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Abstract: The modernization of existing and new nuclear power plants with digital instrumentation
and control systems (DI&C) is a recent and highly trending topic. However, there lacks strong
consensus on best-estimate reliability methodologies by both the United States (U.S.) Nuclear
Regulatory Commission (NRC) and the industry. This has resulted in hesitation for further
modernization projects until a more unified methodology is realized. In this work, we develop an
approach called Orthogonal-defect Classification for Assessing Software Reliability (ORCAS) to
quantify probabilities of various software failure modes in a DI&C system. The method utilizes
accepted industry methodologies for software quality assurance that are also verified by experimental
or mathematical formulations. In essence, the approach combines a semantic failure classification
model with a reliability growth model to predict (and quantify) the potential failure modes of a DI&C
software system. The semantic classification model is used to address the question: How do latent
defects in software contribute to different software failure root causes? The use of reliability growth
models is then used to address the question: Given the connection between latent defects and software
failure root causes, how can we quantify the reliability of the software? A case study was conducted on
a representative 1&C platform (ChibiOS) running a smart sensor acquisition software developed by
Virginia Commonwealth University (VCU). The testing and evidence collection guidance in ORCAS
was applied, and defects were uncovered in the software. Qualitative evidence, such as condition
coverage, was used to gauge the completeness and trustworthiness of the assessment while quantitative
evidence was used to determine the software failure probabilities. The reliability of the software was
then estimated and compared to existing operational data of the sensor device. It is demonstrated that
by using ORCAS, a semantic reasoning framework can be developed to justify if the software is reliable
(or unreliable) while still leveraging the strength of the existing methods.

1. INTRODUCTION

In recent years, there has been considerable effort to modernize existing and new nuclear power plants
with digital instrumentation and control systems (D1&C). However, there has also been a considerable
concern both by industry and regulatory bodies on the risk and consequence analysis of these systems.
The lack of a strong consensus on best-estimate methodologies by both the United States (U.S.) Nuclear
Regulatory Commission (NRC) and the industry [1] has led to a hesitation for further modernization
projects. In branch technical position (BTP) 7-19 [2], the NRC has also cited concerns that DI&C
systems can be vulnerable to common cause failures (CCFs) because of software errors in logic or
implementation that could reduce defense-in-depth capability in existing hardware redundant
architectures. Such software errors can manifest due to inadequacies in either the design requirements
specifications or the implementation of the design.

While many new methods have been proposed to identify potential software events, such as Systems
Theoretic Process Analysis (STPA) [3], Hazard and Consequence Analysis for Digital Systems
(HAZCADS) [4], etc., these methods are focused on the qualitative identification of failure modes in a
fault tree with very little guidance on direct quantification. Typically, software failure modes are
identified by potential unsafe control actions (UCA) made by the system [3]. The UCAs can lead to
stakeholder losses and are traceable to a particular system level event which can be integrated as basic
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events within fault trees [5]. Supplemental assessments to HAZCADS, such as the Digital Reliability
Assessment Methodology (DRAM) [6], have been used to address the risk of UCA by assigning Risk
Reduction Targets (RRTs) and Control Methods (CMs) to bound the risk of software basic events. The
risk to the system is determined by the Safety Integrity Level (SIL) [7] intended for the device.
However, RRTs and CMs are qualitative methods at risk mitigation. Specifically, the approach helps
identify failure mechanisms and pathways that can lead to UCAs and methods to address them. CMs
listed in DRAM are scored qualitatively based on implemented type and effectiveness by expert
experience ad belief. However, the improvement in reliability by CMs and RRTs are difficult to
quantify. Nonetheless, DRAM provides a useful qualitative support identification framework for design
activities.

Aside from bounding estimate methods, other more direct risk and reliability quantification methods
include software reliability growth models (SRGMs) [8]. These well-known methods attempt to predict
the anticipated reliability of the software through historical failure data and has historically good
generalization across multiple industries. However, conventional use of SRGMs are to measure the
wholistic reliability of software and rather than specific subsystems (due to the lack of failure data). In
cases where failure data is limited, which is especially true for safety critical systems, the uncertainty
in the SRGMs can render predictions meaningless [9]. Our research thus aims to provide more
acceptable risk and reliability information on DI&C systems without losing specificity or generalization
capability. Furthermore, we attempt to collect qualitative evidence to support reliability conclusions.

In this work, we present the idea of Orthogonal-defect Classification for Assessing Software Reliability
(ORCAS) to formalize and provide actionable evidence for the reliability quantification of DI&C
system. The method utilizes accepted industry testing methodologies for software quality assurance that
have also been verified by experimental or mathematical formulations. A pseudo-exhaustive testing
[10] approach is adopted to reduce the cost of testing while maintaining a similar level of coverage
confidence. In essence, ORCAS combines a semantic failure classification model with a reliability
growth model to predict (and quantify) potential failure modes of a DI&C software system. The
semantic classification model is used to address the question: How do latent defects in software translate
to different software failure modes? For example, suppose a defect was discovered that fails to check a
variable’s contents before using it in an equation. The direct impact of this defect on the software is
difficult to gauge; it may have no impact or have serious consequences in calculation. By translating
discovered defects into defined independent categorical types, the impact to software reliability can be
generalized and modeled. Here, the use of reliability growth models is more applicable: Given that we
know how latent defects contribute to different software failure modes, the risk (or reliability) of the
DI&C system can be predicted. In addition, derived qualitative evidence from the ORCAS methodology
is used to determine the confidence in our assessment and whether the results are trustworthy.

A case study was conducted on a representative software platform (ChibiOS) [11] running a sensor
acquisition software developed by Virginia Commonwealth University (VCU) [12]. The testing and
evidence collection guidance in ORCAS was applied. Defects were uncovered in the software.
Qualitative evidence, such as condition coverage, was used to gauge the completeness and
trustworthiness of the assessment while quantitative evidence was used to determine software failure
probabilities. The reliability of the software was then estimated and compared to existing operational
data of the sensor device. It is demonstrated that by using ORCAS, a semantic reasoning framework
can be developed to justify software reliability (or unreliability) while still leveraging the strength of
existing methods.

2. THEORETIC BACKGROUND

Before presenting the methodology, the theory behind this work is first discussed. The most important
theory being that ‘failures’ in software are ill-defined. In STPA, the authors treat software ‘failures’ as
misbehaviors or unintended consequences due to inadequate (but deliberate) specification of constraints
and requirements of the system [3]. In this respect, the software never truly ‘fails’ but rather performs
actions that are undesirable while still conforming to existing requirements. Hence, the development of
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UCA in STPA. In this work, the same ideology is utilized, where the different categories of UCA are
referred to as software failure modes. In brief, the failure modes are: (1) control action is missing when
needed (UCA-A); (2) a control action is provided when not needed (UCA-B); (3) a control action is
provided but too early, too late, or out of order (UCA-C); and (4) a control action is stopped too soon
or applied too long (UCA-D). However, it is unclear how latent defects in the software translate to each
failure mode. For example, missing conditional statement are a common software defect but their
relationships to a particular UCA is uncertain. In ORCAS, this relationship is refined with Orthogonal
Defect Classification (ODC).

The second theory used in this work is ODC [13]. In ODC, discovered defects are the root causes of
software failure modes. However, the cause-and-effect relationship between these root causes and
failure mode is not always clear unless explicit cases can be demonstrated. Here ODC acts as a semantic
classification bridge between these cause-and-effect relationships by sorting defects into generalized
groups. Specifically, by grouping defects with shared characteristics, the characteristics of the failure
caused by individual defects can also be generalized. For example, if checking defects are detected, it
suggests inadequacy in data or condition verification in the source code. This can then be traced to
higher UCA-A probability based on derived correlations. The exact correlations are discussed in the
methods section. In brief, the defect groups are function, assignment, algorithm, checking, interface,
relationship, and timing [14]. These groups are assumed to be independent and mutually exclusive from
each other and cover all known to-date potential defects in the software. In addition, a defect can only
be assigned one defect class, but may cause multiple UCAs. In ORCAS, the defect classes are used as
qualitative evidence to assess software reliability and causality to software failure modes.

Another application of ODC is the identification of the necessary environmental and input conditions
required to uncover or detect defects. These conditions are known as triggers and can also be used to
assess when all conditions have been considered. From a conventional perspective, testing conditions
as triggers are difficult to measure and compare with each other as tests are not equivalent. Here, ODC
also can be used to semantically categorize triggers that are needed for comprehensive software testing.
In brief, the groups for implementation triggers are simple and complex path; test coverage, variation,
sequence, and interaction; volume/stress; recovery; configuration; startup/restart; and normal mode
[14]. These trigger groups are extensive and cover most relevant scenarios, but it is not a complete list.
For instance, they do not explicitly consider cybersecurity vulnerabilities as a condition for defects.
Nonetheless, from a development perspective, the trigger groups represent an adequate scope for
required testing conditions and have been used extensively by the industry [15]. In ORCAS, triggers
are used as qualitative evidence to assess the completeness of the testing effort.

This work is part of the Light Water Reactor Sustainability (LWRS) project, “DI&C Risk Assessment”.
The object of this project is to provide effective quantitative and qualitative measurement tools to gauge
the risk and reliability of modernization projects in existing and novel nuclear reactors [16] [17] [18].
In the LWRS-developed framework for DI&C risk assessment, ORCAS is developed and used to
quantify the probability of STPA-identified UCAs [19] [20] [21].

3. METHODOLOGY

The basis for ORCAS is to use pseudo-exhaustive test-based approaches [10] to generate a historical
failure database. Defects that are detected and removed are classified based on ODC theory. Each defect
class is then modeled to quantify probabilities of different software failure modes. Qualitative evidence
collected throughout this process is then used to gauge how complete and confident we are in the
assessment. The overall workflow of the method (and meaningful extensions) can be seen in Figure. 1.
Items in the dashed box are all elements pertaining to the ORCAS methodologies. In general, the outputs
of ORCAS are the software failure mode probabilities and confidence in the assessment. The qualitative
evidence derived from ORCAS include the requirement traceability matrix (RTM), trigger coverage
assessment (TCA), structural path coverage, and reliability modeling stability. The quantitative
evidence include the defect reports used to determine failure probability.
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3.1 Stages of ORCAS

It is important to note that the assessment of software reliability should be continuously evolving with
the implementation and design of the system. For instance, the target and scope of the analysis may not
be fully known at the start of the assessment due to inherent complexity of the software system. Missed
relevant items will require returning to the prior stage for further refinement. For example, when a
defect is detected and classified in stage 3, it is expected to be repaired before the software is deployed.
This will require returning to stage 2 for defect removal activities. Imperfect knowledge and discovery
at any individual stage suggests that revisiting a prior stage is anticipated.

""""""""""""""""" RESHA gmdance
0. Collect system design & i onfaulttree
requirements documentation | | construction

A DI&C System Information

! Y
' 1. Deflne target, scope, & i Fault tree
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Figure. 1 Overall workflow of ORCAS.
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In stage 0, the relevant information and details pertaining to the system are collected. This step is
assumed to occur in any assessment and thus not described in detail. The information that can be
collected at this stage can include formal documentation (i.e., IEEE 29148, IEEE 829, IEC 61508, etc.),
defect and anomaly reports, design, and requirements specifications. Exact documents are not specified;
however, information pertaining to the functional and non-functional requirements, implementation
design, and test verification and validation are required for further stages.

In stage 1, the scope and testing adequacy requirements are defined. Here the desired modules and
functions of the system are outlined and what type of testing is required. As software can be incredibly
complex, initially assigning the scope to the entire system can be overwhelming and uninformative.
Rather, it is advised that a fault tree approach is adopted to assess exactly what the stakeholders are
concerned about (via top events) and how it may impact operational goals. The fault tree provides
structure, but also linear relationships between software failures to loss events. HAZCADS can be one
method to develop the qualitative fault tree; however, in this work, the REdundancy-guided Systems-
theoretic Hazard Analysis (RESHA) [22] [23]is utilized to deconstruct the DI&C systems. In RESHA,
failures in the control systems are based on physical separation of components and devices to emphasize
the focus on control processes. For instance, an analog to digital converter integrated circuit is a physical
component where its hardware and software failures can be modeled in an integrated fault tree. In
addition, recent work in RESHA also introduces unsafe information flows (UIFs) as a software failure
mechanism. UlFs are relevant for information-based, control-absent systems such as monitoring
systems. In essence, UIFs mimic UCAs in failure categories but deals with information/feedback
dependencies. The failure modes are: (1) failure to provide feedback when needed (UIF-A); (2)
providing feedback when not needed (UIF-B); (3) the feedback that is provided comes too early, too
late, or out of sync/sequence (UIF-C); and (4) the feedback value is low, high, not-a-number (NaN), or
infinity (Inf) (UIF-D). Further details can be found in [17]. Lastly, RESHA fault tree construction
follows an STPA top-down systems theoretic approach. This can help constrain the size of the tree to
only basic failure events relevant to the stakeholders. Once the relevant aspects for analysis are
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identified, the target software can be assessed based on testing completeness (adequacy) and satisfaction
of test formulation requirements. The purpose of these testing adequacy requirements is to determine
what tests should have been implemented for verification and how complete the testing is. In this work,
the adequacy of requirements is outlined in a three-level test suite hierarchy, as shown in Figure 2. Each
level specifies defect triggers that need to be considered during test implementation and activities that
should be conducted to address the testing adequacy. Recommended methodologies, such as T-way
combinatorial testing [24], modified condition decision coverage (MCDC) [25], boundary value
analysis (BVA) [26], and equivalence partitioning (EP) [26] have been proven to be experimentally
effective and are recommended to complete each activity. However, quantitative test metrics alone are
not adequate at predicting software reliability, as discovered in [27]. Hence, the need for qualitative
evidence to assess trustworthiness and completeness in the assessment.

In stage 2, the testing adequacy requirements identified in the previous stage are compared to the testing
efforts conducted by the development team. For activities involving T-way combinatorial testing, BVA,
and EP, the specific range, variation, edges cases etc. of the parameters were identified in the previous
stage. These need to be traceable to test cases implemented by the developer. For path analysis, tests
should exist that consider different path conditions. For the RTM, both functional and non-functional
requirements of the software should be traced to associated test cases that demonstrate conformance.
The completeness of the RTM, TCA, and structural coverage is used as qualitative evidence for testing
completeness. These metrics also serve to identify areas requiring further testing. For instance, if
function variation was not considered during testing, the associated tests can be implemented to satisfy
this metric. The defects from testing are collected from two sources. The first source are the existing
defect reports during the development process. The second source is the additional defect removal
process, which is initiated due to inadequate test coverage.

Level 3 Testing (User)

Testing Activities | Defect Triggers Covered Recommended Methods

T-way Parameter Testing
Bounday Value Analysis
Equivalence Partitioning

System Test Software Configuration

Workload/Stress
Recovery/Exception
Startup/Restart
Normal Mode

System Test Requirements Traceability Matrix

Level 2 Testing (Subsystem)

Testing Activities

Defect Triggers Covered

Recommended Methods

Unit Test

Simple Path
Complex Path

Modified Condition Decision Coverage

Function Test

Function Coverage
Function Variation
Function Squence
Function Interaction

T-way Parameter Testing
Boundary Value Asessment
Equivalence Partitioning

Level 1 Testing (Component)

Testing Activities

Defect Triggers Covered

Recommended Methods

Simple Path

Unit Test Complex Path Modified Condition Decision Coverage
Eﬁ:g:g: S:r\i’:tri?)?\e T-way Parameter Testing
Function Test Boundary Value Asessment

Function Squence
Function Interaction

Figure 2. Three-tier software testing requirements with recommended activities and methods.

Equivalence Partitioning

In stage 3, the defect reports are collected and categorized based on ODC theory [28]. An analysis of
defects involves understanding what went wrong and how it was resolved. Importantly, defects are
classified based on shared characteristics of the resolution or solution. It should be noted that if widely
different solutions exist for the same problem, it may be an indication of inadequate requirements and
constraints specification for the problem. After the classification of defects, the defect reports are
assigned to specific software failure modes based on data-driven causality relationships.
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The relationship between defect class and software failure mode is based on quantitative data collected
from various open-source Github repositories namely, the MongoDB, Cassandra, Apache HBase,
Zephyr, and OpenPilot repositories. The first three are all NoSQL database management systems; data
can be found at [29]. Zephyr is a scalable small-footprint real-time operating system while OpenPilot
is a semi-autonomous driving system. For each issue report in the databases, the defect class was
determined first, followed by how it impacted the software. The impact to the users/stakeholders was
generalized into the four UCA/UIF software failure modes. The contribution by each class to specific
UCA/UIF then was counted and wused to determine conditional probabilities (e.g.,
P(UCA-A|Function defect)). In this work, 402 defect reports were used in total to form the conditional
probabilities. In Figure 3, the various conditional probabilities with UCA/UIF can be seen. Darker color
indicates greater correlation between defect class and UCA/UIF failure mode. For example, suppose a
new assignment defect was detected in the software. Based on historical data, it has a 66.7% chance to
cause a UCA/UIF-B under the worst environmental conditions. However, it is not as useful to discuss
discovered defects, as they will have been removed/repaired. Therefore, the probability of remaining
undetected defects by class is desirable.

UCA/UIF-A UCA/UIF-B UCA/UIF-C UCA/UIF-D
Algorithm Defects 0.320 0.140 0.350 0.190
Assignment 0.288 0.667 0.045 0.000
Checking Defects 0.360 0.244 0.256 0.140
Function Defects 0.389 0.222 0.241 0.148
Interface Defects 0.347 0.533 0.080 0.040
Timing Defects 0.190 0.048 0.524 0.238

Figure 3. Causality of software failure modes (UCA/UIFs) and orthogonal defect classes

In stage 4 of ORCAS, the probability of specific defect classes are determined. The methodology behind
reliability growth models is not discussed in detail as extensive literature already exists. However, for
ODC class specific SRGM, the author recommends Ref. [28]. In essence, each defect that is identified
and classified requires the time or effort during testing. There are two important outcomes from this
stage. The first is the predicted failure probability of each defect class and the second is the usefulness
of the model. The second outcome is highly dependent on the amount of failure data required to generate
reasonably accurate predictions on the remaining number of defects. Stability is used as a qualitative
attribute to gauge usefulness. Generally, in stable models, the total number of predicted defects should
not vary significantly from week to week. If variations are large, the resulting predictions also have a
large variation thus rendering the model useless. In Ref. [30], this was the issue for their safety critical
DI&C system as there was insufficient failure data for convergence. A 10% maximum variation
allowance is recommended and shown to be effective [31]. This value also informs developers when
sufficient failure data has been collected and testing can be stopped.

It is anticipated that reliability growth modeling will be difficult and not always applicable in every
software development life cycle (SDLC). The measurement of effort can be difficult to accurately
determine due to a range of factors. Development groups may batch repair defects together or the
software development may be proprietary, making SRGM parameter estimation difficult. In such cases,
a bounded failure probability estimation approach can be adopted. In bounded estimation, it is assumed
that most defects have already been removed. Following reliability growth theory, further testing effort
only reduces the probability of a defect existing; thus, the failure probability will only decrease. If such
an approach is used, it is recommended only after the SDLC where testing has been conducted. The
probability is determined approximately by counting the number of defects by class and dividing by the
total testing effort. For failure-on-demand, the test effort is the number of tests conducted. For
continuous failure probability, the test effort is the product of the test duration by the number of tests.
The output is the failure probability of each defect class (e.g., P(Defect)).
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Finally, the probability of specific UCA/UIF classes can be determined by multiplying the conditional
probabilities of each class with an individual class probability, as shown in Eqn.(1. Recall the
conditional probability was pre-determined through the historical defect data. Only the second term,
P (Defect) needs to be determined by the users. The result is the probability of each UCA/UIF mode
(Eqn.1). The total software failure probability can be found through the sum of all UCA/UIF modes.

P(UCAy) = P(UCAx|Alg.)P(Alg.) + -+ + P(UCAx|Timing. )P(Timing.) (1)

The last stage of ORCAS is the qualification of the software development process. Recall that the
qualitative information derived from the method include the RTM, the TCA, the structural path
coverage, and the stability of the reliability modeling. The developers and users can assess the
completeness of the testing effort by reviewing how complete each qualitative factor is and which areas
need further refinement. For instance, the RTM informs the developers whether each requirement was
tested, while the TCA informs the developers that every scenario considered. The developers can then
return to those software sections and conduct further testing.

3.1 Assumptions and Limitations

This method has several assumptions and limitations. The most concerning limitation is the use of
reliability growth modeling in highly critical systems. In Ref. [30], insufficient software failure data
was cited as one reason why this method is infeasible. When operational failure data is limited, the
model is oversensitive, and the predictions have large uncertainties. While this may not be the case for
all software, the lack of failure data is a highly relevant and limiting scenario. ORCAS only partially
addresses this issue. When testing completeness is sufficient, but failure data is insufficient (i.e., all
triggers are considered but no defects were discovered), ORCAS defers to a different methodology,
which is known as Bayesian and Human-reliability-analysis Aided Method for the reliability Analysis
of Software (BAHAMAS) [32]. The qualitative evidence derived from ORCAS can also be used to
support BAHAMAS. This is seen in Figure. 1, where low assessment confidence leads to BAHAMAS.

The second major assumption is that causality between defect classes and UCAs/UIFs do not differ
significantly between different types of software. In this work, while this assumption held for several
different types of assessed software (i.e., database management, embedded OS, vehicle control), further
verification of this relationship is required for all software. While ODC suggests that software defect
classes are process and development agnostic, more evidence is required to justify this claim.

4. CASE STUDY

In this work, the ORCAS methodology was applied to an embedded smart sensor developed by VCU.
The sensor is a barometric pressure and temperature sensing device that originates from the VCU
Unmanned Aerial Vehicle (UAV) Laboratory [12]. The device consists of mature design and code,
including the Software Requirements Specification (SRS) and Software Design Description (SDD)
documentation, with over 10,000 hours of tested flight time. The software is written in GNU11 C
programming language for the application code and runs on top of the ChibiOS Version 17.6.4 Real-
Time Operating System (RTOS) [12]. The software was tested extensively using a pseudo-exhaustive
test-based approach developed by VCU [10] and incorporates methodologies such as combinatorial
testing, boundary value assessment, equivalence partitioning, and MCDC structural path coverage.

4.1. Pseudo Exhaustive Testing Results

The tests conducted by VCU were collected and assessed for testing completeness. The SRS and SDD
documents were reviewed; and test tracing was conducted. In total, 10,687 tests were conducted on
three functions: (1) ‘circular buffer read;” (2) ‘get current pressure;” and (3) ‘kalman_filter.’
Duplicate tests in T-way testing were not counted. Fault injection testing was completed by VCU;
however, details on test formulation were not available, and thus, not counted. However, no new defects
were detected through fault injection that were not originally caught by T-way combinatorial testing.
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The defects that were discovered can be seen in Table 1. In column one and two, the testcase failure
and root cause is described and conducted by VCU. In column 3, the defect class and resolution are

specified via ORCAS.

Table 1. Software failures, defect class, and resolution from VCU test data.

and corruption of neighboring memory
addresses cause the ‘Memcpy’ function to
hang when called with a length greater
than the destination buffer size.

buffer overflow check.

TestCase Failure Root Cause Defect Class and Resolution

Unable to fill the buffer completely. Can | Incorrect  buffer full | Algorithm defect, traversal method

only fill buffersize-1 elements. check. through circular buffer changed to
check all elements.

TestExecution Timeout — Buffer overflow | Missing destination | Checking defect, limit on size of

buffer implemented via IF statement
and truncation.

Indicates successful data read operation
even with invalid configurations of buffer,
‘size of buffer,” ‘head,” and ‘tail’ pointers.

Invalid buffer
configurations not
handled.

Algorithm defect, changed true
statement to false when invalid
configuration branch taken.

Returns varying negative values of buffer
read length when requested ‘number of
bytes’ is negative.

Invalid negative values of
the number of bytes to be
read is not handled.

Checking defect, limit on negative
inputs implemented via IF statement.

Negative values of buffer size are accepted
during buffer initialization and buffer is
filled with negative size value.

Invalid buffer size is not
considered during buffer
initialization.

Checking defect, limit on negative
inputs implemented via IF statement.

Actual output value indicates ‘Infinity.’

Missing divide by zero
check.

Checking defect, try catch for divide
by zero exception added.

Actual output value indicates ‘NaN’ (not a
number).

Missing overflow check
in float computation.

Checking defect, try catch for
overflow exception added.

Function processes input values outside
the valid range.

Missing invalid input
value handling.

Checking defect, limit on inputs
implemented via IF statement.

4.2. Qualitative Evidence

The qualitative evidence collected in this case study include the RTM, as shown in

Table 2, the TCA, as shown in Table 3, and structural path coverage. The requirements were derived
from the SRS document provided by VCU. In total, ten high-level requirements were identified.
Additional requirements were also specified in the SDD, but are refinements of the original ten. In
column one, the requirement tag is provided, followed by a brief description in column two. In column
three, tests that were implemented for each requirement were traced. If targeted tests for that
requirement existed, a ‘complete’ grade (or 1) is assigned. Similarly, if no targeted tests were created,
an ‘incomplete’ grade (or 0) is assigned. If tests that required part of the requirement existed, but were
targeted at other requirements, an ‘indirect’ grade (or 0.5) is assigned. For example, the data averaging
requirement (REQ-7) had direct tests associated and was completed with T-way combinatorial testing.
For REQ-7 to be tested, collection of sensor data (REQ-1) must have been functional too. However, no
tests were explicitly designed for REQ-1; therefore, only partial indirect testing was conducted on REQ-
1 via testing of REQ-7. Of the ten high-level requirements, five had tests directly associated with them,
four had indirect testing, and one had no tests.

For trigger coverage assessment, all three levels of software testing were assessed (Table 3). From right
to left, the columns include the level of testing, the recommended activities, the triggers to be covered,
VCU’s implemented method for each activity, and the completeness score. Both component and
subsystem testing were complete and had various types of tests associated. However, there were
inadequate tests developed for the system level. Specifically, no tests were found for configuration or
workload/stress testing. This corresponds with the RTM as no tests were traced to REQ-3. The
startup/restart trigger also only had indirect tests (as the device had to be turned ON to run).
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For the structural path coverage, VCU’s team demonstrates that the use of T-way combinatorial testing
can achieve 100% MCDC coverage [10]. Additional path assessment conducted via ORCAS agrees
with VCU’s results and revealed 12 unreachable but extraneous/benign code segments.

4.3. Quantitative Evidence

The quantitative evidence that was collected includes the eight defect reports from testing, as observed
in Table 1, and the 10,687 tests. Each test was assumed to correspond to 1 hour of effort. In addition,
reliability growth models could not be used for the VCU data as the timeline of effort required to create
and run the tests was not measured. Therefore, the bounded failure probability estimation approach is
adopted. The software failure modes are determined from the SRS and SDD documentation. Based on
specifications, one of the hazards to the system was determined to be ‘Incorrect pressure above +1%
of true value was provided to dependent devices causing unstable altitude adjustments.” The possible
UIFs includes A, C, and D corresponding to a pressure reading that is missing when needed, a pressure
reading that is asynchronous to reality, and a pressure reading that is too high or too low, NaN or Inf
invalid values. UIF-B is not applicable for continuous monitoring systems as the value will always be
needed.

Using the correlations shown in Figure 3, the individual UIF failure probabilities are determined,
observed in Table 4. Defects with zero failure probability (or not detected) are excluded from the table.
The total software failure probability was determined to be 5.854E-4 per hour (bottom right sum in
Table 4). The probabilities of each UIF can be seen in the last row, which is the sum contribution of the
individual probabilities.

Table 2. Abridged Requirements Traceability Matrix

Specified Requirements | Functional Description Test Complete | Scoring |
Collection of Sensor Data | ASCII format starting with six calibration | Indirect 0.5
(REQ-1) constants followed by float point data.
Transmission of Data | [2C protocol transmitting [temp., pressure, KF- | Indirect 0.5
(REQ-2) pressure].
Device Reconfiguration | Capability at updating parameters of MS5611. Incomplete 0
(REQ-3)
Re-ranging of Data (REQ- | Valid differential pressure (-1) to (+1) psi, valid | Complete 1
4) absolute pressure range (0) to (15) psi, capability
to re-scale pressures to defined ranges.
Temperature-effect Valid range (-40) to (125) °C, capability to adjust | Complete 1
Compensation (REQ-5) Temp. to valid range.
Transmitter  Calibration | Recalibrate [min, max] of internal ranging and | Complete 1
(REQ-6) compensation parameters.
Data Averaging (REQ-7) | Analog data is converted using moving avg. | Complete 1
Kalman filter with size of window updatable as
user parameter.
Data Conversion (REQ-8) | Float to int conversion and rounding must be exist | Complete 1
with error correction.
Data Output (REQ-9) Manage serial transmission to host via UART. Indirect 0.5
Data  Logging/Clocking | Host update rate must be greater than 2 Hz, with | Indirect 0.5
(REQ-10) three commands to shell program.
4.4. ORCAS Results

The VCU smart sensor was designed to be a representation of a safety critical smart sensor device. As
such, a thorough design, documentation, and development environment of the software was conducted.
The device also had extensive operational hours justifying reliability. However, from the ORCAS
assessment, we can conclude two specific things. From qualitative evidence, the inadequate areas of
testing verification were identified. These primarily include the system level configurable options,
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stress, and communication with peripherals. In addition, while many conditions were tested,
approximately 76%, this value may be unacceptable and used as an argument against software
reliability. From the quantitative evidence, a maximum failure probability of 5.854E-4 per hour was
determined based on the number of tests and number of detected defects. Note this value is for any
software failure regardless of severity. While this value may seem acceptable, the qualitative evidence
suggests that additional hidden defects may exist due to incomplete testing.

Table 3. Abridged Trigger Coverage Assessment

Activity Defect Triggers Required Implemented Method Score
Component | Unit Test Simple Path MCDC (Complete) 1/1
Function Test Coverage, Variation, | T-way, BVA, EP, Sequence | 3/3
Sequence testing (Complete)
Subsystem Unit Test Simple Path, Complex Path MCDC (Complete) 2/2
Function Test Coverage, Variation, | T-way, BVA, EP, Sequence | 4/4
Sequence, Interaction testing, Interaction verification
(Complete)
System System Test Startup/Restart (Indirect) 0.5/1
System Test Recovery/Exception T-way, BVA, EP, fault injection | 2/2
Normal Mode (Complete)
System Test Configuration (Incomplete) 0/2
Workload/Stress

Table 4. Probabilities of each UIF with sum totals

UIF - A UIF - B UIF - C UIF - D Total
Algorithm 5.989E-5 0 6.550E-5 3.556E-5 1.609E-4
Checking 2.021E-4 0 1.437E-4 7.860E-5 4.244E-4
Total 2.620E-4 0 2.092E-4 1.142E-4 5.854E-4
5. CONCLUSION

A novel approach to determining software reliability and supporting evidence is discussed in this work.
Software failure data from VCU’s smart sensor device was collected and used to demonstrate the
methodology. While a pseudo-exhaustive test-based approach was utilized (as recommended by
ORCAS), it was shown that not all requirements and defect triggering scenarios were considered. These
are areas where further testing effort are recommended. Software failure probabilities per UIF mode
were also determined. A linear correlation between defect class and UCA/UIF was determined from
402 defect reports acquired from various open-source repositories. The individual and total UIF
probabilities were determined from this correlation. By using ORCAS, the developer can identify areas
where further work and the necessary methods are still needed to implement. They will also be able to
provide evidence to stakeholders toward software reliability based on the qualitative and quantitative
results. Future work includes collecting data from different types of software to further verify the
UCA/UIF correlation developed in Figure 3.
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