

1
2
3
4
5
6

7 CELL DESIGN FOR LASER-INDUCED BREAKDOWN 8 SPECTROSCOPY MEASUREMENTS 9 ON REACTIVE GAS SAMPLES

10 *Kathryn M. Peruski⁽¹⁾, Tara A. Davis⁽¹⁾, George C.-Y. Chan⁽²⁾, Xianglei Mao⁽²⁾, Lee
11 Trowbridge⁽¹⁾, Leigh R. Martin^{(1)*}*

12 ⁽¹⁾Oak Ridge National Laboratory, Oak Ridge, TN USA 37831

13 ⁽²⁾Lawrence Berkeley National Laboratory, Berkeley, CA 94720

14
15 KEYWORDS: Uranium hexafluoride; Laser-Induced Breakdown Spectroscopy, Reactive gas
16
17
18

19
20
21 ***Corresponding Author**

22 Leigh R. Martin, martinlr@ornl.gov, office (865) 241-0699

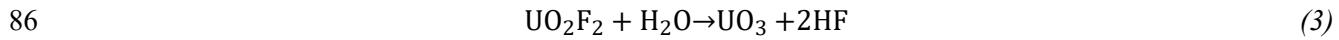
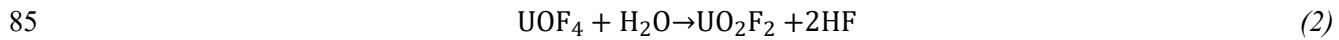
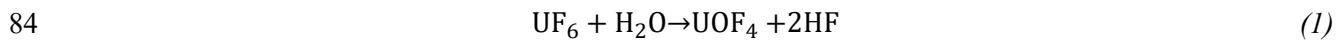
23 1 Bethel Valley Road, Oak Ridge, TN 37831

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (<http://energy.gov/downloads/doe-public-access-plan>).

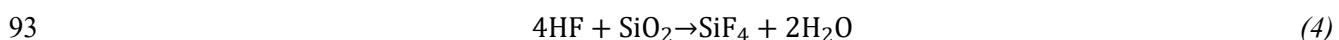
25 **Abstract**

26 Uranium hexafluoride (UF_6) is the primary material used for the enrichment of uranium in the
27 production of light water nuclear reactor fuels worldwide. Accurate, rapid quantification of uranium
28 isotopic composition in nuclear materials is required for safeguards programs and nonproliferation
29 purposes. One potential technique for isotopic measurements in uranium species in the field is laser
30 induced breakdown spectroscopy (LIBS). Safe and effective application of LIBS to UF_6 for enrichment
31 measurements is uniquely challenging due to the chemical and physical properties of UF_6 , which
32 necessitate specific handling procedures. The objective of this work is to design a cell for isotopic
33 analysis of UF_6 that is (1) compatible with chemical and physical properties of UF_6 , (2) compatible with
34 LIBS laser, and (3) portable-sized for nuclear safeguards applications. Along with cell design, initial
35 testing of the cell for basic performance and chemical compatibility is performed. As designed and
36 constructed, the portable gas cell was gas-tight, chemically compatible with UF_6 , and withstood long-
37 duration laser exposure. The cell has proven capability for handling reactive gases, such as UF_6 , with
38 specification application to isotopic analysis.

39




40 **1. Introduction**

41 Nuclear safeguards programs seek to verify declared uranium enrichment at nuclear facilities
42 worldwide for nonproliferation purposes, requiring accurate and rapid quantification of uranium isotopic
43 composition in nuclear materials. Uranium hexafluoride gas ($\text{UF}_{6(g)}$) is used for isotopic separation and
44 enrichment of uranium by gaseous diffusion or centrifugation [1], making it a key compound in the
45 nuclear fuel cycle and critical for safeguards measurements. Non-destructive analysis (NDA) is a
46 prevalent method for monitoring the enrichment of uranium because it can be performed in field settings
47 without having to send samples to a laboratory [2]. The most commonly used NDA technique for
48 monitoring uranium enrichment is gamma spectroscopy [2]. The advent of field-portable and handheld
49 gamma spectrometers has led to rapid onsite enrichment verification for safeguards applications.


50 However, gamma spectrometers can have limitations on precision of measurements. Destructive analysis
51 techniques, such as mass spectrometry, can achieve precise isotopic measurements for uranium
52 enrichment verification and are the most sensitive analytical method available. Techniques such as
53 thermal ionization mass spectrometry (TIMS) and multi-collector inductively coupled plasma mass
54 spectrometry (MC-ICP-MS) are used to analyze uranium isotopic composition for safeguards applications
55 [2]. Mass spectrometry techniques are extremely sensitive, but they are also costly and time consuming,
56 and samples must be sent off site to a certified laboratory for processing and analysis. New shipping
57 regulations make it difficult to transport UF₆. Laser induced breakdown spectroscopy (LIBS) is a potential
58 technique for field-portable measurement of isotopic composition, with noteworthy application in nuclear
59 safeguards work. LIBS is an atomic optical emission spectroscopic technique that utilizes pulsed lasers to
60 generate a plasma and vaporize the sample; optical emissions are recorded by spectrometer [3]. LIBS can
61 be used for both elemental and isotopic analysis. Because LIBS does not require sample preparation, it is
62 potentially an excellent option for field measurements of elemental and isotopic composition. Over the
63 last two decades, the technology has been developed to make portable LIBS systems for accurate field
64 measurement of isotopic composition [4-6], advancing the applications of this technique beyond the
65 laboratory setting and making it attractive for safeguards work. Methods for isotopic measurements of
66 uranium in nuclear materials [7-10] and uranium in soil [11] have been established for LIBS, but these
67 methods only focus on measurements in the solid state. One such method that has recently received
68 attention from the International Atomic Energy Agency (IAEA) for the isotopic analysis of UF₆ is the
69 Cristallini method[12]. Named after its inventor, the Cristallini method works by sorption of UF₆ gas onto
70 alumina pellets and subsequent LIBS analysis of pellets for U isotopes, therefore removing the issues of
71 having to transport or handle the gaseous UF₆. However, this method still requires on site sample
72 preparation using a gas manifold and operators must ensure that there is no cratering on the sample which
73 could lead to inaccurate results, making it beneficial to develop a potential method for *direct analysis* of
74 gaseous UF₆ via LIBS. An approach for measurement of the isotopic composition of UF₆ in its gaseous
75 state was recently developed [13], expanding the relevance of LIBS beyond the solid state for uranium

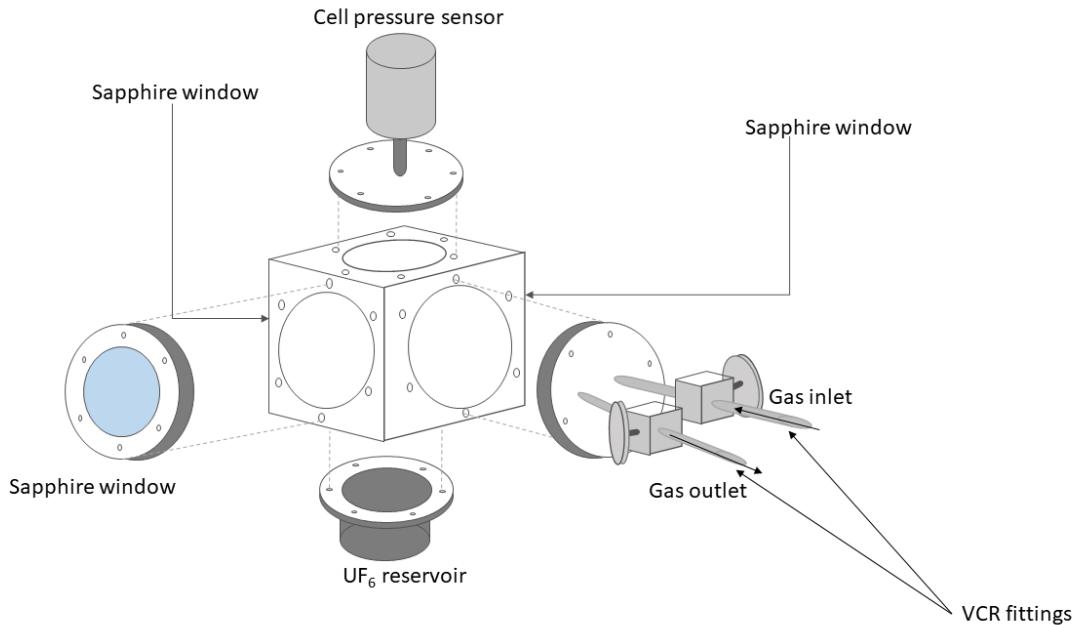
76 isotopic measurements. Previous studies by Chan *et al.*[13] provide detailed analytical characterization of
77 the LIBS system for gaseous uranium, including isotopic analysis, detector settings, and laser parameters.

78 Specialized handling techniques and materials of construction are required to safely handle UF₆,
79 adding a unique challenge to the application of LIBS for UF₆ enrichment measurements. UF₆ is a white
80 crystalline solid at room temperature, but with a significant vapor pressure at room temperature [1, 14]
81 and with the triple point occurring at 64.02°C and 1137.72 Torr [15]. While UF₆ does not readily react
82 with dry air, in the presence of water vapor [16], UF₆ will hydrolyze [17-21] to generate hydrogen
83 fluoride (HF) and UO₂F₂ according to the series of reactions presented below [20]:

87 The reactions presented in Eqs. (1) and (2) occur very rapidly at normal atmospheric conditions, and the
88 reaction given in Eq. (3) occurs very slowly, except at high temperatures. The HF formed in these
89 hydrolysis reactions may be in the form of HF(g), or it may be an HF fog consisting of minuscule droplets
90 of HF–water solution: the form it takes is dependent on humidity and temperature [16]. HF is acutely
91 toxic [22] and presents significant human health risks if released. Another consequence of UF₆ hydrolysis
92 and HF formation is the subsequent reaction of HF with glass and fused silica [17]:

94 This reaction generates a new supply of water, which can, in turn, feed the reactions presented in Eqs. 1–
95 3, resulting in a constant cycle of HF generation. Over time, this reaction etches the glass and can
96 eventually cause breakdown of glass vessels, leading to potential release of stored UF₆. To prevent these
97 types of reactions, UF₆ samples must be kept under vacuum conditions in completely sealed systems [15,
98 16, 22], and careful precautions must be taken in handling UF₆ samples to (1) prevent any moisture from

99 entering the system and (2) to prevent leaks of UF_6 samples into the atmosphere. UF_6 samples can be
100 stored in glass, although it is recommended that vessels be degassed and flamed prior to use [17].
101 Moreover, a thoroughly dried potassium or sodium fluoride salt “getter” [1, 17] should be included to
102 prevent HF buildup. UF_6 is also chemically compatible with fluorinated materials such as Teflon [1].
103 Besides its potential reactivity with water and glass, UF_6 is a strong fluorinating compound, and as such,
104 it can attack metals [1, 16, 18]. Therefore, it is recommended that UF_6 be handled in stainless steel or
105 other metals alloyed with nickel [1, 18].

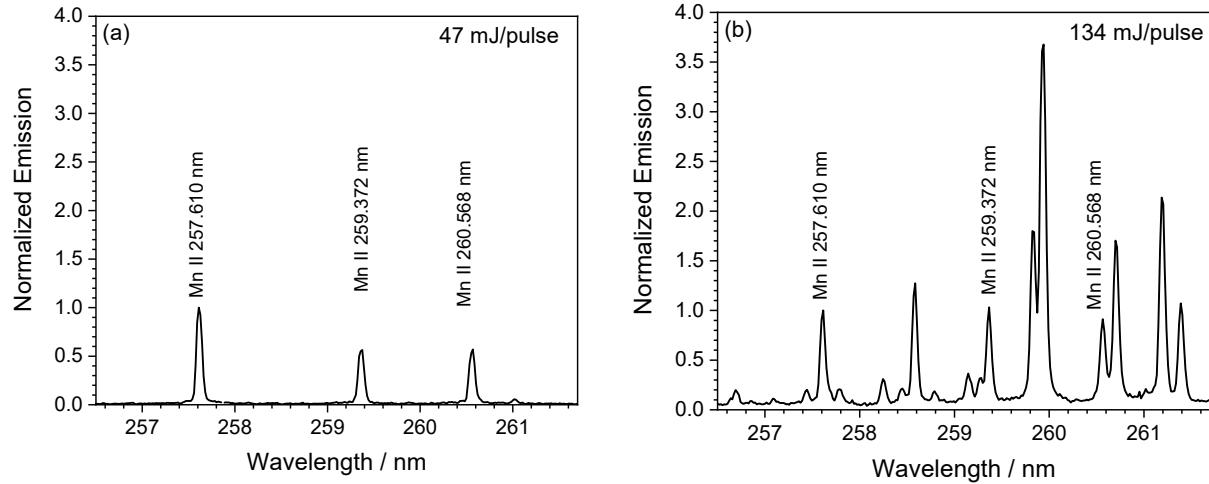

106 Best practices for UF_6 handling in a laboratory or industrial setting are well documented in the
107 literature [15, 16, 22]. However, no design or practices for a UF_6 handling and measurement system with
108 specific applicability to LIBS have been reported. The cell under development in this effort must (1) meet
109 the various chemical and physical challenges posed by UF_6 handling related to reactive gas chemistry, (2)
110 be compatible with the low-energy laser and resultant plasma, and (3) retain a portable size to be relevant
111 for the desired uranium enrichment monitoring needed for nuclear safeguards applications. The objectives
112 of the present work are (1) to design a cell for isotopic analysis of UF_6 using LIBS and (2) to test the cell
113 for basic performance, chemical compatibility, and potential sample carryover between measurements.
114 For this work, the emphasis is on portability of the gas cell, not the entire measurement setup. Besides
115 UF_6 measurements, the cell conceived in this study, along with the associated handling techniques, have
116 potential applicability to other reactive gases such as fluorine and chlorine compounds, which have
117 physical and chemical properties, as well as handling challenges, that are similar to UF_6 .

118

119 **2. Results & Discussion**

120 The finalized design for a self-contained LIBS cell for use with UF_6 is shown in Figure 1, with
121 full details of cell design and components described in Experimental section. The cell consists of a
122 Kimball Physics spherical cube vacuum chamber 6.985 cm wide with 3 sapphire viewports (2.0 mm
123 thickness) mounted into a 6.985 cm conflat flange (MDC Precision), a custom-designed flange with gas

124 inlet/outlet valves (Swagelok), a pressure transducer (902B MKS instruments), and a custom-designed
125 reservoir for excess solid UF_6 (Accu-Glass Products, Inc.). All conflat flanges were sealed to the spherical
126 cube using copper gaskets.



127

128 **Figure 1.** CAD drawing of the final cell design with three sapphire windows.
129

130 During initial testing in a cube-like chamber at the Lawrence Berkeley National Laboratory
131 (LBNL), a laser-induced plasma was generated in 50–100 Torr air with a gaseous surrogate analyte,
132 (methylcyclopentadienyl) manganese tricarbonyl (MMT), at <0.1 Torr. The optical emission from the
133 plasma was collected at 90° from the laser with a focusing lens. Figure 2a depicts the measured emission
134 from the Mn present in MMT at 257.610, 259.372, and 260.568 nm. However, during this experiment,
135 several other atomic emission lines grew in that did not belong to Mn, especially when a higher laser pulse
136 energy was used. Figure 2b depicts an example emission spectrum recorded when the laser pulse energy
137 was increased to 134 mJ. These additional peaks were identified as being associated with Fe and Cr. Upon
138 examination of the cell (Figure 3), it became apparent that the Fe and Cr peaks originated from the stainless-
139 steel backstop of the surrogate cell. This finding resulted in the third sapphire window being installed in the

140 cell that was to be used for UF_6 so that the laser light could exit the cell without damaging it and a backstop
141 installed outside of the chamber.

Figure 2. Measured LIBS emission spectra with low-pressure gaseous surrogate (methylcyclopentadienyl) manganese tricarbonyl (MMT) under laser pulse energies of (a) 47 mJ and (b) 134 mJ.

Figure 3. Laser ablation mark on the surrogate cell backstop plate.

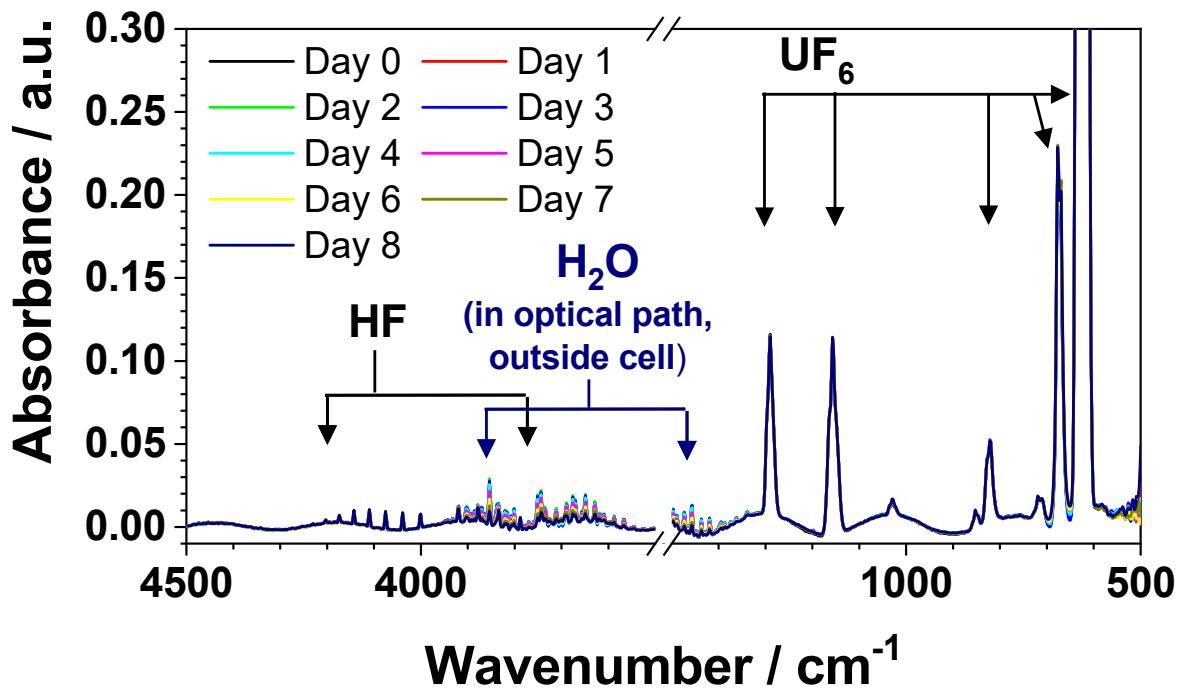
142

143 Cell leak tests using pressure measurements indicated a leak-tight system. The measured pressure
144 change was acceptable (Table 1), indicating that the cell was gas tight, preventing $\text{UF}_6(\text{g})$ escaping the
145 cell or in-leakage of air. The diminishing rate of increase in the pressure change is only indicative of
146 outgassing from the inner surface of the cell rather than in-leakage. As a precaution, a long-term
147 experiment was initiated in which the cell was filled with 69.96 Torr UF_6 , sealed, and left for a long-term
148 exposure test. The pressure of this cell was monitored with the MKS pressure transducer for 100 days,
149 and no statistically significant pressure changes were observed during this time. This result is consistent
150 with the measurements presented in Table 1.

151

152 **Table 1.** Pressure over time for 3 cell leak tests.

Test 1		Test 2		Test 3	
Time (days)	Pressure (Torr)	Time (days)	Pressure (Torr)	Time (days)	Pressure (Torr)
0	4.70E-04	0	7.10E-05	0	4.20E-05
1	9.60E-04	1	1.40E-04	2	1.00E-04
2	1.10E-03	2	1.80E-04	3	1.20E-04
3	1.30E-03	3	2.00E-04	4	1.30E-04
4	1.40E-03	4	2.20E-04	5	1.40E-04
5	1.60E-03	5	2.40E-04	6	1.60E-04

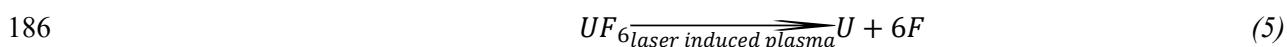

153

154 The cell material's compatibility with the laser system was determined through extended laser
 155 testing on a cell made at the Oak Ridge National Laboratory (ORNL) that was filled with 60 Torr N₂ and
 156 shipped to LBNL for testing. When the cell was returned to ORNL, there was no observable optical damage
 157 to the sapphire windows, indicating that the sapphire withstood the repetitive laser firings at full pulse
 158 energy (~130 mJ). After the visual inspection, the cell was connected to a manifold, and UF₆ was circulated
 159 through it. Fourier-transform infrared (FTIR) measurements of the cell after UF₆ addition showed no
 160 reaction with UF₆. Based on these results, it was concluded that firing the laser through the cell had no
 161 detrimental effect to the inner surfaces that would make them reactive towards UF₆.

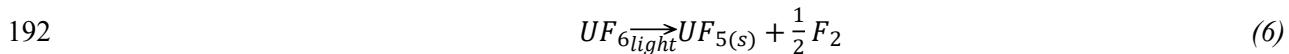
162 To further probe the chemical compatibility of the cell's interior components and verify that the
 163 cell was leak-tight, a cell was constructed with ZnSe windows so that it could undergo FTIR analysis for
 164 an extended period of time. Figure 4, which depicts the FTIR spectra recorded over 8 days of
 165 measurements, shows little change in the intensity of the UF₆ peaks, a peak at ~1030 cm⁻¹ due to trace
 166 SiF₄, and only small peaks consistent with HF. If there had been a leak in the cell, the UF₆ would have
 167 reacted with water to produce an increasing quantity of HF. The lack of ingrowth of HF over the 8-day
 168 period indicates that there was no significant leakage or permeation of water or water vapor into the cell.
 169 Overall, the FTIR data indicate that UF₆(g) was chemically stable in the cell as designed and corroborate
 170 the conclusion from the pressure measurements that the cell is leak-tight. During the 8-day timeframe of
 171 this experiment there was no evidence of resublimation of UF₆ on any of the windows of the cell. Indeed,
 172 the only visible UF₆ solid was that depicted in Figure 5 in the cell reservoir. It is worthy of note that this
 173 well could be cooled by a Peltier plate, thereby desubliming UF₆ in a harmless location and lowering the

174 UF₆ vapor pressure throughout the cell if necessary during a measurement (i.e., preventing desublimation
175 on the optical windows).

176

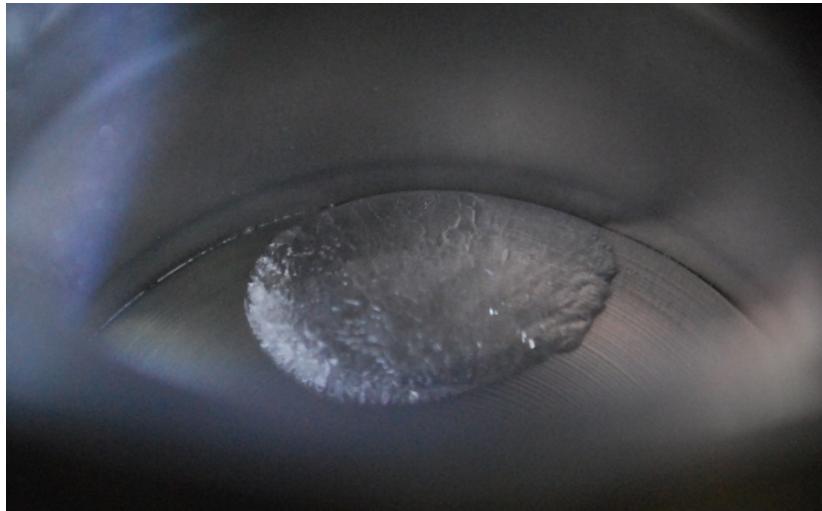


177


178 **Figure 4.** Time-resolved Fourier-transform infrared (FTIR) spectra of UF₆(g) sample in cell.

179

180 After the compatibility testing, a cell containing 1.13 g of natural enrichment UF₆ (0.711 wt-%)
181 was sent to LBNL for testing. This allowed for a saturated vapor of UF₆ to be present in gaseous form
182 inside the cell, along with solid UF₆ in the reservoir at the bottom of the cell (Figure 5). The reserve
183 amount of solid UF₆ was added to the cell because it was assumed that the generation of the plasma inside
184 the cell would destroy the UF₆ molecule entirely to its constituent atoms through an atomization reaction
185 such as depicted in Equation (5).



187 Therefore, additional solid UF_6 in the reservoir could be used to replenish the saturated vapor phase if
188 UF_6 were destroyed by the reaction in Equation (5). Another concern for the destruction of UF_6
189 molecules in the vapor phase is photo-dissociation reactions. The photo-dissociation of gaseous UF_6 to
190 solid UF_5 is shown in Equation 6 and is feasible with the laser light, or with the emission from the laser-
191 induced plasma, as discussed in previous work [13]:

193 To arrest and partially reverse the forward photo-dissociation reaction shown in Equation (6), 20 Torr of
194 F_2 was also added to the cell prior to shipping. Because the volume of the plasma could not be accurately
195 measured, approximate values were utilized to calculate a conservative number of laser shots—60,000
196 [13]—that would result in the consumption of all the UF_6 .

197
198

199

200 **Figure 5.** Excess UF_6 solid in the reservoir of the cell.

201 The initial experiments performed with this mixture of UF_6 and F_2 in the headspace of the cell did not
202 lead to any visible deposition of solid materials on the interior surfaces of the cell. In addition, no
203 significant change of pressure was noted beyond what could be explained by day-to-day fluctuations of

204 room temperature. According to the reaction shown in Eq. (6), if UF_6 is photo-dissociated to UF_5 , then a
205 change of pressure could be expected, along with precipitation of solid UF_5 . This suggests that most of
206 the uranium and fluorine atoms in the plasma recombined to form UF_6 molecules. As such, additional
207 samples that were sent to LBNL for testing only contained UF_6 of the desired assay. The second and third
208 cells sent for long-term analysis contained natural and 4.62 wt-% enriched UF_6 from ORNL stocks.
209 During the course of testing with these samples, it was determined that there was no notable degradation
210 of UF_6 caused by firing the laser and subsequent plasma generation into the chamber. This suggests that,
211 moving forward, it would not be necessary for the samples to have a reserve in the bottom of the cell. The
212 cell could simply contain UF_6 in the headspace at approximately 70 Torr.

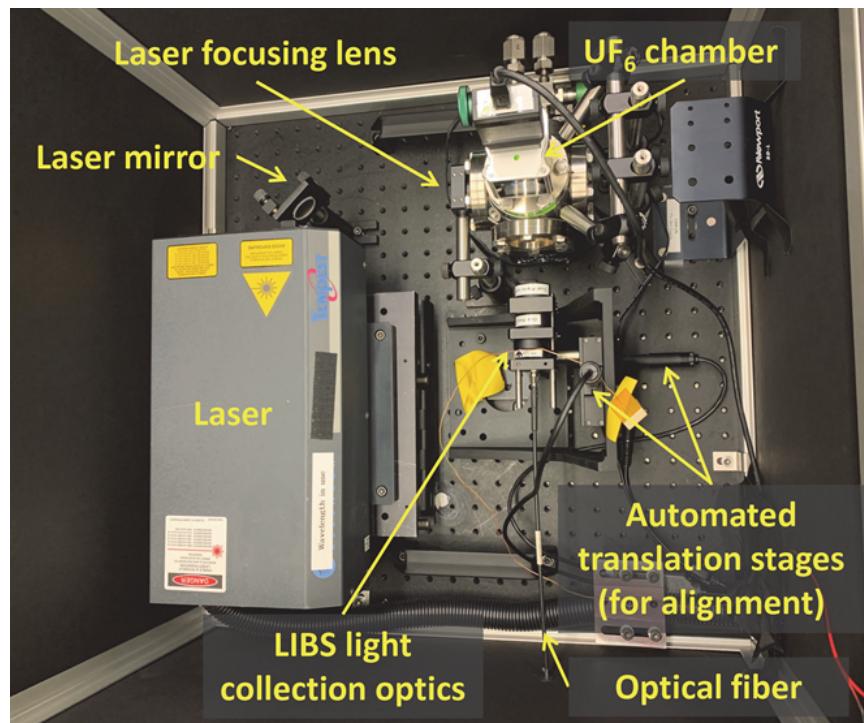
213 **3. Conclusions**

214 A cell was designed for isotopic analysis of UF_6 using LIBS. The cell design required careful
215 attention to and testing of the chemical compatibility of UF_6 with materials of construction, as well as
216 combability of materials with the laser and the LIBS plasma. Testing of the cell revealed a gas-tight
217 system, excellent chemical compatibility of parts with UF_6 , as well as good performance of sapphire
218 windows under long-duration laser exposure. The analytical performance of the LIBS system requires
219 detailed analysis and optimization of the various LIBS parameters, which is beyond the scope of the
220 present manuscript. However, analytical performance of this LIBS system is published separately in a
221 spectroscopy-focused journal[13]. As constructed and tested, the cell has proven capability for handling
222 and subsequent isotopic analysis of reactive gases such as the UF_6 used in this study. This capability can
223 likely be extended to testing of other fluorine and chlorine compounds with comparable chemical
224 handling complications, thus opening the door for enhanced isotopic analysis of challenging reactive gas
225 systems using LIBS techniques.

226

227 **4. Experimental**

228 Caution! UF_6 is radioactive and forms highly toxic hydrogen fluoride in the presence of water. Safe
229 handling requires appropriate facilities and qualified personnel. All handling and testing were performed
230 in sealed manifolds and/or cells.


231 *4.1 Cell Design*

232 The initial cell design was adapted from one used to study low pressure LIBS of (methyl
233 cyclopentadienyl) manganese tricarbonyl (MMT) at LBNL. The preliminary design for a self-contained
234 cell for use with UF_6 is shown in Figure 1. The initial cell consisted of a spherical cube (Kimball Physics)
235 6.895 cm. wide with 2, 2.0 mm thick sapphire windows at right angles to each other. However, as a result
236 of issues identified during testing with the MMT at LBNL, a third sapphire window was added in place of
237 a blank stainless-steel plate opposite the laser entry window. The laser light that was used to form the
238 plasma entered and exited through the two sapphire windows that were opposite to each other, and the
239 sapphire window that was perpendicular to these windows was used to collect the light emitted from the
240 plasma. The remaining three faces of the spherical cube consisted of a custom-designed flange with gas
241 inlet/outlet valves, a pressure transducer (MKS 902B), and a custom-designed reservoir (Accu-Glass
242 Products, Inc.) for excess solid UF_6 .

243 Sapphire was chosen as the material of construction for the windows because of its excellent
244 corrosion resistance to UF_6 [23] and its large optical transmission window (0.15 – 4.5 μm) [24] for
245 analytical measurements. The primary reason for the choice of the MKS 902B pressure transducer for use
246 in the cell was the chemical resistivity of the wetted surfaces to UF_6 . Prior to any testing, the inner cell
247 surfaces were dried and then passivated. The passivation process included holding the cell under vacuum,
248 filling it with dry N_2 gas, evacuating the cell, and finally, filling the cell with F_2 gas (>99% purity) and
249 exposing for 72 hrs. The cell was subsequently evacuated for use and testing with UF_6 .

250 To develop of a smaller, self-contained system, a light-proof enclosure was designed to house the
251 LIBS system and the UF_6 cell. The container not only served to decrease the footprint of the system, but it

252 also enclosed the Class 4 laser (Nd:YAG laser, wavelength 1064 nm) that was used for the LIBS
253 measurements. With a well-engineered interlock system, the operator outside the enclosure has no
254 exposure to the laser, the whole system, by definition, is a Class-1 laser product, which is laser safe for
255 the operator. Class-1 laser products are the lowest hazard class, thus making the system safer and easier to
256 operate. The laser, a laser beam-directing mirror, the UF_6 cell, the beam stop, and the optical lenses and
257 fibers (Figure 6) are all contained inside the enclosure. Also, a Peltier cooler was situated beneath the UF_6
258 cell to maintain the UF_6 at a constant partial pressure of 15 Torr during measurements.

259

260 **Figure 6.** Photograph of interior of enclosure for laser (left) and UF_6 cell (top right).

261

262

263

264

265 *4.2 Cell Testing*

266 To leak test the cell, it was attached to a low-volume vacuum manifold, where it was evacuated
267 and filled with dry N₂ three times to remove water from the interior surfaces. This pressure cycling also
268 served as an internal check for the pressure sensor mounted directly to the cell. Cell volumes were
269 determined by performing gas expansion tests through various sections of known volumes in the vacuum
270 manifold and by applying the following:

$$\frac{P_1V_1}{P_2} = V_2 \quad (7)$$

271 Where P is pressure and V is volume of the cell. Average cell volumes were found to be approximately
272 270 cm³. The cells were evacuated to below 10⁻⁵ Torr on a custom manifold fabricated at ORNL
273 (measured from the test loop equipment *Granville-Phillips ion gauge*), isolated, and removed from the
274 loop. As a result of minor differences in manufacturing processes, the volume for each cell must be
275 determined individually; the approximate cell volume of the final cell was determined to be ~272.48 cm³.
276

277 Over the course of 7 days, the pressure was monitored on the sensor attached to the cell, and no
278 increase was observed. Following these tests, the interior of the cells was fluorinated to passivate the
279 interior surfaces. The cells were filled with F₂ and evacuated three times to pressures of 10.2 Torr, 30.2
280 Torr and 100.3 Torr. After the final evacuation, both cells were filled with dry N₂. After this treatment, a
281 cell was filled with 99.4 Torr dry N₂ (at 296.76 K / 23.61 °C) and was shipped to LBNL for testing with
282 repetitive laser firings under the maximum pulse energy (~ 130 mJ) of the laser. It should be noted that
283 the typical laser pulse energy for UF₆ enrichment assay is much less than this maximum energy and
284 should be 40 mJ or less [13]. Extended laser testing with maximum pulse energy was performed to
285 determine the materials' compatibility with laser pulses. The extended laser testing lasted for a total of
286 130 hours (i.e., 130 hr × 3,600 s/hr × 10 laser pulses/s = 4.7 million laser pulses), and no damage on the
287 window was found.

288 After the repetitive laser-firing test, the cell was shipped back to ORNL for UF₆ compatibility
289 testing. On receipt of this cell at ORNL, it was attached to a manifold and evacuated. The UF₆ manifold

290 was set up in a configuration that circulated UF₆ through the cell and through a gas cell attached to an
291 ABB MB3000 FTIR spectrophotometer. The manifold was filled with ~30 Torr UF₆, and this was
292 circulated through the system for several days. Infrared spectra (4 cm⁻¹ resolution, 8 scans from 500 to
293 5,000 cm⁻¹) were recorded periodically during the 5-day run to measure for UF₆ and for the presence of
294 HF or other degradation products. This experiment was repeated twice.

295
296
297
298

299 **AUTHOR INFORMATION**

300 **Corresponding Author**

301 *Leigh R. Martin, martinlr@ornl.gov, office (865) 241-0699
302 1 Bethel Valley Road, Oak Ridge, TN 37831

303

304 **Author Contributions**

305 The manuscript was written through contributions of all authors. All authors have given approval to the
306 final version of the manuscript.

307

308 **ACKNOWLEDGMENTS**

309 This work is supported by the NNSA Defense Nuclear Nonproliferation Office of Research and
310 Development of the U.S. Department of Energy under contract numbers DE-AC05-00OR22725 at the Oak
311 Ridge National Laboratory and DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory.

[1] I. Grenthe, J. Drożdżyński, T. Fujino, E. Buck, T. Albrecht-Schmitt, S. Wolf, Uranium, in: L.R. Morris, Edelstein, N. M., Fuger, J., Katz, J. J. (Ed.), *The Chemistry of the Actinide and Transactinide Elements*, Springer, Dordrecht, The Netherlands, 2006, pp. 253-698.

[2] Safeguards Techniques and Equipment: 2011 Edition, International Atomic Energy Agency, Vienna, 2011.

[3] D.A. Cremers, L.J. Radziemski, *Handbook of laser-induced breakdown spectroscopy*, John Wiley & Sons 2013.

[4] F. Fortes, J. Laserna, The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon, *Spectrochimica Acta Part B: Atomic Spectroscopy* 65(12) (2010) 975-990.

[5] J. Rakovský, P. Čermák, O. Musset, P. Veis, A review of the development of portable laser induced breakdown spectroscopy and its applications, *Spectrochimica Acta Part B: Atomic Spectroscopy* 101 (2014) 269-287.

[6] G.S. Senesi, R.S. Harmon, R.R. Hark, Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects, *Spectrochimica Acta Part B: Atomic Spectroscopy* 175 (2021).

[7] M.B. Shattan, M. Gragston, Z. Zhang, J.D. Auxier, K.G. McIntosh, C.G. Parigger, Mapping of uranium in surrogate nuclear debris using laser-induced breakdown spectroscopy (LIBS), *Applied Spectroscopy* 73(6) (2019) 591-600.

[8] J. Wu, Y. Qiu, X. Li, H. Yu, Z. Zhang, A. Qiu, Progress of laser-induced breakdown spectroscopy in nuclear industry applications, *Journal of Physics D: Applied Physics* 53(2) (2019) 023001.

[9] C. Rinaldi, M. Pozzi, B. Norberto, J. Vorobioff, Isotopic analysis of uranium by laser induced breakdown spectroscopy, *Spectrochimica Acta Part B: Atomic Spectroscopy* (2020) 105841.

[10] J. Song, G.C.-Y. Chan, X. Mao, J.D. Woodward, R.W. Smithwick III, T.G. Schaaff, A.C. Stowe, C.D. Harris, R. Zheng, V. Zorba, Multivariate nonlinear spectral fitting for uranium isotopic analysis with laser-induced breakdown spectroscopy, *Spectrochimica Acta Part B: Atomic Spectroscopy* 150 (2018) 67-76.

[11] G.C.Y. Chan, I. Choi, X. Mao, V. Zorba, O.P. Lam, D.K. Shuh, R.E. Russo, Isotopic determination of uranium in soil by laser induced breakdown spectroscopy, *Spectrochimica Acta Part B: Atomic Spectroscopy* 122 (2016) 31-39.

[12] E. Galdoz, A. Esteban, O. Cristallini, J.A. Perrotta, UF6 sampling method using alumina, 49th INMM Annual Meeting, USA, 2008.

[13] G.C.Y. Chan, L.R. Martin, L.D. Trowbridge, Z. Zhu, X. Mao, R.E. Russo, Analytical characterization of laser induced plasmas towards uranium isotopic analysis in gaseous uranium hexafluoride, *Spectrochimica Acta Part B: Atomic Spectroscopy* 176 (2021) 106036.

[14] J.J.R. Katz, E., *The Chemistry of Uranium, Part 1, The Element, Its Binary and Related Compounds*, McGraw-Hill Book Company, Inc. 1951.

[15] E. Barber, *The physical and chemical properties of uranium hexafluoride, Uranium Hexafluoride-Safe Handling, Processing and Transporting*, 1988.

[16] *Uranium hexafluoride: A manual of good handling practices. Revision 7*, U.S. Enrichment Corp., Bethesda, MA (United States), 1995.

[17] C. Amphlett, L. Mullinger, L. Thomas, Some physical properties of uranium hexafluoride, *Transactions of the Faraday Society* 44 (1948) 927-938.

[18] D. Llewellyn, Some physical properties of uranium hexafluoride, *Journal of the Chemical Society (Resumed)* (1953) 28-36.

[19] D. Armstrong, W. Bostick, W. Fletcher, An FT-IR study of the atmospheric hydrolysis of uranium hexafluoride, *Applied spectroscopy* 45(6) (1991) 1008-1016.

[20] S.A. Sherrow, R.D. Hunt, FTIR spectra of the hydrolysis of uranium hexafluoride, *The Journal of Physical Chemistry* 96(3) (1992) 1095-1099.

362 [21] J.M. Richards, L.R. Martin, G.A. Fugate, M.-D. Cheng, Kinetic investigation of the hydrolysis of
363 uranium hexafluoride gas, RSC Advances 10(57) (2020) 34729-34731.
364 [22] R. Dyer, Uranium hexafluoride: A manual of good practice ORO 651 revision 6, Oak Ridge National
365 Lab., TN (United States), 1991.
366 [23] S.C.P. Wang, C. Collins, S. Anghaie, E.D. Whitney, High-Temperature Corrosion Testing of
367 Alumina and Zirconia in Uranium Hexafluoride Environment, Nuclear Technology 93(3) (1991) 399-411.
368 [24] K. Iwano, K. Yamanoi, Y. Iwasa, K. Mori, Y. Minami, R. Arita, T. Yamanaka, K. Fukuda, M.J.F.
369 Empizo, K. Takano, T. Shimizu, M. Nakajima, M. Yoshimura, N. Sarukura, T. Norimatsu, M. Hangyo,
370 H. Azechi, B.G. Singidas, R.V. Sarmago, M. Oya, Y. Ueda, Optical transmittance investigation of 1-keV
371 ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors, AIP
372 Advances 6(10) (2016) 105108.

373