi
and Brassinnes, 2015; Ragoussi and Costa, 2019) as implemented in our previous work
(Zavarin et al., 2022). The L-SCIE database and associated codes are used as the source
of raw adsorption data, for data unification, and data filtering. Raw adsorption data
consists of total sorbate concentration and aqueous equilibrium sorbate concentration and
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associated metadata consists of gas composition, sorbent properties (concentration,
surface area, reactive site density), background electrolyte concentrations, and pH
conditions in a comma-separated values format (Table 2). The metadata and the total
aqueous sorbate concentration are used for each sorption datapoint to create PHREEQC
simulations of solution chemistry conditions. Upon the completion of aqueous speciation
calculations, relevant geochemical variables are output as input features for the
subsequent RF adsorption model development. For the current test case (U(VI)-quartz),
the variables exported from PHREEQC output files include HCO3s aqueous species
concentration, selected aqueous U(VI) species concentrations (e.g. UO2?* and
UO2CO03(q), and ionic strength. lonic strength was chosen as a feature representing
chemical effects associated with aqueous species activity corrections and surface
electrostatic potential. The HCOs™ aqueous species concentration was used as an input
feature to account for CO> liquid-gas exchange and speciation as a function of pH. The
UO2%" aqueous species was chosen as a feature in an attempt to capture surface
complexation of U(VI) onto quartz via a monodentate, inner-sphere reaction as described
in Zavarin et al. (2022)

(1) >SiOH + UO2** + X H20 = >SiOUO2(OH)x* X + (1 + X) H*, where X =0 — 3.

The UO2CO3(q) aqueous species was also tested as an input feature, replacing HCO3 in
order to minimize covariance of carbonate-based features. UO2COs3(q) iS an important
species that may participate in uranyl-carbonate surface complexation with quartz:

(2) >SiOH + UO2%* + Y CO3% > >SiOUO,(COs)y™2" + 1H*, where Y =1 - 2,

Ultimately, these variables were chosen specifically to account for the most relevant
liquid-gas exchange processes, aqueous complexes, and activities of aqueous species.

10
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Figure 1. L-SURF workflow chart with chronological steps: (1) Adsorption data and selected
thermodynamic database are imported into L-SURF module, (2) Aqueous speciation calculations are
conducted and important geochemical features are output, (3) Calculated geochemical features and sorbate-
sorbent metadata features are used to train and test a random forest adsorption model, (4) Equilibrium
aqueous metal sorbate concentrations are output, and (5) Steps 1-4 are repeated using Monte-Carlo
simulations with randomly sampled input data +/- experimentally-determined measurement uncertainty.

4.2.3 L-SURF Part 2: RF Regression of Mineral-Based Adsorption

The second step of L-SURF is executed after aqueous speciation modeling determines the
equilibrium solution conditions for each individual adsorption data point. These
PHREEQC speciation output variables are automatically input into the RF-ML algorithm
alongside additional important metadata variables as RF features, which include total
mineral site density, and mineral source (Table 2). RF is defined as an ensemble machine
learning algorithm that uses a combination of tree predictors whereby individual trees are
built upon a randomly and independently sampled set of training data (Breiman, 2001).
The previously described metadata variables and PHREEQC output variables are pushed
through the RF regression model to train, validate, and test predictions of metal-mineral
surface interactions. This method was chosen as the ensemble ML algorithm because of
its effectiveness in capturing non-linear relationships between various dependent
variables. This poses a particular advantage in characterizing adsorption isotherm and
edge data, where ionic strength, adsorbate and adsorbent concentrations can non-linearly
impact the overall adsorption phenomena and the resulting equilibrium sorbate
concentration (Pereira et al., 2019).

11
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Table 2. Data frame used as feature inputs into RF model.

Feature # Input feature names Method for obtaining Input feature units
feature values
1 Mineral source Extracted from L-SCIE Number associated with
metadata unique mineral source
2 Logio(Total Sorbate Extracted from L-SCIE Logio(Molar)
Concentration) metadata
3 Logio(Total Site Calculated using L-SCIE Logio(sites/L)
Density) metadata:

Mineral density (g/L) x
Mineral surface area (m?/g)
x Mineral site density

(sites/m?)
4 lonic Strength Calculated using PHREEQC Molar
speciation
5 Logio(Basis species, Calculated using PHREEQC  Logio(Molar)
uo,?) speciation
6 Logio(HCOs or Calculated using PHREEQC  Logio(Molar)

UO,CO; concentration)  speciation

A well-trained RF model can provide useful predictive capabilities and also elucidate
dependent variables that are particularly important in the prediction process (Nguyen et
al., 2022). This approach has yielded descriptions of the most important geochemical
features that impact contaminant presence in aquifers (Lopez et al., 2021; Ransom et al.,
2017; Wheeler et al., 2015). The marginal effects contributed by a given feature on a
predicted outcome can be visualized using a partial dependence plot (PDP) (Friedman,
2001). The partial dependence function for a regression is defined as:

A 1 A i
(3) filxs) = =Xy filxs, %)
where x, are the plotted features and xc(i) are the features in the ML model f we are not
interested in. An average over the n instances of the data is taken, where a Monte-Carlo
method is used n times and an average of x, partial dependencies while marginalizing
effects of xé‘) is used to calculate the global relationship of a feature x; with its predicted
value.

4.2.4 Error Propagation from Experimental Uncertainty

Each adsorption datapoint and its associated metadata possess experimental uncertainties
that are extracted directly from L-SCIE. For each datapoint that is selected, a normal
distribution is assumed, and a random sample is chosen within £X standard deviation of
the average value, where X can be a specified constraint contingent on how narrow or
broad the user wants to characterize the data. For the U(VI)-quartz test case, an X value
of 1 (x1 standard deviation range) was used. After a random sample for each variable is
selected, a Monte-Carlo simulation encompassing the full L-SURF workflow (aqueous
speciation calculations + RF mineral sorption modeling) is run Y times, where Y
iterations may be specified. For the U(VI)-quartz test case, Y = 200 iterations were run to
demonstrate the Monte-Carlo iterative process. Upon completing the L-SURF iterations,

12
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a mean value and standard deviation is computed from the L-SURF output values to
quantify error propagated throughout the full modeling process (Anderson, 1976).

4.3 Results and Discussion
4.3.1 Prediction of U(VI) Adsorption onto Quartz

Aqueous speciation calculations and metadata information (Table 2) were used as input
features for the cross-validated RF model, generating a training RMSE score = 0.086 and
a validation RMSE score = 0.222. A set of predictions for equilibrium aqueous U(VI)
concentration was calculated based on a final test dataset, yielding a test RMSE score =
0.128. When accounting for model uncertainty, a weighted Pearson correlation
coefficient R score = 0.943 was determined (Figure 2). As the RF training and validation
scores yield low RMSE against their respective subsets of data and the R score is greater
than 0.90 (Zavarin et al., 2022), the authors present an ML method that successfully
accepts aqueous chemistry based features to accurately predict U(V1)-quartz interactions.
Additionally, Monte-Carlo iterations of L-SURF applied to U(VI)-quartz adsorption were
implemented to propagate measurement derived uncertainties associated with electrolyte
concentrations, pH, total site density, and CO> gas fugacity, yielding standard deviation
values for each L-SURF test prediction of equilibrium aqueous sorbate concentrations.
These standard deviations are particularly useful for downstream error propagation in
reactive transport modeling.

Machine Learning Predictions of U-Quartz Adsorption
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Figure 2. Correlation plot of measured equilibrium aqueous U(VI) concentration versus RF model
equilibrium aqueous U(VI) concentration for the U(VI)-quartz sorption dataset. Solid blue dots indicate
average prediction values; translucent blue dots are Monte-Carlo generated error propagated values.

4.3.2 RF Feature Partial Dependencies for U(VI)-Quartz Model

Low RMSE training and validation scores and a high >0.90 test weighted prediction R
score allow for the RF regression modeling to be well-equipped for further model
analytics that elucidate feature relationships and partial dependencies of prediction
values. As part of the L-SURF work package, PDPs are generated to illustrate how the

13
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aqueous chemistry features of the RF model contribute to prediction results (Figure 3).
For one-way PDPs (Figures 3 a,b), the horizontal axis represents the feature of interest
(x, in equation 3) and the vertical axis represents target response of the RF-ML model, £,
which is the equilibrium total U(VI) concentration in solution. For two-way PDPs
(Figure 3c), the vertical and horizontal axes express the relevant features of interest and
the labeled contour colors represent the target response of the RF-ML model, £, with
changes to the two input features.

Increasing HCO3™ aqueous species concentrations (108 to 10° M) generally result in a
decreased impact on the total equilibrium aqueous U(VI) concentration output by the RF-
ML model (Figure 3a). In the regime of low equilibrium UO,?* aqueous species
concentration (10712 to 10® M), an increase in UO,?* aqueous species concentration
results in a minimal impact on the equilibrium total aqueous U(VI) in solution (Figure
3b). At higher concentrations of UO,?* aqueous species concentrations (>10% M), though,
there is an increased effect on the output equilibrium total aqueous U(VI) concentration,
evidenced by the dramatic increase in the partial dependence values. The contour PDP
(Figure 3c) allows for visualization of the parameter space where there is greatest model
response from input features, HCO3 and UO,%" agueous species concentrations. Notably,
the model is most sensitive to the feature interactions at high UO2** and low HCO3
species concentrations. More specifically, under these concentrations, the model response
is influenced significantly by the high UO,** aqueous species. This is consistent with
surface complexation modeling results, where equilibrium total aqueous U(VI)
concentrations are impacted by the presence of a high UO2%" species concentration
(reaction described in equation 1). Additionally, the model output is generally less
sensitive to changes in UO2?" aqueous species concentrations at higher HCO3™ aqueous
species concentrations. This can be explained by the abundance of HCOs aqueous
species (107 to 10 M) with only a limited amount of UO?* species (107 to 101° M) to
form uranyl carbonate surface species (reaction described in equation 2). PDPs discussed
herein demonstrate how a hybrid ML approach that integrates aqueous speciation
calculations allows for the elucidation of feature impacts on model output.
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Figure 3. Partial dependence plots of (a) HCO3™ aqueous species concentration and (b) aqueous UO2?*

species concentration on equilibrium total aqueous U(V1) concentration, and (c) associated contour plot

representation of partial dependencies. HCO3", UO,?*, and contour legends expressed as logio(mol/L).
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4.3.3 Improving L-SURF Predictions with Optimized Aqueous Species Features

When incorporating HCO3™ aqueous species concentration as an RF input feature, the L-
SURF prediction standard deviations noticeably increased at neutral to alkaline pH
(Figure 4). CO2(g) liquid-gas exchange and aqueous speciation will favor the presence of
COs% aqueous species in solution and lead to the formation of uranyl carbonate
complexes, particularly in alkaline conditions. To test the impact of our choice of RF
input feature, UO2CO3(q aqueous species concentration was used in lieu of HCOs
aqueous species concentration. Using UO2COsq) as a feature, the L-SURF predictions
were significantly more stable with much lower model uncertainties at neutral to alkaline
pH (Figure 4). This is a significant result as it aligns with traditional SCM approach
modeling interpretation (Zavarin et al., 2022): Uranyl-carbonate species likely play a
major role in U(VI) adsorption onto quartz surfaces. In the context of hybrid ML
modeling, this result also signifies that incorporation of deeper aqueous speciation
knowledge into the RF model can result in significantly improved propagated error under
specific geochemical conditions and may provide additional insight into the solution
conditions and aqueous species that influence adsorption.

With UO,CO; aqueous species
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Figure 4. pH-dependent model predictions of equilibrium aqueous U(VI) concentrations for U(VI)-quartz
adsorption for one literature source extracted dataset (Pabalan et al., 1998). PEST-optimized PHREEQC
modeling is represented by green diamonds; L-SURF modeling is represented by blue stars = 1 standard
deviation error bars; experimentally measured values are indicated by red dots + 1 standard deviation error
bars. Improved propagated error bounds are visible under mid- to high- pH regimes as a result of replacing
HCO3 species with a UO,COsq) Species as an RF input feature.

4.3.4 L-SURF Work Package and Concluding Remarks

The L-SURF work package has yielded successful predictions of U(VI) adsorption onto
the quartz mineral surface. Despite its strong predictive quality as a modeling tool, L-
SURF currently focuses on single element-mineral interface datasets. There is a need to
study real-world systems that incorporate complex mixtures of aqueous species and
mineral phases. Future work will thus include incorporation of more complex features
into the work package, such as the ability to distinguish between different mineral
structures or adsorbate oxidation states. In addition, work will be done to integrate L-
SUREF into higher-order reactive transport codes as a substitute to more complex SCM
approaches to adsorption and retardation. Importantly, an analysis is needed to evaluate
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the computational burden of traditional and hybrid ML approaches and whether L-SURF
can streamline the incorporation of adsorption data into reactive transport modeling,
including uncertainty quantification. As the L-SURF hybrid ML approach is novel in the
space of adsorption modeling, the authors emphasize the need to test L-SURF rigorously
across numerous different elements and minerals under varied environmental conditions.
Nonetheless, the work presented herein captures a first-of-its-kind method to bridge the
gap between mechanistic surface complexation modeling and ML-based regression
modeling, successfully achieving high prediction accuracy for the U(VI)-quartz system.

5. Planned FY23 Efforts

Here, we described a detailed analysis of U(VI) sorption to quartz through both
traditional surface complexation modeling and through a hybrid ML framework. In
FY23, effort will be placed on the continued growth of the surface complexation and ion
exchange database (L-SCIE) in order to assess mineral-based radionuclide retardation
under a wider variety of geochemical conditions (e.g., ionic strength, varying electrolyte
compositions). This effort will also include the testing of L-SURF to quantify Kq values
for numerous different radionuclide-mineral pairs under varying geochemical conditions.
Additionally, we will conduct direct comparisons of the L-SURF approach with various
surface complexation (Non-electrostatic, diffuse layer, etc.) and ion exchange (Vanselow,
Gapon, etc.) models. These important model inter-comparisons will provide a clearer
path forward in incorporating traditional SCM or/and modern hybrid ML approaches into
repository performance assessment.

Key considerations for future modeling development will include (1) the ability to reduce
computational burden on determining retardation coefficients for PA and (2) a new
capability to quantify and predict radionuclide-mineral partitioning at a more efficient,
rapid pace due to automated workflows. Upon the careful consideration of the most
effective modeling approach to implement for PA, we will discuss efforts for the actual
implementation of our surface complexation model or/and hybrid ML approaches into
PA models. FY23 will see both the fine-tuning of our model developments and also
defined requirements discussed to apply these model learnings to higher level GDSA
work.

6. Acknowledgments

This work was supported by the Spent Fuel and Waste Science and Technology
campaign of the Department of Energy's Nuclear Energy Program. Prepared by LLNL
under Contract DE-AC52-07NA27344.

7. References

Anderson G. M. (1976) Error propagation by the Monte Carlo method in geochemical
calculations. Geochimica et Cosmochimica Acta 40, 1533-1538.

Appelo C. A. J., Van Der Weiden M. J. J., Tournassat C. and Charlet L. (2002) Surface
Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization
of Arsenic. Environmental Science & Technology 36, 3096-3103.

16



M4SF-22L1.010301062-SC Database and Hybrid ML Model Development for GDSA
July 26, 2022

Breiman L. (2001) Random Forests. In Machine Learning. Kluwer Academic Publishers,
Netherlands. pp. 5-32.

Dong W. and Wan J. (2014) Additive Surface Complexation Modeling of Uranium(V1I)
Adsorption onto Quartz-Sand Dominated Sediments. Environmental Science &
Technology 48, 6569-6577.

Durrant C. B., Begg J. D., Kersting A. B. and Zavarin M. (2018) Cesium sorption
reversibility and Kinetics on illite, montmorillonite, and kaolinite. Science of The
Total Environment 610-611, 511-520.

Friedman J. H. (2001) Greedy Function Approximation: A Gradient Boosting Machine.
The Annals of Statistics 29, 1189-1232.

Goldberg S. (1992) Use of Surface Complexation Models in Soil Chemical Systems. In
Advances in Agronomy (ed. D. L. Sparks). Academic Press. pp. 233-329.
Johnson J. W. and Lundeen S. R. (1997) GEMBOCHS thermodynamic datafiles for use
with the EQ3/6 modeling package. Lawrence Livermore National Laboratory,

Livermore.

Lopez A. M., Wells A. and Fendorf S. (2021) Soil and Aquifer Properties Combine as
Predictors of Groundwater Uranium Concentrations within the Central Valley,
California. Environ Sci Technol 55, 352-361.

Nair S., Karimzadeh L. and Merkel B. J. (2014) Surface complexation modeling of
Uranium(V1) sorption on quartz in the presence and absence of alkaline earth
metals. Environmental Earth Sciences 71, 1737-1745.

Nguyen X. C., Ly Q. V., Nguyen T. T. H.,, Ngo H. T. T., Hu Y. and Zhang Z. (2022)
Potential application of machine learning for exploring adsorption mechanisms of
pharmaceuticals onto biochars. Chemosphere 287, 132203.

Pabalan R. T., Turner D. R., Paul Bertetti F. and Prikryl J. D. (1998) Chapter 3 -
UraniumVI1 Sorption onto Selected Mineral Surfaces: Key Geochemical
Parameters. In Adsorption of Metals by Geomedia (ed. E. A. Jenne). Academic
Press, San Diego. pp. 99-130.

Pereira R. C., Anizelli P. R., Di Mauro E., Valezi D. F., da Costa A. C. S., ZaiaC. T. B.
V. and Zaia D. A. M. (2019) The effect of pH and ionic strength on the adsorption
of glyphosate onto ferrihydrite. Geochemical Transactions 20, 3.

Ragoussi M. E. and Brassinnes S. (2015) The NEA Thermochemical Database Project:
30 years of accomplishments. Radiochim Acta 103, 679-685.

Ragoussi M. E. and Costa D. (2019) Fundamentals of the NEA Thermochemical
Database and its influence over national nuclear programs on the performance
assessment of deep geological repositories. Journal of Environmental
Radioactivity 196, 225-231.

Ransom K. M., Nolan B. T., JA. T., Faunt C. C., Bell A. M., Gronberg J. A. M., Wheeler
D.C., CZ.R., Jurgens B., Schwarz G. E., Belitz K., S M. E., Kourakos G. and
Harter T. (2017) A hybrid machine learning model to predict and visualize nitrate
concentration throughout the Central Valley aquifer, California, USA. Sci Total
Environ 601-602, 1160-1172.

Wheeler D. C., Nolan B. T., Flory A. R., DellaValle C. T. and Ward M. H. (2015)
Modeling groundwater nitrate concentrations in private wells in lowa. Sci Total
Environ 536, 481-488.

17



M4SF-22L1.010301062-SC Database and Hybrid ML Model Development for GDSA
July 26, 2022

Zavarin M., Chang E., Wainwright H., Parham N., Kaukuntla R., Zouabe J., Deinhart A.,
Genetti V., Shipman S., Bok F. and Brendler V. (2022) Community Data Mining
Approach for Surface Complexation Database Development. Environmental
Science & Technology 56, 2827-2838.

18



