
LA-UR-22-28273
Approved for public release; distribution is unlimited.

Title: PinT 2022

Author(s): Southworth, Benjamin Scott
Rhebergen, Sander
Sivas, Abdullah
Manteuffel, Tom

Intended for: Parallel in time Conference, 2022-07-11/2022-07-15 (Marseille, France)

Issued: 2022-08-08



Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes.  Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy.  Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.



PinT 2022

Ben Southworth, Sander Rhebergen,
Abdullah Sivas, Tom Mantueffel

11 July 2022

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Los Alamos National Laboratory



Two parts

Two-parts:

1. Convergence of two-level PinT
2. Nonsymmetric PDE solvers for space-time/all-at-once

Los Alamos National Laboratory | 2



Space-time operators

Space-time PDE:

ut + L(u,x) = g(x, t).

• Discretize and linearize L in space
• u(t) = uti discrete solution in space at time t

=⇒ ut + L(t)u = g(t).
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Multigrid reduction in time (MGRiT)

Reduction-based multigrid for matrices

Au :=


I

−Φ1 I
−Φ2 I

. . . . . .
−ΦN−1 I




u0
u1
u2
...

uN−1

 = g,

• Split time points into C-points/F-points
• Time discretization provides error w.r.t. continuous; want discrete

error/residual → 0 (e = û − u and r = g − Au)
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Multigrid reduction in time (MGRiT)

Define Φj
i := ΦiΦi−1...Φj . Then

I
−Φ1 I

−Φ2 I
. . . . . .

−ΦN−1 I


−1

=



I
Φ1 I
Φ1

2 Φ2 I
Φ1

3 Φ2
3 Φ3 I

...
...

. . . . . .
Φ1

N−1 Φ2
N−1 ... ... ΦN−1 I


.

Define A∆ ≈ B∆ :=
I

−Φ1
k I

−Φk+1
2k I

. . . . . .
−Φ

(Nc−2)k+1
(Nc−1)k I

 ≈


I

−Ψ1 I
−Ψ2 I

. . . . . .
−ΨNc−1 I

 .

Los Alamos National Laboratory | 4



Error and residual propagation

Ep
F :=

[
−A−1

ff Afc
I

] [
0 (I − B−1

∆ A∆)
p
]
,

Ep
FCF :=

[
−A−1

ff Afc
I

] [
0

(
(I − B−1

∆ A∆)(I − A∆)
)p]

,

Rp
F :=

[
0

(I − A∆B−1
∆ )p

] [
−Acf A−1

ff I
]
,

Rp
FCF :=

[
0(

(I − A∆B−1
∆ )(I − A∆)

)p

] [
−Acf A−1

ff I
]
.

Restricted to C-points:

ẼF := I − B−1
∆ A∆, ẼFCF := (I − B−1

∆ A∆)(I − A∆),

R̃F := I − A∆B−1
∆ , R̃FCF := (I − A∆B−1

∆ )(I − A∆).
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F-relaxation

Let Φ∗ := Φ
(Nc−2)k+1
(Nc−1)k and define the shift operators and block

diagonal matrix

IL =

0
I 0

. . . . . .

 , Iz =

I
. . .

0

 ,D =


Φ1

k −Ψ1
. . .

Φ∗ −ΨNc−1
0



• ILD = (B∆ − A∆) and IT
L IL = Iz .

• R̃F = I − A∆B−1
∆ = (B∆ − A∆)B−1

∆ = ILDB−1
∆ .
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∆ = ILDB−1
∆ .

∥RF∥2 = sup
x̸=0

⟨ILDB−1
∆ x, ILDB−1

∆ x⟩
⟨x,x⟩

= sup
x̸=0

⟨IzDB−1
∆ x, IzDB−1

∆ x⟩
⟨x,x⟩

.
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F-relaxation

Altogether:

∥R̃F∥ = σmax

(
D̃B̃−1

∆

)
= max

x̸=0

∥D̃x∥
∥B̃∆x∥

=
1

σmin

(
B̃∆D̃−1

) ,
where B̃∆D̃−1 :=

I
−Ψ1 I

. . . . . .
−ΨNc−2 I



(
Φ1

k −Ψ1
)−1

. . .
(Φ∗ −ΨNc−1)

−1

 .

(similar results for ẼF , ẼFCF , and R̃FCF ).
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Diagonalizable operators

Theorem 1.
Let Φ,Ψ be independent of time and simultaneously diagonalizable
with eigenvectors U, eigenvalues {λ, µ}, coarsening factor k, and
Nc coarse-grid time points. Then,

sup
i

|µi − λk
i |√

(1 − |µi |)2 + π2|µi |
N2

c

≤ ∥RF∥(UU∗)−1 ≤ sup
i

|µi − λk
i |√

(1 − |µi |)2 + π2|µi |
6N2

c

,

sup
i

|λk
i ||µi − λk

i |√
(1 − |µi |)2 + π2|µi |

N2
c

≤ ∥RFCF∥(UU∗)−1 ≤ sup
i

|λk
i ||µi − λk

i |√
(1 − |µi |)2 + π2|µi |

6N2
c

.
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Time-independent operators

Definition 2 (Temporal approximation property).
Let Φ ∼ fine-grid and Ψ ∼ coarse-grid time-stepping, independent
of time, and with coarsening factor k . Φ satisfies an F-relaxation
temporal approximation property (F-TAP) with respect to Ψ with
constant φF , if, for all v,

∥(Ψ− Φk )v∥ ≤ φF

[
min

x∈[0,2π]

∥∥(I − eixΨ)v
∥∥] . (1)

Similarly, Φ satisfies an FCF-TAP with respect to Ψ with constant
φFCF , if, for all v,

∥(Ψ− Φk )v∥ ≤ φFCF

[
min

x∈[0,2π]

∥∥∥(Φ−k (I − eixΨ))v
∥∥∥] . (2)
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Time-independent operators

Theorem 2 (Necessary and sufficient conditions).
Suppose Φ and Ψ are linear, stable (∥Φp∥, ∥Ψp∥ < 1 for some p),
and independent of time; and that (Ψ−Φk ) is invertible. Suppose Φ
satisfies an F-TAP w.r.t. Ψ with constant φF , and Φ satisfies an
FCF-TAP w.r.t. Ψ with constant φFCF . Then, worst-case
convergence of residual is exactly bounded by

φF

1 + O(1/
√

Nc)
≤

∥r(F )
i+1∥

∥r(F )
i ∥

< φF ,

φFCF

1 + O(1/
√

Nc)
≤

∥r(FCF )
i+1 ∥

∥r(FCF )
i ∥

< φFCF

for iterations i > 1 (i.e., not the first iteration).
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Related work

Lemma 3.
Suppose Ψ is real-valued. Then,

min
x∈[0,2π]

∥(I − eixΨ)v∥2 = ∥v∥2 + ∥Ψv∥2 − 2 |⟨Ψv,v⟩| .

B. S. Southworth. Necessary conditions and tight two-level convergence
bounds for parareal and multigrid reduction in time.

B. S. Southworth et al. Tight two-level convergence of Linear Parareal and
MGRIT: Extensions and implications in practice.

S. Friedhoff and B. S. Southworth. On “Optimal” h-independent
convergence of Parareal and multigrid-reduction-in-time using
Runge-Kutta time integration.
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Algebraic reduction (and advection)

Two main points:
• Most PinT methods struggle with strong advection (as do

p-multigrid, and many block preconditioning methods!)
•
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Table of Contents

AMG and space-time advection-diffusion
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Advection-diffusion

∂tu + a · ∇u − ν∇2u = f
⇐⇒

â · ∇̂u − ν∇2u = f
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Conceptual basis for AIR

Partition (discontinuous) elements into C-elements and F-elements.
Then in matrix form,[

Aff Afc
Acf Acc

]−1

=

[
I −A−1

ff Afc
0 I

] [
A−1

ff 0
0 S−1

] [
I 0

−Acf A−1
ff I

]
.

AIR preconditioner M−1 looks like:

M−1 =

[
I Ŵ
0 I

] [
∆F 0
0 K−1

] [
I 0
Z I

]
.

Where K = RAP. Want ∆F ≃ A−1
ff , Z ≃ −Acf A−1

ff , etc.

=⇒ Can we approximate A−1
ff well?
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Conceptual basis for AIR

C-element

F-element

Consider transport on structured 2d grid and partition elements into
C-elements and F-elements.
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Conceptual basis for AIR

C-element

F-element

Notice that there are no C-C or F-F connections
=⇒ Aff = Acc = I.
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Conceptual basis for AIR

C-element

F-element

If Aff = I, AMG coarse grid given by Acc − Acf Afc ⇐⇒ all C-F-C
connections.
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Conceptual basis for AIR

C-element

F-element

If Aff = I, AMG coarse grid given by Acc − Acf Afc ⇐⇒ all C-F-C
connections. One of these connections is weak!
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Space-time coarsening

Fig.: Vel. field

Fig.: t = 0.3853

Fig.: x = 0.1861

Fig.: t = 0.3928

Fig.: x = 0.5790

Fig.: Space-time char.
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Space-time AMR

Fig.: Mesh/solution at t = 0.5 Fig.: Mesh/solution at t = 1
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Results
• AIR-AMG applied to hybridized DG (EDG and HDG)
• BiCGSTAB iterations to relative residual 10−12.

p = 1

n
ν

10−6 10−4 10−3 10−2 10−1

136K 8 7 8 10 17
1M 8 8 10 13 54

8.5M 8 9 12 18 ×

p = 2

n
ν

10−6 10−4 10−3 10−2 10−1

272K 8 9 10 14 30
2.1M 9 11 13 18 46
17M 9 14 15 30 83

p = 3

n
ν

10−6 10−4 10−3 10−2 10−1

454K 9 11 12 18 38
3.6M 9 13 15 25 73
28M 10 17 18 46 144
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Results
• AIR-AMG applied to hybridized DG (EDG and HDG)
• BiCGSTAB iterations to relative residual 10−12.

p = 1

n
ν

10−6 10−4 10−3 10−2 10−1

136K 8 7 8 10 17
1M 8 8 10 13 54

245K 17 17 16 15 12

p = 2

n
ν

10−6 10−4 10−3 10−2 10−1

272K 8 9 10 14 30
2.1M 9 11 13 18 46
1.9M 17 16 19 21 30

p = 3

n
ν

10−6 10−4 10−3 10−2 10−1

454K 9 11 12 18 38
3.6M 9 13 15 25 73
6.5M 19 17 14 16 41
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Speedup over sequential
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Navier Stokes

• Working on block AIR for incompressible NS. Initial results for
steady decent up to Reynolds 105.

• Working on AIR for shallow water/compressible NS/Euler.
Haven’t tested yet.

• =⇒ Add time to discretization, solve all at once!
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Thank you!

Papers:

T. A. Manteuffel, J. Ruge, and B. S. Southworth. Nonsymmetric
Algebraic Multigrid Based on Local Approximate Ideal Restriction
(ℓAIR).

A. A. Sivas, B. S. Southworth, and S. Rhebergen. AIR algebraic
multigrid for a space-time hybridizable discontinuous Galerkin
discretization of advection (-diffusion).
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