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1. Introduction 

This progress report (Level 4 Milestone Number M4SF-22LL010301062) summarizes 

research conducted at Lawrence Livermore National Laboratory (LLNL) within the 

Argillite International Collaborations Activity Number Activity SF-22LL01030106. The 

activity is focused on our long-term commitment to engaging our partners in international 

nuclear waste repository research. The focus of this milestone is the establishment of 

international collaborations for surface complexation modeling and the associated 

impacts of unlocking larger, community-based datasets. More specifically, we are 

developing a database framework for Spent Fuel and Waste and Science Technology 

(SFWST) that is aligned with the Helmholtz Zentrum Dresden Rossendorf (HZDR) 

sorption database development group in support of the database needs of the SFWST 

program. 

The FY21 effort focused primarily on building out the Access database of raw sorption 

data and developing a framework for surface complexation/ion exchange data fitting 

methods and surface complexation/ion exchange database development. Effort was 

coordinated with international partners involved in similar database development efforts 

(e.g. HZRD RES3T). In FY22, significant effort has been placed in the buildout of a large 

set of surface complexation and ion exchange reactions constants for radionuclides and 

minerals of interest to nuclear waste repository performance assessment. A second effort 

included the expansion of our data interrogation effort by applying modern data science 

methods (e.g. machine learning (ML)). The combination of ML approaches with more 

traditional aqueous speciation calculations from PHREEQC modeling has yielded a new 

hybrid code that enhances GDSA efforts. By taking advantage of historically-well 

established aqueous speciation models of radionuclide solution chemistry and building 

ML models that can accept this information in a fully automated manner, we present a 

new hybrid ML method that successfully incorporates geochemistry knowledge. This 

effort has yielded a new capability to process large sets of sorption data. It is in this 

context that we suggest the continued support in the expansion of the surface 

complexation/ion exchange database work; with the growth of ‘big data’ in geochemistry, 

our hybrid ML model will demonstrate increased power in quantifying radionuclide-

mineral partitioning (Kd values) under a variety of different geochemical conditions (e.g. 

pH, ionic strength, temperature). 

 

2. Status of LLNL SCIE Sorption Database 

To develop a comprehensive surface complexation database in support of the SFWST 

program, we continued to build a digital sorption database to support surface 

complexation database development. The LLNL SCIE (L-SCIE) digital sorption database 

and workflow was developed in Microsoft Access with a series of linked tables as 

reported previously. The structure of the database was recently reported in Zavarin et al. 

(2022) and will not be reported here. However, some enhancements to the database and 

workflow were pursued in FY22 and are highlighted below. 
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Our LLNL SCIE digital sorption database continues to expand. At present, it includes 

243 references, 2318 datasets, and 27,000 individual data points. The database was 

recently linked to a large fraction of Kd data available from the JAEA Kd database. A 

python code was written to automate the import of JAEA Kd data into the L-SCIE 

workflow which increased our total data holdings to 44,000 data points. Details regarding 

international collaboration efforts in the development of L-SCIE are reported in the 

Argillite International milestone report M4SF-22LL010302062. 

 

The L-SCIE workflow, written in R and associated with the database went through a 

large revision, particularly in terms of uncertainty quantification. The code no longer 

relies on a web hosted interface and can be run directly and locally from a web browser 

window. Table 1 lists the data density by element and/or species. Most data are focused 

on radionuclides relevant to the nuclear waste program.  For example, over 8000 data are 

associated with uranium and over 3000 data are associated with various oxidation states 

of selenium. Nevertheless, the data density for some elements is quite low (e.g. 

technetium, iodine) for which additional data are needed. As our workflows begin to 

work toward a holistic analysis of radionuclide-mineral surface complexation and hybrid 

models, we will need to identify areas of low data density. We are presently working on 

python code to visualize data density across the range of radionuclides, minerals, and 

geochemical conditions to allow us to strategically fill in data gaps in low data density 

regions.  
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Table 1. Number of datapoints by sorbate species 

Species # Species # 

Am(+3) 1000 P(+5) 211 

As(+5) 52 Pa(+5) 117 

Ba(+2) 89 Pa(n.r.)a 6 

Bi(+3) 20 Pb(+2) 1506 

C(+4) 227 Pd(+2) 16 

Ca(+2) 403 Po(+4) 6 

Cd(+2) 357 Pu 24 

Ce(+3) 5 Pu(+4) 369 

Cm(+3) 51 Pu(+5) 282 

Co(+2) 510 Pu(n.r.) 93 

Cr(+3) 26 Ra(+2) 152 

Cr(+6) 74 Ra(+4) 3 

Cs(+1) 4357 Rb(+) 87 

Cu(+2) 317 Rb(+1) 7 

Eu(+3) 1948 S(+6) 96 

Fe(+2) 90 Sb(+5) 1 

Fe(+3) 3 Se(+4) 2770 

Fulvic_acid 9 Se(+6) 831 

H(+1) 8150 Se(-2) 220 

Humic_acid 11 Se(n.r.) 131 

I(-1) 90 Sm(+3) 80 

K(+1) 68 Sn(+4) 97 

Mg(+2) 126 Sn(n.r.) 3 

Mn(+2) 92 Sr(+2) 925 

Na(+1) 6 Tc(+4) 5 

Nb(+5) 8 Tc(+7) 131 

Ni(+2) 3566 Tc(n.r.) 27 

Np(+4) 230 Th(+4) 836 

Np(+4,5) 35 U(+4) 34 

Np(+5) 3189 U(+6) 8335 

Np(+5,4) 2 U(n.r.) 110 

Np(+6) 1 Yb(+3) 59 

Np(n.r.) 92 Zn(+2) 958 

  Zn(n.r.) 15 

  Zr(+4) 25 
a n.r. = not reported 
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3. A Community Data Mining Approach for Surface Complexation 

Database Development 

Zavarin, M., Chang, E., Wainwright, H., Parham, N., Kaukuntla, R., Zouabe, J., Deinhart, 

A., Genetti, V., Shipman, S., Bok, F., and Brendler, V. 2022. A Community Data Mining 

Approach for Surface Complexation Database Development, Env. Sci. Technol. 56 (4), 

2827-2838. https://doi.org/10.1021/acs.est.1c07109. 

 

 

 

 
 

 

 

The information presented below is a summary from a manuscript published in January, 

2022 in Environmental Science and Technology (Zavarin et al., 2022). The publication 

describes our L-SCIE sorption database, the workflow used to fit surface complexation 

constants using these data, and an overall approach to surface complexation model 

database development. 

 

This manuscript presents a comprehensive data-to-model workflow, including a findable, 

accessible, interoperable, reusable (FAIR) community sorption database (newly 

developed L-SCIE database) along with a data fitting workflow to efficiently optimize 

surface complexation reaction constants with multiple surface complexation model 

(SCM) constructs. This workflow serves as a universal framework to mine, compile, and 

analyze large numbers of published sorption data as well as to estimate reaction constants 

for parameterizing reactive transport models. The framework includes (1) data 

digitization from published papers, (2) data unification including unit conversions, (3) 

data-model integration and reaction constant estimation using geochemical software 
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PHREEQC coupled with the universal parameter estimation code PEST. We demonstrate 

our approach using an analysis of U(VI) sorption to quartz based on a first L-SCIE 

implementation, concluding that a multi-site SCM construct with carbonate surface 

species yielded the best fit to community data. It yielded surface complexation reaction 

constants that capture all available sorption data available in the literature and provide 

insight into previously published reaction constants and surface complexation model 

constructs. The L-SCIE sorption database presented herein allows for automating this 

approach across a wide range of metals and minerals and implementing novel machine 

learning approaches to reactive transport in the future.  

 
This work presents a comprehensive data analytics workflow for the mining of 
community sorption data from the literature, evaluation of published SCM constructs 
using a global fitting approach, and comparison of the performance metrics of different 
SCMs. Based on our U(VI)-quartz test case, we conclude that a uranyl carbonate species 
likely plays a role in uranium sorption to quartz and that multisite sorption significantly 
improves global data fits. However, a limitation that exists for all SCMs still remains: the 
non-uniqueness of SCM constructs and associated reaction constants. Nevertheless, our 
FAIR data approach, combined with automated workflows, provides a guide for 
developing surface complexation reaction databases that are flexible and easily updated 
as SCM constructs, thermodynamic databases, and reactive transport modeling codes 
evolve. 

Ultimately, the work presented here provides the necessary tools and advancements in 

data mining and data processing to conduct novel sorption data analyses that are the 

ultimate goal of the FAIR data approach. The application of data-driven approaches to 

sorption and retardation processes could significantly increase model robustness, reduce 

the computational costs in modeling Earth systems, allow for uncertainty quantification 

and progressive model improvement when new data become available, and could help to 

bring consensus to the application of SCMs in reactive transport modeling. 

 

4. A Chemistry-Informed Hybrid Machine Learning Approach to 

Quantify Mineral-Based Radionuclide Retardation 

4.1 Introduction 

The high reactivity of mineral surfaces (Dong and Wan, 2014; Durrant et al., 2018) 

enable radionuclides to adsorb to soils and sediments, limiting their bioavailability and 

influencing their overall mobility. Scientists have traditionally used surface complexation 

models (SCMs) to quantify this adsorption phenomenon and to predict metal partitioning 

in immobile solid versus mobile aqueous phases (Appelo et al., 2002; Goldberg, 1992; 

Nair et al., 2014). While SCMs calibrated to batch adsorption experiments yield valuable 

aqueous- and surface-speciation predictions under the investigated geochemical 

conditions, the implementation of SCMs also poses some key limitations. The most 

notable of these challenges is the non-uniqueness of SCMs that implement various 

divergent assumptions regarding the nature of the surface electrostatic potential. Because 

the sorbate-sorbent stability constants extracted from these SCMs are model-dependent, a 

significant present-day challenge exists in comparing and co-utilizing various historic 

SCMs and associated reaction constants that have very different underlying assumptions. 
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In contrast to the increasing amount of SCMs calibrated to different datasets and 

underpinned by divergent assumptions, machine learning (ML) methods may provide a 

new path forward in directly exploiting the continual growth of adsorption data available 

in the literature while avoiding the need to assume a specific numerical representation of 

electrostatics and reaction stoichiometries. Among ML techniques, the random forest 

(RF) algorithm has received significant attention for providing a flexible learning 

framework that can effectively capture nonlinear behavior commonly found in adsorption 

dynamics. 

 

The RF algorithm, acting as a black-box, data-driven approach, suffers from the inability 

to deduce mechanistic underpinnings of sorption processes altogether. This highlights a 

major distinction from quasi-mechanistic SCM constructs. The Lawrence Livermore 

National Laboratory-Speciation Updated Random Forest (L-SURF) model operates as a 

new, alternative hybrid approach. Our new method is described as a hybrid-ML approach 

because the initial steps involve performing thermodynamic aqueous speciation 

calculations while the later steps include RF-ML regression modeling of the mineral-fluid 

interface. Because SCMs effectively simulate aqueous speciation but suffer from 

diverging descriptions of surface reactions (e.g. electrostatics, reaction stoichiometries, 

etc.), we exploit the solution chemistry description found in traditional thermochemical 

databases while replacing the SCM interfacial chemical modeling with a data-driven, RF-

ML approach. By doing so, we develop a new model that is not hindered by limitations of 

explicit surface descriptions: we eliminate challenges associated with assumptions on 

electrostatic surface effects and complicated permutations of relevant reaction 

stoichiometries that potentially convolute overall mechanism.  

4.2 Methods 

4.2.1  Data Acquisition and Pre-Processing 

Extensive raw adsorption data in addition to an aqueous speciation database are needed 

for the application of L-SURF. The Lawrence Livermore National Laboratory-Surface 

Complexation/Ion Exchange (L-SCIE) database, a recent effort to unify community 

adsorption experiments and metadata in a findable, accessible, interoperable, and 

reusable (FAIR) format (Zavarin et al., 2022) is discussed in Section 3 of this report. 

4.2.2  L-SURF Part 1: Aqueous Speciation Modeling of Raw Sorption Data 

The first step of L-SURF requires an aqueous speciation database and compilation raw 

adsorption data for a given metal-mineral pair (Figure 1) to perform aqueous speciation 

calculations. Here, aqueous speciation calculations were performed using the PHREEQC 

software. Notably, other speciation codes may also be implemented if desired. We used 

the “llnl.dat” thermodynamic database that is provided with PHREEQC and is derived 

from LLNL’s SUPCRT (Johnson and Lundeen, 1997) database but updated with missing 

and revised U(VI) reaction constants taken from the latest NEA-TDB effort (Ragoussi 

and Brassinnes, 2015; Ragoussi and Costa, 2019) as implemented in our previous work 

(Zavarin et al., 2022). The L-SCIE database and associated codes are used as the source 

of raw adsorption data, for data unification, and data filtering. Raw adsorption data 

consists of total sorbate concentration and aqueous equilibrium sorbate concentration and 
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associated metadata consists of gas composition, sorbent properties (concentration, 

surface area, reactive site density), background electrolyte concentrations, and pH 

conditions in a comma-separated values format (Table 2). The metadata and the total 

aqueous sorbate concentration are used for each sorption datapoint to create PHREEQC 

simulations of solution chemistry conditions. Upon the completion of aqueous speciation 

calculations, relevant geochemical variables are output as input features for the 

subsequent RF adsorption model development. For the current test case (U(VI)-quartz), 

the variables exported from PHREEQC output files include HCO3
- aqueous species 

concentration, selected aqueous U(VI) species concentrations (e.g. UO2
2+ and 

UO2CO3(aq)), and ionic strength. Ionic strength was chosen as a feature representing 

chemical effects associated with aqueous species activity corrections and surface 

electrostatic potential. The HCO3
- aqueous species concentration was used as an input 

feature to account for CO2 liquid-gas exchange and speciation as a function of pH. The 

UO2
2+ aqueous species was chosen as a feature in an attempt to capture surface 

complexation of U(VI) onto quartz via a monodentate, inner-sphere reaction as described 

in Zavarin et al. (2022) 

 

(1) >SiOH + UO2
2+ + X H2O → >SiOUO2(OH)X

+1-X + (1 + X) H+, where X = 0 – 3.  

 

The UO2CO3(aq) aqueous species was also tested as an input feature, replacing HCO3
- in 

order to minimize covariance of carbonate-based features. UO2CO3(aq) is an important 

species that may participate in uranyl-carbonate surface complexation with quartz:  

 

(2) >SiOH + UO2
2+ + Y CO3

2- → >SiOUO2(CO3)Y
+1-2Y + 1H+, where Y = 1 – 2. 

 

Ultimately, these variables were chosen specifically to account for the most relevant 

liquid-gas exchange processes, aqueous complexes, and activities of aqueous species. 
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Figure 1. L-SURF workflow chart with chronological steps: (1) Adsorption data and selected 

thermodynamic database are imported into L-SURF module, (2) Aqueous speciation calculations are 

conducted and important geochemical features are output, (3) Calculated geochemical features and sorbate-

sorbent metadata features are used to train and test a random forest adsorption model, (4) Equilibrium 

aqueous metal sorbate concentrations are output, and (5) Steps 1-4 are repeated using Monte-Carlo 

simulations with randomly sampled input data +/- experimentally-determined measurement uncertainty. 

 

 

4.2.3  L-SURF Part 2: RF Regression of Mineral-Based Adsorption 

The second step of L-SURF is executed after aqueous speciation modeling determines the 

equilibrium solution conditions for each individual adsorption data point. These 

PHREEQC speciation output variables are automatically input into the RF-ML algorithm 

alongside additional important metadata variables as RF features, which include total 

mineral site density, and mineral source (Table 2). RF is defined as an ensemble machine 

learning algorithm that uses a combination of tree predictors whereby individual trees are 

built upon a randomly and independently sampled set of training data (Breiman, 2001). 

The previously described metadata variables and PHREEQC output variables are pushed 

through the RF regression model to train, validate, and test predictions of metal-mineral 

surface interactions. This method was chosen as the ensemble ML algorithm because of 

its effectiveness in capturing non-linear relationships between various dependent 

variables. This poses a particular advantage in characterizing adsorption isotherm and 

edge data, where ionic strength, adsorbate and adsorbent concentrations can non-linearly 

impact the overall adsorption phenomena and the resulting equilibrium sorbate 

concentration (Pereira et al., 2019). 

  



M4SF-22LL010301062-SC Database and Hybrid ML Model Development for GDSA 
July 26, 2022 

   12 

 

 Table 2. Data frame used as feature inputs into RF model. 

 

A well-trained RF model can provide useful predictive capabilities and also elucidate 

dependent variables that are particularly important in the prediction process (Nguyen et 

al., 2022). This approach has yielded descriptions of the most important geochemical 

features that impact contaminant presence in aquifers (Lopez et al., 2021; Ransom et al., 

2017; Wheeler et al., 2015). The marginal effects contributed by a given feature on a 

predicted outcome can be visualized using a partial dependence plot (PDP) (Friedman, 

2001). The partial dependence function for a regression is defined as: 

 

(3) 𝑓𝑠(𝑥𝑠) =  
1

𝑛
∑ 𝑓𝑠(𝑥𝑠 , 𝑥𝑐

(𝑖)
)𝑛

𝑖=1  

where 𝑥𝑠 are the plotted features and 𝑥𝑐
(𝑖)

 are the features in the ML model 𝑓 we are not 

interested in. An average over the n instances of the data is taken, where a Monte-Carlo 

method is used n times and an average of 𝑥𝑠 partial dependencies while marginalizing 

effects of 𝑥𝑐
(𝑖)

 is used to calculate the global relationship of a feature  𝑥𝑠 with its predicted 

value.  

4.2.4  Error Propagation from Experimental Uncertainty 

Each adsorption datapoint and its associated metadata possess experimental uncertainties 

that are extracted directly from L-SCIE. For each datapoint that is selected, a normal 

distribution is assumed, and a random sample is chosen within ±X standard deviation of 

the average value, where X can be a specified constraint contingent on how narrow or 

broad the user wants to characterize the data. For the U(VI)-quartz test case, an X value 

of 1 (±1 standard deviation range) was used. After a random sample for each variable is 

selected, a Monte-Carlo simulation encompassing the full L-SURF workflow (aqueous 

speciation calculations + RF mineral sorption modeling) is run Y times, where Y 

iterations may be specified. For the U(VI)-quartz test case, Y = 200 iterations were run to 

demonstrate the Monte-Carlo iterative process. Upon completing the L-SURF iterations, 

Feature # Input feature names Method for obtaining 

feature values 

Input feature units 

1 Mineral source Extracted from L-SCIE 

metadata 

Number associated with 

unique mineral source   

2 Log10(Total Sorbate 

Concentration) 

Extracted from L-SCIE 

metadata 

Log10(Molar) 

3 Log10(Total Site 

Density) 

Calculated using L-SCIE 

metadata: 

Mineral density (g/L) x 

Mineral surface area (m2/g) 

x Mineral site density 

(sites/m2) 

Log10(sites/L) 

4 Ionic Strength Calculated using PHREEQC 

speciation 

Molar 

5 Log10(Basis species, 

UO2
2+) 

Calculated using PHREEQC 

speciation 

Log10(Molar) 

6 Log10(HCO3
- or 

UO2CO3 concentration) 

Calculated using PHREEQC 

speciation 

Log10(Molar) 
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a mean value and standard deviation is computed from the L-SURF output values to 

quantify error propagated throughout the full modeling process (Anderson, 1976). 

4.3 Results and Discussion 

4.3.1  Prediction of U(VI) Adsorption onto Quartz  

Aqueous speciation calculations and metadata information (Table 2) were used as input 

features for the cross-validated RF model, generating a training RMSE score = 0.086 and 

a validation RMSE score = 0.222. A set of predictions for equilibrium aqueous U(VI) 

concentration was calculated based on a final test dataset, yielding a test RMSE score = 

0.128. When accounting for model uncertainty, a weighted Pearson correlation 

coefficient R score = 0.943 was determined (Figure 2). As the RF training and validation 

scores yield low RMSE against their respective subsets of data and the R score is greater 

than 0.90 (Zavarin et al., 2022), the authors present an ML method that successfully 

accepts aqueous chemistry based features to accurately predict U(VI)-quartz interactions. 

Additionally, Monte-Carlo iterations of L-SURF applied to U(VI)-quartz adsorption were 

implemented to propagate measurement derived uncertainties associated with electrolyte 

concentrations, pH, total site density, and CO2 gas fugacity, yielding standard deviation 

values for each L-SURF test prediction of equilibrium aqueous sorbate concentrations. 

These standard deviations are particularly useful for downstream error propagation in 

reactive transport modeling. 

 

 

 
Figure 2. Correlation plot of measured equilibrium aqueous U(VI) concentration versus RF model 

equilibrium aqueous U(VI) concentration for the U(VI)-quartz sorption dataset. Solid blue dots indicate 

average prediction values; translucent blue dots are Monte-Carlo generated error propagated values. 

 

4.3.2  RF Feature Partial Dependencies for U(VI)-Quartz Model 

Low RMSE training and validation scores and a high >0.90 test weighted prediction R 

score allow for the RF regression modeling to be well-equipped for further model 

analytics that elucidate feature relationships and partial dependencies of prediction 

values. As part of the L-SURF work package, PDPs are generated to illustrate how the 
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aqueous chemistry features of the RF model contribute to prediction results (Figure 3). 

For one-way PDPs (Figures 3 a,b), the horizontal axis represents the feature of interest 

(𝑥𝑠 in equation 3) and the vertical axis represents target response of the RF-ML model, 𝑓, 

which is the equilibrium total U(VI) concentration in solution.  For two-way PDPs 

(Figure 3c), the vertical and horizontal axes express the relevant features of interest and 

the labeled contour colors represent the target response of the RF-ML model, 𝑓, with 

changes to the two input features.  

 

Increasing HCO3
- aqueous species concentrations (10-8 to 10-6 M) generally result in a 

decreased impact on the total equilibrium aqueous U(VI) concentration output by the RF-

ML model (Figure 3a).  In the regime of low equilibrium UO2
2+ aqueous species 

concentration (10-12 to 10-8 M), an increase in UO2
2+ aqueous species concentration 

results in a minimal impact on the equilibrium total aqueous U(VI) in solution (Figure 

3b). At higher concentrations of UO2
2+ aqueous species concentrations (>10-8 M), though, 

there is an increased effect on the output equilibrium total aqueous U(VI) concentration, 

evidenced by the dramatic increase in the partial dependence values. The contour PDP 

(Figure 3c) allows for visualization of the parameter space where there is greatest model 

response from input features, HCO3
- and UO2

2+ aqueous species concentrations. Notably, 

the model is most sensitive to the feature interactions at high UO2
2+ and low HCO3

- 

species concentrations. More specifically, under these concentrations, the model response 

is influenced significantly by the high UO2
2+ aqueous species. This is consistent with 

surface complexation modeling results, where equilibrium total aqueous U(VI) 

concentrations are impacted by the presence of a high UO2
2+ species concentration 

(reaction described in equation 1). Additionally, the model output is generally less 

sensitive to changes in UO2
2+ aqueous species concentrations at higher HCO3

- aqueous 

species concentrations. This can be explained by the abundance of HCO3
- aqueous 

species (10-5 to 10-6 M) with only a limited amount of  UO2
2+ species (10-7 to 10-10 M) to 

form uranyl carbonate surface species (reaction described in equation 2). PDPs discussed 

herein demonstrate how a hybrid ML approach that integrates aqueous speciation 

calculations allows for the elucidation of feature impacts on model output. 

 
 

 
Figure 3. Partial dependence plots of (a) HCO3

- aqueous species concentration and (b) aqueous UO2
2+ 

species concentration on equilibrium total aqueous U(VI) concentration, and (c) associated contour plot 

representation of partial dependencies. HCO3
-, UO2

2+, and contour legends expressed as log10(mol/L). 
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4.3.3  Improving L-SURF Predictions with Optimized Aqueous Species Features 

When incorporating HCO3
- aqueous species concentration as an RF input feature, the L-

SURF prediction standard deviations noticeably increased at neutral to alkaline pH 

(Figure 4). CO2(g) liquid-gas exchange and aqueous speciation will favor the presence of 

CO3
2- aqueous species in solution and lead to the formation of uranyl carbonate 

complexes, particularly in alkaline conditions. To test the impact of our choice of RF 

input feature, UO2CO3(aq) aqueous species concentration was used in lieu of HCO3
- 

aqueous species concentration. Using UO2CO3(aq) as a feature, the L-SURF predictions 

were significantly more stable with much lower model uncertainties at neutral to alkaline 

pH (Figure 4). This is a significant result as it aligns with traditional SCM approach 

modeling interpretation (Zavarin et al., 2022): Uranyl-carbonate species likely play a 

major role in U(VI) adsorption onto quartz surfaces. In the context of hybrid ML 

modeling, this result also signifies that incorporation of deeper aqueous speciation 

knowledge into the RF model can result in significantly improved propagated error under 

specific geochemical conditions and may provide additional insight into the solution 

conditions and aqueous species that influence adsorption. 

 

 

 
Figure 4. pH-dependent model predictions of equilibrium aqueous U(VI) concentrations for U(VI)-quartz 

adsorption for one literature source extracted dataset (Pabalan et al., 1998). PEST-optimized PHREEQC 

modeling is represented by green diamonds; L-SURF modeling is represented by blue stars ± 1 standard 

deviation error bars; experimentally measured values are indicated by red dots ± 1 standard deviation error 

bars. Improved propagated error bounds are visible under mid- to high- pH regimes as a result of replacing 

HCO3
- species with a UO2CO3(aq) species as an RF input feature. 

 

 

4.3.4  L-SURF Work Package and Concluding Remarks 

The L-SURF work package has yielded successful predictions of U(VI) adsorption onto 

the quartz mineral surface. Despite its strong predictive quality as a modeling tool, L-

SURF currently focuses on single element-mineral interface datasets. There is a need to 

study real-world systems that incorporate complex mixtures of aqueous species and 

mineral phases. Future work will thus include incorporation of more complex features 

into the work package, such as the ability to distinguish between different mineral 

structures or adsorbate oxidation states. In addition, work will be done to integrate L-

SURF into higher-order reactive transport codes as a substitute to more complex SCM 

approaches to adsorption and retardation. Importantly, an analysis is needed to evaluate 
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the computational burden of traditional and hybrid ML approaches and whether L-SURF 

can streamline the incorporation of adsorption data into reactive transport modeling, 

including uncertainty quantification. As the L-SURF hybrid ML approach is novel in the 

space of adsorption modeling, the authors emphasize the need to test L-SURF rigorously 

across numerous different elements and minerals under varied environmental conditions. 

Nonetheless, the work presented herein captures a first-of-its-kind method to bridge the 

gap between mechanistic surface complexation modeling and ML-based regression 

modeling, successfully achieving high prediction accuracy for the U(VI)-quartz system. 

 

5. Planned FY23 Efforts 

Here, we described a detailed analysis of U(VI) sorption to quartz through both 

traditional surface complexation modeling and through a hybrid ML framework. In 

FY23, effort will be placed on the continued growth of the surface complexation and ion 

exchange database (L-SCIE) in order to assess mineral-based radionuclide retardation 

under a wider variety of geochemical conditions (e.g., ionic strength, varying electrolyte 

compositions). This effort will also include the testing of L-SURF to quantify Kd values 

for numerous different radionuclide-mineral pairs under varying geochemical conditions. 

Additionally, we will conduct direct comparisons of the L-SURF approach with various 

surface complexation (Non-electrostatic, diffuse layer, etc.) and ion exchange (Vanselow, 

Gapon, etc.) models. These important model inter-comparisons will provide a clearer 

path forward in incorporating traditional SCM or/and modern hybrid ML approaches into 

repository performance assessment.  

 

Key considerations for future modeling development will include (1) the ability to reduce 

computational burden on determining retardation coefficients for PA and (2) a new 

capability to quantify and predict radionuclide-mineral partitioning at a more efficient, 

rapid pace due to automated workflows. Upon the careful consideration of the most 

effective modeling approach to implement for PA, we will discuss efforts for the actual 

implementation of our surface complexation model or/and hybrid ML approaches into 

PA models. FY23 will see both the fine-tuning of our model developments and also 

defined requirements discussed to apply these model learnings to higher level GDSA 

work. 
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