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Abstract: Digital instrumentation and control (DI&C) systems in nuclear power plants (NPPs) have 

many advantages over analog systems, but also pose different engineering and technical challenges, 

such as potential threats due to common cause failures (CCFs). This paper proposes a framework for 

risk assessment of DI&C developed by Idaho National Laboratory (INL) for dealing with potential 

software CCFs in DI&C systems of NPPs. The methodology development on the quantitative evaluation 

of software CCFs in high safety-significant safety-related DI&C systems in NPPs is illustrated in this 

paper as well. In the proposed framework, qualitative hazard analysis and quantitative reliability and 

consequence analysis are successively implemented to obtain quantitative risk information, compare 

with respective risk evaluation acceptance criteria, and provide suggestions for risk reduction and 

design optimization. A comprehensive case study was also performed at INL and documented in this 

paper. Results show that proposed framework can effectively identify potential digital-based CCFs, 

estimate their failure probabilities, and evaluate their impacts to system and plant safety. 

 

 

1 INTRODUCTION 

Although the current fleet of United States (U.S.) nuclear power plants (NPPs) was originally designed 

and constructed with analog systems, the U.S. nuclear industry has been working on transitioning from 

analog to digital instrumentation and control (DI&C) technologies. DI&C systems have many 

advantages over analog systems. They are proven to be more reliable, cheaper, and easier to maintain 

given obsolescence of analog components. However, they also pose new engineering and technical 

challenges. The U.S. Nuclear Regulatory Commission (NRC) continues supporting the research work 

in developing and improving licensing criteria for the evaluation of new DI&C systems. In 2018, 

SECY-18-0090 [1] was published to clarify guidance associated with evaluating potential common 

cause failures (CCFs) of DI&C systems. SECY-18-0090 identifies the following guiding principles: 

(1) applicants and licensees for production and utilization facilities should continue to assess and 

address CCFs due to software for DI&C systems and components; (2) a defense-in-depth and diversity 

(D3) analysis for reactor trip systems (RTSs) should be paramount; (3) and engineered safety features 

should continue to be performed to demonstrate that vulnerabilities to a CCF have been identified and 

adequately addressed. The D3 analysis can be performed using either a design-basis deterministic 

approach or best-estimate approach [1]. In 2019, the NRC staff developed the integrated action plan 

(IAP) [2]. Four detailed modernization plans were proposed to resolve regulatory challenges, provide 

confidence to licensees, and modernize the I&C regulatory infrastructure. One of them—protection 

against CCF—addresses “developing guidance for using effective qualitative assessments of the 

likelihood of failures, along with coping and/or bounding analysis for addressing CCFs, use of defensive 

design measures for eliminating CCF from further consideration, and staff evaluation of the NRC’s 

existing positions on defense against CCF.” The current guidance, however, is unclear regarding the 

applicability of criteria for using coping analysis and other design features (e.g., defensive measures) 

for eliminating CCFs from further consideration [2]. Meanwhile, the industry stakeholders are seeking 

clearer NRC staff guidance on methods for the analysis of the potential for CCFs in DI&C systems and 

a more risk-informed, consequence-based regulatory infrastructure that removes uncertainty in 

requirements and enables technical consistency [2]. 
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Many efforts from regulatory, industrial, and academic communities have been made for qualitatively 

addressing CCFs in DI&C systems, especially software CCFs, given the increased pace of design and 

deployment of high safety-significant safety-related (HSSSR) DI&C systems in NPPs. To successfully 

model DI&C systems, the need exists to model both the hardware and software interactions of the 

system. Traditional methods, such as failure modes and effects analysis (FMEA) and fault tree analysis 

(FTA), have been used to extensively model analog systems. However, these traditional methods are 

not fully suitable to identify failures in interactions between digital systems and controlled processes 

(i.e., Type 1 interactions), as well as interactions between digital systems and their own components or 

other systems (i.e., Type 2 interactions) [3]. Lessons learned from the NRC’s investigation of multiple 

analysis methods indicate there “may not be one preferable method for modeling all digital systems” 

[3]. Combining methods may prove beneficial. A recent advancement in hazards analysis, developed 

jointly by Electric Power Research Institute (EPRI) and Sandia National Laboratory (SNL), combines 

FTA and the systems-theoretic process analysis (STPA) as a portion of their methodology for Hazard 

and Consequence Analysis for Digital Systems (HAZCADS) [4]. Though STPA may be applied at any 

stage of system design and review, it is ideally suited for early applications in the design process before 

the safety features have been incorporated into the design [5]. Then, as more details are incorporated, 

the STPA method is applied iteratively to further improve the design. However, even when fine details 

about a system are known, the analysis may remain at a high level, relying on causal factor 

investigations to provide details of subcomponent failures and interactions. In other words, details, such 

as redundant subsystems or components, are often ignored in all but the final part of STPA. 

 

In July 2021, Nuclear Energy Institute (NEI) published NEI 20-07, “Guidance for Addressing Software 

Common Cause Failure in High Safety-Significant Safety-Related Digital I&C Systems” [6], where a 

two-step process was proposed to address HSSSR systematic CCFs based on STPA: Step 1 is to perform 

a systematic hazards analysis based on STPA that creates a model of the system control structure, 

identifies unsafe control actions (UCAs) as software failures, and establishes a risk reduction objective 

(RRO); Step 2 is to develop STPA loss scenarios and eliminate or mitigate them in an efficient way. A 

bounding assessment is proposed to calculate the risk change when entire HSSSR systems fail due to 

software CCFs (assuming system failure probability = 1). The risk change (e.g., ∆ core damage 

frequency [CDF]) is then mapped to the regions described in RG 1.174 [7] and used to determine the 

RRO. This process qualitatively addresses potential failures in DI&C based on a bounding assessment; 

consequently, the real safety margin gained by plant digitalization on HSSSR DI&C systems could be 

underestimated in this intentionally conservative approach. 

 

The efforts described above provide a technical basis for dealing with potential software CCFs in the 

HSSSR DI&C systems of NPPs; however, some technical challenges remain: (1) Is qualitative 

evaluation sufficient for addressing software CCFs in HSSSR DI&C systems? (2) How can CCF-related 

impacts to HSSSR DI&C systems be quantitatively evaluated on an entire plant response basis? 

(3) How can the most significant CCFs—especially software CCFs—be efficiently identified? (4) How 

can a complete reliability analysis for large-scale HSSSR DI&C systems with small-scale 

software/digital units be performed? (5) How can different system architectures be evaluated from 

perspectives of both risk and cost? 

 

To address these challenges, an integrated risk-assessment strategy is needed to include qualitative 

hazard analysis, quantitative reliability, and consequence analysis for addressing software CCFs in 

HSSSR DI&C systems. To fulfil this need and deal with the technical barriers in identifying potential 

software CCF issues in HSSSR DI&C systems of NPPs, Idaho National Laboratory (INL) and the Risk-

Informed Systems Analysis (RISA) Pathway sponsored by the U.S. Department of Energy (DOE) Light 

Water Reactor Sustainability (LWRS) Program initiated a project to develop a risk assessment strategy 

[8] to: 

1. Provide a best-estimate, risk-informed capability to quantitatively and accurately estimate the NPP 

safety margin gained from the modernization of HSSSR DI&C systems. 
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2. Develop an advanced risk assessment technology to support the transition from analog to DI&C 

technologies for nuclear industry. 

3. Assure the long-term safety and reliability of HSSSR DI&C systems. 

4. Reduce uncertainty in costs and support integration of DI&C systems at NPPs. 

 

A framework for risk assessment of DI&C was proposed to address the project objectives. As shown 

in Figure 1, the proposed framework provides a systematic, verifiable, and reproducible approach based 

on technically sound methodologies. The framework successively implements qualitative hazard 

analysis, quantitative reliability analysis, and consequence analysis to obtain quantitative risk metrics. 

The quantified risks are then compared with respective acceptance criteria that allows for the 

identification of vulnerabilities, as well as providing suggestions for risk reduction and design 

optimization. 

 

 
Figure 1. Schematic of the proposed framework for safety evaluation and design optimization of 

HSSSR DI&C systems (derived from [9] [10]). 
 

2 VALUE PROPOSITION 

To deal with the technical issues in addressing potential software CCF issues in HSSSR DI&C systems 

of NPPs, the proposed framework is expected to provide: 

 

1. An integrated and best-estimate, risk-informed capability to address new technical digital 

issues quantitatively, accurately, and efficiently in plant modernization progress, such as 

software CCFs in HSSSR DI&C systems of NPPs. 

 

An existing qualitative approach for addressing CCFs in HSSSR DI&C systems may significantly 

underestimate the real safety margin introduced by plant digitalization. This framework is 

developed and demonstrated in an integrated way including qualitative hazard analysis, quantitative 

reliability, and consequence analyses. The proposed framework aims to provide a best-estimate, 

risk-informed capability to accurately estimate the safety margin increase obtained from plant 

modernization, especially for digital HSSSR I&C systems. In the proposed framework, a 

redundancy-guided systems-theoretic method for hazard analysis (RESHA) was developed on 

HSSSR DI&C systems for supporting I&C designers and engineers to address both hardware and 

software CCFs and qualitatively analyze their effects on system availability [11] [12]. It also 

provides a technical basis for implementing following reliability and consequence analyses of 

unexpected software failures, and supporting the optimization of D3 applications in a cost-efficient 

way. Targeting the complexity of redundant designs in HSSSR DI&C systems integrates STPA [5], 

FTA, and HAZCAD [4] to effectively identify software CCFs by reframing STPA in a redundancy-
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guided way, such as (1) depicting a redundant and diverse system via a detailed representation; 

(2) refining different redundancy levels based on the structure of DI&C systems; (3) constructing a 

redundancy-guided multilayer control structure; and (4) identifying potential CCFs in different 

redundancy levels. This approach has been demonstrated and applied for the hazard analysis of a 

four-division digital RTS [11] and a four-division, digital, engineered safety features actuation 

system (ESFAS) [12]. These efforts have been included in the LWRS-RISA milestone report for 

fiscal year (FY)-2020 [13]. The second part in risk analysis is reliability analysis with the tasks of: 

(1) quantifying the probabilities of basic events of the integrated FT from the hazard analysis; and 

(2) estimating the probabilities of the consequences of digital system failures. In the proposed 

framework, two methods have been developed for different application conditions: the Bayesian 

and Human-reliability-analysis-aided Method for the reliability Analysis of Software (BAHAMAS) 

[14] for limited data conditions and Orthogonal-defect Classification for Assessing Software 

reliability (ORCAS) for data-rich analysis. More details can be found in Section 4. Finally, 

consequence analysis is conducted to quantitatively evaluate the consequence impact of digital 

failures on plant behaviors and responses. Some digital-based failures may initiate an event or 

scenario that may not be analyzed before, which brings in a big challenge to plant safety. In this 

paper, a couple of accident scenarios have been selected for the consequence analysis, as described 

in Section 5. 

 

In February 2022, the NRC organized a public meeting to inform the industry and solicit external 

stakeholders’ feedback on the NRC’s plan to potentially expand the current policy for addressing 

CCFs for DI&C systems to allow the consideration of risk-informed alternatives. The LWRS 

Program’s RISA team presented on providing capabilities to address and fulfil the risk-informed 

alternatives for the evaluation of CCFs in DI&C systems. The NRC staff found the framework 

interesting from a regulatory point of view since it may be useful to evaluate the impacts of various 

DI&C design architectures to overall plant safety. 

2. A common and a modularized platform to digital I&C designers, software developers, 

cybersecurity analysts, and plant engineers to efficiently predict and prevent risk in the early 

design stage of digital I&C systems. 

 

Many programs/projects were and are being created with various methods/approaches/frameworks 

generated either for single software reliability analysis or for quantifying the system-level 

interactions between digital systems and other systems. However, these efforts are rarely targeted 

on software CCFs in HSSSR DI&C systems. As shown in Figure 2, the proposed framework, as a 

modularized platform, aims to have good communication with various small-scale unit-level 

software reliability analysis methods (e.g., quantitative software reliability methods) and large-scale 

system-level reliability analysis frameworks (e.g., probabilistic risk assessment [PRA]). RESHA, 

as a top-down approach, can identify the digital or software failures in the unit-level interactions 

inside of a digital system, then BAHAMAS and ORCAS can be used to quantify the probability of 

the STPA-identified software failures based on suitable existing quantitative software reliability 

methods, such as Bayesian networks, test-based methods, or metric-based methods. 

 

 
Figure 2. The modularized structure of LWRS-developed framework. (derived from [15]). 
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3. Technical bases and risk-informed insights to assist NRC and industry in formalizing relevant 

licensing processes for addressing CCF considerations in HSSSR DI&C systems. 

 

Figure 3 illustrates how the proposed framework can support licensing of a HSSSR DI&C design 

or upgrade. NRC Branch Technical Position (BTP) 7-19, “Guidance for Evaluation of Diversity 

and Defense-In-Depth in Digital Computer-Based Instrumentation and Control Systems Review 

Responsibilities,” [16] clarifies the requirement for acceptable methods for addressing CCFs, 

including identifying CCFs, reducing CCF likelihood, and evaluating CCF impacts in design-basis 

events. The capabilities of the LWRS-developed framework in hazard, reliability, and consequence 

analysis matches well with these requirements. 

 

 
Figure 3. NRC expanded DI&C CCF policy vs. LWRS-developed framework in CCF analysis. 

4. An integrated risk-informed tool to support the nuclear industry in addressing regulatory 

requirements in DI&C system implementation. 

 

The LWRS-developed framework can be beneficial for the design of digital HSSSR systems in the 

plant modernization process, but the estimated safety margin using the LWRS-developed 

framework should be much higher and more accurate than other conservative bounding assessment 

approach. The safety improvements of these new digital designs are expected to be significant and 

can be presented more clearly. Currently, it is thought after qualitatively addressing CCFs, all will 

need to be fixed by adding diversity, which costs a lot. In fact, some CCFs do not have significant 

impacts on CDF change or large release frequency. The framework can evaluate and compare the 

design alternatives of HSSSR DI&C systems in the early design stage, by quantifying the impacts 

of single software CCFs to the HSSSR DI&C systems and if necessary, plant safety. For instance, 

it can support the determination of the level of redundancy (e.g., a four-division ESFAS vs. a two-

division ESFAS) or the level of diversity (e.g., deployment of software/design/equipment diversity 

in division-level vs. in unit-level). By comparing the risk and cost of different redundant and diverse 

designs, costs can be saved if some CCFs are proved to be insignificant to plant safety and no 

defence actions are needed. Based on current analysis results, failure probability of HSSSR DI&C 

systems due to software CCFs is quite low, and the CDF is also significantly reduced compared 

with the one with traditional analog systems. Also, the framework is also promising to be applied 

to the software risk analysis for machine-learning-based digital twins in nearly autonomous 

management and control systems [17]. 

 

3 METHODOLOGY 

3.1 Redundancy-Guided System-Theoretic Hazard Analysis 

The hazard analysis method developed in the LWRS-developed framework is RESHA, which is an 

FTA-based method incorporating STPA to identify inner software failures and digital-based failures in 

Type II interactions. RESHA incorporates the concept of combining FTA and STPA from HAZCADS. 

STPA is reframed in a redundancy-guided way to address CCF concerns in highly redundant DI&C 

systems. A seven-step process, as shown in Figure 4, illustrates the workflow of RESHA for the hazard 

analysis of DI&C systems, especially for CCF analysis of highly redundant HSSSR DI&C systems. 

The main outcomes of RESHA are: (1) the identification of CCFs and potential single points of failure 
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(SPOFs) in the DI&C design; (2) an integrated FT including both hardware and software failures, 

individual failures, and CCFs; and (3) hazard preventive strategies. The acceptance criterion of risk 

evaluation for the hazard analysis is “does the individual digital-based failure lead to the loss of function 

of the DI&C system?” In another words, is there any SPOF existing in the system that may lead to the 

failure of a DI&C system? 

 

 
Figure 4. RESHA workflow for DI&C system hazard analysis (derived from [9] [10]). 

 

The RESHA method has been demonstrated based on a representative four-division digital RTS and 

ESFAS, which were modeled based on the DI&C design of an Advanced Power Reactor 1400 MW 

(APR-1400) [18]. The final outputs from RESHA feed into following the reliability analysis and 

component-level risk evaluation that provides a guidance for system modifications (e.g., the elimination 

of SPOFs, the enhancement of reliability of specific components or diversity in designs). In other words, 

the RESHA provided a means to identify CCFs in digital-based Type II interactions and software of 

highly redundant HSSSR DI&C systems, by fully considering redundancy into the hazard analysis 

process. 

 

3.2 Multiscale Quantitative Reliability Analysis 

The goal of the reliability analysis is to estimate DI&C system reliability by calculating the integrated 

FT of DI&C systems obtained in the hazard analysis, and then provide inputs for following the 

consequence analysis. For the reliability analysis of large-scale DI&C systems, the quantitative small-

scale reliability analysis of software and Type II interactions in DI&C systems are also included in the 

reliability analysis workflow. Figure 5 illustrates the framework of the multiscale reliability analysis of 

DI&C system. 

 

The first step to any good reliability analysis for a DI&C system is the adequate collection and 

evaluation of design and requirement documentation. The next step is to estimate the failure probability 

of UCAs identified in the hazard analysis. In the proposed framework, two methods have been 

developed for different application conditions: BAHAMAS [14] for limited data conditions and 

ORCAS for data-rich analysis. BAHAMAS was developed for the conditions with limited 

testing/operational data or for reliability estimations of software in an early development stage. It can 

provide a rough estimation of failure probabilities to support the design of software and target DI&C 

systems even when data is very limited. Instead of relying on testing data, BAHAMAS assumes 

software failures can be traced to human errors in the software development life cycle (SDLC) and 

modeled with human reliability analysis (HRA). In BAHAMAS, a Bayesian belief network (BBN) is 

developed to provide a means of combining disparate causal factors and fault sources in the system, 
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while HRA is applied to quantify the potential root human errors during SDLC. More technical 

information about the BAMAHAS method can be found in [14]. In contrast to BAHAMAS, ORCAS 

applies a white box software invasive testing and modeling strategy to trace and identify the software 

defects that can potentially lead to software failures. The approach is a root-cause analysis methodology 

focused on comprehensive testing and follows the orthogonal-defect classification (ODC) approach to 

determine testing sufficiency. ODC is also used to systematically classify the identified defects into 

specific software causality groups, thereby linking defects to potential software failure modes. The 

failure data collected from testing strategies is also combined with software reliability growth models 

and linear reliability models to quantify the software failure probability of specific UCAs. 

 

 
Figure 5. The framework of the multiscale quantitative reliability analysis. 

 

After the small-scale reliability analysis of software and Type II interactions, a modified beta-factor 

model (BFM) is applied for the modeling and estimation of CCFs, especially for software CCFs. 

Finally, when the basic events of integrated FT are calculated, the failure probability of the entire DI&C 

system can be estimated using FTA tools. A CCF is the result of the existence of two main factors—a 

failure cause and a coupling factor (or mechanism) [19] [20] [21]. The failure cause is the condition to 

which failure is attributed. The coupling factor (or coupling mechanism) creates the condition for a 

failure cause to affect multiple components, thereby producing a CCF [19]. Often, CCF models attempt 

to simplify an analysis by assuming symmetry for components of the common cause component group 

(CCCG). For example, a CCCG may be created by assuming components are similar and that any subtle 

differences in coupling factors might be ignored. Nearly all CCF models rely on symmetry (e.g., the 

most notable exception being the BBN-based approaches) [22]. However, placing components into 

unique, coupling-factor-based CCCGs that account for the inconsistency between the groups may result 

in issues when relying on traditional techniques. Allowing a component to be part of multiple groups 

may lead to double counting of failure events or difficulties in quantification [15] [23]. 

 

In addition, most methods are designed to incorporate some form of operational data. A major challenge 

is the issue of limited data, which has a direct influence on all methods and nearly guarantees the 

dependence on elicitation techniques. Therefore, rather than making special exceptions for conventional 

methods, other options were investigated. One method from 2012 was specifically developed for the 
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multiple CCCG scenario and is based on a ratio approach like that of the BFM [24]. This method, the 

modified BFM, was designed specifically to allow for components to be members of multiple CCCGs. 

The next challenge is to define and estimate the beta factors of the modified BFM given a limited data 

scenario while also providing consideration of the unique qualitative attributes for each CCCG. The 

partial beta-factor (PBF) was developed by R. A. Humphreys and Rolls-Royce and Associates [25] and 

later became part of Unified Partial Method (UPM) [26]. The PBF-A method was founded on the 

question, “What attributes of a system reduce CCFs?” [25] A collection of attributes, called sub-factors, 

were selected that are known to contribute to the prevention of CCFs. Each subfactor was weighted by 

reliability engineers for their importance. The methodology requires the analyst to assign a score (e.g., 

A, B, C, etc.) for each subfactor. An “E” indicates a component is well-defended against CCFs (i.e., A= 

worst, E = best). Beta is then determined as a function of the assigned scores. The model was arranged 

such that the upper and lower limits for beta correspond with values reported in literature [25]. This is 

ensured by the subfactor weighting and the denominator given in Equation (1). The beta value 

determined by this method is intended to be used with the BFM. 

 

𝛽 =
∑(𝑆𝑢𝑏 − 𝑓𝑎𝑐𝑡𝑜𝑟𝑠)

𝑑
 (1) 

 

Where d is assumed to be 5100. The subfactor names alone are not sufficient to describe the details for 

assessing each actual subfactor; therefore, readers are advised to visit the original source material for 

making assessments. The advantage of employing this method is that it is simple to apply and allows 

for a more structured determination of beta than simple judgments. The provided model allows for 

qualitative features to be considered in the quantification of CCFs. An approach for performing CCF 

analysis given the limited data and multiple CCCGs was developed by integrating modified BFM and 

PBF. The approach relies on the modified BFM to account for multiple CCCGs and PBF to define beta 

factors for each CCCG. The hybrid approach provides a means to overcome the limitations of 

conventional methods. A formalized process relying on the modified BFM and PBF is shown in Figure 

6. The primary sections headings of Figure 6 come from the descriptions of the CCF modeling processes 

found in existing sources [19] [22]. The subsequent section will demonstrate this process as part of a 

case study. 

 

 
Figure 6. A CCF modeling flowchart developed for software CCF modeling and estimation. 
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The results of the CCF analysis are shown in Table 1 and Table 2. Note that RACK, DIVISION, and 

ALL correspond to the CCCG categories, while INDIVIDUAL corresponds to individual component 

failure. The CCCG ALL column contains all the identical components within the system of interest. 

The given CCCG categories are not shared by all components; hence, there are no RACK CCCGs for 

the reactor trip breakers (RTBs). Regarding the results, there is a difference between the software and 

hardware CCCGs of the local coincidence logical (LCL) processors. The hardware CCCG for LCL 

processor is separated by location just like the BPs. However, the potential for DIVISION and RACK 

level CCFs are precluded from consideration because there is nothing to distinguish them from the 

CCCGs representing all LCL processors; according to the case study, each LCL processor has the same 

software and receives the same inputs. By contrast, the BPs have the potential for input variation 

amongst divisions. Thus, the BPs have DIVISON level software CCCGs, but the LCL processors do 

not. By assigning the failure probabilities into the integrated FTs of four-division digital RTS and 

ESFAS, the failure probabilities of these two systems can be calculated using the INL-developed 

probabilistic risk assessment (PRA) tool SAPHIRE [27]. 

 

Table 1. Hardware failure probability for RTS components. 

Component INDIVIDUAL 

Failure 

RACK CCF DIVISION 

CCF 

ALL CCF Total  

BPs 4.000E-05 N/A 5.943E-06 2.187E-06 4.813E-05 

LCL Processors 6.480E-05 1.076E-05 7.647E-06 3.961E-06 8.717E-05 

DOMs 1.640E-05 1.706E-06 1.015E-06 1.983E-07 1.932E-05 

Selective Relay  6.200E-06 N/A 6.073E-07 7.059E-08 6.878E-06 

RTB-UV device 1.700E-03 N/A N/A 1.763E-05 1.718E-03 

RTB-Shunt device 1.200E-04 N/A N/A 1.244E-06 1.212E-04 

RTB RTSS1 4.500E-05 N/A N/A 1.944E-06 4.694E-05 

RTB RTSS2 4.500E-05 N/A N/A 1.944E-06 4.694E-05 

 

Table 2. Software failures probability for RTS components. 

Component INDIVIDUAL 

Failure 

RACK CCF DIVISION 

CCF 

ALL CCF Total  

BPs 5.591E-07 N/A 1.062E-04 8.030E-05 1.871E-04 

LCL Processors 8.086E-05 N/A N/A 1.062E-04 1.871E-04 

 

The main logic of this integrated RTS-FT was quantified with SAPHIRE 8 using a truncation level of 

1E-12; RTS failure probability is 1.270E-6 with 13 cut-sets. Table 3 lists part of these cut-sets with 

significant contributions. Mechanical CCF of rod control cluster assembly (RCCA) is the main 

contributor (>95% of total); the software CCFs do not significantly affect the reliability of digital RTS 

because of the highly redundant design and high reliability of digital components. The ESFAS-FT was 

also quantified with SAPHIRE 8 using a truncation level of 1E-12; ESFAS failure probability is 2.095E-

5 with one cut-set. Hardware CCF of ESF-component interface modules (ESF-CIMs) is the main 

contributor, and the software CCFs do not significantly affect the reliability of digital ESFAS because 

of the high-redundant design and high reliability of digital systems. 

 

Table 3. Cut-sets for the improved RTS-FT. 

FT Name # Probability Total % Cut Sets 

Integrated 

RTS-FT 

1 1.210E-6 95.31 RPS-ROD-CF-RCCAS 

2 2.052E-8 1.62 
RPS-CCP-TM-CHA, RPS-TXX-CF-4OF6, RPS-

XHE-XE-NSIGNL 

3 1.944E-8 1.53 RPS-XHE-XE-SIGNL, RTB-SYS-2-HD-CCF 

4 1.944E-8 1.53 RPS-XHE-XE-SIGNL, RTB-SYS-1-HD-CCF 

Total 1.270E-6 100 - 
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3.3 Consequence Analysis 

To compare the changes of CDF after replacing the current simplified FTs of digital RTS and ESFAS 

with the integrated FTs in the generic PWR ET models, consequence analysis has been performed based 

on INT-TRANS (initiating event - general plant transient) with ATWS (anticipated transient without 

scram), LOSC (loss-of-seal cooling), SBLOCA (small-break loss-of-coolant accident), and MBLOCA 

(medium-break LOCA). This generic PWR SAPHIRE model represents the conditions of existing U.S. 

NPPs with traditional analog HSSSR DI&C systems. Integrated FTs of RTS and ESFAS include both 

software and hardware failures, particularly CCF, that may occur in a four-division digital RTS and a 

four-division digital ESFAS. Results show the CDF of INT-TRANS accident scenarios are reduced 

significantly. The generic PWR SAPHIRE model adopts one FT to represent the failure of a two-train 

RTS, consisting of hardware failures, operator errors, and failures due to external hazards. ESFAS 

failure is modeled using a basic event as a CCF of ESF actuation signal, which is embedded in the FTs 

of relevant safety features including auxiliary feedwater, high pressure injection and low pressure 

injection. This CCF basic event is included in cut-sets that have significant contributions to CDF.  

 

By adding the integrated FTs of four-division digital RTS and ESFAS into the PRA models, the safety 

margin obtained from the plant digitalization on HSSSR DI&C systems are quantitatively estimated. 

For example, results show RTS failure probability is greatly reduced from 4.288E-6 to 1.270E-6; LPI 

failure probability greatly decreases from 8.416E-4 to 2.095E-4 due to the improvement of ESFAS-FT. 

This explains the significant reduction of CDF in these analyzed accident scenarios, as summarized in 

Table 4. Plant modernization, including the improvement of HSSSR DI&C systems such as RTS and 

ESFAS, will benefit plant safety by providing more safety margins to accident management. The 

numbers of cut-sets are also reduced due to the improved design from two-train analog I&C systems to 

four-division DI&C systems. As the complexity of the system increases, the number of failure 

combinations should also increase. However, with the improved design, the cut-set probabilities are 

reduced and truncated below the 1E-12 threshold hence the cut sets do now show up in the final results. 

 

Table 4. Changes of ET CDFs by adding digital RTS and ESFAS FTs into ETs. 

ETs Original CDF New CDF ∆ CDF  ∆ CDF/ Original CDF 

INT-TRANS 1.073E-6 5.769E-7 - 4.961E-7 - 46.23% 

INT-SLOCA 7.784E-8 7.509E-8 - 2.720E-9 - 3.53% 

INT-MLOCA 6.279E-7 4.984E-7 - 1.247E-7 - 20.62% 

 

4 CONCLUSION 

This paper documents the research activities that quantitatively evaluate CCFs (especially software 

CCFs) in HSSSR DI&C systems (e.g., four-division digital RTS and ESFAS) in NPPs using the LWRS-

developed framework. The framework has been developed, demonstrated, and improved for the design 

of HSSSR DI&C systems with multilayer software CCFs, human interactions with these systems, and 

plant responses. This technology complements other approaches being developed for deploying DI&C 

technologies and emphasizes risk-informed approaches used to facilitate the adoption and licensing of 

HSSSR DI&C systems. Currently, only qualitative assessment is required for evaluating design 

attributes and quality measures of DI&C systems because there is no appropriate approach for 

performing quantitative assessment. To deal with the technical issues in addressing potential software 

CCF issues in HSSSR DI&C systems of NPPs, the LWRS-developed framework provides: 

1. An integrated and best-estimate, risk-informed capability to address new technical digital issues 

quantitatively, accurately, and efficiently in plant modernization progress, such as software CCFs 

in HSSSR DI&C systems of NPPs. 

2. A common and modularized platform for I&C designers, software developers, plant engineers, and 

risk analysts to efficiently prevent and mitigate risk by identifying crucial failure modes and system 

vulnerabilities, quantifying DI&C system reliability, and evaluating the consequences of digital 

failures on plant responses. 
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3. A technical basis and risk-informed insights to assist the NRC and industry in formalizing relevant 

licensing processes relevant to CCF issues in HSSSR DI&C systems. 

4. An integrated risk-informed tool for vendors and utilities to meet the regulatory requirements and 

optimize the D3 applications in the early design stage of digital HSSSR systems. 

 

Work in the near future includes the improvement of CCF modeling for software failures, the 

development of the reliability analysis method (i.e., ORCAS) for data-rich conditions, relevant 

validation and uncertainty quantification of these quantitative methods, and the adjustment of the 

framework on the risk assessment and design optimization of artificial intelligence (AI)-guided 

advanced control systems. 
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