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Two parts

Two-parts:

1. Convergence of two-level PinT
2. Nonsymmetric PDE solvers for space-time/all-at-once
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Space-time operators

Space-time PDE:

ur+ L(u,x) = g(x, t).

Los Alamos National Laboratory



Space-time operators

Space-time PDE:

ut + L(u,x) = g(x, t).

¢ Discretize and linearize L in space
® u(t) = u; discrete solution in space at time t

= u; + L(Hu = g(1).
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Multigrid reduction in time (MGRIT)

Reduction-based multigrid for matrices

Au =

Los Alamos National Laboratory

/
— 4




Multigrid reduction in time (MGRIT)

Reduction-based multigrid for matrices

/ 1T ug |
—¢1 I U4
Au = —®2 U | =g,

i —On—g 1] [Un-1]

e Split time points into C-points/F-points

e Time discretization provides error w.r.t. continuous; want discrete
error/residual - 0 (e =G —uandr =g — Au)
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Multigrid reduction in time (MGRIT)

Define <I>f, = ®;®;_4...0;. Then

/
—b,

Define Ap =~ Ba =

/
k41
~P5
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Error and residual propagation

P
Rcr

—ATA _
A IR-RINGE

A o (0 B2 an - An) 7).
_(/—AZBE)”] [~AcAL 1]
. 0

-(("AABE)(/—AA)>"’ [~AsAL 1.

Restricted to C-points:
& =1—By'An, Ercr = (I1— By'Ap)(I - An),

RF=1—AnB,",
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F-relaxation

Let &, = <DE ;k“ and define the shift operators and block

diagonal matnx

b, *wN —1

c
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F-relaxation

Let &, = <DE ;k“ and define the shift operators and block

diagonal matnx

0 [ k=¥

b, *wN —1

c

e |D= (BA — AA) and /LTIL = I
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F-relaxation

Let &, = <DE ;k“ and define the shift operators and block

diagonal matnx

0 [ k=¥

b, *wN —1

c

0

e |D= (BA — AA) and /TIL = I
L ’R,/: =1/- AABf = (BA AA)BA = ILDBi
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F-relaxation

o a(Ne—2)k+1
Let &, = o~

diagonal matrix

and define the shift operators and block

| ol — v
L=|! 0O = D= o
- - * — Y N;—1
0 0
e |D= (BA — AA) and /LTIL = 1,.
 Re=1—-ArBy' = (Ba — Ap)B;' = I.DB;".
I, DBX'x, I, DBX'x I,DBX'x, I,DBX'x
R = sup LPPa X LOBX) _ g, (D50 X DB X)
x40 <x7 X) x#£0 <x7 X>
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F-relaxation

o a(Ne—2)k+1
Let &, = o~

diagonal matrix

and define the shift operators and block

| ol — v
L=|! 0O = D= o
- - * — Y N;—1
0 0
e |D= (BA — AA) and /LTIL = 1,.
 Re=1—-ArBy' = (Ba — Ap)B;' = I.DB;".
I, DBX'x, I, DBX'x 1,DBX'I,x, I,DBX" I,x
HRFHZZSUP<L Ax) L A > :SUp<z A 'Z V4 A 1z >
x#£0 (X, X) x#£0 <x7 X>
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F-relaxation

o a(Ne—2)k+1
Let &, = o~

diagonal matrix

and define the shift operators and block

| of — V4

L=|! 0O =1 . D=
o O, — Wy,

e |D= (BA — AA) and /LTIL = 1,.
 Re=1—-ArBy' = (Ba — Ap)B;' = I.DB;".

(I.DBL'x, I, DB;'X)
(x, x)

IRE|? = sup = | ,DB;' 1| = | DBR|I?.
x#£0
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F-relaxation

Altogether:

N . Dx|| 1
= max DB 1 — ||/V = ’
IRFl = oma ( A ) o |1BaX|| o <§A5_1)

where BaD~1 =

/
BT

. »
Wy, (P —Wp, 1)

(similar results for g[:, gFCF: and 7?4:0,:).
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Diagonalizable operators

Theorem 1.

Let .,V be independent of time and simultaneously diagonalizable
with eigenvectors U, eigenvalues {\, .}, coarsening factor k, and
N, coarse-grid time points. Then,

|11 = Af] |1 = Af]
sup ! — < [[Relly=)-—+ = sup ! —
i ! i
© 0=z + S 0 = b2+
AFlli = AF] A1l = AF]
sup

! == < IR FcFllu-)-1 < sup E
I i 1 T K
\/(1 — la? + = (1 = lul)? + 2
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Time-independent operators

Definition 2 (Temporal approximation property).

Let @ ~ fine-grid and ¥ ~ coarse-grid time-stepping, independent
of time, and with coarsening factor k. ¢ satisfies an F-relaxation
temporal approximation property (F-TAP) with respect to ¥ with
constant ¢, if, for all v,

(v = 04l < e | min [0l )

Similarly, ¢ satisfies an FCF-TAP with respect to W with constant
wFcF, If, for all v,

1V — W] < prcr [Xé%iﬁgﬂ |- eixw»vH] @
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Time-independent operators

Theorem 2 (Necessary and sufficient conditions).

Suppose ® and V are linear, stable (||®P||, ||[VP| < 1 for some p),
and independent of time; and that (V — ®X) is invertible. Suppose ®
satisfies an F-TAP w.r.t. V with constant or, and ¢ satisfies an
FCF-TAP w.r.t. V with constant orcr. Then, worst-case
convergence of residual is exactly bounded by

F
or LA,
1+0(1/vNe) — IrtF)) ’
eSS
YFCF < Wit

< < YFCF
1+ 0(1/v/Ne) — ||rlFCR))

for iterations i > 1 (i.e., not the first iteration).
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Related work

Lemma 3.
Suppose V is real-valued. Then,

min (/= e W)v||? = ||v]|? + [[wv|? — 2| (wv,v)|.
x€[0,27]

B. S. Southworth. Necessary conditions and tight two-level convergence
bounds for parareal and multigrid reduction in time.

B. S. Southworth et al. Tight two-level convergence of Linear Parareal and
MGRIT: Extensions and implications in practice.

S. Friedhoff and B. S. Southworth. On “Optimal” h-independent
convergence of Parareal and multigrid-reduction-in-time using
Runge-Kutta time integration.
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Algebraic reduction (and advection)

Two main points:

e Most PinT methods struggle with strong advection (as do
p-multigrid, and many block preconditioning methods!)
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Table of Contents

AMG and space-time advection-diffusion
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Advection-diffusion

o

ou+a-vVu—vViu=f

— :
a-Vu—vVeu=f

s National Laboratory



Conceptual basis for AIR

Partition (discontinuous) elements into C-elements and F-elements.
Then in matrix form,

Ar Ac| T _[I —A; A [As O / 0
Act Acc 0 / 0o s _ACfAE1 I
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Conceptual basis for AIR

Partition (discontinuous) elements into C-elements and F-elements.
Then in matrix form,

A Acl ' 1 —A AR [A7 0 I 0
Act Acc |0 / 0 s _ACfAE1 I
AIR preconditioner M~ looks like:

=[S ]2 7]

Where K = RAP. Want Ap ~ A", Z ~ —A4A.", etc.
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Conceptual basis for AIR

Partition (discontinuous) elements into C-elements and F-elements.
Then in matrix form,

A Acl ' 1 —A AR [A7 0 I 0
Act Acc |0 / 0 s _ACfAE1 I
AIR preconditioner M~ looks like:

w1 WIl[Ar O )
0 I o K|z 1]
Where K = RAP. Want Ap ~ A", Z ~ —A4A.", etc.

—> Can we approximate A-' well?
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Conceptual basis for AIR

e

Consider transport on structured 2d grid and partition elements into
C-elements and F-elements.
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Conceptual basis for AIR

Notice that there are no C-C or F-F connections
— Aff = ACC = I
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Conceptual basis for AIR

If Ay = I, AMG coarse grid given by Acc — AcrAre <= all C-F-C
connections.
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Conceptual basis for AIR

If A¢ = I, AMG coarse grid given by Aqc — A A < all C-F-C
connections. One of these connections is weak!

Los Alamos National Laboratory
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Space-time AMR

Fig.: Mesh/solution at t = 0.5  Fig.: Mesh/solution at t = 1
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¢ AIR-AMG applied to hybridized DG (EDG and HDG)

e BiCGSTAB iterations to relative residual 10—12.

v

n 10-% 107* 10=° 1072 10! n 10% 107* 102 1072 10’

136K 8 7 8 10 17 272K 8 9 10 14 30
1M 8 8 10 13 54 2.1M 9 11 13 18 46
8.5M 8 9 12 18 X 17M 9 14 15 30 83

p=3

n 10% 10=* 107% 1072 10"

454K 9 11 12 18 38
3.6M 9 13 15 25 73
28M 10 17 18 46 144
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¢ AIR-AMG applied to hybridized DG (EDG and HDG)

e BiCGSTAB iterations to relative residual 10—12.

v

n 10 107* 10°° 1072 10! n 10% 107* 102 1072 10’

136K 8 7 8 10 17 272K 8 9 10 14 30
1M 8 8 10 13 54 2.1M 9 11 13 18 46
245K 17 17 16 15 12 1.9M 17 16 19 21 30

p=3

n 10% 10=* 107% 1072 10"

454K 9 11 12 18 38
3.6M 9 13 15 25 73
6.5M 19 17 14 16 41

EDG
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Speedup over sequential

1.7 T
——S(n)=1 )
1.6 "® p=1 ’
p=2 ’
- p=3 7
1.5 ’
1
\
14 - II p
\ 1 - 7
1.3 ! 174
. YR . ,
~ ’
R A’*= _ ! roo
\.\- - - ! 4
\\ ~ 1 /*
1.1r * >\—*\ 1 L4 1
1
1 ‘“\‘\ ' *
k1
0.9+ 1
0.8 . . . \ . . ,
1 2 4 8 16 32 64 128 256

Number of processes
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Navier Stokes
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Navier Stokes

e Working on block AIR for incompressible NS. Initial results for
steady decent up to Reynolds 10°.
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Navier Stokes

e Working on block AIR for incompressible NS. Initial results for
steady decent up to Reynolds 10°.

e Working on AIR for shallow water/compressible NS/Euler.
Haven't tested yet.

Los Alamos National Laboratory




Navier Stokes

e Working on block AIR for incompressible NS. Initial results for
steady decent up to Reynolds 10°.

e Working on AIR for shallow water/compressible NS/Euler.
Haven't tested yet.

e — Add time to discretization, solve all at once!
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Thank you!

Papers:

T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric
Algebraic Multigrid Based on Local Approximate Ideal Restriction
(CAIR).

A. A. Sivas, B. S. Southworth, and S. Rhebergen. AIR algebraic
multigrid for a space-time hybridizable discontinuous Galerkin
discretization of advection (-diffusion).

Los Alamos National Laboratory



	AMG and space-time advection-diffusion

