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INTRODUCTION

The discovery of ROZ (residual oil zone) underlying and lateral to major oil fields in the
Permian of Texas have provided the potential for sequestering very large volume of CO2. The
purpose of this study is to understand the nature of ROZs in the context of CO2EOR and
geosequestration. The study was the first to gather detailed information on ROZs. It also provides a
detailed and comprehensive analysis of the role of ROZ compared to MPZ (main pay zones) in
achieving long term CO2 storage. This study has a wide scope and the potential to guide to the
impacts of geological storage on GHG in the atmosphere. This report was developed based on a
series of published papers.

CONCLUSIONS

This study has provided the understanding that allows accurate estimates of the CO>
sequestration capacity of CO2-EOR in ROZs. This required an understanding of the incidental
storage based on many years of production history and computer reservoir simulation. This
project completed a detailed characterization of the largest producing ROZ, Hess’s Seminole San
Andres Unit. The project used the detailed reservoir characterization of the field, to constrain
reservoir simulations of multiphase fluid flow. These simulations were designed to evaluate
strategies to increase CO2 storage as well as maximize oil production. A comprehensive
reservoir characterization of Hess’s Seminole San Andres Unit was based on core logging,
petrography, and stratigraphic correlation of faces using core and wireline logging results. We
have investigated what controls sweep efficiency in ROZ reservoirs. This efficiency has a large
impact on both the effectiveness of oil recovery and the volume of CO2 that will be sequestered.
To understand what can be done to improve sweep efficiency we have used this new reservoir
model. We have developed for the ROZ to design sophisticated multiphase fluid flow
simulations to test different injection strategies for the ROZ. These simulations have allowed us
to identify the WAG ratio that maximizes sweep. We have also completed an economic analysis
of flooding ROZ reservoirs, based on simulations of flooding and using a Net Present Value
(NPV) criteria.

SUMMARY

The study of the ROZ (residual oil zone) versus the MPZ (main pay zone) of the Seminole Field
provided a unique insight into the nature of ROZ. This is because we had access to an order of
magnitude of core available in other fields. We were also able to use an extensive petrophysical
data base with one-foot sampling interval made available by the operator. We also obtained an
extensive and unique data base containing the entire production history for the field at full
resolution. The data set also includes a unique complete, highly-granular information on volumes
of CO2 injection and CO2 production. We created a unique high-resolution model of the
reservoir. This is the first such model that has been created. Using this very high-resolution data
base we were able to make high resolution, multiphase fluid flow simulations. These fluid flow
simulations have enabled our team to evaluate CO2 sweep in the ROZ in comparison with the
MPZ.
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EXECUTIVE SUMMARY

ROZs (residual oil zones) have the potential for very large-scale CO2 sequestration and will
likely play a major role in CCUS (carbon capture utilization and storage). Although significant
DOE funding has gone into ROZ investigations little if any quantitative information have been
made available on the geology, mineralogy, and geochemistry (particularly diagenesis and

isotope geochemistry).

The study of the ROZ (residual oil zone) versus the MPZ (main pay zone) of the Seminole Field
provided a unique insight into the nature of ROZ. This is because we had access to an order of
magnitude of core available in other fields. We were also able to use an extensive petrophysical
data base with one-foot sampling interval made available by the operator. We also obtained an
extensive and unique data base containing the entire production history for the field at full
resolution. The data set also includes a unique complete, highly-granular information on volumes
of CO2 injection and CO2 production. We created a unique high-resolution model of the
reservoir. This is the first such model that has been created. Using this very high-resolution data
base we were able to make high resolution, multiphase fluid flow simulations. These fluid flow
simulations have enabled our team to evaluate CO2 sweep in the ROZ in comparison with the
MPZ.

Section 1 Nature of ROZs

A residual oil zone (ROZ) is characterized by oil saturations close to residual values, similar to
those found at the termination of waterflooding. It has been proposed that ROZs are formed from
an original oil saturated or main pay zone (MPZ) that has been flushed by a regional aquifer
(“natural waterflooding” (NWF)) over geological time scales. An alternative model for the origin
of ROZ as the result of capillary trapping along oil migration pathways. This type of oil zone is

widely distributed in the Permian basin, West Texas

Steve Melzer of Melzer Consulting and Trentham of the Geology Department of the University
of Texas Permian Basin (together with their co-authors Koperna, Kruuska, Hill, Hovorka and

others), have pioneered the study of ROZs and generated significant interest from the DOE.



These researchers have had a significant impact on interest in ROZs in the context of oil

production and CO2 sequestration.

Naturally occurring ROZs in carbonate reservoirs in the Permian Basin of Texas were initially
interpreted from wireline logs as being productive oil zones. However, if these zones were
subjected to drill stem tests or were completed for production, they produced water, occasionally
with minor oil. Given that by definition that the ROZ will only produce water through primary or
secondary (waterflood) production, the fields that are currently producing from the ROZ use

CO2 injection.

Residual oil zones (ROZs) are characterized by oil volumes near to residual saturation,
underlying (brown field) and lateral (greenfield) to oil reservoirs. The oil in the ROZ is largely
immobile (at or near irreducible saturation) and cannot be produced by primary or secondary

recovery means.

ROZs have been defined by Sue Hovorka in 2014, as a reservoir volume of “significant scale”,
that has accumulated oil that was later naturally displaced [presumably by aquifer flow], leaving
“behind a low, largely immobile remaining oil saturation”. Hovorka suggests that “ROZs are

predictable at the regional scale according to the principles of buoyancy and hydrodynamics”.

Melzer described three types of ROZs, each begins with an MPZ that subsequent to trapping is
impacted by the structural and hydrodynamic history of an area: ROZ Type 1. Regional tilt of a
basin; ROZ Type 2. Breach of the reservoir seal with secondary healing; and ROZ Type 3.
Changed hydrodynamic conditions within the underlying aquifer. Type 1 and Type 3 ROZs are
characterized by OWCs that are tilted. Such tilted OWCs can be developed in response larger
pressure on one side of the structure. If there is a significant increase the water velocity of the
original MPZ it becomes naturally water flooded forming a ROZ. it has been suggested that in
the Permian Basin the direction of tilted OWC form a coherent pattern across the San Andres
reservoirs in the north CBP and NWS

A Type 1 ROZ occurs when an existing hydrocarbon accumulation in a structural or stratigraphic
trap is subjected to a regional (tectonically induced) tilt. Type 1 ROZ is related to a gravity-
dominated shift of the oil water contact (OWC).



The origin of ROZs is controversial however their significance to CCUS is becoming well
characterized, with computer simulation and ongoing production over that last two decades. The
Permian Basin is the largest area with CCUS projects focused on ROZ. Several operators are
flooding this resource, exclusively now through the use of CO2 injection. Currently, there are
twelve commercial and field pilots in the west Texas Permian Basin region exploiting CO2-EOR
technology to target this oil.

Section 2: CO2 Sweep in ROZ

The volumetric sweep efficiency is the pore volume swept (or contacted by injected by CO2)
typically normed by the total pore volume. The macroscopic sweep efficiency is that portion of
the reservoir volume swept by CO2. The macroscopic sweep efficiency for CO2 WAG injection,
is in large part controlled by the reservoir’s heterogeneity. The key heterogeneity is in the
petrophysical properties such as porosity and permeability. Poor sweep efficiency is associate
with high residual-water-saturation that may degrade reservoir-performance. A systematic

approach to improved sweep-efficiency is lacking.

The sweep-efficiency of a segment of a reservoir, in some cases can be engineered to improve
the sweep. For example, surfactants can be used to lower the interfacial tension between CO2
and water and as a result improve displacement efficiency of oil may be increased. For example,
WAG (water alternating gas) lowers the propency of CO2 to focus flow dominantly in high
permeability. In the current study we conducted multi-phase computer simulations of WAG to

examine the difference in sweep between the ROZ and MPC.

Improvement in sweep efficiencies have been observed in vertical displacement experiments as
the capillary number C, increases. The capillary number characterizes the ratio of viscous forces
to interfacial tension forces. CO2 flooding is often characterized by poor volumetric-sweep-
efficiency, a result of the high CO2 mobility and formation heterogeneity. The volumetric, macro
sweep-efficiency also is dependent on the injection pattern used, nature of reservoir fracturing,
location of gas-oil and oil-water contacts, reservoir thickness, mobility ratio, and the density

difference between the displacing and displaced fluid. However, this definition of Cn is an



oversimplification as the ratio of viscous and capillary force is scale-dependent. As a result,
predicting the role of volumetric sweep efficiency on oil production for specific reservoirs

requires multiphase flow simulations.

Two key metrics for WAG-injection are “WAG ratios” and “CO2 half-cycle sizes”. WAG
injections are characterized by the ratio of volumes of water slugs to CO2 slugs utilized.
Experimental studies of oil saturated sand packs concluded that WAG ratios for CO2 of 1
maximize oil production. The same result was obtained from simulations of real reservoirs. Also,

most of the most common reported WAG ratio in fields are around 1.0.

The optimization of this process has been studied extensively in the past. It has been observed
that the optimum slug sizes are 0:1 (continuous slug process) and 1:1 for tertiary oil recovery by
CO2 injection for water-wet and oil-wet systems, respectively. They noted that maximum
recovery is a stronger function of slug size in secondary CO2 flood than in tertiary flooding.
Tertiary floods in the water-wet models were dominated by gravity forces while tertiary floods in

an oil-wet medium were controlled by viscous fingering.

If the maximizing oil production is desired, the WAG ratios resulting in the minimum- retention
fractions should be implemented. In contrast continuous CO2 injection that corresponds to a
WAG ratio of zero. In this case Ren and Duncan have shown that in this case the fraction of CO2
retained can be nearly 70% of injected CO2. The sizes of CO2 half-cycle sizes are best
characterized in terms of the %HCPV (hydrocarbon pore volumes). %HCPV is a proxy for time
scaled to the nature of the reservoirs. In a mature CCUS project, WAG injections, recycling of

over half of the CO2 may be achieved.

In reservoirs that are very heterogeneous, continuous CO> flooding displaces less of the OOIP,
with oil in low permeability layers not being produced as a result of the high CO2 mobility. The
effect of wettability on the performance of WAG is crucial, especially at high WAG ratios. High
WAG ratios result in less oil recovery by extraction. In water-wet rocks, this effect is significant
and no extraction at high WAG ratios is observed. In mixed-wet rocks, however, significant oil
recovery is obtained due to extraction regardless of WAG ratio. In the case of 0il-CO>
miscibility, the IFT of 0il-CO2 becomes zero obviously less than the oil-water IFT, resulting in
more effective mobilization of oil trapped oil pores with complex geometries, resulting in an

increase of oil recovery.



It was discovered that WAG had the effect of temporarily blocking CO2 from flowing through
high permeability/porosity. This has the effect of forcing the CO2 to contact more of the volume
of the reservoir. WAG injection results in increasing the effectiveness of displacement by CO>
and improved sweep efficiency of water. In WAG injections, a result of alternating slugs of CO>
and water, is the reduction of viscous instability and an increase in the effectiveness of oil

production. WAG has been used by most operators to increase overall oil recovery,

Two CO2 /WAG injection rate patterns were distinguished by in the SACROC field as either
WAG-sensitive or WAG insensitive. It has been noted that WAG-sensitive portions of the
reservoir were characterized by injectivity losses for CO», sometimes on the order of 80%. They
suggested that the WAG-insensitive patterns were characterized by fracture flow rather than by
flow in the matrix. Their study of SACROC showed that over time, the injectivity of CO>
mostly returned to the initial levels before WAG was initiated. The analysis of concluded WAG-
insensitive patterns was characterized by fracture flow not matrix flow. Their simulations, in the
context of injection and production rates (for the SACROC field) suggest that WAG injections
with “longer CO2 cycles and shorter water cycles improved the injectivity and pattern

production”.

The WAG process, is the mobility control strategy of choice for injection CO.. Despite its
popularity, limited fluid phase simulations, have been published in journals with history
matching, detailed static reservoir models, and well-based injection and production data. In
water-wet reservoirs, it has been argued that the oil recovery for CO.—WAG scenarios is lower
when the injection pressure is less than the MMP (minimum miscibility pressure) and the
spreading coefficient is negative. The bypassed oil in the reservoir in these circumstances will
have the smallest contacted surface area per volume. Current research is focused on such thing as
manipulating the system to enhance the surface area contacted. For example, using a pre-flush of
CO. saturated reservoir water can impact the interfacial tensions (IFT) between the reservoir
fluids and the spreading coefficient. A pre-flush of CO»-saturated water can result of changing
the spreading coefficient from negative to positive. As a result (In a water-wet reservoir), this
increases surface contact area between the CO2 and oil, improving oil production. It has been
suggested that WAG injection increases the storage on CO2 in the reservoir relative to

continuous COz> injection. This conclusion is not supported by our simulations.



The effectiveness of CO2 injection as EOR is in part a function of the sweep efficiency. The
mobility ratio, is a metric for the factors influencing the volumetric sweep. This ratio for
injected CO. predicts a poor sweep, because of the low viscosity of the gas relative to that of the

oil. Both the microscopic and macroscopic sweep efficiencies are important metrics.

Macroscopic heterogeneity determines the parts of the reservoir swept by the CO». The

macroscopic efficiency is driven in part by the density contrast between the water, oil and CO>
phases as well as the heterogeneity of the reservoir. In highly heterogenous reservoirs, in zones
undergoing high permeability water flooding, has effective volumetric sweep that results in low

residual oil saturations.

Improved microscopic displacement efficiency is typically related to changes in capillary
number. The capillary number (Nc), is based on the ratio of viscous to capillary forces. The
factors controlling microscopic sweep are complex, including the interfacial tensions, dynamic
fluid-fluid and fluid mineral contact angles, the shape of pores and their wettability. As a result,
surface tension, viscosity, and wettability may be the only properties that can be manipulated to
increase oil recovery through increased microscopic displacement. These issues can be included
in the design of the WAG injection.

Storage of CO: in depleted oil reservoirs has the advantage that they are typically are well
characterized. Currently there are over 100 CO2-EOR projects most in Texas. The first
commercial scale CO2-EOR project was at the Kelly Snyder field (now known as SACROC)
began in 1972 in West Texas. Hence, CO2-EOR technology has been used as CCUS for five
decades. The initial SACROC CO- floods were carried out with anthropogenic CO> captured
from a natural gas field.

We conducted flow simulations of CO> injection into both synthetic and realistic geologic
reservoirs to find the optimal injection strategies for several scenarios. These simulations of CO;
injection follow either man-made waterflooding or long-term natural waterflooding. We
examined the effects of CO; injection rates, well patterns, reservoir heterogeneity, and
permeability anisotropy, on optimal WAG ratios. Optimal is defined as being at minimal net

CO. utilization ratios or maximal oil production rates.



Simulations of CO2 EOR show that the optimal WAG ratio (the ratio of injected water and COz,
in reservoir volumes) for the ROZs is less than 1, and it depends, but in qualitatively different
ways, upon the well pattern and reservoir heterogeneity. The optimal WAG ratio tends to
increase with changing from inverted 9-spot (80-acres) to inverted 5-spot (40-acre) or increasing
reservoir heterogeneity. The ratios for ROZs are consistently less than those observed in the
same geologic models experiencing CO- injection after traditional (man-made) waterflooding.
This is because the water saturation caused by slow regional aquifer flow (~1ft/yr) differs from
that created by traditional waterflooding. In ROZs, water prevails almost everywhere and thus it

is less needed to ease CO2 channeling as compared to MPZs.

This work demonstrates that optimal WAG ratios for oil production in ROZs are different from
those in traditional MPZs because of oil saturation differences. Thus, commingled CO: injection
into both zones or directly copying WAG injection designs from MPZs to ROZs might not

maximize oil production.

Our simulation results show that the CO. net utilization ratios for the WAG after NWF found
in the current study are larger than those for the WAG after MMWEF. The large differences found
are apparently the result of the relative magnitudes of initial oil saturation at the beginning of WAG
injection. The utilization ratios for both types of WAG (after NWF versus after MMWF) are
dependent on the WAG ratios, reservoir heterogeneity, and well patterns, but with different trends
and extents. In the case of WAG following NWF, there is a WAG ratio (approximately 1.0) that
yields the lowest net utilization ratios, irrespective of the well pattern. However, for WAG
following MMWEF, the net utilization ratio monotonically decreases with the WAG ratio. The
different trend is essentially because of the oil saturation magnitudes at the beginning of WAG
injection.

Reservoir heterogeneity does not alter the trends described above, however it leads to different
net utilization ratios. Heterogeneity influences net utilization ratios in different ways for the cases
of WAG following NWF versus following MMWEF. The presence of heterogeneity results in larger
utilization ratios relative to homogeneous reservoirs, for WAG following NWF. This is not the
case for WAG following MMWF. Simulated production data indicates that heterogeneity for the

WAG after NWF results in the rate of increasing production of CO> being less than the rate at



which oil production decreases. This results in higher net utilization ratios for the heterogeneous

case compared to the homogeneous one.

Several conclusions can be drawn based on our work on simulations:

e Capillary pressure influences remaining oil saturation more significantly for NWF than for
MMWE. Small aquifer rates for the geologically-lasting NWF enhances capillary spreading and
thus cancels the effect of heterogeneity in sweep. This reduces oil saturation to be close to

residual levels in every portion of ROZs.

e WAG ratios for either minimizing net utilization ratios or maximizing averaged oil production
rates) for virgin ROZs are consistently smaller than those for MPZs after MMWF. This is

because of the prevalent high-water saturation (and low oil saturation) in the ROZs.

e The optimal WAG ratio (at the minimal net utilization ratio) increases when: (i) increasing initial
oil saturation (before WAG); (ii) the ratio of kv/kn increases; and (iii) the well pattern changes

from inverted 9-spot to inverted 5-spot.

e The CO> net utilization ratios during CO2, WAG injection for virgin ROZs are about 2-3 times
larger than those for MPZs after MMWF. The utilization ratios depend on well patterns, reservoir
heterogeneity, and WAG ratios.

e Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs are
around ¥2-% of those for the WAG in the MPZs after MMWF.

The results of this study are important for designing injection strategies for WAG in stacked MPZ
and ROZ reservoirs. Four main trapping mechanisms for CO2 are typically recognized: structural/
stratigraphic trapping; residual trapping of CO2; solubility trapping; and mineral trapping:
1. Geological trapping is based on either structural or stratigraphic traps. Structural traps are
formed by folding, in some cases combined with faulting of a seal (a non-permeable rock
forming a capillary barrier to flow. Stratigraphic traps are formed by the overlapping of



relatively high porosity/permeability reservoir facies and low permeability seal facies.
Local and regional unconformities are also form common geologic configuration for
stratigraphic traps.

2. Residual trapping: Injection of COg, flushes a portion of the oil and water in the reservoir’s
pores. Of this volume of CO is in part split into many micrometer-sized bubbles so that
only a portion of the CO2 is mobile, the rest is immobilized by fixing in pores due to
capillary forces. This process is known as residual trapping and thus presumably an
effective mechanism for long-term storage. Voidage-trapping for CO> storage in oil
reservoirs, is often referred to as voidage-replacement. In this case, injected-CO2 occupies
the pore-volume that oil and water have been displaced from.

3. Solubility trapping is based on the dissolution of CO2 into formation fluids. Following the
dissolution in the reservoir fluid their physical properties change. For example, dissolution
of CO2 into oil results in it swelling as a very small molecule (CO2) dissolves into a fluid
(oil), dominated by long chain hydrocarbon polymers. This results in oil that becomes
lower in density (buoyancy) and viscosity. It also impacts the oil IFT. A significant portion
of CO2 dissolves in the oil in the reservoir but is capillary trapped and thus not produced.
CO2 solubility in a water phase is a function of pressure. temperature, and salinity. CO2
dissolution in the water phase results in lower pHs and a resultant increase in the solubility
of some minerals.

4. Mineral trapping involves chemical reaction between injected CO2 and reservoir minerals
that results in very long-term immobilization by the formation of carbonate minerals.

These trapping mechanisms reduce the portion of CO- that is mobile and that can potentially leak
from a reservoir. By storing oil that has become a single phase via dissolution the relative volume
of structurally trapped gas is decreased resulting in a reduced likelihood of leakage. The volume
of mobile CO> varies within and between reservoirs. It depends on factors such as the solubility of
COzinthe oil and the reservoir water, the wettability of the pore surface, and the interfacial tension
(IFT) between the oil and CO, at pressures above the MMP. Solubility trapping in oil increases
over time with a rate, during post injection periods, depending on the diffusion rate; the dimensions
of oil in pore spaces; and convection. A strong aquifer at the base of a reservoir can carry away
CO. dissolved in water resulting in further dissolution of COz into the water leg of the field. WAG

injection significantly increases the sweep efficiency and as a result increases CO> trapping.



We evaluate different development strategies and their associated uncertainties through integrated
full-physics flow simulation and economic assessment for a San Andres Unit Brownfield residual
oil zone. The assessment is based on a high-resolution geological model with integrated geological
and reservoir characterization and careful calibration through historical primary and secondary

production data matches.

To better compare development strategies, we defined and calculated a series of metrics (e.g.,
cumulative oil production, CO> storage amount, CO- retention fraction, and net present value
(NPV)) for CO, EOR and storage. Water alternating gas (WAG) ratios were tuned to maximize
either oil production or NPV. The influence of economic parameters (e.g., oil price and carbon
credit) on favorable WAG ratios were examined. We found that:

1) Simultaneous WAG injection into both the MPZ and ROZ maximizes oil production
and NPV, as compared to other injection strategies.

i) The NPV is more sensitive to the WAG ratio when co-developing the ROZ and MPZ
than in MPZ-only flooding.

iii)  When targeting CO; storage, switching from comingled injection to only ROZ injection
after two decades of production is a viable strategy. The optimal switching time needs
further study.

iv)  As the CO; tax credit varies, the best WAG ratios to maximize NPV change to balance
benefits from oil production and carbon storage.

This work provides a basis for future optimization of CO, EOR and storage in brownfield ROZs.

For six field-scale CO2 floods that the more CO2 is injected, the less is retained. For example, for
the Means Unit when 20% of the pore volume was injected, about 15% of the pore volume of CO2
has been retained. Under ideal circumstances, the amount of CO2 retained or trapped by
subsequent water injection should approximately be equal to the residual oil saturation to
waterflooding. Note the difference between the different CO2 storage patterns between the Horse
Shoe Atoll fields (SACROC and Salt Creek) and the Central Basic Platform and North West Shelf

(Wasson, Means, Seminole, Goldsmith, Hanford etc.)



Section 3: Geology and Geochemistry

An understanding of the impact of diagenesis on San Andres ROZ reservoirs is important for both
understanding the heterogeneity of porosity and permeability at the reservoir scale and

assessing/predicting the differences in oil productivity between ROZ and MPZ reservoirs.

One aim of our study was to investigate the diagenetic characteristics of the San Andres Formation
(focusing on the ROZ) to elucidate the factors that control the reservoir quality and sweep. The
current project is the first study of ROZs within the San Andreas based on studies of extensive
cores, wireline logs, and petrophysical data. We document the petrography of the dolomite and
anhydrite textures and attempt to quantify the conditions under they were formed, (2) the origin
and evolution of the paleo-waters that modified the San Andres carbonates inferred from the
isotopic geochemistry, and (3) the sequence and timing of diagenetic events that these deposits

have subsequently undergone.

In this study, 130 thin sections were prepared from 5 cores of wells SSAU #2714, SSAU
#2921, SSAU #3903R, SSAU #5309, and SSAU #5505R. These thin sections were impregnated
with blue dye to highlight megapores (>~10 um) and with blue-fluorescent dye to highlight
micropores (<~10 um). For the petrographic observations the thin sections were examined by
transmitted-light microscopy and cathodoluminescence microscopy (optical-CL) using a Reliotron
Il Cathodoluminescence attachment operated at 10-18 kV gun potential and 0.5-0.6 V beam

current.

Textural characteristics of dolomites and diagenetic cements were investigated using a Zeiss
Sigma High Vacuum Field Emission scanning electron microscope (HV FE-SEM) at the Bureau
of Economic Geology, The University of Texas at Austin. Carbon-coated samples (~15 pum) were
imaged under SEM-CL with a Gatan MonoCL4 detector operated at 5 kV and 120 pm aperture.

Elemental analysis were analyzed by energy dispersive x-ray spectroscopy (EDS).



Powder samples (~30-50 mg per single sample) of dolostone were extracted for carbon and
oxygen isotope measurements. The powered samples were heated to remove organic materials and
then reacted with anhydrous phosphoric acid, under vacuum, to release CO> at 50°C for 24 hours.
The CO. was then analyzed for carbon and oxygen isotopes on a Finnigan MAT251 mass
spectrometer standardized with NBS-18. All carbon and oxygen data are reported in %o units
relative to the Vienna Pee Dee Belemnite (VPDB) standard. The precision for both §3C and &80

measurements is better than £0.1%eo.

Eight dolomite and six anhydrite samples were leached in 0.2 M ammonium acetate with a pH
of 8 prior to acid digestion for Sr isotopic analysis. Dolomite in 8% acetic acid for 15 minutes and
anhydrite Sr was separated in 3M HNO3z using Eichrom Sr Specific resin in 70 ul columns. Total
procedure blank for Sr samples was 1<30 pg. Sr samples were loaded onto single Re filaments with
tantalum fluoride and 0.05M phosphoric acid and subsequently analyzed on a ThermoFisher Triton
thermal ionization mass spectrometer in static mode. Intensity of 8Sr of 8 V (using 10 Ohm
resistors) + 5 % was maintained for 8 blocks of 20 cycles with 8 second integration time. The
87Sr/%6Sr ratio was corrected for mass fractionation using 8Sr/%Sr = 8.375209 and an exponential

law.

Two types of dolomite and two types of dolomitic sediments are distinguished based on crystal
size and geometry (Sibley and Gregg, 1987). Type-1 dolomites (Dol-1 in Figure 3a) consists on a
very finely crystalline brownish dolomite, non-planar and anhedral dolomite crystals, up to 10 um
in size, typically showing red, dull, luminescence (Figure 3b and 3c). Under SEM-CL the crystals
are relatively homogeneous, dark gray in color. This type of dolomite appears within the skeletal
components and thus is dominant in dolo-wackestones, dolo-packstones, and skeletal-peloid-

bryozoan dolo-baffelstone/dolo-rudstone (microfacies b, ¢ and d). Type-2 dolomite (Dol-2 in



Figure 4a), is constituted by medium to coarse crystalline, planar-s and subhedral-dolomite
crystals, ranging from 50 to 200 um in size, and showing red bright luminescence (Figure 4 a-c).
This dolomite shows relatively lighter (white) CL color. This type of dolomite appears in all

microfacies.

Dolomite sediment-1 is made up red bright luminescent anhedral dolomite crystals, 25-150 pm
in size. The sediment has yellow color and is abundant in packstones, grainstones and wackestones

(microfacies b, ¢ and f).

Dolomite sediment-2 consist of white-brownish sediment made up of dull red luminescent
anhedral dolomite crystals, <10 um in size, partially filling the moldic porosity. The sediment
includes reworked dolomite crystals, medium crystalline (up to 75 pum in size). Under the SEM-
CL, the fined grained sediment is dark luminescent whereas the reworked dolomite crystals are

light (white) color. This dolomite sediment is very common within microfacies b and c.

Sulfate cemented dolomite reservoir rocks in Seminole San Andres Unit (SSAU) in Central
Basin platform have been widely studied for decades due to the importance of these reservoirs to
oil production in one for the great petroleum provinces. Understanding the role of diagenesis in
controlling the porosity and permeability of these reservoirs has proved a challenge. With the
recent surge in development of residual oil zones, occurring at the base of many (perhaps all) of
these reservoirs there have been and increased interest in the factors controlling porosity and

permeability distribution in these San Andreas reservoirs.

Melzer has suggested that sweeping low salinity water through the lower parts of the reservoir
resulting Type 111 ROZs. He sees the results as late-stage, “pervasive dolomitization with
enhanced porosities and permeabilities”. He also suggests anaerobic processes are responsible
for the release off sulfur as H>S. He suggested that H»S results souring of the oil and gas, as well
as alteration of disseminated anhydrite to calcite. He also asserted that aquifer “flushing”
converts the calcite to dolomite via abiotic chemical reactions such as CaCOz + Mg (aq) =

1/2MgCa(COs3 ) and that biogenic (microbial mediated) chemical reactions consume



hydrocarbons and produce native sulfur such as CaSO4 + HC = CaCO3z + H2O + S (Melzer,
2012). He suggests that this “late stage pervasive dolomitization” results in enhanced porosities
and permeabilities.

Trentham and Melzer have suggested that the common characteristics of ROZs in the Permian

Basin are:

(1) Enhanced porosity and permeability, resulting from diagenesis of the carbonate reservoir
rocks, specifically dissolution of anhydrites

(2) “What is typically referred to as sulfur water” in contrast to higher salinity “connate water” in

the main pay zone.

(3) Porosities and permeability’s slightly higher than in the main pay zone, which he ascribes to

an “overlay of late (sweep stage) dolomitization”

(4) The occurrence of native sulfur associated with anhydrite nodules. Melzer (2013) asserted
that another characteristic of the diagenesis on ROZs is the presence of native sulfur. He further
asserts that sulfate reducing bacteria mediate “anhydrite dissolution and the precipitation of

sulfur”.

It has been asserted that porosities and permeabilities can be higher in the ROZ than in the main
pay zone as a result of the meteoric dissolution due to pervasive “late” dolomitization caused by

sweep of meteoric aquifers.

Assuming that dolomite formation is occurring in shallow conditions where the initial dolomite
is characterized by carbon and oxygen stable isotopes that were consistent with formation from
evaporated Permian (Guadalupian) sea water. Such brines were the dolomitizing fluids. Gypsum
apparently precipitated during the main dolomitization event. At a later stage anhydrite formed

replacement nodules and cement.

The assertion that dolomitic reservoirs in ROZs underlying dolomitic MPZs are chemically
modified and recrystallized is not supported by any mineralogical, chemical, or isotopic data.
This data demonstrates that there are no changes in the mineralogical, chemical or isotopic data
between the MPZ and the ROZ of the Seminole field. This field (known as the gold standard of



ROZs) is the only ROZ that has been quantitively studied. None of the four characteristics of
ROZs enumerated above are found in the Seminole Field. This undermines their model for the
genesis of ROZs. Hovorka’s assertion that “Oils in ROZs and main reservoir zones of the
Permian Basin are known to be biodegraded as a result of interaction with inflowing meteoric

waters” IS not supported by any evidence.

Section 4: Overall Conclusions

This study has provided the understanding that allows accurate estimates of the CO»
sequestration capacity of CO2-EOR in ROZs. This required an understanding of the incidental
storage based on many years of production history and computer reservoir simulation. This
project completed a detailed characterization of the largest producing ROZ, Hess’s Seminole San
Andres Unit. The project used the detailed reservoir characterization of the field, to constrain
reservoir simulations of multiphase fluid flow. These simulations were designed to evaluate
strategies to increase CO2 storage as well as maximize oil production. A comprehensive
reservoir characterization of Hess’s Seminole San Andres Unit was based on core logging,
petrography, and stratigraphic correlation of faces using core and wireline logging results. We
have investigated what controls sweep efficiency in ROZ reservoirs. This efficiency has a large
impact on both the effectiveness of oil recovery and the volume of CO2 that will be sequestered.
To understand what can be done to improve sweep efficiency we have used this new reservoir
model. We have developed for the ROZ to design sophisticated multiphase fluid flow
simulations to test different injection strategies for the ROZ. These simulations have allowed us
to identify the WAG ratio that maximizes sweep. We have also completed an economic analysis
of flooding ROZ reservoirs, based on simulations of flooding and using a Net Present Value
(NPV) criteria.

Several conclusions can be drawn based on our work on simulations:

e Capillary pressure influences remaining oil saturation more significantly for NWF than
for MMWEF. Small aquifer rates for the geologically-lasting NWF enhances capillary
spreading and thus cancels the effect of heterogeneity in sweep. This reduces oil

saturation to be close to residual levels in every portion of ROZs.



e WAG ratios for either minimizing net utilization ratios or maximizing averaged oil
production rates) for virgin ROZs are consistently smaller than those for MPZs after
MMWEF. This is because of the prevalent high-water saturation (and low oil saturation) in
the ROZs.

e The optimal WAG ratio (at the minimal net utilization ratio) increases when: (i)
increasing initial oil saturation (before WAG); (ii) the ratio of ki/kn increases; and (iii) the

well pattern changes from inverted 9-spot to inverted 5-spot.

e The COz net utilization ratios during CO2 WAG injection for virgin ROZs are about 2-3
times larger than those for MPZs after MMWF. The utilization ratios depend on well

patterns, reservoir heterogeneity, and WAG ratios.

e Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs
are around ¥4-% of those for the WAG in the MPZs after MMWF.

Assuming that dolomite formation is occurring in shallow conditions where the initial dolomite
is characterized by carbon and oxygen stable isotopes that were consistent with formation from
evaporated Permian (Guadalupian) sea water. Such brines were the dolomitizing fluids. Gypsum
apparently precipitated during the main dolomitization event. At a later stage anhydrite formed

replacement nodules and cement.

The assertion that dolomitic reservoirs in ROZs underlying dolomitic MPZs are chemically
modified and recrystallized is not supported by any mineralogical, chemical, or isotopic data.
This data demonstrates that there are no changes in the mineralogical, chemical or isotopic data
between the MPZ and the ROZ of the Seminole field. This field (known as the gold standard of
ROZs) is the only ROZ that has been quantitively studied. None of the four characteristics of
ROZs enumerated above are found in the Seminole Field. This undermines their model for the
genesis of ROZs. Hovorka’s assertion that “Oils in ROZs and main reservoir zones of the
Permian Basin are known to be biodegraded as a result of interaction with inflowing meteoric

waters” is not supported by any evidence.
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ABSTRACT

Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either
underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential
to produce volumes of oil sufficiently significant to make appreciable impacts on the US’s oil reserves and
associated incidental COz sequestration. The objective of this study is to improve our understanding the
impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water
alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators
are using CO: injection for enhanced oil recovery (EOR) in these zones. The consensus model for the
formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over
millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from
water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted
simulations of COgz injection into synthetic geologic reservoirs. These simulations focused on injection
into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By
exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability
anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection.
WAG ratios (the ratio of injected water and COs, in reservoir volumes) of interest are those that either
minimize the net COz utilization ratios or maximize oil production rates. In general, the most effective
WAG ratios for ROZs, are consistently less than those observed undergoing CO32 injection in the same
geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that
most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs
because of oil saturation differences. Thus, CO:z injection into both zones or directly copying WAG in-
jection designs from MPZs to ROZs might not maximize oil production.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

important in understanding ROZ reservoirs. A key question is are
ROZs essentially the same in their geology, petrophysical proper-

Residual oil zones (ROZs) are widespread reservoirs, character-
ized by oil close to residual saturation, underlying (brown field) and
lateral (greenfield) to oil reservoirs [1]. The oil resource in ROZs is
not yet well characterized but is almost certainly substantial. For
example, the volume of oil in-place in the ROZs of the San Andres
formation within a twelve county in the Permian Basin of Texas and
New Mexico has been estimated as 191 billion barrels with 42
billion barrels of oil underlying existing oil fields [2]. Very little
information has been published on ROZ reservoirs. Any information
or modeling that is published, will be novel and potentially

* Corresponding author.
E-mail address: ian.duncan@beg.utexas.edu (I.J. Duncan).
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ties, and production potential as the main pay zones (MPZs) after
waterflooding.

It has been proposed that ROZs are formed from an original oil-
saturated MPZ that has been flushed by a regional aquifer (“natural
waterflooding” or NWF) over geological time scales. The previously
proposed mechanisms for the formation of ROZs result in the oil
content coming to a quasi-equilibrium with water flows on a time
scale of thousands of years. Such quasi-equilibrium values will
effectively be the residual oil saturation [1,3,4]. An alternative
model for the origin of ROZs as the result of capillary trapping along
oil migration pathways [5]. It has been asserted that ROZs are
characterized by oil saturations close to those found at the termi-
nation of waterflooding [4,6]. However, there is little if any high-
quality data that supports this. In reality waterfloods are
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terminated for economic reasons not because they reduce the oil
content to the level of residual saturation. When CO2-EOR is
planned for a reservoir, waterflooding may be terminated earlier
than economic cutoff.

Despite the significant potential of both ROZs and MPZs for oil
production and incidental CO: storage the differences between the
two are controversial. While the controlling physics of CO2-EOR are
the same for ROZs and MPZs, the specific characteristics of ROZs
will influence the effectiveness of COz WAG injection and CO:
retention. One important issue is possible differences in oil satu-
ration between ROZs and MPZs (after MMWF). Differences in oil
saturation influence the interaction of COz and in-situ fluids, and
this in turn, impacts overall sweep and displacement efficiencies. In
this sense, different strategies may have to be used to maximize the
effectiveness of CO2 WAG injection either for oil production or CO2
sequestration.

Almost all previous COz-EOR studies focused on injection into
MPZs, rather than ROZs. There have been two published studies of
WAG injection into ROZs based on full physics simulations [7,8]. The
study by Jamali and Ettehadtavakkol focused on evaluating the
“Natural Aquifer” model for the origin of ROZs and their potential
for CO2 storage. Our earlier study [8] provided an understanding of
the nature of WAG injection of COz and the factors controlling CO2
storage. It also explored varying CO: WAG injection strategies to
improve oil production in ROZ reservoirs. Ren and Duncan [8]
showed the WAG ratio (at maximum oil production) for the
Seminole ROZ reservoir are smaller than the published WAG ratios
for MPZ reservoirs. The reasons behind this observation were not
addressed in that paper. The current study provides one possible
explanation for this observation.

The difference in oil saturation between MPZs (after water
flooding) and ROZs depends in part on both the efficiency of pri-
mary production and the time elapsed between initiation of
waterflooding and the transition to CO: flooding. This transition is
typically either an economic decision or based on some corporate
strategic reasons. In all cases waterflooding is almost always
terminated long before the reservoir approaches residual
saturation.

From an industry perspective considering CO: flooding pro-
cesses in residual oil zones (ROZs) versus main pay zones (MPZs), is
essential to develop strategies to maximize oil production and
minimize COgz utilization. This work investigated COz water alter-
nating gas (WAG) injection into relatively simple synthetic reser-
voir models of the ROZ underlying MPZ reservoirs. The reasoning
for using these synthetic (and therefor accurately characterized)
models was to clearly understand the factors that enable maxi-
mizing oil production and minimizing COz utilization. The effects of
oil saturation on the foregoing metrics were investigated by uti-
lizing full physics reservoir simulations with varying WAG ratios
and reservoir heterogeneity.

The main objective of the current study is to understand how
the effectiveness of oil recovery from CO2 WAG injection is affected
by the differences in oil saturation between a ROZ and a MPZ (after
MMWF). This understanding will help answer questions such as:
are the WAG ratios that maximize oil recovery from MPZs, appli-
cable to ROZs? Or, can a WAG strategy be found that maximizes oil
recovery from both the ROZ and MPZ at the same time? To
accomplish the objective, we conducted a series of simulations of
COz WAG injection following on from NWF and MMWF. These
simulations were run on synthetic reservoir models. This enabled
us to clearly evaluate how variations in reservoir heterogeneity
impact oil saturation distributions after NWF and MMWF and thus
CO2 WAG ratios. This study investigates the desired WAG ratios that
will maximize oil production, and understand how MPZs differ
from ROZs in their response. Such a comparison has not been
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conducted or reported by others. The issues explored on the current
study have important implications to field designs of WAG injection
into ROZs and understanding when to switch from MPZ to ROZ
injection or to institute commingled injection/production.

2. Theory and approach
21 Multi-phase flow simulations

The reservoir flow simulator used in this study is Eclipse-300
[9]. This simulator is an efficient, equation-of-state (EOS) based,
multi-phase flow simulator. It utilizes robust equation-solvers that
can achieve efficient numerical solutions for the flow of COz, water,
and oil in porous-media. The simulator is reliable and widely used
for evaluating oil production and carbon storage performance
during CO2-EOR (e.g., Refs. [8,10e12].

A flow chart summarizing our approach is illustrated in Fig. 1. All
simulated cases started from synthetic geological models. After this
step, we conducted flow simulation of both NWF and MMWF.
Subsequently, CO: injection was started at the end of NWF or
MMWEF to evaluate CO2-EOR performance and find favorable WAG
ratios. The details of each step are given below.

22. Factors impacting WAG injection

The mechanisms of COzEOR are well-understood [13]. The
WAG ratio, defined as the cumulative volume of water injected
divided by the gas injected into the reservoir, is an important metric
to describe the nature of CO2-EOR [14]. At large WAG ratios, water
film blocking is known to occur [15], resulting oil trapping. In these
circumstances, WAG injection essentially becomes ineffective-
waterflooding. Small WAG ratios typically result in channeling
and early breakthrough of injected COz. Both of these phenomena
result in less than optimal oil production. Thus, in most circum-
stances, the maximum oil production rate or recovery factor will
correspond to the most favorable WAG ratio [15e18]. Also, the ef-
fects of heterogeneity and injection strategies on the production
efficiency of CO2"EOR have been well studied (e.g.
Refs. [19€23,52,53]). Others (e.g. Refs. [24€28]) have examined
optimizing CO2 WAG injection. A focus of these WAG injection
studies for MPZs has been to identify the WAG ratios that yield
maximum oil production.

23 Generation of reservoir models

We generated a series of statistical realizations of permeability
fields using sequential Gaussian simulation [29,30]. The properties

Svnthetic
geological model

l |

‘Natural waterflooding” (NWF) Man-made waterflooding
to generate ROZs (MMWF)

AL

CO, WAG Injection

Fig. 1. Work flow chart of each simulated case.
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of these fields were listed in Table 1. Both inverted 5- and 9-spot
well patterns were considered. The permeability fields have
different horizontal auto-correlation lengths (lx), and we made the
length dimensionless following the work of Li and Lake [31].
Dimensionless horizontal autocorrelation length (Ipy) is defined as
the ratio of lx over the domain width in the corresponding direc-
tion. lx indicates how close or how far the permeability is spatially
auto-correlated, which is mainly controlled by sedimentary envi-
ronments and diagenesis processes. The typical value of Ipx is 2. A
series of auto-correlated permeability fields (Table 1) are generated
to test the effect of autocorrelation length on simulation results.
Specifically, layered geological models are considered through
assigning the permeability field with a large Ipx (100, as shown by
Tavassoli et al. [32]). The permeability anisotropy (k,/ks) is varied
through decreasing k, while keeping ki, unchanged: 0.001, 0.01, and
0.1. The horizontal permeability (ki) field were statistically realized
with different natural-log standard deviation (Smk): 0, 1, 2. The
corresponding values of the Dykstra-Parsons coefficient are 0, 0.62,
0.85 (with increasing heterogeneity). The permeability natural-log
mean (Mink) is set to be 5, which is close to that of the Seminole
residual oil zone [8]. Changing Mk will cause different recovery
factors for a given time period, but that should not alter the desired
WAG ratios that are focused in this study. Additionally, considering
several different permeability spatial distributions can be charac-
terized by one single set of heterogeneity indicators, we generated
three realizations of the base permeability field (see Table 1) to
evaluate the influence of permeability uncertainties on oil pro-
duction during COg injection.

Then, using the Holtz’s [33] porosity-permeability correlation
(refer to Eq. (1)), we calculated the porosity fields corresponding to
the generated permeability fields. In Eq. (1), the unit of perme-
ability is mD. The Holtz correlation might be applicable for rock
types between the lithofacies packstone and mudstone of carbon-
ate reservoirs.

4= ( )1/9.61 (1)

TE+ 7

After generating permeability and porosity fields, the corre-
sponding capillary entry pressure fields were calculated using the
Leverett j-function [34], following the procedures as detailed by
Ren [35]. The reason for considering capillary entry pressure het-
erogeneity in simulations is the small regional aquifer flux during
ROZ formation. The reported aquifer flux during NWF within the
Permian Basin is around 10e15 cm/yr (0.33€0.83 ft/yr, Trentham
[36]), which is much less than that (~1 ft/day) of MMWF. Such small
flux pronounces the effect of capillary pressure (P.) heterogeneity
on fluid migration and oil saturations, as demonstrated in the work
by Ren and Duncan [37] and other works [38]. Thus, capillary

Table 1
Properties of synthesized permeability fields.
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pressure heterogeneity should be considered, and the imple-
mentation procedures are given in the following Section of Rock/
Fluid Interaction Models.

3. Flow simulation of NWF and MMWEF
31 Rock/Fluid Interaction Models

We assume the oil phase properties for the ROZ and MPZ are the
same, so we use one set of PVT equations for both. The oil properties
are adopted from the publication of Honarpour et al. [39]; whose
analysis is based on the Seminole San Andres ROZ oil samples. A
black oil model is built for the flow modeling of both NWF and
MMWF. At the reservoir condition (2119.9 psi and 104 °F), the oil
density is 657.71 kg/m3, and the oil viscosity is 1.21 cp. The gas oil
ratio (GOR) is 688.15 scf/bbl.

When simulating CO: WAG injection, we employ a composi-
tional model with the oil compositions shown in Table 2. The Peng
Robinson equation of state (PR EOS) is used with the parameter
settings in Table 2. The binary interaction coefficients are listed in
Table 3. The minimum miscibility pressure for the COz/0il mixture
is around 1400 psi [39], and the CO: flooding is miscible in
simulations.

For simplicity, we assume the relative permeability and capillary
pressure curves (shown in Fig. 2a and b) are the same for the two
processes of NWF and MMWF.

For flow simulation of NWF, the effect of capillary pressure
heterogeneity on water/oil flow was considered. To capture this
effect, the capillary pressure curve in Fig. 2b was assigned to the
cells with the arithmetic mean of the permeability of a given field,
the corresponding capillary pressure curves for other cells were
scaled using the Leverett j-function [37]. Additionally, we also
tested how ignoring capillary pressure or utilizing a single capillary
pressure in our simulations influenced the resultant oil saturation
in ROZs. A “single capillary pressure” corresponds to a model where
the same capillary pressure curve (Fig. 2b) is assigned to all the cells
in a simulated domain.

For the flow simulation of COz WAG injection, the used relative
permeability curves are in Fig. 2a and c. The Stone I model [40] is
adopted to describe the oil relative permeability during 3-phase
flow. The hysteresis in both the relative permeability and capil-
lary pressure curves are omitted for computational efficiency. Both
hysteresis and relative permeability has been experimentally
shown to be cycle-dependent [41e43]. We believe that considering
these cycle-dependent properties will not alter the observations of
the relative magnitude of favorable WAG ratios for MPZs versus
ROZs, although they have been shown to cause the difference in oil
production rate prediction [23,44].

Well pattern

Inverted 5-spot Inverted 9-spot

Patter size, acre

Synthetic domain sizes, ft

Model cell sizes, ft

Model dimensions

Permeability horizontal dimensionless auto-correlation length, Ipx
Horizontal permeability log mean, Mink

Horizontal permeability log standard deviation, Spk

Horizontal permeability Dykstra-Parsons coefficient, Vop

40 80

1320 x 1320 x 96 1860 x 1860 x 96
30 x 30 x 3 30 x 30 x 3

44 X 44 x 32 62 X 62 X 32

0, 2*, 100

5*

0, 1*, 2

0, 0.62*, 0.85

*means base permeability field (i.e., base case).
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Table 2
Crude oil compositions representative of the Seminole San Andres ROZ and the parameter settings for PR EOS (modified from Honarpour et al. [39], and Jamali and Ette-
hadtavakkol [7].
Component COq CiN: C2C3H:2S C4eCs C7eCro C11eCis Ci74
Mole fraction, % 0.02 20.14 15.9 8.99 17.29 18.42 19.24
Critical temperature (R) 547.56 339.21 619.38 835.43 1117.84 1344.62 1686.57
Critical pressure (psi) 1071.34 666.77 722.56 491.3 389.65 277.42 159.29
Critical volume (ft3/Ib-mole) 151 1.56 2.71 5.02 7.73 12.13 22.15
Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195
Molecular weights (g/mol) 44.01 16.29 36.19 70.06 114.17 180.94 358.25
Acentric Factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054
Coefficient Uq 0.457 0.457 0.457 0.457 0.457 0.457 0.457
Coefficient Uy 0.077 0.077 0.077 0.077 0.077 0.077 0.077
Table 3 these models are saturated with oil as initial conditions.
Settings of binary interaction coefficients. For MMWF, both the inverted 5-spot 40-acre pattern (Fig. 3b)
and inverted 9-spot 80-acre pattern are considered. The middle
Component _ CO:. CiNs CoC3HyS  CyeCs C7eCio C1ieCis Cirs . ) P p . .
table in the figure shows the simulation parameter settings for both
CO: 0 . .. .
CII\ZIZ 00976 0 types of patterns. The ultimately-injected water PV is 5.8 and 2.9 for
CyCsHsS 0.1289 0.0103 0 the inverted 5-spot and inverted 9-spot well pattern, respectively.
CieCs 01271  0.0019 0.0063 0 For CO; WAG injection (Fig. 3¢), the flow simulation parameters
g7eccw 0.1105 0.0241 0019  0.003 0 are listed in the lower row of Fig. 3. The COz injection rate is set to
e . .
e 0.0943 00494 00333  0.0061 0 0 be constant at 3000 Mscf/day; varying rates has no effect on
Ciz+ 0.0997 0.1365 0.0588 0.012 0 0 0

4. Injection/production schemes

To simulate the NWF process, a line drive geometry was used
(Fig. 3a): water injectors are put into every left boundary cell, and
producers are put into every right boundary cell. Such uniformly-
distributed inlet and outlet conditions are to mimic regional
aquifer flow, which has been demonstrated to be physically-
applicable in reproducing ROZs [37]. The inlet water flux is set to
be 0.5 ft/yr (15.24 cm/yr). With the inlet flux, the water injection
rate is calculated to be 0.0368 rb/day (reservoir bbl/day). The
ultimately-injected water pore volume (PV) is 86 for the single
inverted 5-spot pattern and 43 for the inverted 9-spot pattern. All

— W
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favorable WAG ratios although it changed oil production rates [8].
The CO: half-cycle size is 2.5% hydrocarbon pore volume (HCPV),
based on the balance of good oil production and the operation
ability of WAG cycle switches [8,45]. The HCPV is calculated at the
end of NWF or MMWPF. WAG ratio is varied from 0 to 5, through
changing water injection duration while keeping CO: injection
duration unchanged in each WAG cycle (see Appendix B for
detailed illustration).

The other parameters of the flow simulation of NWF, MMWF
and COz WAG are included in Fig. 3. The boundaries of all simula-
tion domains are closed (no flow). All the injectors and producers
involved in simulations are vertical, and they are completely
perforated along the depth range of simulation models.

Additionally, to specifically examine the effect of oil saturation

popsi
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0.01
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Fig. 2. (a) Water/oil relative permeability curves; (b) capillary pressure (p) curve for water/oil, here the capillary pressure is defined as non-wetting phase (water) pressure minus
wetting phase (oil) pressure, and the reservoir is presumed to be completely oil-wet; (c) gas/oil relative permeability curves.



B. Ren and 1.J. Duncan

Energy 222 (2021) 119915

production

Water
mjection ¥,

NWF

(@)

producer

MMWF

(b)

producer

CO, WAG

()

Flood duration, yr 10%-107
Injected water flux, ft/yr 0.5
Water injection rate, rb/day 0.0368
Production rate. rb/day 0.0368
Flood duration, yr 60
Water injection rate, rb/day 2000
Producer bottom hole pressure, psi 2020
A Injector
@ Producer
CO; WAG duration, yr 20
CO, injection rate, Mscf/day 3000
Water injection rate, rb/dy 1000
Producer bottom hole pressure, psi 2020
CO2 half-cycle size, HCPV 2.5%
WAG ratio 0, %, %3, 1,2,34.5

Fig. 3. Illustration of NWF, MMWF, and CO2 WAG simulation setup. The embedded tables on the right column show the corresponding simulation settings for each flow simulation

process.

on WAG ratios, we manually assign uniform oil saturation (S,,) to
geological models at the beginning of WAG injection. We consider
several values of S, 0.3, 0.35, 0.4, and 0.5. They cover the range of
oil saturation observed for the virgin ROZ in the Permian Basin
[1,37].

41. Metrics of CO2-EOR performance

We report how varying WAG ratios influences the following
CO2-EOR performance metrics: net COz utilization ratio, averaged
oil production rate, and dimensionless oil recovery factor. Their
definitions are:

Net CO: utilization ratio%(Total CO: injectedetotal CO: pro-
duced)/total oil produced, (MScf/Stb).

Averaged oil production ratets Total oil produced/injection
duration/number of oil producers, (Stbd/Well, standard tank barrel
per day per well).

Dimensionless oil recovery factor % cumulative oil produced
during COs injection/oil in place after MMWF and NWF, (%).

The metric of net CO: utilization ratio indicates the net use of
COs to produce 1 bbl of oil. It measures the cost-effectiveness of COq
injection for enhanced oil recovery. Typically, the largest cost of
implementing WAG floods is acquiring CO2 [46]. The dimensionless
oil recovery factor is defined based on the oil remaining after either
NWF or MMWF, rather than on the traditional original oil in place
(OOIP). Thus, it can be expected the calculated dimensionless fac-
tors here are larger than those reported in the literature. Adding
‘dimensionless’ into our definition is to differentiate it from the
traditional term.

5. Results
51 Influence of multiple realizations on oil production

The multiple realizations of the base permeability field showed
minor influence on ultimate oil production (see Appendix A). Thus,
we employed a single realization of the permeability fields in this
work.

Oil Saturation Fields
after MMWF

Oil Saturation Fields
after NWF

(©)
(@

Oil Saturation

Homogeneous

Heterogeneous

-
033 044 055 066 0.77 0.88

Fig. 4. Oil saturation fields at the end of MMWF (a and b, after 60 years of water-
flooding) and at the end of NWF (c and d). For the heterogeneous geological model
used, Vop % 0.62, lpx % 2. Inverted 5-spot patterns were used, and heterogeneity
capillary pressure was considered in these flow simulations.

52.  Oil saturation magnitude and patterns after MMWF vs. after
NWF

The oil saturation fields at the end of MMWF versus those at the
end of NWF are shown in Fig. 4. After 60 years of MMWF (Fig. 4a-b),
waterflooding has swept much of the oil from the lower part of the
reservoir, and the remaining oil is mainly in the upper portion and
edges. In contrast, after 106 years of NWF, the oil saturations for
most of the cells of the reservoir have almost reached the end point
of relative permeability (0.35) (Fig. 4c-d).

The effect of capillary pressure on oil saturation histograms after
MMWEF versus after NWF has been explored, and histograms for
computed oil saturations are shown in Fig. 5. For MMWF (Fig. 5a),
the three histograms for the cases of without P., single P, and
heterogeneous P. overlap. For the NWF case, the different as-
sumptions for the P. yield result in different histograms as shown in
Fig. 5b and elaborated in the figure caption.
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Fig. 5. The histograms of remaining oil saturation (S,) at the end of MMWF (a) and at the end of NWF (b) when considering no P, single P, and heterogeneous P.. In Fig. 5b, the case
of No P. shows the greatest number of cells with the oil saturation close to 0.35 (the endpoint of relative permeability as shown in Fig. 2a). However, the zoom-in plot into the S,
interval of 0.38€0.48 shows that the case of heterogeneous P. yields the largest frequency around this interval (note the logarithmic scale in the Y-axis). In Fig. 5a, the arithmetic
mean of oil saturation for the three different considerations of P. is the same (0.43), however, in Fig. 5b, the mean varies. It is 0.376, 0.380, 0.384 for the case considering no P, single
P, and heterogeneous P, correspondingly. The heterogeneous geological model was used with Vpr % 0.62, Ipx % 2, and inverted 5-spot patterns.

53, Cumulative dimensionless oil recovery factors during
continuous CO: injection after NWF vs. MMWF

A key objective of this study was to evaluate the dimensionless
oil recovery factors for continuous COz injection following MMWF,
compared to those following NWF. Fig. 6a and b show the metric for
the continuous COz injection after MMWF, and for the WAG after
NWEF, respectively. The final oil recovery factor for the inverted 5-
spot pattern in the homogenous ROZ model is about 21.8%, which
is less that the corresponding value (around 28.9%) for the
continuous COz injection after MMWF. The oil remaining in the
upper portion of the reservoir after MMWF was effectively swept
by the injected COsz. Qualitatively similar observation of oil recovery
factors is made for the inverted 9-spot patterns. Table 4 lists the
dimensionless oil recovery for the WAG injection into the different
heterogeneous synthetic models. The recovery factors for the WAG
after MMWF is overall larger than those for the WAG after NWF,
and the differences between the factors for the two processes in-
creases with the WAG ratio.

Another noteworthy difference between Fig. 6a and b is the oil
production starting time during WAG injection. Oil production
response is quick for the WAG after MMWF versus delayed

Inverted S.spot

production for WAG after NWF (the oil starts to produce at around
0.12 PV of COsz injection for WAG after NWF in the inverted 9-spot
pattern). This delay is longer for the inverted 5-spot patterns than
for the inverted 9-spot.

54 CO: net utilization ratios

The COz net utilization ratios for the WAG after NWF and after
MMWTF are shown in Fig. 7a and 7b, respectively. The latter ratios
are in the range of 2€10 MScf/Stb, and the former ones can be as
high as 35 MScf/Stb. Obvious inflection points exist in the curves of
COg3 utilization ratios versus WAG ratios for the WAG after NWF,
However, the equivalent curves for the WAG after MMWF become
almost flat as the WAG ratio increases. The WAG ratios (at the
minimum net utilization ratios) for the latter WAG are around 1.5,
larger than that (around 1) for the former WAG. The simulations
completed in this study found that the utilization ratios for WAG
after NWF versus after MMWF depend on the WAG ratios, reservoir
heterogeneity, and well patterns area/configuration (Fig. 7a and b).
The net utilization ratios for the inverted 9-spot pattern are
overall larger than those for the inverted 5-spot (dashed curves are
above solid curves in both Fig. 7a and b). Similar observations of the

Inverted 9-spot
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Fig. 6. Dimensionless oil recovery factors versus pore volume (PV) of CO: injected during continuous CO: injection after MMWTF vs. after NWF. For the heterogeneous geological

model used, Vpr % 0.62, Ipx % 2. The homogeneous models show slower oil production response than heterogeneous ones because of the uniform COs flood conformances, however,
the final oil production for homogeneous models are apparently always better than heterogeneity ones. The ultimately-injected COz PV for the inverted 9-spot is about half of that
for the inverted 5-spot, due to both the pattern coverage area difference and the same WAG injection duration (refer to Fig. 3).
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Table 4
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Dimensionless oil recovery factors for WAG injection in both inverted 5-spot and 9-spot well patterns. The recovery factors for both WAG ratio 0 (continuous COsz) and 1 are

listed in the table. For the heterogeneous geologic models, Sk % 1, mink % 5.

Well pattern  Model WAG after MMWEF: WAG WAG after NWF: WAG WAG after MMWEF: WAG WAG after NWF: WAG
Heterogeneity ratio ¥ 0 ratio % 0 ratio % 1 ratio % 1
Inverted 5- Vor % 0, 1px % O 28.9% 21.8% 22.7% 12.4%
spot Vor % 0.62, Ipy 4 2 21.7% 13.8% 26.1% 11.9%
Vop ¥ 0.62, 1px % 100 23.2% 15.6% 27.1% 13.2%
Inverted 9- Vor % 0, 1px % O 12.9% 8.1% 11.9% 6.2%
spot Vor % 0.62, Ipx %4 2 11.8% 6.9% 13.6% 5.9%
Vop % 0.62, 1px % 100 10.2% 6.4% 11.9% 5.6%
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Fig. 7. COz net utilization ratios and averaged oil production rates for the inverted 5-spot (40 acre) and inverted 9-spot (80 acre) well patterns. CO2 WAG injection is simulated
following the processes of NWF or MMWF. For the heterogeneous geological model used, Vop % 0.62, Ipx % 2. A WAG ratio of 0 means continuous CO; injection. Note that for WAG
following NWF, there is a favorable WAG ratio that yields the lowest net utilization ratios irrespective of the well pattern, and this ratio is around 1. However, for WAG after MMWF,
the net utilization ratio monotonically decreases with the WAG ratio. The unit of Stbd/Well means standard tank barrel per well. The WAG injection here is started following 30

years of MMWF.

effect of well patterns on these metrics are made in the layered
geological models (see Appendix C). Therefore, using inverted 5-
spot patterns can improve the effectiveness of WAG injection to
enhance oil recovery.

55. Averaged oil production rates and oil recovery factors

For the synthetic reservoir models utilized in this study, the
average oil production rates for the WAG following MMWF are
larger than those for the WAG following NWF (Fig. 7c vs. 7d). The
average rates are impacted negatively by increasing WAG ratios for
the CO;z after NWF, whereas, for the WAG after MMWF, heteroge-
neity necessitates a small (0.25€0.5) WAG ratio to achieve the
maximum oil production rates. For simulations of the heteroge-
neous models shown in Fig. 7¢c and d, the WAG ratios at maximum
oil production rates are less for virgin ROZs than for the MPZs
subject to MMWF.

56. Effect of oil saturation (Sor) on favorable WAG ratios

Net utilization ratios and average oil production during WAG
injection with different initial oil saturation (S.r) are shown in Fig. 8.
Sor controls the curve trend of the net utilization ratio versus the
WAG ratio (Fig. 8a and c). At a low Ser, there is a favorable WAG ratio
(at the minimum net utilization ratio). However, when S,- increases
to 0.5, the net utilization ratio becomes almost flat as the WAG ratio
increases. The approximate inflection point (labelled by a star)
moves to the right as the S,r increases. As a result, small S,r results
in small WAG ratios minimizing net utilization.

For average oil production rates (Fig. 8b and d), the point of
optimal return tends to move to a higher WAG ratio as S,- increases.
Larger Sor requires larger WAG ratios to maximize oil production
rates.

Well patterns slightly influence the favorable WAG ratios. As the
well pattern changes from inverted 5-spot to inverted 9-spot, the
favorable WAG ratio (either at minimum net utilization ratio or at
maximum oil production rates) decreases marginally (Fig. 8a vs.
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Fig. 8. CO2 net utilization ratios and averaged oil production rates for the inverted 5-spot pattern (a and b) and for the inverted 9-spot pattern (c and d). The initial oil saturation
(Sor) at the beginning of CO» WAG injection is manually set to be constant. For the heterogeneous geological model used, Vpr % 0.85, Ipx % 2. The stars indicate the inflection or

optimal points in the curves.

Fig. 8 and b vs. Fig. 8d). For example, for the inverted 5-spot
pattern, as Sor increases from 0.3 to 0.5, the favorable WAG ratio
increases from 0.45 to 1.5 (Fig. 8a), whereas, the corresponding
ratio for the inverted 9-spot pattern are comparatively small,
increasing from 0 to 1 (Fig. 8c).

57.  Effect of permeability anisotropies (k./kn) on favorable WAG
ratios for ROZs

Increasing permeability anisotropy (the ratio of k,/ks) improves
CO2 net utilization efficiency (Fig. 9a) for ROZs. The net utilization
ratio decreases from 20 to 10 Mscf/Stb when k,/kn increases from
0.01 to 1, given a WAG ratio of 1. Large k, favors COz production
more than oil production. That is the reason that the CO2 net uti-
lization ratios for the case of k,/ki#4l are the smallest, even though
the corresponding oil production rate rapidly decreases with the
increase in the WAG ratio. Adjusting k,/k: has a similar effect on oil
production rates (Fig. 9b) as adjusting reservoir heterogeneity does

(Fig. 7c-f): oil production decreases as the WAG ratio increases.

Also, the ratio of k,/k: increases the favorable WAG ratio (at the
minimum net utilization) (Fig. 9a). Large k, necessities more water
injection to divert injected CO2, and thus CO:z can better sweep the
reservoir. This large k, within the context of structural geology,
might be due to vertical fractures. Some vertical fractures have
been observed in the cores of the Seminole San Andres ROZ
(Duncan, unpublished data). In this sense, the heterogeneity asso-
ciated vertical natural fractures should be carefully characterized as
they have a significant effect on COz net utilization ratios.

6. Discussion

Our companion paper [8] set out to make a comparison between
WAG injection into the ROZ versus the MPZ for the Seminole San
Andres Unit. Simulations presented in that study showed that the
desired WAG ratios (at maximum oil production) for the ROZ are
smaller than the published WAG ratios (arithmetic mean is 1.6, and

Net Utilization Ratio, MScl/Sth

—k /iy =0.01

Averaged Oil Production Rate, Sthd/Well

0.5 1
WAG Ratio
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~
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Fig. 9. COx2 net utilization ratios (a) and averaged oil production rates (b) for the heterogeneous model with different permeability anisotropies. Inverted 5-spot patterns are used.
The initial oil saturation (S,;) at the beginning of COz WAG injection is manually set to be constant (0.35). For the heterogeneous geological model used, Vpp % 0.62, and lpx % 2.
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standard deviation is 1.0) by Christensen et al. [14] for typical MPZ
reservoirs. Ren and Duncan [8] did not identify the underlying
reasons behind this observation. The current study explored a
possible explanation by examining the impact of oil saturation
differences on WAG injection between ROZs and MPZs.

61 Magnitude and patterns of oil saturation after MMWF vs. NWF

The interplay between flow rates and capillary pressure, and its
effect on flow and oil saturation is illustrated in Fig. 5. High injec-
tion rates for MMWF create relatively large viscous forces that
override capillary pressure effects. As a result, the frequency his-
tograms for oil saturation (Fig. 5a) are almost the same for the
scenarios of without P, single P., and heterogeneous P.. However,
for NWF, the lower flow rates enhance the effect of P.. The histo-
grams, shown in Fig. 5b, vary significantly in the oil saturation in-
terval of 0.35€0.46. As the simulation inputs are changed from no
P. to heterogeneous P., the frequency of occurrence for the
endpoint oil saturation (0.35) decreases, whereas, the frequency of
occurrence for the oil saturation in the range 0.38€0.46 increases.
This is consistent with both relative permeability and capillary
pressure controlling oil saturation for NWF. The relative perme-
ability curves in these flow simulations apparently dominate the
result of oil saturation. As a consequence, the maximum points of
the histograms are always around the endpoint saturation (0.35, in
Fig. 5b).

It should be noted that pore-scale capillary trapping, which is an
‘implicit’ capillary pressure effect [13], controls relative perme-
ability endpoints. The ‘explicit’ capillary pressure effect is reflected
in the frequency change of the oil saturation interval 0.38€0.46
when the way of incorporating the capillary pressure curve differs.
Heterogeneous P. causes capillary entry pressure effects, and the oil
surrounded by capillary barriers (with high entry capillary pres-
sure) is not swept. Thus, the case considering heterogeneous P.
retains large (0.6€0.8) oil saturation (refers to Fig. 5b).

62. CO:2 net utilization ratios

The simulation results presented in Fig. 7a and b show that the
COz net utilization ratios for the WAG after NWF found in the
current study are larger than those for the WAG after MMWF. The
large differences found are apparently the result of the relative
magnitude of initial oil saturation at the beginning of WAG injec-
tion. The utilization ratios for both types of WAG (after NWF versus
after MMWF) depend on the WAG ratios, reservoir heterogeneity,
and well patterns, but with different trends and extents (Fig. 7a and
b): in the case of WAG following NWF, there exists a WAG ratio
(approximately 1.0) that yields the lowest net utilization ratio,
irrespective of the well pattern. However, for WAG following
MMWF (Fig. 7a), the net utilization ratio monotonically decreases
with the WAG ratio. The different trends are due to the oil satura-
tion variations as supported by Fig. 8a and c.

Reservoir heterogeneity does not alter the trends described
above, however it leads to different net utilization ratios (Fig. 7a
and b). Heterogeneity influences net utilization ratios in different
ways for the cases of WAG following NWF versus following MMWF.
The presence of heterogeneity results in larger utilization ratios
relative to homogeneous reservoirs for WAG following NWF, but
not for WAG following MMWF. Simulated production data indicates
that heterogeneity for the WAG after NWF results in the rate of
increasing production of COz being less than the rate at which oil
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Table 5

Comparison of remaining oil saturation statistics between core measurement of oil
saturation in the Seminole ROZ by Honarpour et al. [39] and NWF flow simulation
results in this work.

Parameters Measurements? Simulations®
Mean 0.388 0.383
Median 0.368 0.361
Standard deviation 0.045 0.058
Maximum 0.499 0.811
Minimum 0.350 0.350

a The original measurement is every 1 ft, averaging over every 3 ft was made here
to be consistent with the scale that is used in flow simulations.

b this is corresponding to the flow simulation using heterogeneous capillary
pressure as shown in Fig. 5b.

production decreases. This causes the higher net utilization ratios
for the heterogeneous case compared to the homogeneous one.

63. Averaged oil production and recovery factor

For heterogeneous reservoir models, the WAG ratios corre-
sponding with maximum rates of oil production are less for ROZs
than for the MPZs after MMWTF (Fig. 7c vs. 7d). The CO2 WAG into
virgin ROZs starts with high water saturation and a large portion of
the injected CO: is suspected to displace water, rather than oil.
Consequently, CO2 tends to break through late as a result of the
relative small mobility ratio contrast between CO: and water
compared to the COs2/oil system. Under these conditions, the large
water saturation in virgin ROZs attenuates the need for water in-
jection during WAG.

Oil production rates are more sensitive to WAG ratios for the
homogeneous models than for the heterogeneous ones (Fig. 7c vs.
7d). The average oil rate for the two models crosses at a WAG ratio
around 0.5. WAG injection is much more effective for heteroge-
neous models than for homogenous ones to improve oil production
rates. As the pattern changes from inverted 5-spot to inverted 9-
spot, the average oil production rate decreases, as does the oil re-
covery factor.

64. Favorable WAG ratios at maximum oil production or minimum
net utilization ratio

One of the key findings from the flow simulations is that the
favorable WAG ratios for the WAG injection after NWF, is smaller
than those for the WAG after MMWF. This has implications in the
design of CO: injection projects. When an operator prepares to
target Greenfield ROZs for CO: flooding, they might benefit from
starting the ROZ flood with a small (<1) WAG ratio. For Brownfields,
ROZs are hydraulically connected with MPZs. Since the favorable
WAG ratio for the two zones is different, additional characterization
and simulations need to be conducted to choose the WAG ratio
when considering WAG injection into the ROZ. One might not
simply deepen wells targeting the MPZ and continue injecting at
the same WAG ratio. WAG injection might be started in the MPZ
followed by the ROZ with the most desired WAG ratio specific to
each zone. When switching to the ROZ, the commingled production
of both zones can be adopted because the injected CO2 into the ROZ
might move into the MPZ and help produce oil. Determining the
optimal switching time merits further study.

Our flow simulations consider the geological heterogeneity
variations that essentially control the sweep efficiency of COq
during WAG injection. In this sense, these favorable WAG ratios
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should lead to maximum sweep efficiencies. However, it is not sure
that whether such ratios lead to maximum displacement effi-
ciencies. To examine this point, the analysis method proposed by
Walsh and Lake [47]; based on the fractional flow theory, is
recommended.

65 Comparison to field/Lab measurements and observations

We compared the statistics of simulated remaining oil satura-
tion after MMWF to those of Seminole ROZ cores by Honarpour
et al. [39]. These sponge cores were extracted from the virgin ROZ
interval, and the in-situ remaining oil saturation was measured
using Dean Stark analysis and a spectrophotometer technique [39].
As shown in Table 5, the remaining oil saturation statistics between
core measurements and our simulations are close, including the
mean, median, standard deviation, and minimum of oil saturation.
The maximum remaining oil saturation show discrepancy between
measurements and simulations. This discrepancy should be due to
the un-swept cells with low permeability/porosity in flow
simulations.

Additionally, Gong and Gu [48] conducted coreflooding simu-
lation of ROZ generation using carbonate cores, and the measured
remaining oil saturation was in the range of 34.33€36.86%. This
range is covered by our simulation results. This makes sense since
cores tend be much more homogeneous compared to the
statistically-generalized permeability fields used in this work.

For the median of remaining oil saturation (0.361), it is very
close to the residual oil saturation to waterflooding or minimum oil
saturation (0.350). At such low oil saturation, oil production
response was delayed till CO2 breakthrough (as shown in Fig. 6b).
Such delay has been observed and confirmed in Tall Cotton ROZ
reservoir (not associated with a MPZ) undergoing CO: injection
[49].

6.6. Limitations and further considerations

The results from flow simulations are based several simplifica-
tions. First, inclined producing oil/water contacts, as have been
inferred for some ROZ fields \[39,54,57,58], are not considered in
the study. This contact is the oil saturation transition from a MPZ to
a ROZ. Considering this contact might have some effects on favor-
able WAG ratios since such a contact is an oil saturation change.
Second, this study assumes the same oil phase properties for both
ROZs and MPZs. The experimental characterization of oil samples
by Aleidan et al. [50] demonstrates that the global compositions
and overall quality for the both zones are very similar. However,
Honarpour et al. [39] showed that the oil API gravity is different for
the MPZ and the ROZ. Further studies are needed to investigate how
significant phase property differences would influence WAG ratios.
Third, the favorable WAG ratios were estimated on the basis of the
COz utilization ratios or oil production rates averaged over 20 year
of WAG injection. Since the oil production response varies signifi-
cantly with time, changing WAG duration would give different
favorable WAG ratios. However, their relative magnitude for ROZs
versus MPZs will not be altered. Last, our work assumed the same
geological models for both MPZs and ROZs, in order to focus on the
effect of oil saturation differences (as caused by distinct flow re-
gimes) on favorable WAG ratios. For the effect of other differences
between the two oil zones, particularly reservoir permeability/
porosity properties, needs to be further studied through invoking
realistic geological models, which is our next step.
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7. Summary and conclusions

We conducted a systematic numerical simulation of i) the oil
saturation characteristics between main pay zones (MPZs) after
man-made waterflooding (MMWF) and virgin residual oil zone
(ROZs) ii) the influence of this difference on the performance and
strategies of water alternating gas (WAG) injection in both zones.
Since the whole study is mostly based on numerical assessment,
the conclusions could be tempered by the limitations and simpli-
fications involved in our work. Several qualitative, rather than
quantitative, conclusions are tentatively drawn below based on this
work:

Favorable WAG ratios (either minimizing net utilization ratios or
maximizing oil production rates) for virgin ROZs are consis-
tently smaller than those for MPZs after MMWF. This is specu-
lated to be due to the prevalent large water saturation in ROZs.
Capillary pressures influence oil saturations more significantly
for natural waterflooding NWF) than for MMWF. Small aquifer
flow rates for NWF enhance the effect of capillary heterogeneity
on water/oil flow, and thus small portions of the ROZ retain large
(0.4€0.5) remaining oil saturation. This capillary effect, how-
ever, is not shown for MMWF, mainly due to relatively large
injection rates (viscous pressure).

The favorable WAG ratio, corresponding to the minimum net
utilization ratio, appears to increases when: (i) initial oil satu-
ration (before WAG) increases; (ii) the ratio of k,/ks increases;
and (iii) the well pattern changes from inverted 9-spot to
inverted 5-spot.

o The CO: net utilization ratios during CO2 WAG injection for
virgin ROZs are overall larger than those for MPZs after MMWEF.
The net utilization ratios depend, in qualitatively different ways,
upon well patterns, reservoir heterogeneity, and WAG ratios.
Both averaged oil production rates and oil recovery factors for
the WAG in virgin ROZs appear to be less than those for the WAG
in the MPZs after MMWF. This is mainly because remaining oil
after NWF is comparatively less than that after MMWF.
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Nomenclature

Roman Symbols
k Permeability, mD

Kn Horizontal permeability, mD

kv Vertical permeability, mD

P. Capillary pressure, psi

Sor Initial oil saturation before WAG injection
Vor Dykstra-Parson coefficient

Greek Symbols

I Horizontal autocorrelation length, ft

Ipx Dimensionless horizontal autocorrelation length
Mink Horizontal permeability log mean, mD
Sink Horizontal permeability log standard deviation, mD
4 Porosity, fraction

Acronyms

EOR Enhanced Oil Recovery

HCPV Hydrocarbon Pore Volume

PR EOS  Peng Robinson Equation of State

GOR Gas Oil Ratio

MPZs Main Pay Zones

MMWF  Man-made Waterflooding

NWF Natural Waterflooding

rb Reservoir Barrel

ROZs Residual Oil Zones

Stbd/Well Standard Tank Barrel per Day per Well
WAG Water Alternating Gas

Appendix A. Influence of Multiple Realizations on Oil
Production

This appendix shows the influence of multiple realizations of a
permeability field on oil production. Three realizations of the base
permeability field (refer to Table 1) were created and then used for
the flow simulation of continuous CO: injection (.e., WAG
ratio % 0). As shown in Fig. A-1, multiple realizations show a minor
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effect on the ultimate oil production (all the curves almost overlap
with each at the end). This means that the ultimate oil production
performance is controlled by global heterogeneity indicators as
shown in Table 1. The initial cumulative oil production varies for
multiple realizations due to the different local heterogeneity inside
synthesized permeability fields.
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Fig. Al. Cumulative oil production versus CO2 injection duration for three realizations
of the base permeability field during continuous CO2 injection into an inverted 5-spot
well pattern. The CO2 injection follows 60 years of waterflooding as illustrated in the
section of ‘Flow Simulation of NWF and MMWEF’.

Appendix B. WAG Ratio Illustration

This appendix illustrates the design of COz WAG injection for
different WAG ratios. The ratio is defined as the reservoir volume
ratio between injected water and injected COz in each WAG cycle. It
is increased through increasing water injection duration in each
cycle while keeping CO2 injection duration unchanged (Fig. A-1).
Thus, when the WAG ratio increases, the amount of cumulatively-
injected COz is decreased with total water amount increased.

WAG=0 | Cco, COo, Co, |
WAG=1 | CO, | Water | Co, [ Water | Co, I Water | CO, | ‘Water |
WAG=2 | CO, ‘ Water | CO, | ‘Water | 0, } Water |

Fig. B1. Schematic illustration of WAG injection schemes for different WAG ratios.
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Appendix C. Production Metrics for Layered Geological
Models

This appendix shows the effect of the WAG ratio and well pat-

terns on the CO2 net utilization ration, average oil production rates,
and oil recovery factor during WAG injection in layered synthetic
geological models.
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Fig. C1. COg net utilization ratio and averaged oil production rates for the inverted 5-spot and inverted 9-spot well patterns. COz WAG injection is simulated following the processes
of NWF or MMWF. The layered geological model is used with Vpp % 0.62, Ipx % 100. The WAG injection here is started following 30 years of MMWF.
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HIGHLIGHTS

= Residual oil zone development improves CO. utilization and storage economics.
« Joint development of MPZ and underlying ROZ are the best production strategy.
= Ideal water-gas injection ratio depends on a balance of oil prices and carbon credit.

ABSTRACT

Residual oil zones (ROZ) undergoing CO. Enhanced Oil Recovery (CO.-EOR) may benefit from specific strategies to maximize their value. We evaluated several
strategies for producing from a Permian Basin, West Texas, USA field’s ROZ. This ROZ lies below the main pay zone (MPZ) of the field. Such brownfield ROZs occur in
the Permian Basin and elsewhere. Since brownfield ROZs are hydraulically connected to the MPZs, development sequences and schemes influence oil production,
CO: storage, and net present value (NPV). We conducted economic assessments of various CO- injection/production schemes in the stacked ROZ-MPZ reservoir based
on flow simulations of a high-resolution geocellular model built from wireline logs and core data and calibrated through production history matching. Flow sim-
ulations of water alternating gas (WAG) injection, such as switching injection from the MPZ to the ROZ and commingled production, were studied. Simulation results
showed that simultaneous CO. injection into the MPZ and ROZ lead to the largest oil production and, generally, the largest NPV. If instead, CO. was simultaneously
injected into the MPZ and ROZ, then into the ROZ alone, this maximized CO. storage. CO. storage can be used as a tax credit under the Internal Revenue Code,
Section 45Q. Storage performance depends on the development approach and WAG ratio. Developing the ROZ increased storage compared to only producing from
the MPZ. The WAG ratio to maximize oil production did not always yield the largest NPV. These findings are potentially applied to other Brownfield ROZs, which are
common below San Andres reservoirs in the Permian Basin and other basins. ROZ development can increase oilfields’ NPV and carbon storage potential. Our study
can serve as an analog for similar reservoirs. This work provides valuable insights into the further optimization of brownfield ROZ development and information for
operators to plan to develop stacked ROZ-MPZ reservoirs.

1. Introduction can receive tax credits if they capture CO. that would otherwise be in the

atmosphere and geologically sequester it. There are different rates

CO: enhanced oil recovery (CO.-EOR) is an established technology
that can provide revenue and long-term CO. storage [1]. CCUS (carbon
capture utilization and storage) is based on integration of CO.-EOR with
long term storage of anthropogenic CO. (CO.-sequestration). Also, if the
CO- used in the CCUS is anthropogenic, Section 45Q of the US Internal
Revenue Code provides tax credits for capturing and sequestering the
carbon during EOR.

For Section 45Q, as described in the Congressional Research Service
[2], the US Internal Revenue Service lays out ways in which companies

depending on when the carbon capture equipment began service and
whether it was used in CO.-EOR. For instance, a facility that began
construction before 2026 and was finished in 2026 could earn $50/ton
credits if the CO. was subsequently geologically sequestered, and $35/
ton if it was used to enhance oil recovery.

Most CO. injection projects in oilfields target the main pay zones
(MPZs) that were under primary production or being waterflooded.
However, operators have also used this technology to target residual oil
zones (ROZs). In ROZs, the oil saturation is too low for oil to flow

Abbreviations: CCUS, Carbon Capture Utilization and Storage; EOR, Enhanced Oil Recovery; MPZ, Main Pay Zone; ROZ, Residual Oil Zone; NPV, Net Present

Value; CAPEX, Capital Expenditures; OPEX, Operational Expenditures.
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Fig. 1. (a) Tectonic map of the Permian Basin showing the location of the study area (red box) in west Texas. Modified from Ruppel et al. [41] and Dutton et al. [42].
(b) brief production history of the oilfield. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

without intervention [3,4,5]. ROZs cannot be successfully waterflooded
but can be produced by CO.-EOR or de-watering [6]. Brownfield ROZs
underlie and connect to conventional oil reservoirs, whereas greenfield
ROZs are laterally far from traditional MPZs [7]. Many brownfield ROZs
occur in the US Permian Basin [8,3] and around the world, such as in
Canada [9], China [10], the North Sea [11], and the Norwegian Conti-
nental Shelf [12].

ROZs are a good candidate for CO. EOR and storage. Reservoir
processes make storing CO- in the ROZ easier than using aquifers [13].
Sanguinito et al. [14] evaluated CO. storage capacities in ROZs at the
national and regional scales, and the results showed a large potential of
CO. storage. CO- injection has produced oil from ROZs in several San
Andres reservoirs in the Permian Basin [3]. There are disagreements
about how to better exploit the ROZ reservoirs. Koperna et al. [15]
concluded that “simultaneously implementing the flood in both the ROZ
and MPZ’ is a superior approach to “separately completing either the

MPZ or the ROZ” in term of cumulative oil production. Jamali and
Ettehadtavakkol [16] asserted that early expansion into brownfield

ROZs compromises project economics. There is an increasing interest in
oil production and incidental sequestration associated with ROZs [17].
A future challenge for CO- injection into ROZs will be to balance two
economic drivers, producing oil and sequestering anthropogenic COs..
The best strategy may be different for the ROZ versus the MPZ. Thus,
there are advantages and disadvantages for co-developing the zones
versus developing them in sequence. Since these ROZs are connected to
MPZs, the interaction between the two zones will influence both pro-
duction performance and the best development strategies. Such strate-
gies include:

1) Co-developing the MPZ and ROZ

2) Developing only the MPZ

3) Expanding to the ROZ years or decades after developing the MPZ

4) Co-developing the MPZ and ROZ, but eventually stopping MPZ
injection.

Selecting between these strategies should be based on:

» understanding the reservoir and geological characteristics,

» estimating the potential for CO. EOR and storage in the reservoirs,
and

« strategic goals for oil production and carbon storage.

Several groups have performed economic analysis of CO- seques-
tration and evaluated the economics of different strategies for CO- in-
jection (see for example [18,19]). These issues have also been studied by
van ‘t Veld et al. [20], Wang et al. [21], Farajzadeh et al. [22], and
Attanasi and Freeman [23], among others. Ettehadtavakkol et al [24]
evaluated the impact of carbon tax credits for sequestration on eco-
nomics of CO»-EOR in conjunction with sequestration. Tayari et al. [25]
investigated the impact of reservoir heterogeneity on the economics of
CO: floods. They created a model based on three cost modules: injection,
production, and CO. recycling, for valuing EOR projects. They then
identified key model parameters including “production rate and
composition, injection fluid rate and composition, and bottom-hole
pressure,” combined with reservoir simulations to enable estimating
injection, production, and CO- recycling, and thus the costs and revenue
for specific development scenarios for different types of reservoirs. Zekri
and Jerbi [19] determined that the nature and structure of the tax
regime is critical to the viability of many EOR projects. Some projects
are profitable only if there are tax incentives. Although the study of
Tayari et al. [25] largely focused on CO. foam flooding, a topic outside
the focus of the current study, these authors did explore how reservoir
heterogeneity impacts project economics.

This paper is the first study to conduct a simulation of CO- injection
into a ROZ using modern, a state-of-the-art simulator and a high-
resolution static geologic model. Unlike previous studies by, for
example, Wang et al. [26], Koperna et al. [15], Jamali and Ettehadta-
vakkol [16], Webb [27], and Liu and Ettehadtavakkol [17], who used
static reservoir model that are low resolution and often highly upscaled,
we minimized upscaling. We identified development strategies for
brownfield ROZs that maximize either oil recovery, CO- storage, or NPV.
This is the first study that uses high-resolution study of reservoir simu-
lation, coupled to economic-analysis, to understand the economics of
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ROZ versus MPZ and ROZ/MPZ being flooded at the same time.

A San Andres oilfield with a long history of commercial-scale ROZ
production is used in this study. The static model was created from a
comprehensive database of subsurface information, including well logs,
core logs, and per-well production and injection data. We then con-
ducted simulations to evaluate the influence of the four strategies on oil
production as well as the utilization and retention (sequestration) of CO.
1n the reservoir. In comparison to many published studies, this high-
quality reservoir model enabled decreasing the uncertainties in both
our history match and prediction of oil production and CO. storage
asso ilatetd wit hCOQ-EOR. Based on t] isélwe can conduct an extensive

gation of how varlots reservoir development scenarios impact the
economic viability of brownfield ROZ projects.

Our analysis models the oil production and mass of CO. stored as a
function of the WAG ratio and development scenarios. For each sce-
nario, we focused on managing the development of brownfield ROZ to
achieve the best financial outcome for the project, considering plausible
values for carbon credits. We compared the optimal WAG ratios for NPV
and cumulative oil production. The factors influencing economic results
were used to conduct an economic sensitivity analysis. We also exam-
ined how tax credits impact economics. This study enhances our un-
derstanding of the economics of CO. EOR and storage in ROZs.

2. Background and methods

The field studied is in the northeast corner of the Central Basin
Platform (Fig. 1a). The field has experienced primary production,
waterflooding, and CO: injection (Fig. 1b). By 2010, the field had pro-
duced approximately 700 million barrels of oil, mostly from the MPZs of
the Permian carbonate San Andres Formation. Fig. 1b shows a brief
history of the field. CO. injection into the MPZ, begun in the early 1980s,
slowed the production decline associated with the mature water flood
operation. The operator began full-field ROZ development in 2007.

2.1. Geological characterization

The San Andres Formation is one of the several shallow water plat-
form carbonates and mixed siliciclastic-carbonate units that developed
on the shelves of the Permian basin in west Texas and New Mexico
during the Permian (Leonardian-Guadalupian) [28]. This formation
hosts the Upper Permian (Guadalupian) oil play. The sequence stratig-
raphy of the reservoir sequences by Kerans et al. [29] and Lucia et al.
[30] found multiple, shallowing-up cycles. These cycles consist of
mudstones and wackestones grading upward into grain-dominated
packstones and grainstones. The reservoir caprock is a thick anhydrite
layer. Seven carbonate microfacies and one anhydrite dominated
microfacies have been described from 10 continuous cores in the
northern and central part of the field [31]. The cores exhibit well-
developed cyclic depositional sequences, with at least five cycles of
sedimentation. The cores exhibit a very thick lower cycle of sedimen-
tation, dominated almost entirely by open-marine facies. Upper cycles
are thinner and exhibit a greater proportion of shallow restricted sub-
tidal and tidal flat facies.

The facies within the reservoir studied are pervasively dolomitized.
Ruppel and Cander [32] suggested that porosity preservation in these
reservoirs was a consequence of dolomitization. Fusilinid mudstones/
packstones exhibit variably preserved porosities. It has been suggested
that the crinodal-rich facies, prevalent in the San Andres ROZ, is char-
acterized by moderate to large (up to greater than 20%) porosity. Most
of this porosity is secondary in origin [31]. Intercrystalline porosity is
variably occluded by anhydrite cement. Bryozoan facies in the lower
part of the cores have moderate porosities, generally ranging between
10 and 15%. Peloidal-oolitic shoal deposits have variable porosities,
ranging from a few percent up to 22%. Most of the grainstones have their
primary porosity reduced by anhydrite cements. Packstones exhibit high
intercrystalline and leached dolomite rhomb porosity. A study by
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Table 1
Designed development scenarios for the brownfield ROZ.
Scenario Injection Schemes Production Schemes Notes
#
1 MPZ & ROZ 40 yr MPZ & ROZ 40 yr Develop MPZ & ROZ
commingled comingled at the start
injection production
2 MPZ 40 yr MPZ 40 yr Develop only MPZ
injection production
3 MPZ 20 yr MPZ20yr + Develop MPZ initially
injection + MPZ & ROZ 20 yr and then develop MP &
MPZ & ROZ 20 yr ROZ
injection
4 MPZ & ROZ 20 yr MPZ & ROZ 40 yr Develop MPZ & ROZ
injection + and then develop ROZ
ROZ 20 yr
injection

Duncan and Baqu’es (in prep) reveals no significant change in the nature
of the facies or diagenesis between the MPZ and ROZ in the reservoir.

2.2. Reservoir geomodeling and calibration

We integrated information from well logs, and core descriptions into
a 3-D geological model. The cored-wells’ logs (including spontaneous
potential, gamma ray, density porosity, and neutron porosity) were
analyzed, and through this we assigned facies to non-cored wells. Next,
we conducted semi-variogram analysis of each facies group in each
zone, adopting an exponential variogram model. Then, we used
sequential indictor simulation to generate facies for the geomodel and
sequential Gaussian simulation to generate porosity fields. The corre-
sponding permeability fields were estimated as described in Ren and
Duncan [5,33] and Ren et al. [13].

After building a full-field high resolution (cell size 20 20x 2 ft)
geological model, we generated a coarser model with cell sizes of 100 x
100 » ft. We then cut a sector model and used it to history match the
primary depletion and waterflooding for calibration of the MPZ portion
of the reservoir model. More details are included in Appendix A.

2.3. Multiphase flow simulation of CO: injection and development
scenarios

The calibrated reservoir model was then used to predict CO. EOR
and storage potentials. For the simulation input, the rock/fluid inter-
action models (including fluid properties, relative permeability, and
capillary pressure curves) refer to Ren et al. [13].

When predicting the performance of CO. EOR and storage, water
alternating gas (WAG) injection was considered. Inverted 9-spot 80-acre
patterns were adopted, which are currently being used in some cases to
develop the MPZ (see for example [34]. The CO: injection rate is set to
3000 Mscf/day, and water injection rate is 1400 rb/day (reservoir
barrel/day). The injection target pressure is at the reservoir fracturing
pressure of 3900 psi [35]. Bottom hole pressure for producers is set to be
the minimum miscibility pressure, which was measured as 1400 psi
(based on the examples provided by [34]. The WAG ratio (i.e., reservoir
volume ratio between injected water and CO.) was varied from o to 4,
through changing water injection duration while keeping CO- injection
duration unchanged in each WAG cycle. The WAG ratio equal to 1 (base
case) corresponds to 90 days of water injection alternating with 70 days
of CO- injection. We run simulations of WAG injection for 40 years.

In our model scenarios, all injectors and producers involved in sim-
ulations are vertical and perforated according to the development sce-
narios as shown in Table 1. Different switching schedules and injection/
production schemes were considered. Buffered boundary conditions as
described by Ren and Duncan [5] were used in all simulations to mimic
realistic flow scenarios.
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Table 2

The settings of economic parameters in NPV calculation. These settings are
based on the publications by Chen and Reynolds [43],Godec [44],Hultzsch et al.
[45], and Tayari et al. [25].

Component Base Settings Range

Oil price ($/STB) 60 30-90

Oil price basis ($/STB) 1 -

Gas price ($/Mscf) 1.80 1.2-5

Gas price basis ($/Mscf) 0.25 -

Tax credit for carbon storage ($/ton) o 0-90

CO. purchase price ($/ton) Oil price x 0.42 Oil price x
: (0.33-0.50)

Gas recycling cost ($/MSCF) Oil price x 1% -

Produced water management cost 0.85 -

($/STB)"
Liquid lifting cost ($/STB) 0.19 0.10-0.40
ResRepBE (M -

“ the price of CO, sold varies according to oil price.

¥ produced water management cost consists of water injection, water recy-
cling, and water disposal.

* this is the liquid lifting cost for wells perforated in the MPZ only. The cost for
other wells perforated in the ROZ or both the MPZ and ROZ is assumed to lin-
early increase with reservoir depth.

2.4. Economic modeling

The economics of CO- floods were studied by Flanders et al. [36] and
are well understood. For most economic analyses of oil and gas projects
the key approach is estimating the Net Present Value (NPV). The NPV is
based on estimating the projects annual cash income; subtracting the
capital and operational expenditures (CAPEX and OPEX); discounting
the resultant cash flow to the time of the beginning of the project; and
finally summing the annual estimates to compute the NPV. In some
applications, the discount rate is based on the cost of borrowing money.
In oil production projects, a higher discount rate is used to account for
risk, particularly the risk that oil prices or the value of sequestering CO-
may decrease during the lifetime of the project. In traditional CO.-EOR
projects, the cost of CO- has dominated the economics. When seques-
tration is considered, with some combination carbon credits and tax
abatements, the economics can change significantly. In traditional CO.-
EOR operations, the CAPEX includes the cost of: infill drilling (where
required); installation of a CO. cleanup plant; installation of a CO-
compression system and pipeline networks for water and CO.; well
workovers (where required); and other surface installation expenses.
OPEX includes the following major cost drivers: the cost of CO. purchase
and the costs of electricity for running compressors to recycle CO-. and
pumps to produce fluids and to reinject water.

Project revenues come from sales of crude oil, short-chain hydro-
carbon liquids (recovered from the CO- cleanup plant), and natural gas,
as well as tax credits and carbon sequestration payments from the
incidental storage of CO.. In this analysis, the NPV consists of four
components: oil revenue, carbon credits, operational expenses, and cost
of well deepening into the ROZ. The OPEX (operational expenses)
include CO: purchase, CO. recycling, produced water management, and
liquid lifting costs.

The formula used to estimate NPV is equation (1). We consider the
carbon storage credit a revenue term for simplicity. This is valid for
comparing cases or for companies with sufficient tax liabilities. The
following equations, 2—-9, show how to calculate all of the components of
NPV. We calculated the differences in cumulative net present values
(NPV) between the various development scenarios. For these scenarios,
we assumed the capital expenditures or CAPEX for MPZ development
are sunk costs. This study focuses on the difference in calculated NPV
that will be attributed exclusively to the development of brownfield ROZ
projects. The current study investigates the impact of different CO- in-
jection strategies on the project’s NPV. It is assumed that the CAPEX for
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ROZ projects is limited to the cost of deepening wells from the MPZ to
ROZ.

The cost assumptions are listed in Table 2. Sensitivity analysis of
these parameters was also conducted using the range in Table 2. Spe-
cifically, our setting for the carbon storage tax credit was varied from $0
to $90/ton, with the base case at $0/ton. This covers the range of credit
rates in Section 45Q. According to the Congressional Research Service
[2], the carbon tax credits directly go to capture entities, and some
T e S e S o eaht S Bt
2018. For equipment placed on or after that date, the carbon tax credit is
$20.22/ton in 2020, increasing to $35/ton by 2026, and inflation-
adjusted annually onward. Carbon credits can impact the oil prices,
just as oil prices currently impact CO- costs. We examined the influence
of this interaction on the optimal WAG ratio and NPV.

— Recurrentcs:n — Welldeepencost,

n

NPV > Oilyevenuen_+ Carbonyice

n=1 @1+ n"
@
: [ 1
Ollrevenuen = Qop[n) - Qop(n—l) x Ollprice (2)
[ [ D
Carbonprice = Qgit) — Qgin—1) — Qgpty) — Quprn—1y~ x Storagetax  (3)
Recurrent,n = Gaspurn + Gasrecyn + Waterc.«n + Liquid,izn (@)

[ D
Gaspurn = Qum — Qqin—yy — Qupry — Quon—yy~ x Gaspury;ee  (5)

[ 1
Gasrecyn = Qgpm) — Qgptn—1) ~ x Gasrecycost (6)
[ 1 I D
Wateresh = Qp[n) - Qp[n—l) - Qwi(n] - Qwi[n—l] x Watercos (7)
o [ 11 1D
LIqUIdLiftn = Qop(n) - Qop[n—l] + Qp(n] - Qp[n—l] x Llﬂcost (8)
Welldeepencos;, = COStper DeEPENengtn 9)

In the above equations,

Oilrevenuen, Tevenue from oil production at the nw year, $.

Carbonprice,,, price of carbon as incentive for carbon storage at the nm
year, $.

Recurrent.osm, recurrent operation cost at the nm year, $.

Welldeepen osm, well deepening cost for ROZ development at the nm
year, $.

r, annual discount rate.

n, year numbering since the start of development.

Qop(n), cumulative oil production till the nm year, STB. Qopn—

1, cumulative oil production till the (n-1)m year, STB. Oilprice,

the price of oil, $/STB.

Qgitm), cumulative gas injection till the nwm year, MSCF. Qyin—

1y, cumulative gas injection till the (n-1)m year, MSCF.

Qgp(n), cumulative gas production till the na year, MSCF.

Qup(n—1), cumulative gas production till the (n-1)wm year, MSCF.

Storagetax, tax credit for carbon storage, $/Tonne.

Gaspurn, CO. purchase cost at the nu year, $.

Gasrecyn, CO- recycling cost at the nu year, $.

Pigtarosm SrosissnRier RIARRSEINERt fostat hgrg year, $.

Gaspur price, CO- purchase price, $/Tonne.

Gasrecycost, CO- recycling cost, $/MSCF.

Qum), cumulative water production till the nu year, STB.
Q,(n—1), camulative water production till the (n-1)m year, STB.
Quitn), cumulative water injection till the nm year, STB. Quin—
1, cumulative water injection till the (n-1)m year, STB.
Watercost, cost of produced water management, $/STB.

Lifteost, cost of liquid lifting, $/STB.
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Fig. 2. Comparison of CO. EOR and storage metrics for different development scenarios at the end of WAG injection (at 40 years). Blue shows scenario #1, orange
scenario #2, green scenario #3, and red scenario #4. (a) final oil production; (b) final amount of CO. stored; (c) final retention fraction of CO.; (d) final NPV. The
WAG ratio is in the range of 0-4. The final NPV is calculated using the base settings in Table 2. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Costyperft, cost of deepening wells into ROZ, $/ft.
Deepeniengin, depth of deepening for wells into ROZ, $.

2.5. Metrics used to evaluate CO. EOR and storage performance

In addition to traditional EOR performance metrics (e.g., camulative
oil production), we also calculated metrics used to measure the perfor-
mance of CO. storage in the brownfield ROZ.

Stored CO. amount = injected CO. amount - produced CO. amount.
CO. retention fraction = stored CO. amount / injected CO. amount.

All these CO. EOR and storage metrics change with time; the results
given here are the values after 40 years.

3. Results

In this section, we show results for the simulation and economic

350 CO; purchased
CO; recyled
300 - Water recycled
@ Fluid lifted
P
= 250
-
3
O 200 A
©
5
= 150
o
8
o 100
50 +
O I 1 I I
1 2 3 4
Scenario

Fig. 3. Bar charts for 40 years of cost for development scenarios 1 through 4. The WAG ratio is 1 (70 days of CO. half-cycle alternating with 9o days of water half-
cycle). We used the base case economics (see Table 2). The scenarios are as follows: 1) Co-developing the MPZ and ROZ 2) Developing only the MPZ 3) Expanding to
the ROZ years or decades after developing the MPZ 4) Co-developing the MPZ and ROZ, but eventually stopping MPZ injection.
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Scenario: Co-develop ROZ
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Fig. 4. Dependence of the NPV for different WAG ratios corresponding to maximum cumulative NPV on oil price. The vertical axis is the fraction improvement to the
NPV compared to the worst WAG ratio (usually zero, for these cases). A fractional improvement of 100% means 2x better NPV than the worst WAG ratio at that oil
price. The settings for other economic parameters match the base case (refer to Table 2). Note the different vertical scales.

metrics from developing a sector of the field in several different ways
over 40 years. First are the development scenario comparisons, then we

show the sensitivity to several uncertain economic variables.

3.1. Comparing different development scenarios

Fig. 2 compared the CO. EOR and storage metrics for each devel-
opment scenario (Table 1). Comingled injection and production (sce-
nario #1) yield the largest oil production and NPV at all WAG ratios, and
comingled injection followed by ROZ injection only (scenario #4) leads

Fig. 5. Dependence of the NPV for different WAG ratios corresponding to maximum cumulative NPV on carbon credit. The vertical axis is improvement to the NPV
compared to the worst WAG ratio. 100% improvement means twice the NPV over the worst WAG ratio. The CO. purchasing cost is $50/Ton. The settings for other
economic parameters match the base case (refer to Table 2). Note the different vertical scales. Inflection points occur when CO- credits are high enough that oil

production is less important.
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Fig. 6. Dependence of the NPV on different WAG ratios and development scenarios for the three levels of carbon credit reported in Section 45Q. The x-axis is the
water-to-gas injection ratio, where 0 is all gas injection and 4 is four reservoir bbl of water injection to one reservoir bbl of gas injection. The y-axis is the net present
value in million dollars. Color of the lines indicate different development scenarios, and the line style is the carbon tax credit.

to the largest CO- storage amount for each WAG ratio. The lowest NPV is
for scenario #2, which is MPZ development only. Not developing the
ROZ leads to the lowest oil production and CO- storage.

Injecting into the ROZ (scenarios #1, 3, and 4) increases the volume
CO:. accesses compared to MPZ injection only (scenario #2). Scenario 4
has the largest CO. storage because MPZ injection perforations were
squeezed after 20 years of production, limiting CO. recycling. In some
cases, the WAG ratio impacts project economics via oil sales. In scenarios

1 and 2, oil production depends on WAG ratio, but scenarios 3 and 4 do
not display this sensitivity (Fig. 2a). For most scenarios, a WAG ratio of 1
achieves optimal or near-optimal NPV.

Storage is heavily dependent upon WAG ratio (Fig. 2b). As WAG ratio
increases, less CO- is sequestered because less CO- is purchased, leading
to increasing CO- retention fractions (Fig. 2¢). This WAG effect on CO-
retention is strongest when ROZ and MPZ are co-developed (scenario
#1). At a WAG ratio of 1, constant MPZ + ROZ production leads to 40%

Fig. 7. Dependence of the NPV for high, low, and base cases of six key parameters, where the NPV-maximizing WAG ratio has been selected for each scenario. The x-
axis of each subplot shows the modified variable. Along the y-axis is the project net present value (same scale for each plot). Different colors represent the different
development scenarios. Shading shows the uncertainty in the average NPV for these sensitivities.
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more oil being produced, but roughly the same amount of CO. seques-
tered as stopping MPZ production after 20 years. We examined the CO-
saturation at the end of simulation, and it appears that CO. did not
largely migrate from the ROZ to the MPZ.

The largest NPV came from adopting a WAG ratio of 1 and jointly
developing the ROZ and MPZ. The lowest NPVs came from never
developing the ROZ. The main difference between these extremes came
from oil sales; operating costs were comparable (Fig. 3).

Operational costs far outweigh capital costs when considering
developing the ROZ after having built an MPZ CO. flood. It costs roughly
$150/ft to deepen vertical wells in a conventional onshore field (not
including lost production). The cost of deepening all 119 wells into the
ROZ is 4.5 million dollars. This is equivalent to purchasing about 200
thousand tons of CO., whereas in scenario #1, 6-15 million tons of CO.
are purchased.

Most of the costs for all scenarios come from recycling and pur-
chasing of CO.. Fig. 3 shows the operational cost bar charts after 40
years of development, given a WAG ratio of 1. The total OPEX of the
scenario #1 is the most ($871 million), and scenario 2 is the least ($700
million). The other two are in between. For MPZ-only development
(scenario #2), CO. purchasing costs are far lower than recycling cost.
When moving from the MPZ to ROZ development, the large ROZ water
saturation does not greatly increase lifting and water management costs.
Therefore, there are few differences in these costs between scenarios,
except some water management savings in scenario #3 from delayed
ROZ development.

3.2. Sensitivity analysis

We performed a sensitivity analysis on the economic assumptions
and WAG ratio. This included oil price, carbon sequestration tax credits,
CO. purchasing price, and lifting cost. Geologic and fluid parameters
were held fixed during this analysis since we focused on economic
assessment. To focus on the effect of WAG ratio rather than the obvious
(and linear) effect of price, we generated plots normalized to the lowest
NPV WAG ratio to see the uplift for selecting a better water-gas injection
ratio.

WAG ratios can significantly change the NPV for both EOR and CCUS
applications (Figs. 4-5). This uplift varies from over 100% for only
developing the MPZ and focusing on carbon tax credits to less than 1%
for co-developing the ROZ and MPZ but stopping MPZ exploitation after
20 years. Without considering carbon credits, the benefit of selecting the
best WAG ratio can be from 65% at high oil prices when developing only
the MPZ to less than 2% at low oil prices when delaying ROZ
development.

The optimal WAG ratio depends on the oil price and is not necessarily
the WAG ratio for the largest oil production (Fig. 4). When co-
developing the ROZ, selecting a WAG ratio of 1 is consistently the best
option, but when only developing the MPZ, at low prices a WAG ratio of
1is ideal, but above $30/bbl, a WAG ratio of 2 is better. When delaying
development of the ROZ, higher WAG ratios improve the NPV.

For almost all scenarios and oil prices, a WAG ratio of 0 is the worst
choice. This is due to lower total oil production and higher CO. pur-
chasing and recycling costs. Both CO. purchasing and recycling scale
with oil price. However, when co-developing the ROZ at sub-$30/bbl oil
prices, it is better than a high WAG ratio because of lower operational
costs from fluid lifting and water recycling.

Carbon storage tax credits for CCUS also affect the ideal WAG ratio
(Fig. 5). In Scenario #3, where the operator develops the ROZ 20 years
after starting CO. injection in the MPZ, the ideal WAG ratio varies from
4 at no tax credit to o for a tax credit of greater than $70/ton carbon
dioxide sequestered. The increase in NPV from optimizing WAG ratio
can be from over 100% to about 1% for different scenarios and carbon
tax credits.

The maximum CO»-EOR related tax credit proposed in 45Q is $35/
Ton. We show the NPV for different development scenarios and 45Q

Applied Energy 321 (2022) 119393

carbon credits in Fig. 6. At all carbon credit levels, co-developing the
ROZ maximizes NPV, followed by co-developing the ROZ and stopping
MPZ exploitation after 20 years, then developing the ROZ after 20 years,
and finally, developing the MPZ has the lowest NPV.

Fig. 7 shows the sensitivity of NPV to several economic parameters (i.
e., oil price, natural gas sales price, lifting cost, and recycling water and
CO: prices). We selected the WAG ratio that maximized NPV for each
scenario. The most important parameters, in order, are oil price, CO-
cost, and gas sales price. Co-developing the ROZ leads to the best NPV
expectations at all oil prices greater than $6/bbl. After development
costs for the MPZ CO. flood have been paid off, all scenarios have a
breakeven price for oil prices between $2/bbl (MPZ only) and $5/bbl
(develop ROZ, close MPZ after 20 years) for base case operating ex-
penditures and the costs of extending to the ROZ (if the scenario includes
ROZ development).

4. Discussion

The focus of this paper is on the economics, but the simulations of
these different development scenarios tell us a few things about CO.-
EOR. For instance, for MPZ-only development, most of the injected CO-
channels into producers and is recycled (as illustrated in Fig. 2). This
channeling is less prominent in the ROZ. A comparison between sce-
narios #1 and #4 shows a large difference in oil production (Fig. 2a) but
similar CO. storage (Fig. 2b). The lack of CO. migration we see is
consistent with surveys we conducted of the CO. saturation fields.

4.1. Economics for ROZ versus MPZ CO:- flood projects

Brownfield ROZ projects are able to use the same recycle plant and
other infrastructure as the original CO. EOR development in the MPZ.
Therefore, expanding an MPZ CO. flood to the ROZ requires little capital
expenditure. As a result, in the payback period (the time from the
initiation of the project to the time at which positive cash flow begins) is
shorter. Co-developing the ROZ also accelerates the oil production and
maximizes the ultimate recovery (Fig. 2). Accelerating the production
improves the NPV, further improving the economics over MPZ-only CO-
floods.

4.2. Role of varying the WAG ratios on the economics of CO:- floods

Previous studies (e.g., [37,38]) of optimal WAG ratios for CO.-EOR
projects have largely ignored economics. As the WAG ratio represents
the relative volume of CO- versus water being injected, CO. prices and
tax breaks mean the ratio will significantly affect the operational
expenses.

The NPV is more sensitive to the WAG ratio when only developing
the MPZ than for scenarios where the ROZ is also developed (Figs. 3 and
4). In the MPZ, continuous CO:- injection leads to early breakthrough
and more CO. recycling, thus increasing operational expenses while
simultaneously decreasing oil production when compared to WAG. In
the ROZ, the low mobility of oil slows channeling, which decreases the
effect of the WAG ratio on the NPV.

CO. tax breaks affect the ideal WAG ratio by over 20% for much of
the range of carbon credits when either only developing the MPZ or co-
developing the ROZ (Fig. 4). There are complex interactions between the
oil price, carbon credit, WAG ratio, and their effects on the NPV for both
MPZ and ROZ project development.

4.3 Role of CO: sequestration tax credits

Ettehadtavakkol et al. [24] modeled the economics of different rates
of fluid injection, WAG ratio and pattern flood duration. They examined
the discounted cash flows from CO. EOR projects. They examined
breakeven oil prices as CO- utilization, oil production rate and purchase
price of CO: are varied. Significantly, they also considered the impact of
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Fig. A1. (a) The Petrel unit boundary of full-field geological model for the field with the dashed square in (a) representing the outer boundaries of a cut sector model.
(b) Porosity fence diagram. (c) Permeability field with the two sectional cut for direct visualization. Four zones (gas cap, MPZ, ROZ, and water leg) are differentiated

with different colors for easy look. The depth cutoff for the three contacts are 1725 ft (gas-oil-contact), 1935 ft (producing water-oil-contact or the contact between
the MPZ and ROZ), and 2200 ft (free water level). (d) Permeability field of the cut sector with all the vertical well locations shown on the top of model.

CO. sequestration payments. Their main findings included a recom-
mended range ($20 - $40/tonne) of CO. storage tax for sustainable CO-
EOR-storage operations.

We found that carbon tax credits could be a significant source of
income for CO.-EOR projects. Even when the carbon credit is signifi-
cantly less than the cost of acquiring anthropogenic CO., this can make
CO.-EOR projects more profitable. Also, as said above, adding carbon
credits can lead to changes in the NPV-maximizing WAG ratio.

A significant point in the applicability of tax credits appears to be
when CO:. storage becomes more important than oil sales for selecting
the NPV (Fig. 5). This is heavily scenario-dependent, and it happens at
the lowest CO. credit for immediate ROZ development. Thus, we may
conclude that ROZ development allows for more flexibility in selecting
the best WAG ratio to balance oil sales with carbon credits.

Section 45Q requires projects to capture 500,000 metric tons/year to
apply for this credit. In the most carbon-storage-intensive scenario, our
whole field study sequestered 59 million metric tons for the first 20 years
(note, our simulations only covered a portion of the field), or about 1.6
million metric tons/year. The least carbon-intensive development sce-
nario would still sequester 0.2 million metric tons per year.

For comparison, a 500-megawatt coal-fired power plant emits about
3 million metric tons a year [39]. Thus, it is possible to use the full CO-
output of a power plant to supply CO- to a ROZ flood of this size and

meet the minimum requirements for Section 45Q.

Furthermore, the Permian basin has an extensive CO. pipeline
network, so a CO: storage project in this area would have many potential
CO. CCUS sites to supply. There are 71 projects in West Texas served by
the Denver City CO. Hub [40].

4.4. Sensitivity of results to variations in income and costs

The WAG ratio that yields the maximum oil production does not
necessarily give the maximum NPV. Oil prices from $40-80/bbl tend to
have the same ideal WAG ratio (Fig. 4). For carbon storage, though at
sufficiently large carbon credits, the ideal WAG ratio drops (Fig. 5).
While oil prices, gas prices, and CO. costs affect the project NPV
significantly, the best NPV always resulted from co-developing the ROZ
when developing the MPZ CO. flood. The lift cost, CO- recycling cost,
and water management cost did not greatly affect project economics
(Fig. 7).

5. Summary and conclusions
We evaluated different development strategies and their associated

uncertainties through integrated full-physics flow simulation and eco-
nomic assessment for a San Andres Unit Brownfield residual oil zone.
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Fig. A2. History matching of oil production rate (a), water cut (b), gas-oil-ratio (c), and reservoir pressure (d) during primary depletion and waterflooding periods.

Large dots are field measurements, and lines represent simulation results.

The assessment is based on a high-resolution geological model with
integrated geological and reservoir characterization and careful cali-
bration through historical primary and secondary production data
matches. To better compare development strategies, we defined and
calculated a series of metrics (e.g., cumulative oil production, CO.
storage amount, CO- retention fraction, and net present value (NPV)) for
CO: EOR and storage. Water alternating gas (WAG) ratios were tuned to
maximize either oil production or NPV. The influence of economic pa-
rameters (e.g., oil price and carbon credit) on favorable WAG ratios were
examined. We found that:

i) Simultaneous WAG injection into both the MPZ and ROZ maxi-
mizes oil production and NPV, as compared to other injection
strategies.

ii) The NPV is more sensitive to the WAG ratio when co-developing
the ROZ and MPZ than in MPZ-only flooding.

iii) When targeting CO. storage, switching from comingled injection
to only ROZ injection after two decades of production is a viable
strategy. The optimal switching time needs further study.

iv) As the CO: tax credit varies, the best WAG ratios to maximize
NPV change to balance benefits from oil production and carbon
storage.

This work provides a basis for future optimization of CO. EOR and
storage in brownfield ROZs.
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Appendix A:. Model construction and validation

Geological Models

Fig. A1 shows the full-field porosity and permeability, along with
permeability for the sector model. We selected this porosity/perme-
ability distribution from the batch of realizations that conform to
geological characterizations and reservoir heterogeneity. The cut sector
consists of 25 inverted 9-spot 80-acre patterns, with 25 vertical injectors
and 94 vertical producers.

History Matching

The simulation in this study were based in part on a reservoir model
for the MPZ that was used to history match the oil production, water cut,
gas-oil-ratio (GOR), and mean reservoir pressure. The static model is
calibrated, and a good match was found for oil production rate, water
cut, and reservoir pressure (Fig. A2). The history match of GOR is
challenging. GOR matching is hindered by the both the lack of infor-
mation about the gas cap size and lack of knowledge of the vertical
fracture permeability of the reservoir. Still, the overall trend and peak
GOR rates are captured.
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Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such
reservoirs cannot be produced by conventional techniques; rather some forms of enhanced oil recovery
(EOR), such as COsz injection is required. As a result, these zones have a potential for CO2 storage asso-
ciated with EOR activities. In West Texas, the oil production potential of these zones, associated with the
San Andres Formation alone, has been estimated as on the order of tens of billions of barrels. A series of
numerical simulations of CO2 miscible flooding were conducted on 11 Sub-Volumes cut from a larger
static reservoir that represents the range of heterogeneity in permeability and porosity found in San
Andres ROZs. This work set out to evaluate the effects of injection strategies and reservoir heteroge-
neities on the performance of CO2 sequestration. The injection techniques investigated were: continuous
CO: injection and water alternating gas (WAG). Multiple factors were examined, including domain
boundary conditions, well patterns, injection rates, permeability anisotropies, and natural fractures. It
was found that ROZs could have higher retention fractions (i.e., volume fraction of injected CO2 retained
in ROZs) for a combination of inverted five-spot well patterns and large WAG ratios. Based on the results
of these numerical simulations, the long-term potential for COz storage associated with CO2-EOR of ROZs
can be assessed. Our results provide key insights into how future CO32 storage projects associated with
EOR in ROZs within carbonate sequences may be implemented.
© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

sequestration associated with future CO2-EOR projects is very sig-
nificant. Such projects are already underway with commercial scale

Residual oil zones (ROZs) are reservoirs in which oil is largely at
levels near those for residual saturation [1]. The oil in ROZ reser-
voirs cannot be produced by conventional techniques, but rather
requires either CO: enhanced oil recovery (CO:-EOR) or uncon-
ventional strategies, such as horizontal drilling and intense
depressurization by dewatering (see Ref. [2]). ROZs are widely
distributed in the Permian Basin of West Texas. The volume of oil
recoverable from ROZs in both the San Andres and Canyon Reef
formations of Permian Basin, have been estimated by Koperna et al.
[3] as 12 billion barrels, with unpublished estimates an order of
magnitude or more. Thus, the potential for large scale CO:
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E-mail addresses: boren@utexas.edu (B. Ren), ian.duncan@beg.utexas.edu
(I.J. Duncan).
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0360-5442/© 2018 Elsevier Ltd. All rights reserved.

WAG injections into ROZs currently taking place in eight San
Andpres oil fields in the Permian Basin utilizing WAG (water alter-
nating gas) injection of CO2 [4].

This study presents a series of simulations of the outcomes of
WAG injections designed to give insights into oil production and
CO: storage associated with EOR projects in the ROZs of the San
Andres Formation. Apart from a limited, preliminary simulation
study by Jamali and Ettehadtavakkol [5] there have been no pub-
lished full-physics studies of WAG injections into ROZ reservoirs.

Given that the use of depleted oil reservoirs for COz sequestra-
tion was suggested at least 25 years ago [6,7], surprisingly few
detailed studies were based on both full-physics simulation and
real heterogeneous reservoir data, designed to elucidate the nature
of incidental storage associated with EOR. The comprehensive re-
view of CO2-EOR by WAG injection by Afzali et al. [8] did not
reference any publications on this topic, equivalent in scope and
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detail to the current study. Numerous core flooding and rock-water-
CO: interaction studies have been made on CO: injections (for
example [9€12]). Such experiments are useful to understand the
processes involved in WAG flooding. However, they provide only
limited insights into the field scale response of real reservoirs,
which have multiple spatial scales of heterogeneity.

Many studies that have used multi-phase fluid flow simulations
to evaluate COz injection strategies, at the level of individual 5-spot
(or similar patterns). Of these, only a few have attempted to un-
derstand the factors impacting both COz storage and oil recovery in
the saturated zones of oil reservoirs (see for example [13€17]). The
applicability of most of these studies to field-based EOR operations
is limited, in that they: have not utilized fact-based, high-resolu-
tion, three-dimensional static models; do not include realistic
representations of the natural heterogeneity found in real reser-
voirs; fail to evaluate the validity of the no-flow conditions they
assume at the boundaries of the “5-spot” or other injection patterns
being studied; do not compute metrics such a COg utilization and
CO: retention that can be compared to those in characterizing
actual oilfields; make no evaluation of the impact of reservoir
model cell size on the simulation results; and often use injection
conditions that are incompatible with the operational re-
quirements of CO2-EOR projects. The current study makes a unique
contribution in that it addresses these issues. The study by Ette-
hadtavakkol et al. [18] was based on synthetic reservoirs with
simulated heterogeneous properties. Their analysis included a
study of the impact of varying the WAG ratio (the volume ratio
between a water slug and a CO; slug at the reservoir condition) on
CO: utilization and oil production. Compared with [18], the current
study is more comprehensive, evaluates the role of boundary
conditions, cell size, and variations in reservoir heterogeneity in
permeability. In addition, the current study extends their study to
ROZ reservoirs.

It has been suggested [19] that, oil recovery from WAG injection
of COz is more sensitive to heterogeneity than is water flooding. No
studies designed to understand the effects of the heterogeneity of
ROZ reservoirs on their oil production and CO: storage response
appear to have been published. Simulation of WAG injection stra-
tegies into model reservoirs that do not account for observed het-
erogeneity in parameters such as porosity and permeability, are
unlikely to yield realistic oil production and CO: storage
performance.

The capacity of ROZs to sequester COz through EOR is not well
understood as commercial scale ROZ floods have only been
implemented in the last decade. Although Bachu et al. [20] asserted
that ROZs are regarded by the oil industry as superior targets for
geological CO:z sequestration, there is little published supporting
information or analysis.

The objective of the current work is to understand the factors
controlling the performance of COz injection for EOR and the vol-
ume of associated COq storage in ROZs. Initially this study examined
the impact of varying the: (1) the size of the cells in the simulated
model; (2) the nature of domain boundary conditions; (3) the na-
ture of well conditions (perforation length, injection rate, and
bottom hole pressure); and (4) injection strategies (such as
continuous CO2 injection and WAG). As noted above the impact of
these factors on the results of simulations of WAG injections have
largely been ignored in previous work. The current study demon-
strates that these issues can have a significant effect on the esti-
mates of the efficiency of CO: storage associated with EOR and has
broad applicability to simulations of EOR in general. This study set
out to evaluate the influence on CO2 storage and EOR performance
of: varying WAG injection strategies; well configurations (by
comparing 40-acre, 5-spot injection patterns with 80-acre, 9-spot
patterns); and simulating reservoir volumes with the range of

heterogeneous reservoir properties found in a real San Andreas ROZ
reservoir. The work presented here would help us to better un-
derstand the future of ROZ reservoirs as targets for both CO2 storage
and EOR.

2. Theory and approach

The simulator used in the study, Eclipse-300 [21], is an efficient,
multidimensional, equation-of-state based, compositional simu-
lator. The software uses robust equation solvers and algorithms that
enable efficient numerical solutions to solve mass and energy
balance (continuum equations) describing the multi-phase flow of
COg, water, and oil in a heterogeneous porous media. The flow
governing equations used in this work are the same as those
described in Zuloaga et al. [22]. The dispersion of COs in oil reser-
voirs is not considered in simulations.

We employ a single rather than a dual permeability model for
the carbonate reservoir. In this reservoir fractures are limited in
occurrence and frequently filled by anhydrite cements (Duncan,
unpublished data based on extensive core and thin section obser-
vations). To understand the sensitivity of flow to the limited open
fractures observed, we employ matrix permeability multipliers to
approximate their effect.

2.1 Description of geology of selected study-areas

A carbonate ramp is the consensus depositional model used by
geologists in interpreting the depositional environment of the
carbonate hosted oil reservoirs in the San Andres Formation
[23e25]. This ramp sloped seaward at less than 2° and was char-
acterized by sedimentary facies belts, roughly parallel to the shelf
margin. San Andres oil reservoirs are typically found in the ramp
crest facies where wave energy belt is sufficient to produce “grain-
dominated rock-fabric facies” [23]. We utilized the three-
dimensional static reservoir model for a ROZ reservoir built by
Ren and Duncan [4] constructed to represent a typical San Andres
ROZ reservoir in carbonate ramp environment on the margin of the
Central Basin Platform. The ROZ reservoir consists largely of a facies
association of wackestones, packstones and rare grainstones that
formed on the seaward, deeper-water side of the ramp crest. The
overlying facies belts that formed the main reservoir prograded
over these rocks (Duncan, unpublished data). The reservoirs have
been pervasively dolomitized. The interaction of this event with the
original rock fabrics, together with later stage dolomite and anhy-
drite cementing of pores spaces, created the heterogeneity in
permeability and porosity observed today. From this model, we cut
out three dimensional reservoir volumes representing eleven Sub-
Volumes. These were selected to represent the likely range in
variability of the petrophysical properties (Table 1). Sub-Volumes

Table 1
Statistics of permeability fields for the study area before and after incorporating the
whole-core permeability-porosity correlation.

Study area model Mic_before, mD Si_before, mD Mic_after, mD Sk_after, mD
#1 5.3 22.7 6.1 22.3
#2 21.0 44.0 21.3 43.7
#3 22.3 54.6 22.7 54.3
#4 27.7 69.4 28.2 69.1
#5 11.5 59.8 11.6 59.2
#6 14.4 38.8 14.8 38.3
#7 17.4 54.6 18.0 54.3
#8 18.9 46.7 19.3 46.3
#9 15.2 73.3 15.2 72.8
#10 22.0 62.1 22.5 61.8
#11 21.1 56.4 214 56.1
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#1, 2, 3, 4, 5, 10, 11 represent the variability of the ROZ reservoir
along the long axis of the reservoir paralleling to the coastal margin
(along the strike). Sub-Volumes #7, 2, 6 and #9, 3, 8 represent two
parallel transects orthogonal to the long axis of the reservoir
(across the strike or along the dip, with #7 and 9 being close to the
shelf margin and #6 and 8 being on the interior side of the Central
Basin platform). These selected Sub-Volumes represent the range of
reservoir facies associated the San Andres ROZ. Computing the
arithmetic mean and standard deviation of the permeability's in
each Sub-Volume is used to represent the reservoir heterogeneity
in each.

The Sub-Volumes #1 through #9 (Table 1) were created with
inverted 5-spot (40-acre) well patterns where the model di-
mensions (number of cells in each direction) are
41 541 398 cells, with a cell size of 100 ft x100 ft %2 ft. The cell
size in the vertical direction varies in different layers with the
average 2 ft. For Sub-Volumes #10 and #11 (Table 1), 9-spot (80-
acre) well patterns were used with the model dimensions of the
modeled volume being 80«80 398 cells, with the same cell sizes
as for the 5-spot (40-acre) patterns. The initial pressure is assumed
to be hydrostatic, and the reservoir temperature is set to be 105 °F.

The average and standard deviations of permeability and
porosity computed for these nine Sub-Volumes were listed in
Table 1. To incorporate the effects of core-scale heterogeneity on
permeability, we utilized the permeability data published by
Honarpour et al. [26]. These data sets include the measurements
from core plugs and whole cores (Fig. 1b). Whole-core measure-
ments reveal the effects of core-scale heterogeneity and natural
fractures on a larger spatial scale than core plugs. The arithmetic
mean and standard deviation of the permeability in Table 1 are both
before and after incorporating the effects of large-scale heteroge-
neity represented in the whole-core measurements. The perme-
ability fields before incorporation were generated through using
the rock type model (I'ig. 1a) that were developed by Lucia [27].

Some adjustments were made in order to properly incorporate
the whole-core permeability-porosity correlation into the reservoir
model. As shown in Fig. 1b, the permeability measured on the
wholes cores can be orders of magnitudes larger than the perme-
ability of the core plugs when porosity is less than 15%. Considering
this, for cells with porosity larger than 15%, the permeability-
porosity transformation derived from the whole cores is used to
populate permeability in these cells in the geocellular model.
Permeability in the other cells is the same as before when using the

rock type method. After using the correlation, the mean of
permeability increases and the standard deviation decreases
(Table 1). The fields with a large fraction of low porosity should
have a large increase in permeability.

The ROZ oil properties used in this study are those reported by
Honarpour et al. [26]. At the reservoir conditions, the minimum
miscibility pressure for the CO2/oil mixture is approximately
1300e1450 psi [26]. Miscible flooding is easily achieved, and the
following flow simulation is based on this flood mode.

The relative permeability and capillary pressure curves were
adapted from Refs. [26,28]. Both the drainage and imbibition modes
were considered, and the settings in the relative permeability
curves were consistent with those in the capillary pressure curves.

22. Injection/production simulation schemes

The overall injection and production scheme designs were
based on the typical field operation in San Andres and similar
reservoirs in the Permian Basin. In the field, WAG injections are run
with injection pressures controlled by the depth of the reservoir,
together with the pipeline/recycle pressure and production pres-
sures. Our simulation designs were intended to be general and thus
cover different types of operational scenarios, including injection
strategies, well patterns, and pressures. Only vertical injectors are
considered in this work as the current practice of operators is to
deepen the current vertical wells into the ROZs.

For the lateral boundary conditions of the domain (Fig. 2), two
different types were investigated: closed and ‘buffered’ boundaries.
Closed boundaries are almost universally implemented in the
simulation of hydrocarbon production [29,30]. The buffered
boundaries introduced in this study are an attempt to create a more
realistic evaluation of the results of storage operations. For the
buffered boundaries, the pattern volume of interest, is surrounded
by the same well patterns by cutting a larger sub-volume from the
geocellular model. The outer boundaries of these rimming patterns
were closed. For example, in Fig. 2, eight well patterns were
employed to surround the middle one, and we called this buffered
boundary as “one rimming layer”. Similarly, two and three rimming
layers were also tested through cutting larger models. All the
quantitative evaluations were made only on the middle well
pattern.

For the domain upper boundary, it was assumed to be closed or
no-flow since our study is focused on ROZs. Some ROZs in the San

Fig. 1. (a) Rock type model used in building the permeability field, and the model is adapted from Lucia [27]; (b) the blue curve was the permeability-porosity correlation built on

the whole-core data. The green curve was built on the permeability-porosity data measured on core-plugs. These two curves were adapted from the publication by Honarpour et al.

[26]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Different lateral boundary conditions tested in this study. For the buffered boundaries, the middle well pattern was rimmed by eight of the same well patterns to

approximate realistic flow conditions. The evaluation was made only on the middle pattern.

Andres Formation underlie the main pay zones (MPZs). In this case,
some portion of the COz2 injected through ROZs would be likely to
move upward into the MPZs. For the domain lower boundary, it was
connected to an underlying aquifer with different body size tested
in the study. The nature of this underlying aquifer was modeled by
using the Carter-Tracy analytical aquifer [21].

Table 2 summarized the nature of the cases studied. Note that
the variable parameters are divided into three groups: domain
boundaries and sizes; injection parameters; and static reservoir
parameters. The first group consists of closed boundaries, buffered
boundaries, different sizes of underlying aquifers, and different cell
areal sizes (Lx and Ly in Table 2). The second group is comprised of:
injection rates; the depth of well perforations, the magnitude of
injected pore volumes (or PV), WAG ratios, CO2 half-cycle sizes, well
patterns (inverted 5-spot or 9-spot), and pattern coverage areas.
The third group of parameters are permeability anisotropies, het-
erogeneity differences between the dip and strike directions, nat-
ural fractures, and the thickness of the underlying aquifer. All the
simulations were run for 25 years, which is a typical duration for a
pattern in a commercial CO2 EOR operation.

23, Metrics for COz EOR and storage performance

The use of metrics to evaluate the behavior of COz floods dates

back at least to the work of Hadlow [6] who plotted the “cumulative
COg; retention versus cumulative COz injection” for five major CO2
EOR projects in the Permian Basin. Hadlow also used a metric he
termed overall or gross COz utilization, defined as the volume of
CO:z injected per incremental barrel of oil produced.

Azzolina et al. [31] have presented a more comprehensive set of
metrics. Following Melzer's definition [32], we defined CO: reten-
tion by the relation:

CO: retention fraction = (total CO: injected — CO2 produced) / total
COz injected

Where: CO:z retention = percent of injected CO2 retained in the
reservoir (%); total COz injected = total injected volumes of CO2
[purchased plus recycled COs] (% of the total hydrocarbon pore

volume (HCPV)); and CO: produced = total produced volumes of
CO: [recycled CO:] (%HCPV).

3. Results

In the following, we examined the results of simulations in the
context of systematically varying the nature of the models, the
boundary conditions, and the nature of the reservoir Sub-Volumes
selected. The relevant physics were added into the flow simulations
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Summary of conditions for simulations.
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Ly, Ly, Domain lateral Sub- Well COq CO2 Underlying WAG COz half- Incorporating the k,y/ Mainly tested parameters
& S/t boundary conditions Volume  pattern, injection injector aquifer ratio cycle size, hole-core perm- kn
model size rate, MScf/ perforation thickness, ft HPCV porosity correlation
label d
100 100 Closed, Buffered: #1 Inverted 3000 Complete 0 0 NA No 0.1 Boundary conditions
one layer, two-layer, 5-spot,
three-layer 40-acre
20 20 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1 Cell areal sizes
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1
5-spot,
40-acre
200 200 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Lower 0 0 NA No 0.1 Perforation lengths
5-spot, quarter
40-acre
100 100 Buffered: one layer #1 Inverted 6000 Complete 0 0 NA No 0.1 Injection rates
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25, 2.5% No 0.1 WAG ratios
5-spot, 0.5, 1,
40-acre 2
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25  1.0%, 2.5%, No, Yes 0.1 COg half-cycle sizes, natural
5-spot, 5.0% fractures
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0, 2.5% Yes 0.1, Permeability anisotropies,
5-spot, 0.25, 1, WAG ratios
40-acre 0.5, 1, 10
2
100 100 Buffered: one layer #1 Inverted 3000 Complete 125, 250, 0.25 2.5% Yes 0.1 Underlying aquifer thickness
5-spot, 500, 1000
40-acre
100 100 Buffered: one layer #2 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1 Different sub-volume models,
5-spot, 0.25 5.0% Continuous COz injection vs.
40-acre WAG injection
100 100 Buffered: one layer #3 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #4 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 2.5% Yes 0.1,
5-spot, 0.25, 1,
40-acre 0.5, 1, 10
2
100 100 Buffered: one layer #6 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #7 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #8 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 0.25 5.0%
40-acre
100 100 Buffered: one layer #9 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 0.25 5.0%
40-acre
100 100 Buffered: one layer #10 Inverted 3000 Complete 0 0, 2.5% Yes 0.1 Well patterns, Different sub-
9-spot, 0.25, volume models
80-acre 0.5, 1,
100 100 Buffered: one layer #11 Inverted 3000 Complete 0 0, 2.5% Yes 0.1
9-spot, 0.25,
80-acre 0.5, 1,
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in steps to explore their specific contribution to COz retention.
Varying the parameters in Table 2 affect both COz retention and
oil production. The impact on associated storage can be quantified
in two ways: the time-averaged retention fractions (averaged over
the whole injection period) and the instantaneous retention frac-
tion. These metrics can be computed by using both numerical re-
sults and field data. These metrics do not measure the relative
importance of COz storage modes such as the free state and capil-
lary trapped CO2 [33,34]. As oil reservoirs appear to have a very low
leakage risk during CO: storage [35], our work focused on CO:
retention, rather than the detailed quantification of storage modes.

31 Effect of cell size

The size of cells in the geocellular model used for simulations is
a key modeling parameter that has been little studied. We con-
ducted a sensitivity analysis to find the optimal size that balances
numerical accuracy and computational efficiency. Fig. 3 shows the
cumulative oil production as a function of elapsed time for different
combinations of cell areal sizes. The cell thickness was not changed
(around ~2 ft) when varying the areal sizes. After 10 years, the oil
production for the coarsest grid (largest cell size) is about 20%
higher than that for the finer grids. When the cell areal dimensions
are 100100 ft, the changes in predicted oil volumes from the
simulations are minimal. There is a reasonable trade-off between
apparent accuracy and computational time. Thus, we will use this
cell size in the following.

32. Effect of domain lateral boundary conditions

This study set out to explore the relationship between choosing
different boundary conditions and the results from the associated
simulations. Fig. 4 shows the effect of varying the lateral boundary
conditions imposed on the modeled domain on the metrics for oil
production and associated CO:2 storage. The retention fraction is
sensitive to the nature of boundary conditions (Fig. 4a). The buff-
ered boundary conditions yield a higher retention fraction than
those for the closed boundary conditions. Application of these two
types of boundary conditions result in similar gross CO2 utilization
ratios. For the buffered boundaries, the number of rimming layers
affect the evaluation of retention fractions. The retention fractions
for the three types of buffered boundaries (namely, one, two, and
three rimming layers) in one set of simulations showed a difference
of 18%. This large difference arises from the different levels of
heterogeneity for the rimming patterns. Such a large difference

Fig. 3. Cumulative oil production vs. time for the different areal cell sizes.

Fig. 4. Effect of domain lateral boundary conditions on COz retention fractions (a) and
gross CO; utilization ratios (b).

indicates the magnitude of uncertainty involved in the evaluation
of retention fractions for realistic reservoir models. For simplicity,
buffered boundaries with one rimming layer will be used in the rest
of the simulations.

33 Effect of well conditions (perforation and injection/production
pressure)

Two different scenarios for the perforation of injection wells are
considered: (1) complete perforation of the depth range of the ROZ
reservoir; and (2) the perforation of the lower quarter. The com-
plete perforation case is equivalent to the open-hole injection of
COg2, which was a common practice when many of the San Andres
reservoirs were first produced. The results of our simulations (first
tworows in Table 3) show that COz retention fractions are largely
insensitive to perforation intervals (0.698 versus 0.696). In the
same simulation, the two perforation strategies have a significant
influence on the oil production rates (4.9 vs. 12.8 Stbd/well). The
complete perforations result in an increased sweep efficiency
compared with the lower-quarter perforations. This higher sweep
efficiency reflects the layered nature of the reservoir, with high
permeability “flow units” interlayered with low permeability
(<0.01mD) flow barriers and baffles (discontinuous flow barriers).
These largely constrain COz to laterally push oil towards producers.
Two COz injection strategies were considered: constant pres-
sure and constant rate. Simulation results (1st and 3rd row in
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Table 3

COz2 rention and oil production for differently combined well conditions during continuous COz injection.

Well conditions® COz retention fraction Stbd2/Well
Inj_rate ¥4 3 MM Scf/d; Pro_bhp ¥4 2020 psi; Complete perforation in injectors (base case settings) 0.696 12.8
Inj_rate ¥4 3 MM Scf/d; Pro_bhp ¥ 2020 psi; Lower-quarter perforation in injectors 0.698 4.9
Inj_rate ¥4 6 MM Scf/d; Pro_bhp Y4 2020 psi; Complete perforation in injectors 0.629 19.6
Inj_bhp ¥4 2600 psi; Pro_bhp ¥ 2020 psi (bubble point) Complete perforation in injectors 0.696 4.3
Inj_bhp ¥4 2600 psi; Pro_bhp % 1400 psi (MMP) Complete perforation in injectors 0.647 9.6

a Stbd, standard tank barrel per day.

b Inj ¥ injectors, Pro ¥ producers, bhp ¥ bottom hole pressure.

Table 3) show that, when imposing a constant rate on injectors,
large CO: injection rates typically enhance oil production (12.8
stbd/well for base case vs. 19.6 stbd/well). For these two cases the
time-averaged CO:z retention fraction decreased from 0.696 to
0.629. The injection rate can have a significant effect on COz
retention. Injection/production pressure shows the similar effect on
the retention fraction as injection rates (the last two row in Table 3).
When the production bottom hole pressure decreased from 2020
psi (bubble point pressure) to 1400 psi (MMP), the retention frac-
tion shows a significant decrease (from 0.696 to 0.647), and oil
production rate for the well doubled (from 4.3 to 9.6 Stbd/well).

34 Effect of half-cycle size and WAG ratio

Two important parameters involved in WAG injection are WAG
ratios and CO: half-cycle sizes (measured in terms of the %HCPV.

Fig. 5. Effect of WAG ratio and CO; half-cycle size on CO; retention (a) and oil pro-
duction (b) for the Sub-Volume model #1. The used geologic models are without
incorporating the whole-core permeability-porosity correlation.

The impact of these two parameters on CO: retention and oil pro-
duction are shown in Fig. 5a and b. For a given COz half-cycle size,
the COz retention fraction first decreases with the increasing WAG
ratio, followed by a steady increase (I'ig. 5a). Note that continuous
CO: injection (at zero WAG ratio) enhances sequestration as the
COzq retention fraction can be as high as 0.69.

If the oil production is the priority, the WAG ratios corre-
sponding to the smallest retention fractions should be considered
as these ratios result in the highest oil production (FFig. 5b). Based
on these simulations, the retention fraction does not decrease
significantly (from 0.69 to only 0.67) when changing from contin-
uous CO: injection (WAG ratio ¥ 0) to optimized WAG injection for
oil production (WAG ratio ¥4 0.25) (Fig. 5a vs. Fig. 5b).

3.5 Effect of permeability anisotropy

To examine the CO: retention sensitivity to the anisotropy of
permeability, the ratio of the vertical to horizontal permeability (k./
ko) was varied from 0.1 to 10 while keeping k, unchanged. Aniso-
tropic permeabilities on the order of 10x k¢ can be caused by ver-
tical natural-fractures. As the permeability anisotropy increases,
the CO2 retention fraction decreases (Fig. 6). With increasing WAG
ratio, the effect of permeability anisotropies on the CO: retention
fraction becomes more pronounced. At a small WAG ratio, the
permeability anisotropy has a weak effect on CO2 retention. How-
ever, as the WAG ratio increases, the retention enhancement caused
by decreasing vertical permeability becomes large (Fig. 6).

3.6. Effect of injection techniques and reservoir heterogeneity

The retention fractions for the two different COz injection
techniques (i.e., continuous CO: injection and WAG injection) are
compared in Fig. 7. The retention fraction changes marginally

Fig. 6. Effect of permeability anisotropy on COz retention for the Sub-Volume mode #1.
The whole-core permeability-porosity correlation was incorporated into the reservoir
model.
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Fig. 7. COz retention for different Sub-Volumes under both continuous CO: injection
and WAG injection. The CO: retention fractions for the WAG injection correspond to
the optimal WAG ratio (i.e., the WAG ratio that gives the largest oil production).

Fig. 8. Cross plot of CO2 retention fractions versus the permeability standard de-
viations for the nine Sub-Volumes (from #1 to #9 in Table 1) undergoing continuous
COg injection. The retention fractions for WAG injection were not shown here as they
are close to those for continuous COs injection (Fig. 7). These simulations are based on
the whole-core permeability-porosity correlation.

(around # 0.04) between these two injection strategies.

The range of COz retention fractions for the 9 Sub-Volumes from
0.36 to 0.70, appears to be correlated with reservoir heterogeneity
(Fig. 8) as measured by the standard deviation of permeabilities
within each Sub-Volume. Generally, the retention fraction increase
with decreasing heterogeneity (i.e., decreasing permeability stan-
dard deviation). Homogeneity enhances CO2 sweep efficiency and a
larger percentage of the CO: injected occupies the pore spaces
where the in-situ oil or water has been displaced.

All the above CO: storage efficiencies are time-averaged over
25 yrs. Fig. 9 shows the evolution of retention fractions for the nine
Sub-Volumes during continuous COz injection. The evolution of CO2
retention reflects the varying production rates of COz. For example,
consider the results for the Sub-Volume #7 (the lowest red dashed
curve in Fig. 9) the CO: retention fraction decreases rapidly, i.e.,
most of the injected COz is produced rapidly. This appears to be due
to the large heterogeneity in permeability (refer to Table 1) in this
Sub-Volume, resulting in early CO2 breakthrough. WAG injection
into this Sub-Volume will increase the volume of CO: retained in
the reservoir. In contrast, Sub-Volume #1 has the largest retention
fraction, and the standard deviation of the permeability in this

Fig. 9. Evolution of CO; retention fractions for the nine (from #1 to #9 in Table 1) Sub-
Volumes with 5-spot well patterns. Dashed lines correspond to the Sub-Volumes
across the strike direction.

reservoir volume is estimated to be the smallest among the nine
Sub-Volumes (refer to Table 1).

3.7. Effect of well patterns and pattern volume

Overall, the COz retention fractions for the 80-acre inverted 9-

Fig. 10. Effect of WAG ratios on CO; retention (a) and oil production (b). The inverted
5-spot results are for the Sub-Volume #1, which partially overlaps the 9-spot Sub-
Volume #10 in space. The assessment employed the reservoir model that incorpo-
rated the whole-core permeability-porosity correlation.
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spot pattern are less than those for the 40-acre inverted 5-spot
pattern (Fig. 10 a). This may be because of the high producer/
injector ratio (more production wells) involved in the inverted 9-
spot pattern. It also may be related to the larger areal extent (80-
acre) of the 9-spot patterns compared with the 40-acre, 5-spot
patterns. The difference in retention fractions between the two
patterns becomes smaller as the WAG ratio increases. For the 9-spot
pattern, the smaller COz retention can be compensated by using a
large WAG ratio (Fig. 10 a).

If oil production is the priority, employing a large (>1) WAG
ratio is a poor choice (Fig. 10 b). For 9-spot well patterns, the
averaged oil production rate rapidly decreases with the increase in
the WAG ratio (less CO: cumulatively injected), whereas the
retention fraction shows the opposite trend. At the point of the
maximum oil production rate, only 45% of injected COz is stored for
the 80-acre, 9-spot pattern. However, for the 40-acre, 5-spot
pattern, the WAG ratio, at which the maximum oil production is
achieved, yields the high retention fraction of 70%.

4. Discussion and conclusions

41. Impact of model cell size, boundary conditions and operational
parameters on simulation results

The first step taken in this study, was to evaluate the impact of
increasing the resolution of the static reservoir model on the re-
sults from simulations of WAG injection of CO2. This study showed
that simulation of a coarser geocellular grid (200¢ 200 2 ft)
results in oil production ~20% higher than for grids with the cells
size 100 X 100 X 2ft and smaller. As the majority of published
studies of COz injection did not conduct grid size sensitivity study
(for example [17,36]), our result is sobering. It is likely that the cell
size dependency on these metrics is a function of the heteroge-
neity modeled by the geocellular model. This is worthy of further
study.

The second step in our study, was examining the impact of the
choice of boundary conditions on simulation results. Again, the
impact of boundary conditions imposed on modeling of WAG in-
jection appear to have been largely, if not entirely ignored by pre-
vious published studies. Many studies do not document the
boundary conditions used, but those who do largely use no flow
boundary conditions. The simulations performed in the current
study resulted in values for CO: retention for closed boundary
conditions lower by as much as 35% compared with what is referred
to in this paper as “buffered boundary conditions”. The buffering
used in this study was created by cutting a volume one, two, or
three patterns wide from the whole reservoir static reservoir model
of Ren and Duncan [4]. As the buffer zone is populated by real
reservoir data these are arguably significantly more realistic than
closed boundaries. Previous studies that assume no flow between
adjacent patterns may give inaccurate estimates of the amount of
COg retained in ROZs. Of course, model simulations that do not
include reservoir heterogeneity will not be impacted by choice of
boundary conditions. Unfortunately, such simulations are highly
unlikely to produce realistic results.

Although our study has shown that increasing the COs injection
rate from 3 to 6 MM Scf/d resulted in an increase in oil production
from 12.8 to 19.6 Stbd/well and a decrease in the time-averaged CO2
retention fraction from 0.696 to 0.629. However, in the field oper-
ation of reservoirs injection rate is not an independent variable but
rather is controlled by the imposed injection pressures. Injection
pressures are constrained by factors such as the delivery pressure of
COz pipelines or the sizing of COz recycle compressors, together
with the depth of the fluid column in injection wells.

42. Analysis of the impact of the nature of WAG injection

A systematic numerical assessment has been conducted on CO2
storage associated with EOR utilizing WAG injection into ROZ res-
ervoirs. The simulations are based on vertical injectors that have
been adopted by the great majority of field operators implementing
CO2 EOR projects. In addition, the numerical assessment employs
WAG injection and continuous CO:2 injection, which have been
widely employed in oilfields [37]. A set of 3-D Sub-Volumes cut
from the detailed static reservoir model was utilized in the current
study. Each was centered on an inverted 40-acre, 5-spot or 80-acre,
9-spot injection pattern. These volumes were selected to enable
modeling of a range of reservoir heterogeneity as measured by the
standard deviation of permeability. The aim was to understand how
reservoir heterogeneity in ROZ reservoirs influences COz storage
incidental to CO2-EOR. Multi-phase flow simulations were con-
ducted on these volumes.

The results of these numerical experiments is consistent with
the conclusion that maximum COz retention in ROZs can be ach-
ieved by a combination of large WAG ratios (around 1e3), and the
implementation of inverted 5-spot well patterns. Reservoirs with
homogeneous permeability fields and small permeability anisot-
ropies will have larger retention of COz. In contrast, for 5-spot well
patterns, a combination of complete perforation, high COz2 injection
rates, small WAG ratios (around 0.1 to 0.6) increase oil production.

Both oil production and COzq retention fractions in ROZs can be
simultaneously high when using a combination of 5-spot well
patterns and continuous COz injection. If maximizing oil produc-
tion is the priority, a combination of 9-spot well patterns and WAG
injection appears to be a superior strategy. The optimal WAG ratio
for achieving the maximum oil production differs for the reservoir
subareas in our study that have different levels of heterogeneity.
This appears to be because heterogeneity influences the effective-

ness and necessity of injecting water during WAG.

43. The role of the heterogeneity of the reservoir on CO: storage

The current study appears to be the first published attempt to
systematically understand the role of reservoir heterogeneity on
metrics such as COz retention. This study has shown that the more
homogeneous the permeability field (and presumably the greater
the sweep efficiency), the higher the retention fraction. This is
consistent with our traditional understanding that reservoir ho-
mogeneity is also favorable to enhancing oil recovery [29]. In
contrast, reservoir heterogeneity tends to cause early CO2 break-
through and poor COz retention (Fig. 9 and Table 1).

The simulations in this study are consistent with the retention
fraction for COz varying by a factor of two, from 0.36 to 0.70 for Sub-
Volumes modeled within the ROZ reservoir. This range difference
appears to be attributable, at least in part, to reservoir heteroge-
neity. The data presented in the current study is consistent with the
retention fraction increasing with decreasing heterogeneity (.e.,
decreasing permeability standard deviation). Homogeneity en-
hances CO: sweep efficiency and a larger percentage of the CO:
injected occupies the pore spaces where the in-situ oil or water has
been displaced. In evaluating the CO: storage associated with the
future carbon capture and storage (CCS) projects in ROZ reservoirs a
range of this magnitude is very significant.

The WAG simulations presented in this study were designed to
understand the impact of reservoir heterogeneity. The approach
was motivated in part by the whole-core versus core plug-based
permeability-porosity correlation presented by Honarpour et al.
[26]. The differences in permeability between traditional core plug
data versus the whole-core measurement reveal significant het-
erogeneities in permeability at a scale of inches. In studies of ROZ
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reservoirs, the heterogeneity associated with natural fractures
should be carefully characterized as they can have a significant
effect on CO: retention. The design of WAG injections should
consider the intensities of natural fractures in different Sub-
Volumes of a given reservoir model. The use of a single WAG ra-
tio for the whole field might not be the best strategy.

44 Implications to the future projects of carbon sequestration
associated with EOR in ROZs

The overall assessment shows that CO: storage in ROZs is
impacted by both injection strategies and reservoir heterogeneity.
For vertical COz injectors, larger WAG ratios always result in higher
retention fractions, however the cumulative volume of COz injected
is also decreased.

If maximizing oil production is the priority, COz injection
alternating with relatively small slugs of water (i.e., small WAG
ratio, around 0.25) is a good choice. This injection is different from
the WAG in traditional (originally oil saturated) reservoirs. For such
reservoirs, published optimized WAG ratios have been reported in
the range of 0.9e3 [38], which is much higher than the optimized
WAG ratios derived from this current study. The reasons for this
difference are not clear and are worthy of further study. As noted by
Ren and Duncan [4], the oil saturation in ROZs is different from that
in originally oil saturated reservoirs. In these reservoirs, much of
the remaining oil after man-made water flooding (and before CO2
injection) resides in reservoir regions not swept during water
flooding. In ROZs the oil saturation is apparently developed through
relatively slow regional water flushing. In virgin ROZ reservoirs, oil
saturation tends to be relatively uniform, except where some low
porosity/permeability patches have retained relatively high oil
saturation [4].

4.5 Final thoughts

It is important to accurately estimate the magnitude of CO2
storage affected by WAG based EOR into ROZs with a range of in-
jection strategies. The current study has shown that such accurate
estimates require careful consideration of: (1) the nature of
imposed boundary conditions; (2) the impact of the size of the cells
in the simulations grid; (3) the nature of reservoir heterogeneitys;
and (4) the nature of WAG protocols. Most previously-published
simulation studies fail to take into account most or all of these
critical issues.

In the simulation results presented in the current study, CO:
retention is found to be strongly influenced by the heterogeneity
and anisotropy of the permeability field. Portions of the reservoir
with both less permeability heterogeneity and anisotropies (ratio
between vertical and horizontal permeability) have higher CO:
retention fractions.

The results of this study, based on real static reservoir models,
for the first time, provide a robust understanding of the factors
controlling CO: storage associated with WAG CO: injection to
improve oil production in ROZ reservoirs. Simulation of WAG in-
jection strategies into model reservoirs that do not account for
observed heterogeneity in parameters such as porosity and
permeability, are unlikely to yield realistic oil production and CO2
storage performance.

The results of this study provide key insights into how future
COg storage projects associated with EOR in ROZs within carbonate
sequences may be evaluated and then implemented.
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Abbreviations
BHP Bottom hole pressure
CCS Carbon capture and storage

CO2-EOR CO: enhanced oil recovery

HCPV Hydrocarbon pore volume
MPZs Main pay zones
PV Pore volume
ROZs Residual oil zones
Stbd Standard tank barrel per day
WAG Water alternating gas
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Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such
reservoirs cannot be produced by conventional techniques; rather some forms of enhanced oil recovery
(EOR), such as COs injection is required. As a result, these zones have a potential for CO3 storage asso-
ciated with EOR activities. In West Texas, the oil production potential of these zones, associated with the
San Andres Formation alone, has been estimated as on the order of tens of billions of barrels. A series of
numerical simulations of CO2 miscible flooding were conducted on 11 Sub-Volumes cut from a larger
static reservoir that represents the range of heterogeneity in permeability and porosity found in San
Andres ROZs. This work set out to evaluate the effects of injection strategies and reservoir heteroge-
neities on the performance of CO:z sequestration. The injection techniques investigated were: continuous
CO: injection and water alternating gas (WAG). Multiple factors were examined, including domain
boundary conditions, well patterns, injection rates, permeability anisotropies, and natural fractures. It
was found that ROZs could have higher retention fractions (i.e., volume fraction of injected COs retained
in ROZs) for a combination of inverted five-spot well patterns and large WAG ratios. Based on the results
of these numerical simulations, the long-term potential for CO2 storage associated with CO2-EOR of ROZs
can be assessed. Our results provide key insights into how future CO:2 storage projects associated with
EOR in ROZs within carbonate sequences may be implemented.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

sequestration associated with future CO2-EOR projects is very sig-
nificant. Such projects are already underway with commercial scale

Residual oil zones (ROZs) are reservoirs in which oil is largely at
levels near those for residual saturation [1]. The oil in ROZ reser-
voirs cannot be produced by conventional techniques, but rather
requires either CO: enhanced oil recovery (COs-EOR) or uncon-
ventional strategies, such as horizontal drilling and intense
depressurization by dewatering (see Ref. [2]). ROZs are widely
distributed in the Permian Basin of West Texas. The volume of oil
recoverable from ROZs in both the San Andres and Canyon Reef
formations of Permian Basin, have been estimated by Koperna et al.
[3] as 12 billion barrels, with unpublished estimates an order of
magnitude or more. Thus, the potential for large scale CO:

* Corresponding author.
E-mail addresses: boren@utexas.edu (B. Ren), ian.duncan@beg.utexas.edu
(L.J. Duncan).

https://doi.org/10.1016/j.energy.2018.11.007
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WAG injections into ROZs currently taking place in eight San
Andres oil fields in the Permian Basin utilizing WAG (water alter-
nating gas) injection of COs [4].

This study presents a series of simulations of the outcomes of
WAG injections designed to give insights into oil production and
CO; storage associated with EOR projects in the ROZs of the San
Andres Formation. Apart from a limited, preliminary simulation
study by Jamali and Ettehadtavakkol [5] there have been no pub-
lished full-physics studies of WAG injections into ROZ reservoirs.

Given that the use of depleted oil reservoirs for CO2 sequestra-
tion was suggested at least 25 years ago [6,7], surprisingly few
detailed studies were based on both full-physics simulation and
real heterogeneous reservoir data, designed to elucidate the nature
of incidental storage associated with EOR. The comprehensive re-
view of CO2EOR by WAG injection by Afzali et al. [8] did not
reference any publications on this topic, equivalent in scope and
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detail to the current study. Numerous core flooding and rock-water-
CO: interaction studies have been made on CO: injections (for
example [9€12]). Such experiments are useful to understand the
processes involved in WAG flooding. However, they provide only
limited insights into the field scale response of real reservoirs,
which have multiple spatial scales of heterogeneity.

Many studies that have used multi-phase fluid flow simulations
to evaluate COz injection strategies, at the level of individual 5-spot
(or similar patterns). Of these, only a few have attempted to un-
derstand the factors impacting both COz storage and oil recovery in
the saturated zones of oil reservoirs (see for example [13€17]). The
applicability of most of these studies to field-based EOR operations
is limited, in that they: have not utilized fact-based, high-resolu-
tion, three-dimensional static models; do not include realistic
representations of the natural heterogeneity found in real reser-
voirs; fail to evaluate the validity of the no-flow conditions they
assume at the boundaries of the “5-spot” or other injection patterns
being studied; do not compute metrics such a COg utilization and
CO: retention that can be compared to those in characterizing
actual oilfields; make no evaluation of the impact of reservoir
model cell size on the simulation results; and often use injection
conditions that are incompatible with the operational re-
quirements of CO2-EOR projects. The current study makes a unique
contribution in that it addresses these issues. The study by Ette-
hadtavakkol et al. [18] was based on synthetic reservoirs with
simulated heterogeneous properties. Their analysis included a
study of the impact of varying the WAG ratio (the volume ratio
between a water slug and a CO; slug at the reservoir condition) on
CO: utilization and oil production. Compared with [18], the current
study is more comprehensive, evaluates the role of boundary
conditions, cell size, and variations in reservoir heterogeneity in
permeability. In addition, the current study extends their study to
ROZ reservoirs.

It has been suggested [19] that, oil recovery from WAG injection
of COz is more sensitive to heterogeneity than is water flooding. No
studies designed to understand the effects of the heterogeneity of
ROZ reservoirs on their oil production and CO: storage response
appear to have been published. Simulation of WAG injection stra-
tegies into model reservoirs that do not account for observed het-
erogeneity in parameters such as porosity and permeability, are
unlikely to yield realistic oil production and CO: storage
performance.

The capacity of ROZs to sequester COz through EOR is not well
understood as commercial scale ROZ floods have only been
implemented in the last decade. Although Bachu et al. [20] asserted
that ROZs are regarded by the oil industry as superior targets for
geological CO:z sequestration, there is little published supporting
information or analysis.

The objective of the current work is to understand the factors
controlling the performance of COz injection for EOR and the vol-
ume of associated COq storage in ROZs. Initially this study examined
the impact of varying the: (1) the size of the cells in the simulated
model; (2) the nature of domain boundary conditions; (3) the na-
ture of well conditions (perforation length, injection rate, and
bottom hole pressure); and (4) injection strategies (such as
continuous CO2 injection and WAG). As noted above the impact of
these factors on the results of simulations of WAG injections have
largely been ignored in previous work. The current study demon-
strates that these issues can have a significant effect on the esti-
mates of the efficiency of CO: storage associated with EOR and has
broad applicability to simulations of EOR in general. This study set
out to evaluate the influence on CO2 storage and EOR performance
of: varying WAG injection strategies; well configurations (by
comparing 40-acre, 5-spot injection patterns with 80-acre, 9-spot
patterns); and simulating reservoir volumes with the range of

heterogeneous reservoir properties found in a real San Andreas ROZ
reservoir. The work presented here would help us to better un-
derstand the future of ROZ reservoirs as targets for both CO2 storage
and EOR.

2. Theory and approach

The simulator used in the study, Eclipse-300 [21], is an efficient,
multidimensional, equation-of-state based, compositional simu-
lator. The software uses robust equation solvers and algorithms that
enable efficient numerical solutions to solve mass and energy
balance (continuum equations) describing the multi-phase flow of
COg, water, and oil in a heterogeneous porous media. The flow
governing equations used in this work are the same as those
described in Zuloaga et al. [22]. The dispersion of COs in oil reser-
voirs is not considered in simulations.

We employ a single rather than a dual permeability model for
the carbonate reservoir. In this reservoir fractures are limited in
occurrence and frequently filled by anhydrite cements (Duncan,
unpublished data based on extensive core and thin section obser-
vations). To understand the sensitivity of flow to the limited open
fractures observed, we employ matrix permeability multipliers to
approximate their effect.

2.1 Description of geology of selected study-areas

A carbonate ramp is the consensus depositional model used by
geologists in interpreting the depositional environment of the
carbonate hosted oil reservoirs in the San Andres Formation
[23e25]. This ramp sloped seaward at less than 2° and was char-
acterized by sedimentary facies belts, roughly parallel to the shelf
margin. San Andres oil reservoirs are typically found in the ramp
crest facies where wave energy belt is sufficient to produce “grain-
dominated rock-fabric facies” [23]. We utilized the three-
dimensional static reservoir model for a ROZ reservoir built by
Ren and Duncan [4] constructed to represent a typical San Andres
ROZ reservoir in carbonate ramp environment on the margin of the
Central Basin Platform. The ROZ reservoir consists largely of a facies
association of wackestones, packstones and rare grainstones that
formed on the seaward, deeper-water side of the ramp crest. The
overlying facies belts that formed the main reservoir prograded
over these rocks (Duncan, unpublished data). The reservoirs have
been pervasively dolomitized. The interaction of this event with the
original rock fabrics, together with later stage dolomite and anhy-
drite cementing of pores spaces, created the heterogeneity in
permeability and porosity observed today. From this model, we cut
out three dimensional reservoir volumes representing eleven Sub-
Volumes. These were selected to represent the likely range in
variability of the petrophysical properties (Table 1). Sub-Volumes

Table 1
Statistics of permeability fields for the study area before and after incorporating the
whole-core permeability-porosity correlation.

Study area model Mic_before, mD Si_before, mD Mic_after, mD Sk_after, mD
#1 5.3 22.7 6.1 22.3
#2 21.0 44.0 21.3 43.7
#3 22.3 54.6 22.7 54.3
#4 27.7 69.4 28.2 69.1
#5 11.5 59.8 11.6 59.2
#6 14.4 38.8 14.8 38.3
#7 17.4 54.6 18.0 54.3
#8 18.9 46.7 19.3 46.3
#9 15.2 73.3 15.2 72.8
#10 22.0 62.1 22.5 61.8
#11 21.1 56.4 214 56.1
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#1, 2, 3, 4, 5, 10, 11 represent the variability of the ROZ reservoir
along the long axis of the reservoir paralleling to the coastal margin
(along the strike). Sub-Volumes #7, 2, 6 and #9, 3, 8 represent two
parallel transects orthogonal to the long axis of the reservoir
(across the strike or along the dip, with #7 and 9 being close to the
shelf margin and #6 and 8 being on the interior side of the Central
Basin platform). These selected Sub-Volumes represent the range of
reservoir facies associated the San Andres ROZ. Computing the
arithmetic mean and standard deviation of the permeability's in
each Sub-Volume is used to represent the reservoir heterogeneity
in each.

The Sub-Volumes #1 through #9 (Table 1) were created with
inverted 5-spot (40-acre) well patterns where the model di-
mensions (number of cells in each direction) are
41 541 398 cells, with a cell size of 100 ft x100 ft %2 ft. The cell
size in the vertical direction varies in different layers with the
average 2 ft. For Sub-Volumes #10 and #11 (Table 1), 9-spot (80-
acre) well patterns were used with the model dimensions of the
modeled volume being 80«80 398 cells, with the same cell sizes
as for the 5-spot (40-acre) patterns. The initial pressure is assumed
to be hydrostatic, and the reservoir temperature is set to be 105 °F.

The average and standard deviations of permeability and
porosity computed for these nine Sub-Volumes were listed in
Table 1. To incorporate the effects of core-scale heterogeneity on
permeability, we utilized the permeability data published by
Honarpour et al. [26]. These data sets include the measurements
from core plugs and whole cores (Fig. 1b). Whole-core measure-
ments reveal the effects of core-scale heterogeneity and natural
fractures on a larger spatial scale than core plugs. The arithmetic
mean and standard deviation of the permeability in Table 1 are both
before and after incorporating the effects of large-scale heteroge-
neity represented in the whole-core measurements. The perme-
ability fields before incorporation were generated through using
the rock type model (I'ig. 1a) that were developed by Lucia [27].

Some adjustments were made in order to properly incorporate
the whole-core permeability-porosity correlation into the reservoir
model. As shown in Fig. 1b, the permeability measured on the
wholes cores can be orders of magnitudes larger than the perme-
ability of the core plugs when porosity is less than 15%. Considering
this, for cells with porosity larger than 15%, the permeability-
porosity transformation derived from the whole cores is used to
populate permeability in these cells in the geocellular model.
Permeability in the other cells is the same as before when using the

rock type method. After using the correlation, the mean of
permeability increases and the standard deviation decreases
(Table 1). The fields with a large fraction of low porosity should
have a large increase in permeability.

The ROZ oil properties used in this study are those reported by
Honarpour et al. [26]. At the reservoir conditions, the minimum
miscibility pressure for the CO2/oil mixture is approximately
1300e1450 psi [26]. Miscible flooding is easily achieved, and the
following flow simulation is based on this flood mode.

The relative permeability and capillary pressure curves were
adapted from Refs. [26,28]. Both the drainage and imbibition modes
were considered, and the settings in the relative permeability
curves were consistent with those in the capillary pressure curves.

22. Injection/production simulation schemes

The overall injection and production scheme designs were
based on the typical field operation in San Andres and similar
reservoirs in the Permian Basin. In the field, WAG injections are run
with injection pressures controlled by the depth of the reservoir,
together with the pipeline/recycle pressure and production pres-
sures. Our simulation designs were intended to be general and thus
cover different types of operational scenarios, including injection
strategies, well patterns, and pressures. Only vertical injectors are
considered in this work as the current practice of operators is to
deepen the current vertical wells into the ROZs.

For the lateral boundary conditions of the domain (Fig. 2), two
different types were investigated: closed and ‘buffered’ boundaries.
Closed boundaries are almost universally implemented in the
simulation of hydrocarbon production [29,30]. The buffered
boundaries introduced in this study are an attempt to create a more
realistic evaluation of the results of storage operations. For the
buffered boundaries, the pattern volume of interest, is surrounded
by the same well patterns by cutting a larger sub-volume from the
geocellular model. The outer boundaries of these rimming patterns
were closed. For example, in Fig. 2, eight well patterns were
employed to surround the middle one, and we called this buffered
boundary as “one rimming layer”. Similarly, two and three rimming
layers were also tested through cutting larger models. All the
quantitative evaluations were made only on the middle well
pattern.

For the domain upper boundary, it was assumed to be closed or
no-flow since our study is focused on ROZs. Some ROZs in the San

Fig. 1. (a) Rock type model used in building the permeability field, and the model is adapted from Lucia [27]; (b) the blue curve was the permeability-porosity correlation built on

the whole-core data. The green curve was built on the permeability-porosity data measured on core-plugs. These two curves were adapted from the publication by Honarpour et al.

[26]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Different lateral boundary conditions tested in this study. For the buffered boundaries, the middle well pattern was rimmed by eight of the same well patterns to

approximate realistic flow conditions. The evaluation was made only on the middle pattern.

Andres Formation underlie the main pay zones (MPZs). In this case,
some portion of the COz2 injected through ROZs would be likely to
move upward into the MPZs. For the domain lower boundary, it was
connected to an underlying aquifer with different body size tested
in the study. The nature of this underlying aquifer was modeled by
using the Carter-Tracy analytical aquifer [21].

Table 2 summarized the nature of the cases studied. Note that
the variable parameters are divided into three groups: domain
boundaries and sizes; injection parameters; and static reservoir
parameters. The first group consists of closed boundaries, buffered
boundaries, different sizes of underlying aquifers, and different cell
areal sizes (Lx and Ly in Table 2). The second group is comprised of:
injection rates; the depth of well perforations, the magnitude of
injected pore volumes (or PV), WAG ratios, CO2 half-cycle sizes, well
patterns (inverted 5-spot or 9-spot), and pattern coverage areas.
The third group of parameters are permeability anisotropies, het-
erogeneity differences between the dip and strike directions, nat-
ural fractures, and the thickness of the underlying aquifer. All the
simulations were run for 25 years, which is a typical duration for a
pattern in a commercial CO2 EOR operation.

23, Metrics for COz EOR and storage performance

The use of metrics to evaluate the behavior of COz floods dates

back at least to the work of Hadlow [6] who plotted the “cumulative
COg; retention versus cumulative COz injection” for five major CO2
EOR projects in the Permian Basin. Hadlow also used a metric he
termed overall or gross COz utilization, defined as the volume of
CO:z injected per incremental barrel of oil produced.

Azzolina et al. [31] have presented a more comprehensive set of
metrics. Following Melzer's definition [32], we defined CO: reten-
tion by the relation:

CO: retention fraction = (total CO: injected — CO2 produced) / total
COz injected

Where: CO:z retention = percent of injected CO2 retained in the
reservoir (%); total COz injected = total injected volumes of CO2
[purchased plus recycled COsz] (% of the total hydrocarbon pore

volume (HCPV)); and CO: produced = total produced volumes of
CO: [recycled CO:] (%HCPV).

3. Results

In the following, we examined the results of simulations in the
context of systematically varying the nature of the models, the
boundary conditions, and the nature of the reservoir Sub-Volumes
selected. The relevant physics were added into the flow simulations
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Summary of conditions for simulations.
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Ly, Ly, Domain lateral Sub- Well COq CO2 Underlying WAG COz half- Incorporating the k,y/ Mainly tested parameters
& S/t boundary conditions Volume  pattern, injection injector aquifer ratio cycle size, hole-core perm- kn
model size rate, MScf/ perforation thickness, ft HPCV porosity correlation
label d
100 100 Closed, Buffered: #1 Inverted 3000 Complete 0 0 NA No 0.1 Boundary conditions
one layer, two-layer, 5-spot,
three-layer 40-acre
20 20 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1 Cell areal sizes
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1
5-spot,
40-acre
200 200 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Lower 0 0 NA No 0.1 Perforation lengths
5-spot, quarter
40-acre
100 100 Buffered: one layer #1 Inverted 6000 Complete 0 0 NA No 0.1 Injection rates
5-spot,
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25, 2.5% No 0.1 WAG ratios
5-spot, 0.5, 1,
40-acre 2
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25  1.0%, 2.5%, No, Yes 0.1 COg half-cycle sizes, natural
5-spot, 5.0% fractures
40-acre
100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0, 2.5% Yes 0.1, Permeability anisotropies,
5-spot, 0.25, 1, WAG ratios
40-acre 0.5, 1, 10
2
100 100 Buffered: one layer #1 Inverted 3000 Complete 125, 250, 0.25 2.5% Yes 0.1 Underlying aquifer thickness
5-spot, 500, 1000
40-acre
100 100 Buffered: one layer #2 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1 Different sub-volume models,
5-spot, 0.25 5.0% Continuous COz injection vs.
40-acre WAG injection
100 100 Buffered: one layer #3 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #4 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 2.5% Yes 0.1,
5-spot, 0.25, 1,
40-acre 0.5, 1, 10
2
100 100 Buffered: one layer #6 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #7 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 025  5.0%
40-acre
100 100 Buffered: one layer #8 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 0.25 5.0%
40-acre
100 100 Buffered: one layer #9 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1
5-spot, 0.25 5.0%
40-acre
100 100 Buffered: one layer #10 Inverted 3000 Complete 0 0, 2.5% Yes 0.1 Well patterns, Different sub-
9-spot, 0.25, volume models
80-acre 0.5, 1,
100 100 Buffered: one layer #11 Inverted 3000 Complete 0 0, 2.5% Yes 0.1
9-spot, 0.25,
80-acre 0.5, 1,
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in steps to explore their specific contribution to COz retention.
Varying the parameters in Table 2 affect both COz retention and
oil production. The impact on associated storage can be quantified
in two ways: the time-averaged retention fractions (averaged over
the whole injection period) and the instantaneous retention frac-
tion. These metrics can be computed by using both numerical re-
sults and field data. These metrics do not measure the relative
importance of COz storage modes such as the free state and capil-
lary trapped CO2 [33,34]. As oil reservoirs appear to have a very low
leakage risk during CO: storage [35], our work focused on CO:
retention, rather than the detailed quantification of storage modes.

31 Effect of cell size

The size of cells in the geocellular model used for simulations is
a key modeling parameter that has been little studied. We con-
ducted a sensitivity analysis to find the optimal size that balances
numerical accuracy and computational efficiency. Fig. 3 shows the
cumulative oil production as a function of elapsed time for different
combinations of cell areal sizes. The cell thickness was not changed
(around ~2 ft) when varying the areal sizes. After 10 years, the oil
production for the coarsest grid (largest cell size) is about 20%
higher than that for the finer grids. When the cell areal dimensions
are 100100 ft, the changes in predicted oil volumes from the
simulations are minimal. There is a reasonable trade-off between
apparent accuracy and computational time. Thus, we will use this
cell size in the following.

32. Effect of domain lateral boundary conditions

This study set out to explore the relationship between choosing
different boundary conditions and the results from the associated
simulations. Fig. 4 shows the effect of varying the lateral boundary
conditions imposed on the modeled domain on the metrics for oil
production and associated CO:2 storage. The retention fraction is
sensitive to the nature of boundary conditions (Fig. 4a). The buff-
ered boundary conditions yield a higher retention fraction than
those for the closed boundary conditions. Application of these two
types of boundary conditions result in similar gross CO2 utilization
ratios. For the buffered boundaries, the number of rimming layers
affect the evaluation of retention fractions. The retention fractions
for the three types of buffered boundaries (namely, one, two, and
three rimming layers) in one set of simulations showed a difference
of 18%. This large difference arises from the different levels of
heterogeneity for the rimming patterns. Such a large difference

Fig. 3. Cumulative oil production vs. time for the different areal cell sizes.

Fig. 4. Effect of domain lateral boundary conditions on COz retention fractions (a) and
gross CO; utilization ratios (b).

indicates the magnitude of uncertainty involved in the evaluation
of retention fractions for realistic reservoir models. For simplicity,
buffered boundaries with one rimming layer will be used in the rest
of the simulations.

33 Effect of well conditions (perforation and injection/production
pressure)

Two different scenarios for the perforation of injection wells are
considered: (1) complete perforation of the depth range of the ROZ
reservoir; and (2) the perforation of the lower quarter. The com-
plete perforation case is equivalent to the open-hole injection of
COg2, which was a common practice when many of the San Andres
reservoirs were first produced. The results of our simulations (first
tworows in Table 3) show that COz retention fractions are largely
insensitive to perforation intervals (0.698 versus 0.696). In the
same simulation, the two perforation strategies have a significant
influence on the oil production rates (4.9 vs. 12.8 Stbd/well). The
complete perforations result in an increased sweep efficiency
compared with the lower-quarter perforations. This higher sweep
efficiency reflects the layered nature of the reservoir, with high
permeability “flow units” interlayered with low permeability
(<0.01mD) flow barriers and baffles (discontinuous flow barriers).
These largely constrain COz to laterally push oil towards producers.
Two COz injection strategies were considered: constant pres-
sure and constant rate. Simulation results (1st and 3rd row in
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Table 3

COz2 rention and oil production for differently combined well conditions during continuous COz injection.

Well conditions® COz retention fraction Stbd2/Well
Inj_rate ¥4 3 MM Scf/d; Pro_bhp ¥4 2020 psi; Complete perforation in injectors (base case settings) 0.696 12.8
Inj_rate ¥4 3 MM Scf/d; Pro_bhp ¥ 2020 psi; Lower-quarter perforation in injectors 0.698 4.9
Inj_rate ¥4 6 MM Scf/d; Pro_bhp Y4 2020 psi; Complete perforation in injectors 0.629 19.6
Inj_bhp ¥4 2600 psi; Pro_bhp ¥ 2020 psi (bubble point) Complete perforation in injectors 0.696 4.3
Inj_bhp ¥4 2600 psi; Pro_bhp % 1400 psi (MMP) Complete perforation in injectors 0.647 9.6

a Stbd, standard tank barrel per day.

b Inj ¥ injectors, Pro ¥ producers, bhp ¥ bottom hole pressure.

Table 3) show that, when imposing a constant rate on injectors,
large CO: injection rates typically enhance oil production (12.8
stbd/well for base case vs. 19.6 stbd/well). For these two cases the
time-averaged CO:z retention fraction decreased from 0.696 to
0.629. The injection rate can have a significant effect on COz
retention. Injection/production pressure shows the similar effect on
the retention fraction as injection rates (the last two row in Table 3).
When the production bottom hole pressure decreased from 2020
psi (bubble point pressure) to 1400 psi (MMP), the retention frac-
tion shows a significant decrease (from 0.696 to 0.647), and oil
production rate for the well doubled (from 4.3 to 9.6 Stbd/well).

34 Effect of half-cycle size and WAG ratio

Two important parameters involved in WAG injection are WAG
ratios and CO: half-cycle sizes (measured in terms of the %HCPV.

Fig. 5. Effect of WAG ratio and CO; half-cycle size on CO; retention (a) and oil pro-
duction (b) for the Sub-Volume model #1. The used geologic models are without
incorporating the whole-core permeability-porosity correlation.

The impact of these two parameters on CO: retention and oil pro-
duction are shown in Fig. 5a and b. For a given COz half-cycle size,
the COz retention fraction first decreases with the increasing WAG
ratio, followed by a steady increase (I'ig. 5a). Note that continuous
CO: injection (at zero WAG ratio) enhances sequestration as the
COzq retention fraction can be as high as 0.69.

If the oil production is the priority, the WAG ratios corre-
sponding to the smallest retention fractions should be considered
as these ratios result in the highest oil production (FFig. 5b). Based
on these simulations, the retention fraction does not decrease
significantly (from 0.69 to only 0.67) when changing from contin-
uous CO: injection (WAG ratio ¥ 0) to optimized WAG injection for
oil production (WAG ratio ¥4 0.25) (Fig. 5a vs. Fig. 5b).

3.5 Effect of permeability anisotropy

To examine the CO: retention sensitivity to the anisotropy of
permeability, the ratio of the vertical to horizontal permeability (k./
ko) was varied from 0.1 to 10 while keeping k, unchanged. Aniso-
tropic permeabilities on the order of 10x k¢ can be caused by ver-
tical natural-fractures. As the permeability anisotropy increases,
the CO2 retention fraction decreases (Fig. 6). With increasing WAG
ratio, the effect of permeability anisotropies on the CO: retention
fraction becomes more pronounced. At a small WAG ratio, the
permeability anisotropy has a weak effect on CO2 retention. How-
ever, as the WAG ratio increases, the retention enhancement caused
by decreasing vertical permeability becomes large (Fig. 6).

3.6. Effect of injection techniques and reservoir heterogeneity

The retention fractions for the two different COz injection
techniques (i.e., continuous CO: injection and WAG injection) are
compared in Fig. 7. The retention fraction changes marginally

Fig. 6. Effect of permeability anisotropy on COz retention for the Sub-Volume mode #1.
The whole-core permeability-porosity correlation was incorporated into the reservoir
model.
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Fig. 7. COz retention for different Sub-Volumes under both continuous CO: injection
and WAG injection. The CO: retention fractions for the WAG injection correspond to
the optimal WAG ratio (i.e., the WAG ratio that gives the largest oil production).

Fig. 8. Cross plot of CO2 retention fractions versus the permeability standard de-
viations for the nine Sub-Volumes (from #1 to #9 in Table 1) undergoing continuous
COg injection. The retention fractions for WAG injection were not shown here as they
are close to those for continuous COs injection (Fig. 7). These simulations are based on
the whole-core permeability-porosity correlation.

(around # 0.04) between these two injection strategies.

The range of COz retention fractions for the 9 Sub-Volumes from
0.36 to 0.70, appears to be correlated with reservoir heterogeneity
(Fig. 8) as measured by the standard deviation of permeabilities
within each Sub-Volume. Generally, the retention fraction increase
with decreasing heterogeneity (i.e., decreasing permeability stan-
dard deviation). Homogeneity enhances CO2 sweep efficiency and a
larger percentage of the CO: injected occupies the pore spaces
where the in-situ oil or water has been displaced.

All the above CO: storage efficiencies are time-averaged over
25 yrs. Fig. 9 shows the evolution of retention fractions for the nine
Sub-Volumes during continuous COz injection. The evolution of CO2
retention reflects the varying production rates of COz. For example,
consider the results for the Sub-Volume #7 (the lowest red dashed
curve in Fig. 9) the CO: retention fraction decreases rapidly, i.e.,
most of the injected COz is produced rapidly. This appears to be due
to the large heterogeneity in permeability (refer to Table 1) in this
Sub-Volume, resulting in early CO2 breakthrough. WAG injection
into this Sub-Volume will increase the volume of CO: retained in
the reservoir. In contrast, Sub-Volume #1 has the largest retention
fraction, and the standard deviation of the permeability in this

Fig. 9. Evolution of CO; retention fractions for the nine (from #1 to #9 in Table 1) Sub-
Volumes with 5-spot well patterns. Dashed lines correspond to the Sub-Volumes
across the strike direction.

reservoir volume is estimated to be the smallest among the nine
Sub-Volumes (refer to Table 1).

3.7. Effect of well patterns and pattern volume

Overall, the COz retention fractions for the 80-acre inverted 9-

Fig. 10. Effect of WAG ratios on CO; retention (a) and oil production (b). The inverted
5-spot results are for the Sub-Volume #1, which partially overlaps the 9-spot Sub-
Volume #10 in space. The assessment employed the reservoir model that incorpo-
rated the whole-core permeability-porosity correlation.
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spot pattern are less than those for the 40-acre inverted 5-spot
pattern (Fig. 10 a). This may be because of the high producer/
injector ratio (more production wells) involved in the inverted 9-
spot pattern. It also may be related to the larger areal extent (80-
acre) of the 9-spot patterns compared with the 40-acre, 5-spot
patterns. The difference in retention fractions between the two
patterns becomes smaller as the WAG ratio increases. For the 9-spot
pattern, the smaller COz retention can be compensated by using a
large WAG ratio (Fig. 10 a).

If oil production is the priority, employing a large (>1) WAG
ratio is a poor choice (Fig. 10 b). For 9-spot well patterns, the
averaged oil production rate rapidly decreases with the increase in
the WAG ratio (less CO: cumulatively injected), whereas the
retention fraction shows the opposite trend. At the point of the
maximum oil production rate, only 45% of injected COz is stored for
the 80-acre, 9-spot pattern. However, for the 40-acre, 5-spot
pattern, the WAG ratio, at which the maximum oil production is
achieved, yields the high retention fraction of 70%.

4. Discussion and conclusions

41. Impact of model cell size, boundary conditions and operational
parameters on simulation results

The first step taken in this study, was to evaluate the impact of
increasing the resolution of the static reservoir model on the re-
sults from simulations of WAG injection of CO2. This study showed
that simulation of a coarser geocellular grid (200¢ 200 2 ft)
results in oil production ~20% higher than for grids with the cells
size 100 X 100 X 2ft and smaller. As the majority of published
studies of COz injection did not conduct grid size sensitivity study
(for example [17,36]), our result is sobering. It is likely that the cell
size dependency on these metrics is a function of the heteroge-
neity modeled by the geocellular model. This is worthy of further
study.

The second step in our study, was examining the impact of the
choice of boundary conditions on simulation results. Again, the
impact of boundary conditions imposed on modeling of WAG in-
jection appear to have been largely, if not entirely ignored by pre-
vious published studies. Many studies do not document the
boundary conditions used, but those who do largely use no flow
boundary conditions. The simulations performed in the current
study resulted in values for CO: retention for closed boundary
conditions lower by as much as 35% compared with what is referred
to in this paper as “buffered boundary conditions”. The buffering
used in this study was created by cutting a volume one, two, or
three patterns wide from the whole reservoir static reservoir model
of Ren and Duncan [4]. As the buffer zone is populated by real
reservoir data these are arguably significantly more realistic than
closed boundaries. Previous studies that assume no flow between
adjacent patterns may give inaccurate estimates of the amount of
COg retained in ROZs. Of course, model simulations that do not
include reservoir heterogeneity will not be impacted by choice of
boundary conditions. Unfortunately, such simulations are highly
unlikely to produce realistic results.

Although our study has shown that increasing the COs injection
rate from 3 to 6 MM Scf/d resulted in an increase in oil production
from 12.8 to 19.6 Stbd/well and a decrease in the time-averaged CO2
retention fraction from 0.696 to 0.629. However, in the field oper-
ation of reservoirs injection rate is not an independent variable but
rather is controlled by the imposed injection pressures. Injection
pressures are constrained by factors such as the delivery pressure of
COz pipelines or the sizing of COz recycle compressors, together
with the depth of the fluid column in injection wells.

42. Analysis of the impact of the nature of WAG injection

A systematic numerical assessment has been conducted on CO2
storage associated with EOR utilizing WAG injection into ROZ res-
ervoirs. The simulations are based on vertical injectors that have
been adopted by the great majority of field operators implementing
CO2 EOR projects. In addition, the numerical assessment employs
WAG injection and continuous CO:2 injection, which have been
widely employed in oilfields [37]. A set of 3-D Sub-Volumes cut
from the detailed static reservoir model was utilized in the current
study. Each was centered on an inverted 40-acre, 5-spot or 80-acre,
9-spot injection pattern. These volumes were selected to enable
modeling of a range of reservoir heterogeneity as measured by the
standard deviation of permeability. The aim was to understand how
reservoir heterogeneity in ROZ reservoirs influences COz storage
incidental to CO2-EOR. Multi-phase flow simulations were con-
ducted on these volumes.

The results of these numerical experiments is consistent with
the conclusion that maximum COz retention in ROZs can be ach-
ieved by a combination of large WAG ratios (around 1e3), and the
implementation of inverted 5-spot well patterns. Reservoirs with
homogeneous permeability fields and small permeability anisot-
ropies will have larger retention of COz. In contrast, for 5-spot well
patterns, a combination of complete perforation, high COz2 injection
rates, small WAG ratios (around 0.1 to 0.6) increase oil production.

Both oil production and COzq retention fractions in ROZs can be
simultaneously high when using a combination of 5-spot well
patterns and continuous COz injection. If maximizing oil produc-
tion is the priority, a combination of 9-spot well patterns and WAG
injection appears to be a superior strategy. The optimal WAG ratio
for achieving the maximum oil production differs for the reservoir
subareas in our study that have different levels of heterogeneity.
This appears to be because heterogeneity influences the effective-

ness and necessity of injecting water during WAG.

43. The role of the heterogeneity of the reservoir on CO: storage

The current study appears to be the first published attempt to
systematically understand the role of reservoir heterogeneity on
metrics such as COz retention. This study has shown that the more
homogeneous the permeability field (and presumably the greater
the sweep efficiency), the higher the retention fraction. This is
consistent with our traditional understanding that reservoir ho-
mogeneity is also favorable to enhancing oil recovery [29]. In
contrast, reservoir heterogeneity tends to cause early CO2 break-
through and poor COz retention (Fig. 9 and Table 1).

The simulations in this study are consistent with the retention
fraction for COz varying by a factor of two, from 0.36 to 0.70 for Sub-
Volumes modeled within the ROZ reservoir. This range difference
appears to be attributable, at least in part, to reservoir heteroge-
neity. The data presented in the current study is consistent with the
retention fraction increasing with decreasing heterogeneity (.e.,
decreasing permeability standard deviation). Homogeneity en-
hances CO: sweep efficiency and a larger percentage of the CO:
injected occupies the pore spaces where the in-situ oil or water has
been displaced. In evaluating the CO: storage associated with the
future carbon capture and storage (CCS) projects in ROZ reservoirs a
range of this magnitude is very significant.

The WAG simulations presented in this study were designed to
understand the impact of reservoir heterogeneity. The approach
was motivated in part by the whole-core versus core plug-based
permeability-porosity correlation presented by Honarpour et al.
[26]. The differences in permeability between traditional core plug
data versus the whole-core measurement reveal significant het-
erogeneities in permeability at a scale of inches. In studies of ROZ
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reservoirs, the heterogeneity associated with natural fractures
should be carefully characterized as they can have a significant
effect on CO: retention. The design of WAG injections should
consider the intensities of natural fractures in different Sub-
Volumes of a given reservoir model. The use of a single WAG ra-
tio for the whole field might not be the best strategy.

44 Implications to the future projects of carbon sequestration
associated with EOR in ROZs

The overall assessment shows that CO: storage in ROZs is
impacted by both injection strategies and reservoir heterogeneity.
For vertical COz injectors, larger WAG ratios always result in higher
retention fractions, however the cumulative volume of COz injected
is also decreased.

If maximizing oil production is the priority, COz injection
alternating with relatively small slugs of water (i.e., small WAG
ratio, around 0.25) is a good choice. This injection is different from
the WAG in traditional (originally oil saturated) reservoirs. For such
reservoirs, published optimized WAG ratios have been reported in
the range of 0.9e3 [38], which is much higher than the optimized
WAG ratios derived from this current study. The reasons for this
difference are not clear and are worthy of further study. As noted by
Ren and Duncan [4], the oil saturation in ROZs is different from that
in originally oil saturated reservoirs. In these reservoirs, much of
the remaining oil after man-made water flooding (and before CO2
injection) resides in reservoir regions not swept during water
flooding. In ROZs the oil saturation is apparently developed through
relatively slow regional water flushing. In virgin ROZ reservoirs, oil
saturation tends to be relatively uniform, except where some low
porosity/permeability patches have retained relatively high oil
saturation [4].

4.5 Final thoughts

It is important to accurately estimate the magnitude of CO2
storage affected by WAG based EOR into ROZs with a range of in-
jection strategies. The current study has shown that such accurate
estimates require careful consideration of: (1) the nature of
imposed boundary conditions; (2) the impact of the size of the cells
in the simulations grid; (3) the nature of reservoir heterogeneitys;
and (4) the nature of WAG protocols. Most previously-published
simulation studies fail to take into account most or all of these
critical issues.

In the simulation results presented in the current study, CO:
retention is found to be strongly influenced by the heterogeneity
and anisotropy of the permeability field. Portions of the reservoir
with both less permeability heterogeneity and anisotropies (ratio
between vertical and horizontal permeability) have higher CO:
retention fractions.

The results of this study, based on real static reservoir models,
for the first time, provide a robust understanding of the factors
controlling CO: storage associated with WAG CO: injection to
improve oil production in ROZ reservoirs. Simulation of WAG in-
jection strategies into model reservoirs that do not account for
observed heterogeneity in parameters such as porosity and
permeability, are unlikely to yield realistic oil production and CO2
storage performance.

The results of this study provide key insights into how future
COg storage projects associated with EOR in ROZs within carbonate
sequences may be evaluated and then implemented.

Acknowledgement

This study is part of a long term project investigating ROZ

reservoirs in the Permian Basin of Texas being carried out by the
Bureau of Economic Geology's (BEG's) State of Texas Advanced
Resource Recovery (STARR) Program and funded in part by a U.S.
Department of Energy contract under DOE Award Number
FE0024375 (PI: Duncan). The first author wishes to thank Dr. Larry
Lake and Dr. Frank Male for helpful discussion and comments
during the project. Great thanks are due to the two anonymous
reviewers for their constructive comments.

Abbreviations
BHP Bottom hole pressure
CCS Carbon capture and storage

CO2-EOR CO: enhanced oil recovery

HCPV Hydrocarbon pore volume
MPZs Main pay zones
PV Pore volume
ROZs Residual oil zones
Stbd Standard tank barrel per day
WAG Water alternating gas
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ABSTRACT

Residual oil zones (ROZs) are extensively developed in carbonate formations in the Permian Basin, West Texas.
These ROZs have the potential both for economically-viable CO, enhanced oil recovery (CO2-EOR) and for
significant volumes of associated CO. sequestration. The accepted model for ROZ formation is based on the
hydrodynamic effects of tectonically-controlled increased water flow in aquifers at the base of oil fields. The
nature of this process is modelled using a commercial reservoir simulator in this work. These simulations explore
the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil
saturations in ROZs. A special emphasis was on understanding the impact of heterogeneity of capillary pressures
in ROZ reservoirs. These factors determine the thickness of ROZs, the magnitude of oil saturation, and the slope
of water-oil contacts. Understanding the magnitude of oil saturation and how it varies within ROZs is important
in determining reserves, and evaluating both EOR and sequestration potential. The geometry of ROZs are es-
tablished slowly, especially for small regional water fluxes, however oil saturations achieve almost steady states
in relatively short time scales. The simulated oil saturation profiles found in this study are in reasonable
agreement with the measured profile published for the San Andres Seminole Unit's ROZ. The results support the

plausibility of the hydrodynamic model, but do not rule out other models for the origin of ROZs.

1. Introduction

Residual oil zones (ROZs) can be defined as an oil reservoir or
portion of a reservoir in which the oil is at, or is close to, residual oil
saturation (Melzer et al., 2006). ROZs have the apparent characteristics
of a reservoir after the completion of a waterflood. ROZs in carbonate
reservoirs in the Permian Basin of Texas were initially interpreted from
wireline logs as being productive oil zones. However, if these zones
were completed for production, they produced water, only occasionally
with traces of oil. Thus, ROZs can be produced by neither conventional
pumping nor water flooding. Rather, producing from these zones re-
quires some form of enhanced oil recovery such as CO-EOR. This also
provides incidental sequestration of CO.. Bachu et al. (2013) noted that
ROZs are “regarded in the industry as the most optimum part of oil
reservoirs to store CO;”. They based this on: the typically large volume
of ROZs; their high water saturation; and “hydrocarbon availability”.
Many similar studies (e.g., Koperna et al., 2006; Godec et al., 2013;
Kuuskraa et al., 2013; Melzer, 2013; Trentham and Melzer, 2015;
Kuuskraa et al., 2017; Stewart et al., 2018) have been conducted to
assess the feasibility and potential of CO2 EOR and storage in ROZs.

ROZs have different types in terms of their origin and evolution.

* Corresponding author.
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Harouaka et al. (2013) classified these occurrences of ROZs into two
types: (i) Brownfield ROZs, that are located below the water-oil contact
of oil reservoirs; and (ii) Greenfield ROZs, that are not associated with
normal oil reservoirs or main pay zones (MPZ). Melzer (2013) divided
ROZs into three types, resulting from the following different scenarios
for their origin: (i) an oil accumulation is subject to a tilt (from dif-
ferential subsidence or tectonic movements), resulting in re-equilibra-
tion of water-oil contacts and the formation of ROZs; (ii) the original oil
accumulation leaks through seal (perhaps temporally), again leading to
ROZ formation; (iii) a change in the hydrodynamics of an underlying
aquifer. The water flow scenarios sweep the lower portion of oil col-
umns, resulting in the development of ROZs (Fig. 1). The consensus of
opinions is that the ROZs in the Permian Basin represent the third of
these categories and the simulations made in the current study are
based on this scenario.

Unfortunately, almost all the research on ROZ formation and
characteristics has not been published in refereed journals but rather is
available in contract reports, presentations, and conference proceed-
ings. Dennis et al. (2000, 2005) studied the tilted oil-water contacts in
the North Sea through numerical simulation and laboratory experi-
ments. They focused on the response of fluid contacts to aquifer
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Fig. 1. A schematic diagram showing the formation of hydrodynamic ROZ. Before the increase in regional water flow rates, the spill point (labelled by the red arrow)
controls an original oil water contact at the base of the MPZ. After increasing water flow rates, part of the oil at the bottom of the original MPZ is flooded to be as a
ROZ (Adapted from Melzer, 2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

heterogeneity and flow rates, without detailed investigation of oil sa-
turation characteristics in ROZs. Trentham and his coworkers
(Trentham, 2011; Trentham et al.,, 2012) assumed that, high aquifer
flow rates would have been initially established across the San Andres
formation due to the uplift of the Guadalupe Mountains (along the
western margin of the Permian Basin). This uplift apparently peaked
around 20 Ma (Horak, 1985), and, subsequent erosion of these moun-
tains would have reduced hydraulic heads in the regional aquifer thus
lowering flow rates. Harouaka et al. (2013) suggested that the hydro-
dynamic impact continued unabated, “albeit at a very slow pace like
one foot/1000 years”, an assertion they based on “analytical modeling”
using the analysis of Hubbert (1953). In this view, the slope of ROZ-
MPZ contacts would reflect the most recent aquifer flow regime. Only
limited basin scale hydrological data and modeling have been published
for regions within the Permian Basin (McNeal, 1965; Bein and Dutton,
1993; Lee and Williams, 2000). A recent study by Trentham and Melzer
(2015) attempted to model the probable flow pathways, of what they
termed “hydrodynamic fairways”. However, absent a creation of a set of
robust regional groundwater flow models extending back to the re-
gional uplift event in the Permian Basin, the groundwater flow direc-
tions cannot be well constrained. Jamali and Ettehadtavakkol (2017)
modelled the ROZ formation process through mimicking the natural
waterflooding process; however, their specific simulation was based on
a simplified static reservoir model and physics.

This paper is the first attempt to use multiphase and full-physics
flow simulations to make a comprehensive study of the hydrodynamic
model for the development of ROZs in the San Andres Formation. In the
following, we describe our modeling approach and analyze several
factors that are potentially significant in the evolution of ROZs. Finally,
we analyzed the implications of these results to both oil production and
CO:z sequestration in future CO»-EOR projects in these zones.

2. Theory and approach

This project sets out to study the formation of ROZs in the San
Andres Formation. We mimick the “natural waterflood” scenario using
flow simulation. These simulations aim to explore the nature and spa-
tial patterns of oil saturation in ROZs in response to the variations in the
flow of regional aquifers. The flow simulator used is Eclipse-E100
(2016), an efficient and multidimensional black-oil simulator.

21 Reservoir properties

Our modeling is based on the reservoir characteristics of the re-
sidual oil zone associated with the Seminole Field, however, we do not
model this field specifically. A three-dimensional (3D) static reservoir
model, representative of the geology and petrophysical variation of the
ROZ underlying the Seminole Field, built in part from the published

reservoir property data. Lucia (2007) and Wang et al. (1998) have
published extensive porosity and permeability data from Seminole
cores. The data presented in Honarpour et al. (2010) include porosity
versus permeability plots, and vertical as well as horizontal perme-
ability measurements. These are particularly important as all from the
ROZ. These authors also supply data from sponge cores on residual-oil-
saturation versus depth in the ROZ and versus permeability. The model
is populated using data from these published sources and from petro-
physical measurements made on cores in the Bureau of Economic
Geology (BEG) core warehouse, and interpretation of wireline logs from
the BEG log library.

Two 2-D section geologic models were cut from the 3-D whole re-
servoir model: one is along the E-W (X-Z slice, the approximate dip
direction), and the other is along the N-S (Y-Z slice, the approximate
strike direction). The purpose of selecting these two sections is to ex-
amine how flow direction affects oil saturation evolution in the ROZ.
The two 2D vertical sections cross along a vertical line. This line
overlaps a drilled vertical well with detailed well properties published
by Honarpour et al. (2010). Specifically, this well has the oil saturation
profile that is based on measurements made prior to CO; injection into
the ROZ. This data provides an important way for us to validate the
reasonableness of our simulations. Additionally, a small 3D sector
model is also cut with the above well in the middle. So these two 2-D
slices and one 3D sector model are used to simulate the natural water
flooding process in forming ROZs.

The corner point grid system is used. The dimensions of each 2D
model is 63 % 398 with the horizontal cell size of 100 ft, and the ver-
tical cell size varies in different layers with the average ~2 ft. The 3D
sector model has the dimensions of 20 x 20 x 398 with the cell size of

100 ft x 100 ft x ~2 ft. These sector models have similar means and
standard deviation for the porosity and permeability (Table 1). The
porosity and permeability fields for the E-W model are shown in Fig. 2.
Published permeability measurements by Honarpour et al. (2010) show
that the horizontal and vertical permeability's are largely similar.
However, these authors note that the presence of low permeability
layers of fine-grained, anhydrite-rich facies, creates strongly anisotropic

Table 1

Statistics of petrophysical properties for the 2D and 3D sector models.
Measures 2D 3D

W-E slice N-S slice

Porosity arithmetic mean, [] 0.11 0.11 0.11
Porosity standard deviation, [] 0.042 0.044 0.044
Permeability arithmetic mean, mD 17.2 15.9 16
Permeability standard deviation, mD 80.9 448 539
Capillary entry pressure arithmetic mean, psi 0.44 043 043
Capillary entry pressure standard deviation, psi 1.08 1.06 1.07
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Fig. 2. (a) The horizontal permeability field along the W-E direction; (b) the
corresponding porosity field; (c) the capillary entry pressure field corre-
sponding to the above permeability and porosity fields. The dip angle (w.r.t to
the horizontal direction) of the top boundary of the domain is around 2°.

permeability. They suggested the resultant vertical component is ap-
proximately one tenth of the horizontal component, so we use this ratio
in our study. Initially, hydrostatic pressure is set for the reservoir with
the middle depth pressure at 2119.9 psi, and the reservoir temperature
is 104 °F. The oil saturation is initialized using the gravity-capillary
equilibrium method.

A capillary entry pressure field (Fig. 2c) is generated using the Le-
verett j-function (Leverett, 1941) that links permeability, porosity, and
capillary pressure. A general Leverett j-function has been proposed by
Mirzaei-Paiaman et al. (2018), which incorporated two more rock mi-
crostructure-related parameters into the function (i.e., tortuosity and
shape factor). For our current study, we used the traditional Leverett j-
function (Eq. (1)) for simplicity:

J(5 =~ P [k

Oolw COS QV qb (1)
where p. is capillary pressure, 0 is the interfacial tension between oil
and brine water, 0 is contact angle, k is permeability, ¢ is porosity, S, is
water saturation. The base or reference capillary pressure curve
(Fig. 3b) is assigned to the cells with the permeability of 16 mD as this
reference curve is measured on the core with this permeability. These
cells are considered as reference cells. The other cells in the model are
assigned with different capillary pressure curves by scaling the capillary
pressure of each cell with its permeability and porosity. The interfacial
tension for each cell is assumed to be the same, and contact angle has
the same assumption. Then, the capillary pressure for other cells can be

Fig. 3. (a) Drainage relative permeability curves; (b) the reference drainage
capillary pressure curve. This curve is measured on a 16-mD core sample; (c)
the fractional flow curve for water.

calculated by the following Eq. (2).

) ) “w‘ k,.gf ¢nmzr0f
cnonref — Peref \/kmmy Q[)
ef ref (2)

Ponanres is the capillary pressure for other cells (nonreference cells), p.
is the capillary pressure for the reference cells, ks and Koy is the
permeability for the reference cells, and the other cells, respectively
Porosity naming follows the same rules as permeability. Through using
Eq. (2), each cell is assigned with a capillary pressure curve that is
consistent with its upscaled permeability and porosity while omitting
interfacial tension and contact angle. The detailed procedure of scaling
the reference capillary pressure curve for each cell has been elaborated
by Saadatpoor (2012) and Ren (2017). Fig. 2c shows the generated
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Table 2
Injection simulation schemes in the 2D models.

Water flux entering formation from wellbore, ft/ Injection rate, rb/d"

Injection duration, yrs

Totally injected water, PV Ng, along the wellbore, (Eq. (3)) Dominant force

yr
5.0 183.4 50 k 268 4.7E+3 Gravity
0.5° 18.32 50 ko 26.8° 4.7E+42 Gravity
0.05 1.83 50 k 2.7 4.7E+5 Gravity

a Means base case settings.
b rb means reservoir barrel.

capillary entry pressure field for the E-W model. The statistics for all the
capillary entry pressure fields are listed in Table 1.

The importance of considering capillary pressure heterogeneity is
driven by the impact of the small regional water flux during ROZ for-
mation. It has been suggested that regional water flux in the Permian
Basin that drove the formation of the ROZ in the San Andres Formation
was on the order of 10-25 cm/yr (Trentham et al., 2012). Such small
water fluxes would be associated with a minimal viscous force, com-
parable to the magnitude of water-oil capillary pressures.

22. Petrophysical and fluid properties

Relative permeability and capillary pressure curves are shown in
Fig. 3a and b, respectively. The relative permeability curves are adapted
from published data (Honarpour et al., 2010). The capillary pressure
curve are based on the fitting to the lab measurement using the cen-
trifuge technique (Chen and Ruth, 1995). These curves describe the
dynamic flow properties during the drainage process, which applies to
the regional water infiltration since the reservoir tends to be oil-wet
(Honarpour et al., 2010). Using these relative permeability curves, we
plot the fractional flow curve for water (Fig. 3c). When water satura-
tions are greater than 0.4, the fractional flow of oil is reduced to be
negligible (< 0.04). This means that the remaining oil is effectively
immobile, and oil production will be minimal with further water flow,
even at a long time scale.

2.3 Flow simulation schemes

The flow simulations are designed to model the key relevant physics
for understanding the formation of ROZs associated with the San
Andres Formation in the Permian Basin. To understand the relevant
physics, we first introduce a gravity number (Ng,), and this number
describes the influence of competitive gravity versus viscous forces on
water flooding. Ng, is a dimensionless ratio of the gravitational force
acting on the fluids to the viscous force that drives water migration.
Several definitions of gravity number are possible. Here, we use the
ratio of a nominal speed of vertical flow u, to a nominal speed of
horizontal flow u;,, combined with the ratio of reservoir horizontal
length L, thickness H, and formation dip angle a. We write the gravity
number based on the definition of Shook et al. (1992):

N ApgkoH cos o

g = unpL ©)]

In the above, Ap is the density difference between water and oil. g is
the gravitational acceleration. k, is the arithmetic mean of vertical
permeability. H is the vertical dimension of the portion of a aquifer
impacting the base of an oil reservoir (equivalent to the length char-
acterized by a pressure boundary condition). a is formation dip angle
with respect to the horizontal direction, y is water viscosity at the re-
servoir condition. L is reservoir horizontal length. The nominal hor-
izontal flux (u;) is the regional water flux as mentioned above. Under

the reservoir condition (2119.9 psi and 104 °F), water density is

1060.4 kg/m?, oil density is 832.9 kg/m3, and water viscosity is 0.7 cp.
All terms, except for uy, in Eq. (3) are fixed for a given residual oil
zone. The horizontal water flux boundary condition is imposed in the

Eclipse model by setting the water injection rate for an injector well
(described below). Thus, N, is essentially a dimensionless regional
water flux or water injection rate (a reciprocal injection rate). Large
values of N, (~10°%) correspond to small water flux and the water
movement is dictated by gravity. Table 1 shows the examined water
flux magnitude, gravity number and the corresponding dominant force
for flow simulations. For the base case water flux, the corresponding
pressure gradient across the simulation domain (from the injector side
to produce side) is 1.4 x 103 psi/ft. For all the cases simulated, the
gravity number N,, is much larger than 1. Thus, the regional water flow
should be dominated by gravity.

In the 2D models, the volume of water injected is approximately 27
pore volumes (PV) for the base case (corresponding to the regional
water flux of 0.5 ft/yr and injection duration of 50 k years, Table 2).
This PV is consistent with the suggestions of Trentham et al. (2012)
about the time scale and flux of regional natural waterflood impacting
the ROZs within the Permian Basin. The sensitivity of the magnitude of
oil saturation in the ROZs to varying the magnitude and duration of
regional hydraulic head, is also investigated (Table 2). The regional
hydraulic head was varied over three orders of magnitude (reflected in
the water flux settings in Table 2). Additionally, changes in the nature
of ROZs (e.g., oil saturation and geometry) in response to the lowering
of hydraulic head are examined. This lowering decreases regional water
flow rate, and this study is designed to approximate the decreasing rate
of flow through three sequential simulation processes with the water
fluxes decreasing from 5 ft/yr, 0.5 ft/yr to 0.05 ft/yr, with each mod-
elled for 50,000 years (refer to case #12 in Table 3). More importantly,
both single and heterogeneous capillary pressures functions are con-
sidered in these simulations. A single capillary pressure function means
that the capillary pressure curve (shown in Fig. 3b) is used for all the
cells in the domain, whereas, heterogeneous capillary pressure func-
tions are based on scaled capillary pressure curves.

For boundary and well settings, Fig. 4 shows a schematic illustration
of well locations and perforations for the 2D W-E slice model. A vertical
injector and a producer are used to mimic regional water filtration in

Table 3
Summary of conditions for simulations.

Case #  Water Totally- Injection Flow Capillary pressure
flux, ft/ injected PV duration, yr  direction
yr
1 0.5 26.8 50 k W-E w/o
2 0.5 321 60 k W-E w/o
3 0.5 26.8 50 k W-E Single
4 0.5 26.8, 268, 50k, 0.5Ma, W-E Heterogeneous
536 1Ma
5 5.0 268 0.5 Ma W-E Single
6 5.0 268 60 k W-E Heterogeneous
7 0.05 2.7 50 k W-E Single
8 0.05 2.7,27,54 50k, 0.5Ma, W-E Heterogeneous
1Ma
9 0.5 26.8 50 k N-S Single
10 0.5 26.8 50 k N-S Heterogeneous
11 5, 0.5, 297.5 0.15 Ma W-E Heterogeneous
0.05
12 0.5 (3D) 268 50 k W-E Heterogeneous
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Fig. 4. A schematic illustration of the water injector and the producer used to
mimic the regional water flush in the ROZ for the 2D W-E slice model. The
perforation intervals in both wells are along the producing ROZ and the water
leg. The lateral extension of the domain is 6300 ft with the thickness around
1113 ft.

the ROZ, and the two wells are placed on the left and right boundary
cells, respectively. Both wells are perforated along the intervals of both
the producing ROZ and the water leg, for which, their heights are ap-
proximated through the field tests and measurements (Honarpour et al.,
2010). Constant water rate is imposed on the injector with the values
shown in Table 2, and the same rate of liquid production is imposed on
the right producer. Boundary settings in the N-S slice are the same. For
the 3D sector model, each slice along the X-direction in 3D are assigned
with the same boundaries as does for 2D. Through doing this, the re-
gional water flow should be properly mimicked. The condition settings
for all the simulated cases are summarized in Table 3. Most of the si-
mulation cases are designed on the 2D slices considering both the
computational efficiency and easy settings when examining different
factors. The last simulation case is on the 3D sector model in order to
study possible differences.

3. Results

Most of the following analyses is restricted on the 2D slice models.
Difference between 3D and 2D are highlighted. We firstly describe the
evolution of oil saturation fields during the ROZ formation process.
Particularly, we emphasize the effect of the interplay between water
flux magnitude and capillary pressure on the remaining oil saturation in
ROZs. Next, we compare our simulation results to the field measure-
ment.

31 Effect of the duration of regional aquifer flow on oil saturation in ROZs

To evaluate the effect of the duration of regional aquifer flow on the
nature of ROZ formation, we start with the case that considers no ca-
pillary pressure (#1 in Table 3). This case shows a similar oil saturation
field as another case that considers single capillary pressure (#3 in
Table 3). Fig. 5 shows the evolution of oil saturation fields for the case
#3. In the uppermost oil saturation field (T = 0 yrs), the red area is the
original “oil saturated zone” or the MPZ, and the blue area is the water
leg. For the MPZ, the oil saturation is initialized using the gravity-ca-
pillary equilibrium, and the initial oil saturation is high and around 0.8.
The capillary transition zone in these simulations is very small and
almost not observable as shown around the interface between the
yellow and blue areas. As water influx proceeds (T = 10,000 to
50,000 yrs), the vertical extent of the ROZ increases. At a timescale of
50,000 years, further changes in the magnitude and spatial distribution
of oil saturation values are negligible.

Fig. 5. The evolution of oil saturation fields considering single capillary pres-
sure. The water inlet flux is 0.5 ft/yr. The overall tilt of the producing water-oil
contact in the bottom field is around 100 ft per mile, downward to the east.

The variation of oil saturation with depth is perhaps the most im-
portant feature of ROZs. To quantify oil saturation vertical profiles, we
plot the change of oil saturation along depth at different times (Fig. 6).
Overall, the oil saturation profiles attained an approximate or pseudo-
steady state after approximately 50,000 years. The intervals with high
saturation represent the low permeability/low porosity (< 0.05) areas,
and this oil cannot be efficiently displaced by water. The attainment of
pseudo-steady-state oil saturation is further illustrated in Fig. 7 that
shows the evolution of cell oil saturations in several selected depths. It
appears that, in this simulation, the upper part of the ROZ requires a
much longer time to reach the pseudo-steady state (note the light blue
line in Fig. 7).

32. Effect of the interplay between inlet flux magnitude and capillary
pressure

We first analyze the effect of water flux magnitude (aquifer flow-
rate) on ROZs when considering single capillary pressure (left column
in Fig. 8). ROZ thickness is sensitive to the magnitude of the upstream
water flux in the aquifer. This is because of the competition between the
viscous and gravitational forces (the ratio is gravity number N, Eq.
(3)): large viscous force (large water flux) suppresses the effect of water
gravity on the displacement profile, and a thick ROZ is created. Ad-
ditionally, the contact between the MPZ (yellow in Fig. 8) and the ROZ
(light blue) becomes less inclined as water flux decreases; this is ob-
viously because decreasing water flux tends to create hydrostatic
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Fig. 6. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well with measured oil

saturation in the ROZ) of the oil saturation fields in Fig. 5.

distribution of oil/water.

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the
middle row in Fig. 8) and analyze the effect of capillary pressure het-
erogeneity on the development of ROZs in response to this water flow.
When capillary pressure heterogeneity is taken into account, the pro-
ducing water-oil contact is enlarged (relative to single capillary pres-
sure). In addition, the transition zone (black circled area in the middle
row) between the ROZ and the MPZ is distinct, with a thickness of
10-15 ft. The oil saturation in this transition zone varies significantly,
from around 0.30 in light green spots to 0.80 in the light yellow pat-
ches. However, for the case considering single capillary pressure, the
transition zone is thin and poorly defined (refer to the middle left oil
saturation field in Fig. 8).

More importantly, the interplay between capillary pressure het-
erogeneity and upstream water flux largely influences the thickness of

the upper transition zone (the dashed circle area). Through comparing
the middle saturation field to the lower one in the right column in
Fig. 8, it can be seen that the upper transition zone becomes thick as the
upstream water flux decreases. Again, this is because of the lower vis-
cous force, which in turn enhances the effect of capillary dispersion on
oil saturation.

The above analyses concentrate on the evolution of oil saturation in
ROZs. The time scale of achieving quasi steady-state oil saturation in a
ROZ is much less than the geologic time of mountain uplift and erosion
(~Ma). Generally, the evolution of oil saturation in a given cell is
mainly controlled by both relative permeability curves and imposed
pressure gradient (equivalent to inlet water flux). Thus, any changes in
both of them would cause different time consumed to achieve steady
states.

Fig. 7. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the ROZ top, the two

depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom.
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Fig. 8. Oil saturation fields at 50000 yrs of flow si-
mulation. Each row represents different regional
water fluxes. The left column considers single capil-
lary pressure, whereas, the right column considers
heterogeneous capillary pressure. The dashed lines
represent the approximated transition areas between
the top of the producing ROZs and the base of pro-
ducing MPZs. As water flux decreases, the overall tilt
of the producing water-oil contact decreases from
about 100 ft per mile (upper) to 30 ft per mile
(lower).

33 Effect of the duration of regional aquifer flow on the thickness of ROZ of 0.5 ft/yr, however, it takes a short time in establishing the ROZ
geometry, and the ROZ has already been fully fledged around
ROZ thickness takes a longer time to establish itself than oil sa- 0.5MM yrs. So the thickness of ROZs are impacted by flush duration
turation does (Fig. 9). After 50 k yrs, the thickness of the ROZ continues and water flux magnitudes.
growing for the small regional water flux of 0.05 ft/yr, and it becomes
asymptotic as flow simulation proceeds to 1 MM yrs. For the large flux

Fig. 9. The evolution of ROZ thickness for the two regional water fluxes (0.05 vs. 0.5 ft/yr). Capillary pressure heterogeneity is considered. The overall tilt of the
producing water-oil contact is the left lower field is approximately 20 ft per mile, and it is 100 ft per mile in the right lower field.

=1
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34 Effect of direction of regional water flow

The direction of regional water flow is not well constrained by
available data. However, this direction influences the pattern of oil
saturation in the ROZ (Fig. 10). This pattern is significantly different
between the two orthogonal directions. For the W-E section (orthogonal
to the edge of the Central Basin Platform), the streaks with high oil
saturation are of limited lateral extent compared to than those in the N-
S section (approximately parallel to the shelf edge of the platform).
These differences in the spatial variation of oil saturation reflect the
significant variation in the heterogeneity of capillary pressures. The
origin of this heterogeneity is rooted in the changes of depositional
environments from the inner-mid ramp to the outer ramp from west to
east. However, for the section parallel to the shelf edge, the sedimen-
tary facies reflect a more limited range of sedimentary environments
with more limited heterogeneity in capillary pressures. This gives rise
to a very large laterally-extended strip of higher oil saturations in the
ROZ. This important observation is useful in guiding the configurations
of injectors and producers during CO,-EOR operations.

Another noteworthy issue is the nature of water-oil contacts (dashed
blue lines in Fig. 10) for the two different regional water flow direc-
tions. The inclination of the contact along the strike direction is smaller
than that along the dip direction. This observation is consistent with
greater lateral sedimentary continuity along the strike.

35 Effect of the change of regional water flux

A key question is the extent to which the nature and geometry of
ROZs are impacted by low flow rates following after a period of high
flow rates, a scenario expected based on the tectonic history of the
Basin. The overall shape of the ROZ undergoes negligible modification
when the regional water rate is reduced by an order of magnitude for
50,000 years (Fig. 11a), i.e., the ROZ interval thickness has not altered
during the sequential change of regional water rate. However, oil sa-
turation is impacted by the sequential change of water flux. Specifi-
cally, the oil saturation in the downstream of regional water flow in-
creases as regional water flux decreases (Fig. 11b). This reflects the
displacement of oil downstream. Additionally, the ROZ in the upstream
is thicker than that in the downstream (comparing the ROZ depth in-
terval between Fig. 11a and b). This is consistent with the above ob-
servation of ROZ geometries (in both Figs. 5 and 8).

3.6. Differences between 2D and 3D

The resultant oil saturation magnitude and pattern in 3D are found
to be very similar to the results of 2-D simulations with marginally
higher oil saturation in 3-D than in 2-D along some depth intervals
(Fig. 12). This might be counterintuitive since the added one dimension
in 3D normally enhances lateral flow and causes an overall large oil
saturation compared to 2D. However, such lateral flow is restrained by
the specific boundary settings in this study; each X-Z slice in the 3D
model has close pressure gradient from the injection side to the

Fig. 10. Impact of flow direction on oil saturation
fields in the ROZ. The oil saturation is at the
50,000 yrs of flow simulation with capillary pressure
heterogeneity considered. The black dashed lines
circle the oil stripes with large oil saturation in the
ROZ, and the blue dashed lines approximate the in-
clined producing water-oil contacts. The imposed
water flux for both oil saturation fields is 0.5 ft/yr.
The tilt of producing water-oil contacts is stronger in
the W-E slice than that in the N-S slice, 100 ft per
mile vs. 55 ft per mile. (For interpretation of the re-
ferences to colour in this figure legend, the reader is
referred to the Web version of this article.)

production one, so most of the flow are along the X-Z direction. This is
similar to what happens in the 2D X-Z slice model. In other words, the
water/oil flow dynamics is marginally altered by the added one di-
mension in 3D. This analysis also supports our observation that the
time-scale of attaining quasi steady-state oil saturation in 3D is close to
that in 2D.

37, Comparison with field measurements in the Seminole ROZ

Our study has compared the vertical variation in oil saturation in
our ROZ simulations carried out at different water fluxes with down the
well measurements for the ROZ in the San Andres Seminole Unit,
published by Honarpour et al. (2010). The vertical pattern of variation
in oil saturation most closely resembles the pattern produced by si-
mulations using a water flux of 0.5 ft/yr. Fig. 13 shows the predicted oil
saturation profile at this water flux. The simulated oil saturation profile
in the N-S slice (red line in Fig. 13) shows a better agreement with the
measured oil saturation in the main interval of the ROZ than that in the
E-W slice. Meanwhile, it is worthwhile to notice the fluctuation of
measured oil saturations. The controls of these fluctuation are under the
investigation now.

4. Discussion

This study has not attempted to specifically model the Seminole
Field. Rather, we have modelled the formation of a generic ROZ by
starting with an oil-saturated reservoir. Its thickness is equivalent to the
sum of the current SSAU ROZ and producing MPZ. Our simulations
reproduce many of the features reported from the San Andres ROZ. The
simulation results are consistent with an effectively steady state being
reached (at least with respect to oil saturation) on a time scale of 50
thousand years. It is significant that, even after 1 MM yrs of regional
water flush, the oil saturation in several patches remains similar to the
initialized values (0.7-0.8). These patches are local areas of lower
porosity and permeability. This observation is consistent with the ob-
served presence of oil stains in the less permeable patches of San Andres
core samples.

41 The tilt and measurability of ROZ boundaries

The estimated tilt of the top boundary of the ROZ has been regarded
as the key evidence for the validity of the hydrodynamic model. The
tilts vary significantly (3—200 m/km, 15.8-1056 ft/mile) for different
oilfields worldwide (Dennis et al., 2000; Connor and Swarbrick, 2008).
The estimates for the dip in our simulations is small (in our base-case
simulations approximately 100 ft per mile, Fig. 5). This is comparable
to the earlier suggestions by Melzer et al. (2006), and it is also con-
sistent with other reduced-physics modeling results (e.g., Koperna
et al.,, 2006; Jamali and Ettehadtavakkol, 2017). However, the accuracy
limitations of wireline log measurements of oil saturation are sig-
nificant (Pathak et al., 2012) and the dip estimates available for real
San Andres ROZs in unpublished reports and presentation do not
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Fig. 11. The selected two oil saturation profiles and their changes in response to the lowering water flux. The regional water flow is from west to east. The profile#1
is on the upstream of water flow, whereas, the profile#2 is on the downstream. The exact locations of these two columns are along I = 22 and I = 43, respectively. I is
the numbering of cells from west to east in the horizontal direction. This figure is corresponding to the case#11 in Table 3.

appear to be robust. Another complication is that, as demonstrated in
our simulations and by the data presented by Honarpour et al. (2010),
the variability in oil saturations is related to local heterogeneity in re-
servoir properties, particularly capillary pressure heterogeneity. This
heterogeneity significantly blurs the transitions between MPZs and
ROZs, as well as the ROZ-water contacts (see Fig. 8, for example).

42. Influence of heterogeneous capillary pressure

The results of our simulations show the significant influence of ca-
pillary pressure heterogeneity on the flow paths of water/oil and thus
on the characteristics, including the producing water-oil contact, as
well as the pattern, and magnitude of oil saturation in ROZs. To our best

knowledge, this is first time that such a physic is incorporated in flow
simulations of ROZ formation processes. Heterogeneous capillary
pressures have also been found to be important in other slow subsurface
dynamics processes, e.g., buoyant flow of CO. during geological carbon
sequestration (Saadatpoor et al., 2009; Trevisan et al., 2017) and sec-
ondary hydrocarbon migration/accumulation (Carruthers, 1998). Even
for conventional water flooding with the water speed three orders of
magnitudes larger than that associated with the hydraulic head gra-
dient and consequent subsurface regional aquifer flow rates preferred in
this study, capillary pressure heterogeneity apparently significantly
affects oil saturation under some conditions (Chang and Yortsos, 1992;
Lasseter et al., 1986).
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Fig. 12. Comparison of oil saturation profiles between the 2D W-E slice model and the 3D sector model. The profile are along the well with measured oil saturation as

mentioned above. Capillary pressure heterogeneity is considered in these simulations.

43 Limitations of this study

This study is subject to several limitations. First, the predictions of
average oil saturation in the ROZs from our simulations are marginally
larger than those measured by Honarpour et al. (2010). One possibility
is that, in some cells, the 50,000 years of the flow simulations presented
is insufficient to achieve a steady state. This is the consequence of the
fractional flow curve for water (Fig. 3c). The fractional flow of oil is
reduced to a very small value (< 0.008) when water saturation in-
creases to 0.5. Another complication is the impact of our limited ability
to accurately model the heterogeneous nature of the reservoir. The si-

mulations in this study utilized a cell size of 100 ft x ~2 ft (in 2D
models). However, the estimates of porosity and permeability were
based on measurements of core plugs with the size of 1-2 inches. Up-
scaling these detailed measurements to the scale of the simulation grids
inevitably averages out the true heterogeneous nature of the reservoir.
Additionally, the study employs injectors to represent regional water
influx. Whether such a representation is proper in creating hydro-
dynamically-representative tilts, need to be further validated by more

field/well data.

44.  Implications to future CO,-EOR and associated sequestration in ROZs

The current study provides useful insights into how these residual
oil reservoirs can best be exploited to maximize both oil production and
CO:z storage. For example, heterogeneities in permeability, porosity,
and capillary pressures are highly likely to result in three-dimensional
spatial heterogeneities in oil saturation. Such patches and layers of high
saturation could be exploited by using multiple horizontal wells. The
volume and saturation of water in ROZs should impact the selection and
optimization of CO:> injection strategies. The nature of water occurrence
in ROZs differs from that of MPZs subsequent to man-made water
flooding. In these circumstances, the water saturations in MPZs typi-
cally will be locally high around the water streamlines connecting in-
jectors and producers. This difference would result in differing optimal
parameters for WAG injection such as water cycle size and WAG ratio
(see for example Ren and Duncan, 2019) as well as the CO»/water/rock
interaction (Luhmann et al., 2017; Cui et al., 2017) for the geochemical

Fig. 13. Comparison of ROZ oil saturation profiles
between reservoir simulations and field measure-
ments. The oil saturation (black square dots) is ori-
ginally measured in sponge cores and then corrected
for reservoir conditions (Honarpour et al., 2010). The
black squares are the corrected oil saturations. The
comparison employs the simulated oil saturation
with the water inlet flux 0.5 ft/yr. The selected time
for the simulation result is at 50 k yrs.
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sequestration purpose. Additionally, tilted contacts have been demon-
strated to be important in affecting CO storage capacities and security.
Numerical simulations by Heinemann et al. (2016) show that CO2
storage in hydrodynamic aquifers can be enhanced through accelerated
CO: dissolution compared with static aquifers.

5. Conclusions and recommendations

Characterizing the variation of oil saturation in residual oil zones
(ROZs) is essential to assess reserves, design CO.-EOR projects, and
estimate sequestration capacities. The simulations reported in this study
have shown that the characteristics of ROZs can be reproduced using a
commercial, full-physics, multi-phase flow simulator. The simulated oil
saturation profiles are in reasonable agreement with the measured
profile published for the San Andres Seminole Unit's ROZ. The results
support the plausibility of the hydrodynamic model suggested by earlier
researchers, but do not rule out other models for the origin of ROZs.

The interplay between the magnitudes of water flux (aquifer flow
rate) and capillary pressure influences the variation of oil saturations
(both spatially and temporally) and geometry of ROZs. Larger water
fluxes result in thicker ROZs, and heterogeneity of capillary pressures
results in diffuse water-oil contacts.

During the formation of ROZs, the evolution of oil saturations is
essentially controlled by relative permeability curves, and in our spe-
cific study, oil saturation can achieve almost steady states in a time
scale that is relatively short compared to the time over which increased
aquifer flow rates are likely. However, the geometry of ROZs are slow to
be established, especially for small regional water fluxes.

A considerable amount of oil resides in ROZ reservoirs. Thus, they
should be considered as the attractive exploration targets for CO2 EOR
and storage. Additionally, the spatial distribution of oil in ROZs are
different from that in MPZs undergoing water flooding. This difference
should be emphasized in the optimization of injection strategies during
CO: EOR and storage in ROZs.

Acknowledgements

This study is part of a long term project investigating ROZ reservoirs
in the Permian Basin of Texas being carried out by the Bureau of
Economic Geology's (BEG's) State of Texas Advanced Resource
Recovery (STARR) Program and funded in part by a U.S. Department of
Energy contract under DOE Award Number FE0024375 (PI: Duncan).
The first author would like to thank Dr. Sheng Peng for his review
during the preparation of this manuscript. We wish to thank Robin
Dommisse for his help in building the geologic model. The opinions of
the authors do not necessarily reflect those of the United States
Government or any agency thereof. The research was also supported by
endowed funds from the Jackson School of Geological Sciences at The
University of Texas at Austin. Publication authorized by the Director,
Bureau of Economic Geology.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.petrol.2019.02.072.

References

Bachu, S., Pires, P., Li, M.Y., Guzman, F., Eide, L.I.,, Aleidan, A., Ackiewicz, M., Melzer,
L.S., 2013. Technical challenges in the conversion of CO,-EOR projects to CO; storage
projects, report prepared by the CSLF task force on technical challenges in the
transition from CO, EOR to CCS. http://www.cslforum.org/publications/documents/
CO,-EORtoCCS_FinalReport.pdf.

Bein, A, Dutton, A.R., 1993. Origin, distribution, and movement of brine in the Permian
Basin (USA): a model for displacement of connate brine. Geol. Soc. Am. Bull. 105 (6),
695-707.

Carruthers, D.J.F., 1998. Transport Modelling of Secondary Oil Migration Using Gradient-
Driven Invasion Percolation Techniques. Ph.D. Dissertation. Heriot-Watt University,

Edinburgh, UK.

Chang, J., Yortsos, Y.C., 1992. Effect of capillary heterogeneity on buckley-leverett dis-
placement. SPE Reservoir Eng. 7 (2), 285-293. https:/ /doi.org/10.2118 /18798-PA.

Chen, Z.A., Ruth, D.W., 1995. Measurement and interpretation of centrifuge capillary
pressure curves-the sca survey data. Log. Anal. 36 (5) SPWLA-1995-v36n5a2.

Connor, S.A., Swarbrick, R.E., 2008. Pressure regression, fluid drainage and a hydro-
dynamically controlled fluid contact in the North Sea, lower cretaceous, britannia
sandstone formation. Petrol. Geosci. 14, 115-126.

Cui, G., Zhang, L., Tan, C,, Ren, S., Zhuang, Y., Enechukwu, C., 2017. Injection of su-
percritical CO for geothermal exploitation from sandstone and carbonate reservoirs:
COx—water-rock interactions and their effects. J. CO» Util. 20, 113-128.

Dennis, H., Baillie, J., Holt, T., Wessel-Berg, D., 2000. Hydrodynamic Activity and Tilted
Oil-Water Contacts in the North Sea. vol. 9. NPF Special Publication, pp. 171-185.

Dennis, H., Bergmo, P., Holt, T., 2005. Tilted oil-water contacts: modelling the effects of
aquifer heterogeneity. In: In: Dore, A.G., Vining, B.A. (Eds.), Petroleum Geology:
North-West Europe and Global Pers
Geology Conference, vol. 6. pp. 145-158.

ectives — Proceedings of the 6t Petroleum

Eclipse-E100, 2016. Eclipse Users' Manual. Schlumberger, France.

Godec, M.L., Kuuskraa, V.A,, Dipietro, P., 2013. Opportunities for using anthropogenic
CO; for enhanced oil recovery and CO: storage. Energy Fuels 27 (8), 4183-4189.

Harouaka, A., Trentham, B., Melzer, L.S., 2013. Long overlooked residual oil zones
(ROZ's) are brought to the limelight. In: SPE-167209 Presented at the SPE
Unconventional Resources Conference, Calgary, Canada, 5-7 November, . https://
doi.org/10.2118 /167209-MS.

Heinemann, N., Stewart, R.J., Wilkinson, M., Pickup, G.E., Haszeldine, R.S., 2016.
Hydrodynamics in subsurface CO storage: tilted contacts and increased storage se-
curity. Int. J. Greenh. Gas ContR. 54, 322-329. https:/ /doi.org/10.1016/j.ijggc.2016.
10.003.

Honarpour, M.M., Nagarajan, N.R., Grijalba Cuenca, A., Valle, M., Adesoye, K., 2010.
Rock-fluid characterization for miscible CO; injection: residual oil zone, Seminole
field, Permian Basin. In: SPE-133089 Presented at the Annual Technical Conference
and Exhibition, Florence, Italy, 19-22 September, . https://doi.org/10.2118/
133089-MS.

Horak, R.L., 1985. Tectonic and hydrocarbon maturation history in the Permian Basin. Oil
GasJ. 83 (21), 124-129.

Hubbert, M.K., 1953. Entrapment of petroleum under hydrodynamic conditions. Bull.
Am. Assoc. Pet. Geol. 37 (8), 1954-2028.

Jamali, A., Ettehadtavakkol, A., 2017. COz storage in residual oil zones: field-scale
modeling and assessment. Int. . Greenh. Gas ContR. 56, 102-115. https:/ /doi.org/
10.1016/].ijggc.2016.10.005.

Koperna, G.J., Melzer, L.S., Kuuskraa, V.A., 2006. Recovery of oil resources from the
residual and transitional oil zones of the Permian Basin. In: SPE 102972 Presented at
the Annual Technical Conference and Exhibition, San Antonio, Texas, 24-27
September, . https://doi.org/10.2118/102972-MS.

Kuuskraa, V.A., Godec, M.L., Dipietro, P., 2013. CO; utilization from “next generation”
CO; enhanced oil recovery technology. Energy Procedia 37, 6854-6866.

Kuuskraa, V., Petrusak, R., Wallace, M., 2017. Residual oil zone “fairways” and dis-

covered oil resources: expanding the options for carbon negative storage of COx.
Energy Procedia 114, 5438-5450.

Lasseter, T.J., Waggoner, J.R., Lake, L.W., 1986. Reservoir heterogeneities and their in-
fluence on ultimate recovery. In: Lake, L.W., Carroll, B.C. (Eds.), Reservoir
Characterization. Elsevier Inc., Amsterdam, pp. 545-559.

Lee, M.K., Williams, D.D., 2000. Paleohydrology of the Delaware basin, western Texas:
overpressure development, hydrocarbon migration, and ore genesis. AAPG (Am.
Assoc. Pet. Geol.) Bull. 84 (7), 961-974.

Leverett, M.C., 1941. Capillary behavior in porous solids. AIME Petrol. Trans. 142, 152-
169.

Lucia, F.J., 2007. Carbonate Reservoir Characterization: an Integrated Approach.
Springer Science & Business Media, Berlin, Germany.

Luhmann, AJ.,, Tutolo, B.M., Tan, C., Moskowitz, B.M., Saar, M.O., Seyfried, W.E., 2017.
Whole rock basalt alteration from CO»-rich brine during flow-through experiments at
150° C and 150bar. Chem. Geol. 453, 92-110.

McNeal, R.P., 1965. Hydrodynamics of the Permian Basin. AAPG Mem. 4, 308-326.

Melzer, L.S., Kuuskraa, V.A., Koperna, G.J., 2006. The origin and Resource potential of
residual oil zones. In: SPE-102964 Presented at the Annual Technical Conference and
Exhibition, San Antonio, Texas, 24-27 September, . https://doi.org/10.2118/
102964-MS.

Melzer, L.S., 2013. Residual oil zones (ROZ): a review of ROZ science and engineering. In:
Enhanced Oil Recovery's Tensleep III Workshop. University of Wyoming.

Mirzaei-Paiaman, A., Ostadhassan, M., Rezaee, R., Saboorian-Jooybari, H., Chen, Z.,
2018. A new approach in petrophysical rock typing. J. Petrol. Sci. Eng. 166, 445-464.
https:/ /doi.org/10.1016/j.petrol.2018.03.075.

Pathak, P., Fitz, D., Babcock, K., Wachtman, R.J., 2012. Residual oil saturation de-
termination for EOR projects in means field, a mature west Texas carbonate field. SPE
Reservoir Eval. Eng. 15 (05), 541-553. https://doi.org/10.2118/145229-PA.

Ren, B., 2017. Local Capillary Trapping and Permeability-Retarded Accumulation during
Geological Carbon Sequestration. Ph.D. Dissertation. The University of Texas at
Austin, Austin, Texas.

Ren, B., Duncan, 1.]., 2019. Reservoir simulation of carbon storage associated with CO>
EOR in residual oil zones, San Andres formation of west Texas, Permian Basin, USA.
Energy 167, 391-401. https://doi.org/10.1016/j.energy.2018.11.007.

Saadatpoor, E., Bryant, S.L., Sepehrnoori, K., 2009. New trapping mechanism in carbon
sequestration. Transport Porous Media 82 (1), 3-17. https://doi.org/10.1007/
511242-009-9446-6.

Saadatpoor, E., 2012. Local Capillary Trapping in Geological Carbon Storage. Ph.D.
Dissertation. The University of Texas at Austin, Austin, Texas.


https://doi.org/10.1016/j.petrol.2019.02.072
https://doi.org/10.1016/j.petrol.2019.02.072
http://www.cslforum.org/publications/documents/CO2-EORtoCCS_FinalReport.pdf
http://www.cslforum.org/publications/documents/CO2-EORtoCCS_FinalReport.pdf
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref2
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref2
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref2
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref3
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref3
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref3
https://doi.org/10.2118/18798-PA
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref5
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref5
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref5
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref6
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref6
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref6
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref6
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref7
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref7
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref7
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref8
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref8
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref8
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref9
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref9
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref9
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref9
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref9
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref10
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref11
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref11
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref11
https://doi.org/10.2118/167209-MS
https://doi.org/10.2118/167209-MS
https://doi.org/10.1016/j.ijggc.2016.10.003
https://doi.org/10.1016/j.ijggc.2016.10.003
https://doi.org/10.2118/133089-MS
https://doi.org/10.2118/133089-MS
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref15
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref15
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref16
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref16
https://doi.org/10.1016/j.ijggc.2016.10.005
https://doi.org/10.1016/j.ijggc.2016.10.005
https://doi.org/10.2118/102972-MS
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref19
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref19
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref20
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref20
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref20
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref21
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref21
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref21
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref22
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref22
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref22
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref23
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref23
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref23
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref24
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref24
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref25
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref25
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref25
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref26
https://doi.org/10.2118/102964-MS
https://doi.org/10.2118/102964-MS
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref28
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref28
https://doi.org/10.1016/j.petrol.2018.03.075
https://doi.org/10.2118/145229-PA
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref31
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref31
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref31
https://doi.org/10.1016/j.energy.2018.11.007
https://doi.org/10.1007/s11242-009-9446-6
https://doi.org/10.1007/s11242-009-9446-6
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref34
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref34

B. Ren and 1. Duncan

Shook, M., Li, D., Lake, L.W., 1992. Scaling immiscible flow through permeable media by
inspectional analysis. Situ 16 (4), 311-350.

Stewart, R.J., Johnson, G., Heinemann, N., Wilkinson, M., Haszeldine, R.S., 2018. Low
carbon oil production: enhanced oil recovery with CO> from North Sea residual oil
zones. Int. J. Greenh. Gas Contr 75, 235-242. https:/ /doi.org/10.1016/j.ijggc.2018.
06.009.

Trentham, B., 2011. Residual oil zones: the long term future of enhanced oil recovery in
the Permian Basin and elsewhere. In: AAPG Southwest Section Meeting, Jun 5-7, .
http:/ /www.searchanddiscovery.com/documents/2011/40787trentham/ndx_
trentham. pdf.

Trentham, C.R., Melzer, L.S., Vance, D.B., 2012. Commercial Exploitation and the Origin
of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico

and West Texas. RPSEA Final Report.

Trentham, C.R., Melzer, L.S., 2015. Case Studies of the ROZ CO: Flood and the Combined
ROZ/MPZ CO: Flood at the Goldsmith Landreth Unit, Ector County, Texas. DOE Final
Report.

Trevisan, L., Krishnamurthy, P.G., Meckel, T.A., 2017. Impact of 3D capillary hetero-
geneity and bedform architecture at the sub-meter scale on CO saturation for
buoyant flow in clastic aquifers. Int. J. Greenh. Gas ContR. 56, 237-249. https:/ /doi.
org/10.1016/j.ijggc.2016.12.001.

Wang, F., Lucia, F., Kerans, C., 1998. Integrated reservoir characterization study of a
carbonate ramp reservoir: Seminole san Andres unit, gaines county, Texas. SPE
Reservoir Eval. Eng. 1 (02), 105-113. https://doi.org/10.2118/183628-PA.


http://refhub.elsevier.com/S0920-4105(19)30209-8/sref35
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref35
https://doi.org/10.1016/j.ijggc.2018.06.009
https://doi.org/10.1016/j.ijggc.2018.06.009
http://www.searchanddiscovery.com/documents/2011/40787trentham/ndx_trentham.pdf
http://www.searchanddiscovery.com/documents/2011/40787trentham/ndx_trentham.pdf
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref37
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref37
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref37
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref38
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref38
http://refhub.elsevier.com/S0920-4105(19)30209-8/sref38
https://doi.org/10.1016/j.ijggc.2016.12.001
https://doi.org/10.1016/j.ijggc.2016.12.001
https://doi.org/10.2118/183628-PA

6 Lessons for machine learning from the analysis of porosity-permeability

L)

Check for
updates

transforms for carbonate reservoirs

Frank Male®, Ian J. Duncan”

? Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin, USA
b Bureau of Economic Geology, University of Texas at Austin, USA

ARTICLE INFO

Keywords:

Data analysis

Reservoir characterization
Permeability prediction

ABSTRACT

Prediction of permeability is one of the most difficult aspects of reservoir characterization because permeability
cannot be directly measured by current well logging technology. This is particularly challenging for carbonate
rocks. Machine learning (ML) and robust multivariate methods have been developed that have been used in
many fields of study to make accurate estimators for variables of interest from both large and small datasets. ML
has been criticized for utilizing approaches that are typically not interpretable. That is, it is not clear how the
answers are arrived at and what aspects of input data may be resulting in inaccurate results. The current study
uses a number of the mathematical algorithms that operate inside ML modules. It applies them to developing
porosity-permeability transforms, with or without rock types, to two well-characterized data sets for carbonate
reservoirs. One data set is from Jerry Lucia’s 1995 study of carbonate rock types, and the other is from a study of
the Seminole, West Texas, San Andres Unit. This study of statistical analysis of porosity-permeability transforms
includes: transforming the data to normal distributions; performing cross-validation blind testing; and detecting
heteroscedasticity by creating plots of residuals. Heteroscedastic data (populations with variable variance) may
have an adverse impact on ML algorithms such as Random Forests (RF). We find that including lithofacies in-
formation does not greatly improve porosity-permeability transforms. We also propose a number of strategies to

make ML analyses of reservoir (and other geosciences) data sets more robust and accurate.

1. Introduction

Predicting permeability from porosity measurements of heteroge-
neous carbonate reservoir facies is of considerable importance in
reservoir characterization. A model developed a few decades ago by
Jerry Lucia, 1995, 2007 was widely regarded as a major step forward in
developing porosity-permeability transforms for such reservoirs. The
Lucia (1995) model related rock fabric to the formulation of
porosity-permeability transforms for carbonate lithologies. In recent
years, Machine Learning (ML) models have been proposed as a different
approach for classifying rock fabrics and predicting permeability.

Machine Learning is fast becoming a popular tool for attempting to
solve a wide variety of problems in the earth sciences (Cranganu et al.,
2015; Lary et al., 2016; Cat<@ et al., 2017). ML uses algorithms such
& Gradient Boosting Regressors, Random Forests, Support Vector
Ma- chines, and Neural Networks (Mishra and Datta-Gupta, 2017). It
also utilizes improved versions of conventional algorithms, such as
ordinary least squares (OLS). Recently developed variants of OLS
provide more
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robust solutions to accomplish regression of complex data sets (James
et al, 2013). These algorithms can process large amounts of data to
facilitate rapid pattern recognition for large multi-variable data sets,
make predictive inferences, estimate the relative importance of
contributing factors in determining a specific outcome, and “to make
and improve predictions of behaviors based on data” (Molnar, 2019).

Unfortunately, ML models for are viewed by some practitioners (and
many end users) as “Black Boxes.” A black box model is either “too
complicated for any human to comprehend,” or a model that is pro-
prietary (Rudin, 2019). Even if these models can be used to make ac-
curate predictions, if the nature of the underling mathematical and/or
statistical basis for these predictions is not clear, then such a charac-
terization is justified. The forecasts from ML models cannot typically be
explained in a way that can readily understood by the researcher or the
end-user of the research.

Interpretable Machine Learning, the focus of Molnar (2019), at-
tempts to make Black Box Models explainable. Molnar (2019) asserted
that there is “no real consensus about what interpretability is.” Others
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Table 1
Lithological classifications for the SSAU, giving the group, rock name, and
approximate depostional environment for each lithological group.

Lithological Rock name Depositional

group environment

1 Mudstone Outer ramp below storm

wave base

2 Bioclastic wackestone Outer ramp to mid ramp

3 Bioclastic packstone, grainstone, Mid ramp to shoal
and rudstone

4 Ooid-peloid grainstone Shoal

5 Peloidal wackestone, laminated Back shoal, tidal flat, and
mudstone, and anhydrite sabhka

have suggested that interpretability is the capability to determine how
an ML model arrives at its answers to the posed question. Interpretability
requires understanding the effects that changes in the input data have on
results (Gilpin et al, 2018; Murdoch et al, 2019). Interpretability is
important in avoiding embedded bias as well as aiding researchers un-
derstanding the impact on the solution of trade-offs in their models.
Attempting to explain Black Box models may elucidate some issues.
However, as Rudin (2019) noted, “creating models that are interpretable
in the first place” may be the preferred approach. Interpretable models
include linear regression, logistic regression, other linear regression
extensions, and decision trees (Molnar, 2019).

A particular ML research focus, of interest to geologists, has been
classifying rock facies and predicting permeability from wireline log
data (Hall, 2016; Al-Mudhafar, 2017; Ahmadi and Chen, 2018; Sudakov
et al,, 2019). Over the last decade, a variety of artificial intelligence and
ML approaches have been brought to bear on the problem of estimating
the permeability of carbonate reservoir rocks (see for example El-Se-
bakhy et al, 2012; Al-Mudhafar, 2015; Elkatatny et al., 2018).

In the current study, we examine the results from some specific ML
models for predicting permeability. In addition, we utilize some of the
key algorithms that are utilized in some ML models to test the validity
(predictability) of permeability estimates made using regression-based
transforms. The data comes from the seminal study of porosity-
permeability relationships in carbonate reservoirs published by Lucia
(1995) and from an ongoing study of the Seminole San Andres Unit
(SSAU) reservoir by Baqu<@s and Duncan.

Lucia’s methodology has been widely applied in rock typing and
reservoir characterization studies. However, the Lucia transforms have
not been subjected to a robust statistical analysis. In this paper, we study
the uses and limitations of ML, using carbonate porosity-permeability
measurements as an example. With machine learning approaches, we
addressed the question, “Can rock typing techniques improve prediction
of permeability from porosity?”

In order to address whether rock typing techniques assist in building
porosity-permeability transforms, we used a number of approaches.
First, we analyzed input data to establish its fitness for the application of
ML algorithms. Then we made predictions of permeability based on
models of differing degrees of complexity. The models included ordinary
least squares (OLS) and regularized, Elastic-Net regressors. Finally, we
analyzed the residuals from those predictions to determine how pre-
dictive the models are and whether their assumptions appear to be
violated.

2. Materials and methods
21 Lucia’s model for porosity, permeability, and rock fabric

An important part of reservoir characterization is finding the spatial
distribution of petrophysical properties for rocks. This is typically ach-
ieved through taking high confidence results from core and outcrop
studies, generalizing them, and then applying these generalizations to
lower confidence data set, such as well log interpretations. Two
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petrophysical properties are particularly important for reservoir char-
acterization: porosity and permeability. Both can be measured in core
samples, however only porosity can be directly estimated from wireline
well logs. In clastic reservoirs, typically a tight correlation can be found
between porosity and permeability. However, in carbonate reservoirs it
is common to find 3 orders of magnitude variation in permeability for
rocks of a specific porosity. Development of useful porosity-permeability
transforms from core data proved elusive for many years.

There have been repeated attempts at relating porosity to perme-
ability through the rock fabric of carbonate lithologies, starting with Gus
Archie. Archie (1952) proposed a carbonate classification system that
considered the pore-size distribution.

In the mid-1990s, Lucia proposed a new approach (Lucia, 1995). He
split carbonate rocks into three classes, based on a modified Dunham
texture nomenclature (Dunham, 1962) and on the average grain size. He
also developed a set of transforms to predict permeability for a specific
porosity and rock type. The Lucia rock type approach provided a
framework to estimate the petrophysical parameters of carbonates.
(Gro€tsch and Mercadier, 1999; Lucia, 2007; Wang et al., 1998).

22. Porosity/permeability data from the Seminole San Andres Unit,
Permian Basin, Texas

In order to compare the rock typing approach to one utilizing lith-
ological information, we built two complementary datasets. Cores from
legacy wells in the Seminole San Andres Unit (SSAU) were put through
routine core analysis, scanned using off-the-shelf desktop scanners, and
logged to determine the lithofacies. The approach is documented in
Baqu<@¥s and Duncan (in prep.). Lucia rock types were based on a data
¢ that spans many fields in the Permian Basin and Persian Gulf; it
includes several SSAU wells.

The SSAU is a dolomitized carbonate ramp reservoir that has pro-
duced more than 700 million bbl of oil to date. It is located on the
eastern shelf of the Central Basin Platform of the Permian Basin, West
Texas, USA. There have been several reservoir characterization studies
of the SSAU, including Wang et al. (1998), Sonnenfeld et al. (2003),
Kerans et al. (1994), Honarpour et al. (2010), and Ren and Duncan
(2019). The Seminole field was among those analyzed by Lucia (1995)
during the development of his rock typing approach.

The lithological analysis dataset from the SSAU that we utilized in-
cludes 2803 porosity and permeability measurements. Lithological in-
terpretations were placed into five facies groups (from deep to shallow
deposition): 1) open marine mudstone, 2) bioclastic wackestone, 3)
bioclastic grainstone-packstone-rudstone, 4) ooid-peloid grainstone,
and 5) laminated mudstone, anhydrite and peloidal wackestone. These
are shown in Table 1.

Another dataset comes from Lucia (1995). The Lucia rock types are 1,
2, and 3, which roughly correspond to grain-dominated grainstones,
grain-dominated packstones, and mud-dominated fabrics (Lucia, 1995,
Figure 16). These are derived from thin section analysis to determine the
Lucia rock class and to estimate the interparticle porosity. This data is
then merged with core measurements of the Klinkenberg-corrected
permeability to air. The result is an approximately 400 sample dataset
exactly corresponding to Lucia (1995) Figure 12.

23.  Data exploration

Upon collecting the data, porosity and permeability univariate and
bivariate distributions were plotted for each rock type. This included Q-
Q plots, histograms and cross-plots. Q-Q plots are useful for identifying
outliers, testing skewness of the data, testing the normality of the dis-
tribution, and determining the degree of difference between groups.

This data exploration provided the opportunity to consider how
complex the model can be, for the available data. A highly unbalanced
distribution of facies (if, for instance, one facies made up over 80% of the
data) would indicate that facies splits could tell us little about the
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Fig. 1. Histograms of interparticle porosity (a) and permeability (b) distribu-
tions for each Lucia rock type in the Lucia (1995) dataset. Porosity for rock class
three is bi-modal. Permeability values for each class do not follow a normal
distribution.
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porosity-permeability relationships. If the histogram shows two distinct
sub-distributions within one of the facies, that could indicate a natural
division for an overbroad facies definition.

Cross-plots between porosity and permeability by facies give an idea
of the likely effectiveness of a linear model. Clearly linear trends lead to
good accuracy of the model, and plots without clear trends generally
lead to ineffective models.

24. Preprocessing

In order to select a model that is likely to perform effectively on blind
tests, we must measure and minimize over-fitting. When a model over-
fits, its predictions are being influenced by noise in the data rather
than true effects. Over-fitting is tested for by creating a hold-out dataset
(the testing set), fitting models on the training set, then testing their
performance on the excluded data.

After the data is split into testing and training datasets, preprocessing
is applied to the testing dataset. Permeability is log-transformed to
simplify comparison between this work and others, and to make its
distribution more nearly Gaussian. The porosity data set is transformed,
using the Box-Cox method (Box and Cox, 1964). This method transforms
non-normal variables to approximate a normal distribution. Normality is
a necessary assumption for a number of statistical techniques, including
linear regression. After the porosity dataset is transformed, it is centered
to a mean of zero and scaled to a standard deviation of 1.

After variable transformation, regressions follow equations of the
form

logk = A + B;

9 —1
2

where 1 is the Box-Cox exponent used to transform porosity to approx-
imate normality, ¢ is porosity reported as a volume fraction, and A and B
are fitting parameters. The Box-Cox exponent is estimated through
optimization of a partial log-likelihood function (R Core Team, 2017,
step_BoxCox documentation).

2.5, Building regression models

Regression models (also called regressors) are statistical techniques
that approximate the relations between a dependent (response) and one
or more independent (explanatory) variables. The OLS method has poor
performance (in terms of bias and variance/uncertainty issues) for many
data sets. The bias is the difference between the true value of a

Fig. 2. a) Cross-plot of porosity and permeability for each Lucia rock class (modified from Lucia, 1995). Both the x- and y-axes are logarithmic. Color indicates the
rock class. b) Residuals plot for a regression of log-porosity against log-permeability by rock class. A black line shows zero residual. The color of the points indicates
the Lucia rock type. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3. a) Histograms for porosity for each lithology in the SSAU dataset. B)
Histograms for log-permeability for each lithology in the SSAU dataset. While,
for most lithologies, the property distributions are unimodal, the porosity and
permeability distributions for lithology 4 are multimodal. Lithologies are listed
in Table 1.

population parameter and the expected value from the model. It mea-
sures the accuracy (or deviation from truth) of the estimates. The vari-
ance is a measure of the uncertainty in these estimates. The best model
minimizes both the bias and the variance. Statistical analysis has shown
that the OLS linear regression model is often plagued by significant bias
(Agterberg, 1974; Seber, 1977; Mann, 1987). For example, there are
SRRS% nd¥high e RIS SRS SRR EsREieh Attt
OLS regressions report high accuracy, but do not make accurate pre-
dictions of new data.

Alternatives to OLS regression include regularized linear regression
approaches such as LASSO regression, Ridge regression, Elastic Net
regression (that combines LASSO and Ridge regression), and non-
parametric regressors, usually based on decision trees. Al-Mudhafar
(2019) has applied LASSO regression to modeling the permeability of
sandstone reservoirs. In contrast to the LASSO algorithm, the Elastic Net
regression modifies the objective function to minimize a combination of
the prediction error and the Li-norm and Lz-norms of the coefficients
(Zou and Hastie, 2005). Consequently, coefficients are shrunk (as hap-
pens in ridge regression) and specific coefficients may be zeroed out (as
happens in LASSO regression). Elastic Net regression is generally
considered to be the most robust linear regressor (Zou and Hastie, 2005)
and is used in this study.

A common non-parametric regression approach is random forests
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(RF). Random forest regression aggregates an ensemble of decision trees
in order to arrive at a result. The decision trees are generated in parallel,
and each split is made from random subsets of the dependent variables.
Breiman (2001) discovered that decision trees generated through taking
random columns from the dependent variables are less prone to over-
fitting. This technique allows random forests to be more robust than
decision trees. We use random forests built with the Ranger library on
the SSAU dataset.

After data exploration, preprocessing, and regressor selection comes
regression model building. In selecting the regression to be used, several
factors must be taken into account. First, the objective of the regression:
to predict permeability from porosity and facies (a different regression
would be built to predict porosity from permeability and facies, for
instance). Aiding this objective would be measures of which facies are
most important for the porosity to permeability transformation. With
this information, models can be simplified and designed to rely on the
most robust predictors and on fewer assumptions. Simple, robust models
are preferred because they are 1) easier to implement and interpret and
2) more likely to perform well on blind tests.

2.6. Testing regression models

Testing models includes considering the questions of predictability
on the training set and of generalizability to the testing set. Generaliz-
ability can be assessed by finding how reliable the process is on new
wells that do not have permeability measurements. The methods for
testing generalizability include assessing model accuracy for training,
cross-validated, and testing (holdout) data (Kearns, 1996).

During cross-validation, the training data is split into several groups.
Each group is excluded from the training data as the model is built, then
predicted (Kohavi, 1995). The regression 1is tuned during
cross-validation to optimize the regression. In order to achieve the best
cross-validation scores, regularization is imposed on the model to
minimize over-fitting.

There are three common metrics used for assessing the accuracy of a
regression: explained variance (RZ), square root of the mean squared
error (RMSE), and mean absolute error (MAE). Explained variance can
be reported using the Pearson R, which assumes the target variable (log-
transformed permeability) is normally distributed with no outliers and
constant variance across predicted values. Q-Q plots of the inputs and
residuals can be generated to test these assumptions. The equations for
MAE, RMSE, and Pearson R are given by:

& 4 ;-
y—yi’ n
X -

MAE ny y’> n

RMSE =

1 Xy—yy—y

n—1 ., o oy
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where n is the sample size i represents the sample number, y is the actual
value, y’ is the predicted value, a bar over a quantity is the mean of that
quantity, and o is the standard deviation of a quantity.

RMSE is the metric most commonly used for measuring the accuracy
of regression models. This metric is better than MAE when the objective
of the model is to reduce the magnitude of the largest errors. The MAE is
less sensitive to outliers than MSE, and thus is preferable when large
errors are not a concern. In the case of carbonate permeability predic-
tion, outliers are common and RMSE is a superior metric.

However, MAE is easier to understand than RMSE, because its value
is the expected value of the error of the regression. Therefore, for
instance, an MAE of 5% on a prediction of 100 mD permeability would
suggest that the average absolute error on that measurement is 5 mD. In
this work, models are trained to minimize RMSE of log-permeability
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Fig. 4. Hexbin cross-plot of permeability versus porosity for each lithology in the SSAU dataset. Permeability and porosity axes are both log-transformed. The box at
the top of each plot gives the lithology (listed in Table 1). Color indicates the number of points in the hexbin, from 1 (dark blue) to 40 (bright yellow). (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2

Measures of model accuracy for the predictions proposed by Lucia (1995)
transforming interparticle porosity (@ip) to permeability to air (k). Values are
reported in the natural logarithm of permeability in mD. RMSE= Root-mean
squared error, and MAE =mean absolute error. The bias is the approximate
amount the given equation will underestimate the permeability.

Rock Equation (mD) R? RMSE MAE Approximate
Type (log-emD)  (log-e Bias (%)
mbD)
1 k =(45.35 x 0.55 2.00 1.64 740%
8),8.537
10%)ej;
2 k =(1.595 x 0.69 1.20 0.99 200%
5),5.184
10°)p3;
22 k =(2.040 x 0.69 131 1.05 230%
61,6380
10%)e3;
3 k =(2.884 x 0.66 1.04 0.82 170%
3y ,4:275
10%)ej;

? Lucia offers two transforms for rock type 2.

(such that the units of RMSE are log-mD), but both RMSE (in log-mD)
and MAE (in log-mD) are reported.

Reporting performance is done on three subsets of data: the cross-
validation dataset, the entire training dataset, and testing data that is
held out until after the models have been completed. The first step in
model building is separating the data into training and testing data.
When it is possible, it is best to split the data in a way that reflects the
data collection process. For core data, the most natural split is by well;
after all, a petrophysical model is often only useful when it can predict
the properties of a new well. This is not possible when re-analyzing the
Lucia (1995) data, and therefore we perform random K-fold
cross-validation on his data.

2.7. Interpreting regression models

After regularization, some facies might be found to have little or no
effect on the porosity-permeability transform. This can be useful when
deciding which facies to focus on during core logging.

Feature importance is also assessed on each input to the regression.
This is done through evaluating the RMSE of the model predictions of

log-transformed permeability after randomly shuffling the values (see
Molnar, 2019, Section 5.5). Random shuffling has the effect of removing
the predictive ability of a predictor variable without otherwise affecting
the model. For an important feature, random shuffling would increase
the RMSE. Conversely, randomly shuffling an unimportant features
would have limited to no effect on the RMSE of the model.

3. Results
31 Exploratory analysis of data

First, we created histograms for the porosity and permeability dis-
tributions of each facies from the Lucia dataset (Fig. 1). Class 3 has a
bimodal porosity distribution, which can be treated by splitting the class
at a cutoff of 20% porosity (Fig. 1a). A Shapiro-Wilk test (1965) confirms
that porosity of rock type 3 does not follow a normal distribution with a
p-value of less than 0.05. The permeability values are not log-normally
distributed, nor unimodal for classes 1 and 2, according to both visual
inspection (Fig. 1b) and a Shapiro-Wilk normality test.

Next, we recreated Lucia’s porosity-permeability cross-plot, with
regression lines and uncertainty bands (Fig. 2a), also providing a plot of
the residuals for his transformation (Fig. 2b). The residuals plot shows
that the errors are heteroscedastic, that is to say, they do not hold a
constant variance as porosity and permeability increase. Performing a
Box-Cox transformation of permeability before regressing does not
remove the heteroscedasticity from the residuals.

For the SSAU dataset we also created histograms of the porosity and
permeability distributions for each lithology (Fig. 3). From this analysis,
we identified several cores that had been fractured in the core extraction
process and screened those sections from further analysis. The average
porosity is highest for grainstone and packstone lithologies (3 and 4) and
lowest for mudstone and anhydrite lithologies (5). Porosity for lithology
4 (ooid-peloid grainstone) is multi-modal, suggesting that this lithology
could be further subdivided.

Cross-plots for permeability and porosity are shown in Fig. 4. Li-
thologies 2 and 3 are the most abundant, and also have the highest
porosity and permeability values. A linear trend between porosity and
permeability can be detected, albeit with significant scatter. The
multimodal porosity distribution for lithology 4 does not affect the
porosity-permeability trend (This might be due to the small number of
samples.).
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Table 3
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Accuracy and residual metrics for several porosity-permeability transforms. The models presented are 1) Lucia (1995) regression, 2) a new regression on the data from
Lucia (1995), after careful preprocessing and regression regularization, 3) a lithofacies and porosity model trained on SSAU data, 4) a random forest model trained on
SSAU lithofacies data and 5) a model only using porosity, trained on SSAU data. Models 2—4 were trained through cross-validation, then model accuracy was calculated

on the training data, cross-validation, and testing data.

2

Model Sample source Data extent R RMSE (log-mD) MAE (log-mD)
1. Lucia (1995)* Lucia Full 0.65 1.40 1.09
2. Lucia rock type, Lucia Training 0.69 1.21 0.96
Elastic net cv 0.69 1.22 0.98
Testing 0.59 1.29 1.04
3.Lithofacies, SSAU Training 0.60 1.19 0.88
Elastic net cv 0.59 117 0.88
Testing 0.70 1.20 0.94
4 Lithofacies, SSAU Training 0.66 111 0.83
Random forest Ccv 0.59 117 0.88
Testing 0.68 1.22 0.97
5.Porosity (no rock type) SSAU Training 0.58 1.21 0.90
Ccv 0.59 1.17 0.88
Testing 0.72 1.18 092

# See Table 2 for equations. Metrics are aggregated from all three Lucia rock types.

Fig. 5. Feature importance plot for Lucia rock typing on the Lucia data set.
Points indicate average importance after 40 shuffling repetitions, while bars
indicate 95% confidence intervals. A feature with no importance would have a
95% confidence interval that drops below an importance of 1. All features show
importance for this regression. The intercept of each class is the permeability
where transformed porosity is zero. The porosity times class X is the slope of
log-permeability versus transformed porosity for class X.

Fig. 6. Comparison of total porosity versus Lucia’s calculated interparticle
porosity from point counting. Points indicate individual observations, lines the
OLS regression between points of the same rock class, and shading the confi-
dence intervals for those regressions. Color and shape vary with Lucia rock
class. Both the x- and y-axes are logarithmic. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of
this article.)

3.2. Results of the Lucia model

In his paper, Lucia (1995) provided best fit lines for each of his
petrophysical classes. The results of applying Lucia’s proposed perme-
ability transforms (Lucia, 1995, his Figure 12) using his dataset are
shown in Table 2. Lucia’s transformations do not account for bias from
performing the fit in logarithmic space (see Jensen et al., 2000, Chapter
10). Bias is calculated using the relation Bias = eRMSE?/2,

We also ran an elastic net regression on the data from Lucia’s
Figure 12 with three-repeat ten-fold cross-validation, after randomly
selecting 20% of the data to hold out for testing. Porosity was trans-

formed on the training data (the other 80% of the data-set) using Box-

Cox, then centering, then scaling to unit standard deviation. In-
teractions were built between porosity and Lucia Rock Type, and elastic
net regression was run. The results of this analysis are shown in Table 3.

The most accurate elastic net regression had no regularization,
resulting in OLS regression (much like Fig. 2). The model accuracy for
this regression on the three data extents (testing, cross-validation and

testing) are provided in Table 3. Each class has a statistically significant
difference in its porosity-permeability transformation, as evidenced by
the feature importance plot (Fig. 5).

It is desirable to develop a relationship between total porosity and
permeability, rather than interparticle porosity, because total porosity is
easier to measure from log and core data than interparticle porosity.
Jerry Lucia has graciously provided us with total porosity and inter-
particle porosity measurements. The comparison is plotted in Fig. 6.
From this figure, it is clear that there is a strong, unit slope correlation
between total and interparticle porosity. The R? exceeds 0.9 for each
rock type.

For all classes, @ip > @roral. The regression line for class 1 is Ingip =
1.13 In ¢—0.63, for class 2, itis Ingp =1.07 In ¢— 0.28, and for class 3,
it is Ingip =1.06 In ¢ — 0.31, where porosity is measured in p.u. Thus, in
these samples, total porosity overestimates interparticle porosity by less
than 15%. We therefore expect total porosity to perform about as well as
interparticle porosity in developing permeability predictors for non-
vuggy carbonates.

Frequently, Lucia rock types are not determined from measuring the
particle size. Instead, core is visually inspected and assigned Dunham
rock fabric categories. In theory, grainstone should correspond to Lucia
rock type 1, packstone to rock type 2, etc. Therefore, lithofacies inter-
pretation is often an input for determining permeability from porosity
data. With the SSAU data, we have the opportunity to compare porosity-
permeability transforms arising from lithofacies.
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Fig. 7. Residuals plot for Elastic-net regressions using the SSAU data. The boxes at the top of each facet provide the lithology, while the y-axis gives the residual (in
log-transformed permeability) and the x-axis gives the porosity. An orange line indicates zero residual. Colors for each hexagonal bin give the number of points
within, with 1 dark blue, and 18 bright yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

3.3. Results of lithofacies model

Creating a testing-training split for the SSAU data was accomplished
by holding out the data from the well SSAU #5505R, representing 8.2%
of the data, for testing. During preprocessing, porosity was transformed
using the same method as above, and interactions were built between
porosity and lithofacies. The Box-Cox transformation exponent used to
maximize normality of the distribution was 0.640.

Elastic net regression returns an R?= 0.60, RMSE = 1.21, and MAE
= 0.90 on cross validation. Residuals for the training dataset are shown
in Fig. 7. The residuals are slightly heteroscedastic, which disappears if
the permeability is transformed using Box-Cox before fitting (unlike in
Lucia’s dataset).

The best fit elastic net model has a mixing fraction of 0.66 and a
regularization parameter of 0.002. The regressor assigns weights to the
porosity and the slopes for each lithology. A plot of predicted and
observed permeability against depth is given in Fig. 8. Shuffling features
indicates that the statistically significant variables are transformed
porosity and lithologies 2 and 3 (Fig. 9). Model statistics are reported in
Table 3.

Random forest regression yielded the best cross-validated results
with 500 trees, 3 randomly selected predictors, a variance split rule, and
a minimum node size of 40 points. The features with larger-than-zero
importance were porosity, presence of lithology 5, presence of lithol-
ogy 3, and presence of lithology 2. Shuffling features indicated that both
porosity and lithology were important. A plot of residuals is given in
Fig. 10, and the permutation importances in Fig. 11. The model statistics
are available in Table 3. The random forest slightly underperforms the
linear model on cross validation and the testing data.

A reduced model that does not use lithofacies, but instead only uses
porosity to predict permeability, has an R 0.59, RMSE= 1.18, and
MAE =0.90 on the training data (Table 3, last row). This MAE corre-
sponds to e*°=2.5 times the predicted value. For example, if the
porosity-only model has ¢=0.067, it predicts k=1 mD, and the MAE
range is from 0.4 to 2.5 mD. For comparison, the model including lith-
ofacies, with a porosity of 0.067 and lithofacies 3, would predict a
permeability of 1.09 mD, with an MAE range of 1.5-2.7 mbD.

With the porosity-only model, the regression equation is

0.640

® —1

logk=1392 =
0.640

+17.9

where porosity is reported as a volume fraction and permeability is re-
ported in milliDarcy. The accuracy of this regression is shown in Table 2.

Table 3 shows model performance for the Lucia rock type-based

model, full core/full lithofacies model, and baseline porosity-
permeability model. Each measure is calculated to compare the natu-

ral log transformed permeability to its predicted value. The data extents
include Full (all data from that sample source), Training (all of the data
used in training the final model) CV (cross-validation data, where each
fold of the training data is held out of the fitting, then tested), and
Testing (data that is never used for building the model, but is blind
tested afterwards). The accuracy on each rock type and lithofacies are
aggregated to provide the mean accuracy for the data extent.

Using R? values, the elastic net regression performs better on the
SSAU testing data than on the SSAU training data. This is because the
accuracy of the model on individual wells varies from an MAE of 0.7-1.3
log-mD, and through chance, one of the better-behaved wells comprised
the training data.

4. Discussion
41 Data preprocessing and residuals analysis

This study has set out to inform approaches to ML analyzes and
related next generation statistical analyses to ensure that they are
interpretable (in the sense of Molnar, 2019). In the first step, the raw
data sets were analyzed to establish that they were appropriate for the
application of ML algorithms. In his paper on facies classification using
machine learning, Hall (2016) noted that “many machine-learning al-
gorithms assume the feature data are normally distributed” (ie.,
Gaussian with zero mean and unit variance). Hall suggested that data
should be conditioned such that they meet this criterion using includes a
Standard Scalar class. This methodology is inadequate for the task. As
written in the Sci-kit Learn (2019) manual, the preprocessor used by
Hall “ignores the shape of the distribution” and transforms the data “to
center it by removing the mean value of each feature”, and scaling it “by
dividing non-constant features by their standard deviation.” This
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Fig. 8. Plot of permeability versus depth for the testing well in the SSAU data.
Measured permeability is the black line, while predicted permeability from the
model including porosity and lithology (orange) and using only porosity (blue)
are shown as points. The point shape is used to show the interpreted lithology.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Fig. 9. Importance plot for elastic-net regression of permeability for the SSAU
data. Dots show the average effect on the RMS error after shuffling each feature.
Porosity and lithologies 2 and 3 have a persistent effect on the RMSE
after shuffling.
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approach does not assure Gaussian distributions for the transformed
feature; for instance, it does not remove skew. A superior approach (as
noted above), is to first apply a test for normalcy such as the
Shapiro-Wilk, followed if needed by a Box-Cox transform. Jensen and
Lake (1985) showed that using a Box-Cox transform to provide sym-
metry is sufficient to improve predictor performance in geostatistical
workflows.

In the case of the Lucia (1995) data, a Shapiro-Wilk test confirmed
that permeability for rock type 3 is not log-normally distributed, and
visual inspection of the distributions show it is not unimodal for classes 1
and 2. Further data analysis revealed that the data Lucia used to build
his model is polymodal, and that regressions of such data are hetero-
scedastic. Heteroscedasticity is characterized by a systematic variation
in the spread of the residuals from a regression analysis. Frequently it
results from the effects of outliers in the data set or the population being
multimodal. Note that ordinary least squares (OLS) regression is based
on an assumption that residuals are drawn from a population with
constant variance. Heteroscedasticity can result in p-values that are
unrealistically small. Bartlett’s test for homogeneity of variances (Par-
ra-Frutos, 2013) is one of several tests that can be used to identify het-
eroscedasticity in data sets.

Utilizing the results of regressions with strongly heteroscedastic re-
siduals will be prone to performing poorly on test data. This can be seen
by the large decrease in R? for the test data using Lucia’s rock types.
Heteroscedastic residuals that decrease as the prediction increases are
indicative of non-Gaussian variables. The heteroscedasticity of Lucia’s
data cannot be eliminated, even after careful transformation, due to the
multi-modal nature of the permeability distribution. If these kinds of
tests and data conditioning are not accomplished prior to running ML
algorithms, the resultant solutions may not be robust or accurate.

We find that the residuals from the random forest model are heter-
oscedastic. Not surprisingly, a study by Gelfand (2015) found that het-
eroscedastic data may have an adverse impact on ML algorithms such as
Random Forests (RF) and Gradient Boosting Regressors (GBR). How-
ever, Gelfand does note that GBR “may perform better than random
forests”. Similarly, Henry (2016) concluded that RF algorithms “are
inefficient at estimating means when the data are heteroscedastic”. He
suggested that the effectiveness of RF could be improved by utilizing a
“likelihood-based regression trees as a base learner”. In general, testing
for heteroscedasticity should be a standard procedure in application of
ML models to geoscience data sets, particularly if the RF algorithm is to
be deployed.

In ML based projects to analyze data sets from reservoirs including
rock typing, porosity, permeability and perhaps wireline log data,
Elastic Net regression will likely be preferred (in preference to ridge and
LASSO regression). If the data is characterized by highly correlated
explanatory variables this will be the case. O’Brien (2007) discusses the
uses (and abuses) of the Variance Inflation Factor as a measure of the
extent of “multi-collinearity of the ith independent variable with the
other independent variables in regression models.”

The elastic net regression run on Lucia’s data performed best without
regularization. This is because regularization is less likely to be appli-
cable when the number of variables being tested is small. Sufficiently
simple models with smaller numbers of variables are already inter-
pretable and explainable in the sense of Molnar (2019), and might not
require regularization. Similarly, the data sets that we have analyzed are
not sufficiently complex to evaluate the advantages of the Elastic Net
regression over less robust alternatives such as the LASSO algorithm.
LASSO was used by Al-Mudhafar (2019) to model permeabilities in
sandstone reservoirs. He asserted that this approach had resulted in
“significant progress in the application of statistical learning models to
petrophysical modeling” and had improved reservoir characterization.
It would seem that further exploration of Elastic Net Regression as a tool
for ML approaches to reservoir characterization could be fruitful.
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Fig. 11. Feature importances for the random forest model. The dot provides the
average importance on the residuals, with the bar representing 95% confidence
intervals. Porosity strongly influences the residuals of the model, but lithology
is weakly important.

42, Factors influencing permeability

Another set of important issues arise when it comes to taking the
output from ML algorithms and applying them to making predictions of
parameters such as permeability. If permeability is predicted from
porosity alone, and then compared to permeability predicted from
porosity and lithofacies information, for the SSAU data we find that
there is very little improvement of the prediction. The elastic net
regression utilizing lithology shows a significant contribution from
lithofacies 2 and 3 to the permeability. However, this contribution im-
proves the error metrics in the regression by less than 1% (Table 3,
bottom two regressions). The contrasting results (whether lithofacies do
or do not improve permeability predictions) show the value of building
simple models for benchmarking.

In the SSAU data, we have identified a contribution from lithofacies 2
and 3, but this effect is either too small to impact the regression, or it is
not present in the testing data. This indicates that even after regulari-
zation, un-useful parameters remain in the elastic net regression of the
SSAU data. Therefore, application of the elastic net algorithm has over-
fit on the training data. These kind of phenomena are likely to occur in
more complex ML models, but may go unnoticed unless carefully
searched for.

The limited effectiveness of lithofacies information in determining
the porosity-permeability transform does not necessarily hold for other
types of reservoir. In clastic (Al-Mudhafar (2017)) and mixed
clastic-carbonate (Wood, 2019) reservoirs, a much stronger influence of
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Fig. 10. Plot of residuals for the random forest model
trained on lithofacies and porosity for the SSAU data.
Each pane represents the lithofacies numbered at the
top. An orange line indicates zero residual (a perfect
fit). Hexbins are colored from blue (one data point) to
yellow (18 data points) based on how many samples
had a residual and porosity corresponding to that
location. There are only slight differences in the re-
siduals between this model and the residuals of the
linear model. (For interpretation of the references to
color in this figure legend, the reader is referred to the
Web version of this article.)

lithofacies on permeability is observed. Also, carbonate reservoirs that
have undergone less pervasive dolomitization might have a stronger
correlation between lithology and permeability.

On the topic of interparticle porosity versus total porosity, we per-
formed a regression between the two (Fig. 6). These measures of
porosity are nearly identical, except in cases where there are significant
vugs creating porosity. Vuggy porosity can be disconnected from the
flow paths, and therefore should be removed from the porosity when
large, disconnected vugs are identified. This result is in keeping with
Lucia (1995) conclusions. However, when significant vuggy porosity is
not present, total porosity is an accurate measure of the interparticle
porosity. The analysis of SSAU data shows that similar model accuracy
to the interparticle porosity canbe achieved using total porosity.

Finally, we note that despite repeated warnings about de-
transforming log-transformed predictions (e.g. Jensen and Lake, 1985;
Delfiner, 2007), analysts continue to ignore the bias these transforms
introduce into the predictions. Given the weak porosity-permeability
relationships typical of carbonate rocks, the relationships can
under-predict by a factor of 3 or more when bias is ignored. Using the
Box-Cox transformation with A/=0 helps, because the bias correction
term is additive rather than multiplicative to the prediction (Jensen
etal, 1987).

43 Guidelines for future research

There is a dearth of published data in dolomitized carbonates where
the accuracy of porosity-permeability transforms has been systemati-
cally measured. For instance, Haro (2004) suggests several permeability
models, but does not provide Rz, MAE, or RMSE errors for those models.
Al-Ajmi and Holditch (2000) offer R?, but neither MAE nor RMSE. (They
also build rock groups from the porosity-permeability transforms, rather
than the other way around.) Longy (2006) and Lucia (1995) provide R,
but neither MAE nor RMSE. None of these papers perform
cross-validation, and they do not perform blind well tests of their final
models.

In future reservoir studies where core is available, a critical evalua-
tion of lithofacies should be performed with robust statistical checks.
This is necessary to verify that differences between porosity-
permeability transforms of different lithofacies are significant. When
possible, cross-validation should be performed between wells, in an
approach similar to the industry-standard blind well test. To compare
results with literature, it is valuable to report the RZ, mean absolute
error, and root-mean squared error.
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To build generalizable machine learning models for geoscientific
datasets, the statistical character of the data should be carefully exam-
ined as part of the exploratory analysis. A testing data set that does not
bleed into the model-building data should be selected. The machine
learning model needs to have regularization parameters to prevent over-
fitting, and these parameters need to be tuned with cross-validation.
Finally, after model building, the residuals of the model predictions
need to be analyzed for the squared error, absolute error, and hetero-
scedasticity. These are all necessary parts of the geoscience machine
learning workflow.

There are other approaches for permeability prediction that have not
been analyzed in this study. These include neural networks and gradient
boosting regressors, as applied to a clastic reservoir (Al-Mudhafar,
2017), and a nonparametric model applied to a mixed carbonate-clastic
reservoir (Wood, 2019). These methods could be applied to carbonate
reservoirs such as the Seminole in future studies.

5. Conclusions

This study has developed a set of strategies that will support ML
studies of reservoir facies and associated petrophysical properties
(particularly permeability) being more transparent and/or more robust.
The first step involves characterizing the data set to understand key
aspects of its statistical distribution. In this study, we generated histo-
gram plots to examine the univariate statistics of porosity and perme-
ability in these rocks. As many ML algorithms require data have
approximately normal distributions, tactics such as applying the Box-
Cox transform should be utilized.

Following transformation of the data sets, we performed a regular-
ized linear regression on the porosity-permeability. We validated the
regression results through cross-validation and test-training splits.
Finally, we discussed the fraction of explained variance and expected
error for these porosity-permeability transforms.

Polymodal, heteroscedastic, data sets are common in petrophysical
studies such as Lucia (1995). In this data set heteroscedasticity was
identified from the observed variation in the spread of the residuals from
the regression.

In view of the broad interest in the use of porosity-permeability
transforms for characterizing carbonate reservoirs, an analysis of Lucia
(1995) model (utilizing newly available statistical tools), seems timely.
In this paper, we took Lucia’s data and another dataset from the Semi-
nole San Andres Unit and performed a robust statistical analysis of his
findings. Lucia’s results rely upon poorly conditioned data, impacting
the generalizability of his work to new datasets. Permeability does not
follow a wunimodal, log-normal distribution, leading to hetero-
scedasticity in permeability prediction. Lithofacies interpretations do
not lead to permeability predictions that outperform simple
porosity-only relations. It was also found that statistically significant
effects do not necessarily lead to better performance on holdout data.

This study has used a variety of state of the art Machine Learning
tools to analyze the generation of porosity-permeability transforms from
core data. Our conclusion has been that the complexity of the data is
such that knowledge of the rock type or facies does not result in a
significantly improved prediction of permeability, given a porosity
measurement. The overarching conclusion of this study is that using
Machine Language packages to investigate complex petrophysical and
geologic data is likely to be fraught with significant problems if the
approach lacks interpretability. If the nature of the data being processed
(such as normality and heteroscedasticity) is not understood and
accounted for, then model predictions may be erroneous.
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7 Diagenesis of the San Andres
Formation in the Seminole unit
in Central Basin platform,
western Texas

LeiJiang

ABSTRACT

The San Andres Formation, characterized by massive sulfate
cementation (with~10%—-30% of rock volume), is one of the
most productive units in the Permian Basin. However, little
attention has been paid to anhydrites, which affected the San
Andres reservoir quality. Coupling petrography with geochemi-
cal analysis, this study aims at providing a holistic diagenetic
framework in the Seminole San Andres Formation. Advanced
evaporation of seawater has resulted in abundant bedded and
nodular anhydrite precipitation along with reflux dolomitiza-
tion. An early stage of bacterial sulfate reduction may have
occurred and resulted in pyrite replaced anhydrite nodules. A
small downward decreasing of d’3C in carbonates may be caused
by either the secular carbon isotopic change of seawater or the
consequence of bacterial sulfate reduction. Fluid inclusion data
obtained from anhydrite cements suggest that (1) anhydrite
cementation continued to the maximum burial temperature of
~75°C and (2) a regional hydrothermal fluid activity with tem-
peratures between 100" C and 128° C has occurred. Neogene
meteoric water from the western uplifted mountain region may
have promoted a late-stage bacterial sulfate reduction that
caused anhydrite and dolomite dissolution and increased
present-day reservoir quality in the residual oil zones. This study
emphasizes the dynamics of anhydrite subjected to diagenesis
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that could result in an improved reservoir quality with greater
heterogeneity in a mixed carbonate and evaporite system.

INTRODUCTION

The Permian Basin of western Texas and southeastern New Mex-
ico has produced oil for more than 90 yr and represents the largest
oil resource in the United States (Gaswirth et al., 2016). Carbon-
ate reservoirs account for 75% of the total oil production in the
Permian Basin, among which the middle Permian San Andres
Formation has been the most productive one. The cumulative
production of carbonate plays from the San Andres Formation is
approximately 10 billion BOE as of 2000 (Dutton et al., 2005),
and it is one of the leaders in the Permian Basin for CO2 produc-
tion above original oil-water contact. Moreover, the San Andres
Formation is also one of the biggest producers of oil through
CO2-based enhanced oil recovery (CO2-EOR). More than
13,000 BOPD are being produced from residual oil zones
(ROZs), with 6500 bbl/day being produced from the ROZs in
the Seminole unit alone (Melzer, 2012). The estimated recover-
able oil from ROZs in the San Andres Formation and Canyon
Reef formation in Permian Basin is 12 billion bbl (Koperna et al.,
2006).

The majority of the studies on San Andres carbonate reser-
voirs were conducted during the 1980s to 1990s. These studies
predominantly focused on the reservoir’s stratigraphy, deposi-
tional models, and reservoir properties (Cowan and Harris, 1986;
Sarg and Lehmann, 1986; Kerans and Fitchen, 1995; Lucia et al.,
1995). Some workers have modeled reservoir heterogeneity
based on outcrop analogues and subsurface rock physical data
(Eisenberg et al., 1994; Wang et al., 1998; Dou et al., 2011). Dia-
genesis studies of the San Andres carbonates in the Permian Basin
have been limited in scope and mostly focused on dolomites
(Ruppel and Cander, 1988; Saller and Henderson, 1998). Altered
rock properties and occasional free sulfur in ROZs formed by
anaerobic bacteria in the San Andres Formation has been
reported (Melzer, 2012). Recently, Trentham et al. (2015)
emphasized the critical role of bacterial sulfate reduction (BSR)
in the biodegradation of hydrocarbons as well as the formation of
“black sulfur water,” H2S, elemental sulfur, and calcite in ROZs.
However, the nature of the diagenetic sequence and its impact on
reservoir quality have not been documented in detail, neither for
the main pay zone nor for the ROZ of the San Andres carbonate
reservoirs. This lack of detail hampers understanding mineral pre-
cipitation patterns during water injection and COz floods, which
can cause significant problems for water and oil flow during CO2-
EOR (Saller and Stueber, 2018). Further, a better understanding
of diagenesis of anhydrite in the San Andres Formation can help
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constrain the diagenetic effect on reservoir quality.
The outcomes from this study can apply to reservoir
characterization and CO2-EOR of the ROZs in sev-
eral other mixed carbonates and evaporite systems in
the Permian Basin (Ruppel and Cander, 1988; Lucia
and Ruppel, 1996; Saller and Henderson, 1998), as
well as many global analogies (e.g., Smackover For-
mation in the Gulf of Mexico Basin [Heydari, 2000],
Feixianguan Formation in the Sichuan Basin [Jiang
et al., 2018cl, and Khuff Formation in the Arabian
Basin [Worden et al., 1995]).

This paper predominantly focuses on the diagen-
esis of anhydrite and its impacts on reservoir quality
in the subsurface San Andres Formation in the Semi-
nole field of the northern Central Basin platform. To
characterize the nature and origin of diagenetic anhy-
drite and carbonate minerals in the Seminole San
Andres carbonate reservoir, conventional description
techniques of core and thin sections, cathodolumi-
nescence (CL) analysis, scanning electron microscope
(SEM) petrography, pore and mineral surface area
measurement, fluid-inclusion analysis, and carbon
and oxygen isotopic data were used. Combining
image-based quantitative data for porosity and differ-
ent diagenetic products, this paper attempts to
address the following questions:

1. What are the characteristics of various types of
diagenetic minerals (e.g., dolomite, calcite, and
especially anhydrite) within the Seminole San
Andres reservoirs?

2. What is the burial-diagenesis model of the

Seminole San Andres Formation and how does
diagenesis affect reservoir quality?

GEOLOGICAL SETTING

The Seminole San Andres unit (SSAU) is located
on the northeast margin of the Central Basin
platform immediately south of the San Simon channel
(Figure 1A). The reservoir's surface footprint extends
over 60 km? with approximately 850 wells. A carbon-
ate ramp depositional system (Figure 1B) with the
identification of high-frequency stratigraphic cycles
provides a detailed framework for reservoir characteri-
zation for the San Andres Formation (Eisenberg et al.,
1994; Grant et al., 1994; Kerans and Fitchen, 1995;
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Lucia et al., 1995; Wang et al., 1998; Phelps et al.,
2008). The oil field in the SSAU (discovered in 1936)
is a solution-gas drive reservoir with a small initial gas
cap. The Seminole field is one of several isolated plat-
forms built during early Guadalupian when the lower
San Andres composite sequence became linked with
the rest of the San Andres platform during the progra-
dation of the upper San Andres sequence (Figure 2)
(Lucia et al., 1995).

The lower San Andres is characterized by skel-
etal (e.g., fusulinid) grainstone, packstone, wacke-
stone, and an open-marine fauna, which was
deposited in upward-shallowing, peloidal, shallow
subtidal to peritidal cycles (Kerans et al., 1994;
Lucia et al., 1995). In contrast, the upper San
Andres at the SSAU is largely composed of anhy-
dritic peritidal deposits (Figure 2) (Lucia et al.,
1995). Dolomites and anhydrite are major diage-
netic minerals in the San Andres Formation, along
with other trace amounts of minerals such as
quartz, kaolinite, and fluorite (Leary and Vogt,
1987). Generally, the reservoir quality is closely
tied to lithotypes and facies, for example, grain-
stone from ramp crest and grain-dominated pack-
stone and wackestone from the middle to outer
ramp have much higher porosity and permeability
than mud-dominated fine crystalline dolostones
from ramp interior and upper distal outer ramp
(Kerans et al., 1994; Lucia et al., 1995; Wang et al.,
1998).

METHODS

New samples for this study were collected from wells

SSAU 2309 (n=29), SSAU 2310 (n=56), and SSAU

2504 (n=28) (Figure 1A) in the SSAU. Selected sam-
ples were prepared for thin sections (30 mm thick) for
optical microscopic studies. Selected polished thin
sections were impregnated with blue dye to highlight
megapores (greater than 10 mm) and with blue-
fluorescent dye to highlight micropores (less than
10mm) and for SEM-CL and fluid inclusion studies.
Additionally, several hundreds of thin sections from
wells SSAU 2505 (n=364) and SSAU 5309 (n=209)
were kindly provided by Jerry Lucia at the Bureau of
Economic Geology of The University of Texas at
Austin for the petrological study.
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Figure 1. (A) Map of key Permian Basin features and some key fields for enhanced oil recovery and residual oil zones discussions, mod-
ified from (Honarpour et al., 2010). Inset shows location of studied wells in the Seminole San Andres unit in Central Basin platform. (B) A
generalized depositional model and facies-tract distributions of distally steepened ramp clinothems during the middle Permian for Permian

Basin, modified from Phelps and Kerans (2007). GDP 5 grain-dominated packstone; HFC 5 high-frequency cycle.

Petrography

Selected thin sections, mainly from SSAU 2310
(n = 24), were examined by transmitted-light micros-
copy and SEM-CL along with elemental analysis
by energy-dispersive x-ray spectroscopy. The CL
images were obtained using a Zeiss Sigma High Vac-
uum Field Emission SEM equipped with an Oxford
X-Max 50-mm? silicon drift detector for low-energy
detectability, a pole piece-mounted backscattered
electron detector, and a Gatan MonoCL4 system
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operated at 5 kV and large sample currents. The CL
images were obtained from grayscale images col-
lected using blue filters.

Quantitative Assessment of Mineralogy
and Porosity

Minerals and pore spaces were identified under a
petrographic microscope by using plane cross-
polarized light. High-resolution thin-section photomi-
crographs were taken at various scales for quantitative
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Figure 2. Lithology, cycles, anhydrite content, and porosity correlation of the San Andres Formation from well SSAU 2505 in the Semi-
nole San Andres unit, modified from Lucia et al. (1995). The facies classification follows Kerans et al. (1994).

image analysis using the JMicrovision v1.27 software.
Thereafter, image analysis is performed by using the
pixel color and intensity from the photomicrograph
to differentiate between various minerals and pores.
Submicron to millimeter scale pores and minerals
could be extracted along with their geometry parame-
ters. The color deconvolution algorithm was used in
image analysis to better differentiate the pores from
rock components (minerals). We performed quantita-
tive assessment only on the thin sections from well
SSAU 2505 because detailed rock fabric facies,
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porosity, and permeability data are available in Lucia
et al. (1995).

Fluid Inclusion Microthermometry

Homogenization temperatures (1)) were measured
from fluid inclusion assemblages (FIAs) containing
two-phase aqueous inclusions in five out of nine
doubly polished (50 to 60-mm-thick) wafers from
well SSAU 2310. The use of FIAs to determine tem-
peratures of mineral growth, as opposed to lone
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inclusions, gives confidence that the Tj, data are credi-
ble and minimizes the effects of artifacts, such as
thermal reequilibration (Goldstein and Reynolds,
1994; Goldstein, 2012). Fluid inclusion microther-
mometry was conducted using a Fluid, Inc. (adapted,
US Geological Survey) type, gas-flow heating-
freezing stage mounted on an Olympus BX51 micro-
scope equipped with 40- objective (numerical
aperture = 0.55) and 15- ocular lenses.

Carbon and Oxygen Isotopes

Sixty powder samples 30-50 mg per single sam-
ple) of carbonate rocks and cements, from well
SSAU 2310, were microdrilled for carbon and oxy-
gen isotope study. The powered samples were heated
to remove organic materials and then reacted with
anhydrous phosphoric acid, under vacuum, to release
COz at 25° C for 24 hr. The CO2 was then analyzed
for carbon and oxygen isotopes on a Finnigan
MAT251 mass spectrometer standardized with NBS-
18. All carbon and oxygen data are reported in per
mille (%o) units relative to the Vienna Peedee belem-
nite standard. The precision for both d3C and d80
measurements is better than -0.1%o.

RESULTS

Diagenetic Products

Dolomite

In the San Andres Formation, dolomite occurs
as very fine crystals (~5-15 mm) (D1), fine
crystals (~20-50 mm) (D2), and medium crystals
(50100 mm) (D3). The D1 is commonly present in
dolomudstones and wackestones (Figure 3A) and
consists of fusulinids in grainstones and packstones
(Figure 3C). The D1 dolomite that commonly occurs
as planar-e to planar-s crystals is dark brown to black
and is homogeneously gray under SEM-CL (Figure
3D). The D2 dolomite is widely present in pack-
stones and grainstones, and it occurs as planar-s to
nonplanar-a dolomite rhombs (Figure 3B) and dis-
plays white or gray under SEM-CL (Figure 3E). The
D3 dolomite is commonly present in grain-rich
facies, and it occurs as medium-crystalline, nonpla-
nar-a dolomite rhombs (spherical) (Figure 3C), and

272 Diagenesis of the San Andres Carbonates and Evaporites

Downloaded from http:/pubs.geoscienceworld.org/aapgbull/article-pdf/106/2/267/5516279/bltn18042.pdf
by University of Texas at Austin user

displays relatively light (white) color under SEM-CL
(Figure 3F).

Anhydrite

Anhydrite has many occurrences (e.g., beds, nodules,
or cement) in the San Andres Formation. Bedded
anhydrite (Figure 4A) consists mainly of fine anhy-
drite crystals ranging from tens to <50 Mm in diame-
ter. It occurs predominantly in ramp interior facies
with a total thickness 0f~110-190 ft in upper San
Andres section, and locally in ramp crest and middle
to outer ramp facies with a thickness of 1-2 ft in the
lower San Andres section. Nodular anhydrite occurs
as coalescing or isolated nodules with sizes ranging
from tens to hundreds of micrometers in diameter.
Coalescing anhydrite nodules (Figure 4B) commonly
occur as burrow fillings in the upper San Andres sec-
tion, whereas isolated anhydrite nodules are wide-
spread in occurrence in the lower San Andres section.
Nodular anhydrite displays irregular crystal shapes
and crystal lengths ranging from less than 50 mm and
up to several hundreds of micrometers (Figure 4C,
D), or regular, tube-like shapes with coarse anhydrite
crystals up to several centimeters across (Figure 4E).
These anhydrites have either homogeneous color
(e.g., gray, white, black) or zonation under SEM-CL
(Figures 3E, 4I). Anhydrite cements commonly fill in
the pore spaces (Figures 3A, E; 4F, G), with single-
crystal sizes mostly ranging from 0.2 to 5 mm across,
and display homogeneous, or zoned, or nonlumi-
nous, under SEM-CL (Figures 3E, F; 4H, I).

Other Diagenetic Products

Although in a relatively small volume (<0.2% of the
total rocks), pyrite is commonly observed in the
San Andres Formation. It occurs predominantly as
partial replacement of nodular anhydrite, or less
commonly as replacing dolomites. Pyrite displays
euhedral or irregular and disseminated shapes with
sizes ranging from several micrometers to hundreds
of micrometers in diameter (Figures 3A; 4G; 5A—C).
Calcite is rarely present in the San Andres Formation;
it is only observed replacing a few anhydrite
nodules in the ROZs of reservoirs (Figures 4B, 5D).
Calcite displays either nonluminous or a very dull
gray color under SEM-CL (Figure 3E). Stylolites
are well developed in mudstone- and wackestone-
dominated intervals (Figure 5E), but almost
missing in grainstone- and packstone-dominated
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Figure 3. Photomicrographs and scanning electron microscopy—cathodoluminescence (SEM-CL) images showing various types of diage-
netic minerals observed in the Seminole San Andres unit well SSAU 2310. (A) DI consists of wackestone-mudstone, anhydrite (An; white)
filling mold with some replacive pyrite (Py; red arrow), depth 5179.5 ft. (B) D2 consists of wackestone with abundant intercrystalline pores
(BC) (blue), depth 5195.3 ft. (C) DI consists of the fusulinid grainstone associated with abundant intraparticle pores (IP) (blue) and D3,
depth 5261.2 ft. (D) The SEM-CL image of D1 consists of fusulinid grains displaying relatively homogeneous CL color and interparticle
porosity (IP), depth 5264.4 ft. (E) The SEM-CL image showing two different gray-scale levels of CL (gray and white) in D2, and relative
dark SEM-CL color in An replacive calcite (Ca), depth 5335.4 ft. (F) The SEM-CL image showing lighter (white) CL color in D3, whereas

gray CL color in An cement, moldic porosity (Mo) locally present, depth 5200.5 ft. D 3 dolomite.

JIANG 273

Downloaded from http:/pubs.geoscienceworld.org/aapgbull/article-pdf/106/2/267/5516279/bltn18042.pdf
bv Universitv of Texas at Austin user


http://pubs.geoscienceworld.org/aapgbull/article-pdf/106/2/267/5516279/bltn18042.pdf

Figure 4. Core photographs, thin-section photomicrographs, and scanning electron microscopy—cathodoluminescence (SEM-CL) images
showing various types of anhydrite (An) in the San Andres Formation. (A) Bedded An and D1 in the upper part of the San Andres Forma-
tion, well Seminole San Andres unit (SSAU) 2310, depth 5201 ft. (B) Nodular An locally replaced by calcite (Ca), well SSAU 2310, depth
5335.4 ft. (C) Nodular An displaying irregular and fine crystals, cross-polarized light, well SSAU 2310, depth 5103.3 ft. (D) Nodular An
showing irregular medium crystals, cross-polarized light, well SSAU 2310, depth 5200.5 ft. (E) Isolated An nodule showing tube-like, and
relatively coarse crystalline, cross-polarized light, well SSAU 2310, depth 5133.8 ft. (F) Various types of An including nodular, cement,
fracture-filling showing relatively coarse crystalline, cross-polarized light, well SSAU 5309, depth 5002 ft. (G) Moldic pore filled by a single
crystal An cement locally replaced by pyrite (Py; white arrow) at the edge, well SSAU 2310, depth 5200.5 ft. (H) Nonluminescent An
cement under SEM-CL, well SSAU 2310, depth 5212.8 ft. (1) Various types of SEM-CL color and local zonation (white arrow) present in An

cements, well SSAU 2310, depth 5264.4 ft. D 5 dolomite.

intervals. In ooid-rich grainstones where grain-to-
grain contacts are present, some grains display a
deformed elliptical shape.

Pore Systems

Classification of the pore space types follows
the methods of Choquette and Pray (1970) for
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macropores and the methods of Loucks et al
(2013) and Lucia and Loucks (2013) for micro-
pores. In the studied San Andres Formation,
seven pore types were recognized and listed in
the order of relative abundance as follows: vug,
intraparticle pores, intercrystalline pores, interpar-
ticle pores, moldic pores, micropores, and fractures
(Figures 3, 6).
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Figure 5. Photomicrographs showing other diagenetic products in the San Andres Formation. (A) and (B) Pyrite (Py) replacing anhydrite
(An) nodule, well Seminole San Andres unit (SSAU) 2310, depth 5107.6 ft for (A); and well SSAU 5309, depth 5084 ft for (B). (C) Py locally
replacing bulk dolomite, An cement filling with the pore spaces, well SSAU 2310, depth 5264.4 ft. (D) Calcite (Ca; red) locally replacing An
(white) nodule in residual oil zones of well SSAU 2310, depth 5335.4 ft. (E) Stylolites (black; white arrows) commonly present typical ser-

rated shape, well SSAU 5309, depth 5094 ft. D 5 dolomite.

Vuggy porosity is the volumetric dominant
(>50%) pore space type. It most commonly occurs as
partial or complete dissolution of rock components,
including matrix, grains (e.g., fusulinids), and anhy-
drite cements with sizes ranging between hundreds of
micrometers and up to several millimeters in diameter
(Figure 6B, C). Interparticle pores occur mostly in
fusulinid grain-rich facies, with pore sizes mainly
between 50 and 300 mm (Figures 3C, D; 6A, F). Inter-
crystalline pores and interparticle pores are commonly
observed in mudstone and wackestone (Figure 3B)
and grainstone and packstone, respectively (Figure 6A,
D). Few moldic pores are observed in grainstone
include dissolved crinoids or bivalves, with pore sizes
commonly less than 100 mm (Figures 3F). Micropores
occur predominantly as dolomite dissolution pores in
the middle of microdolomite crystals with sizes rang-
ing from 2 to 10 mm (Figure 6G). They can be
observed under blue ultraviolet light (Figure 6H, I)
and SEM (Figure 6F, G). Fracture porosity crosscuts
all diagenetic minerals and fabrics, commonly in the
width of <50 mm and length of up to several centi-
meters (Figure 6E).
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Quantitative Assessment of Mineralogy
and Porosity

Quantitative assessments were performed on poros-
ity occluding minerals, including anhydrite (most
commonly) and dolomite in 261 thin sections, which
were collected from the reservoir part of well SSAU
2505 at a depth of 5058-5300 ft. Results show that
anhydrite content ranges from 0% to >80% of the
total rock volume. The average content for anhydrite
and dolomite cement is 15% and 5.7% for grainstone,
16.1% and 10.5% for packstone, 10.7% and 14.7%
for porous wackestone, 13.3% and 7.3% for nonpo-
rous wackestone, and 28.1% and 9.1% for mudstone
(Figure 7).

Geochemical Data

Stable Carbon and Oxygen Isotopic Analyses

The results of stable isotope (O and C) analyses
for 56 bulk dolomite samples (D1 and D2) and
four anhydrite-replacive calcites are presented in
Figure 8, Figure 9A, and Table 1. Generally, d13C
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Figure 6. Photomicrographs showing various pore types in the San Andres Formation. (A) Abundant pore spaces consist mainly of
interparticle pores (BP) and intraparticle pores (IP) in grain-dominated dolostone, well Seminole San Andres unit (SSAU) 5309, depth
5162 ft. (B) Vug with sizes up to several millimeters across in very finely crystalline dolomite (gray) with abundant anhydrite (An) cement,
well SSAU 2310, depth 5295.5 ft. (C) Vugs with sizes up to several hundred micrometers are present in An cement filling with moldic pore,
well SSAU 2310, depth 5145.1 ft. (D) Abundant interparticle pore (BP) and dolomite moldic pores (Mo; white arrow) are commonly
observed in grainstone and packstone, well SSAU 2310, depth 5324.4 ft. (E) Fracture pores (F) are locally present (blue), mostly filled by
An (white) cements, well SSAU 2310, depth 5145.1 ft. (F) Abundant micropores (Mi) are present in fusulinid walls composed by D1, which
displays abundant IP, well SSAU 2310, depth 5264.4 ft. (G) Micropores (Mi) occur as dissolution of cores in D1, which consists of fusulinid
grains, well SSAU 2310, depth 5264.4 ft. (H) Fusulinid packstone displays abundant IP and D3, well SSAU 2310, depth 5261.3 ft. (I) Photo-
micrograph taken with blue ultraviolet light from (H) results in areas (fusulinid walls) of micropores to luminesce blue. D 5 dolomite.
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Figure 7. Box-plot image showing quantitative assessment of mineralogy and porosity results of (A) anhydrite content, and (B) dolomite
cement, in different rock types, data were derived from well SSAU 2505 in the Seminole San Andres unit.

decreases downward in the carbonate host rock,
but there are no obvious stratigraphic changes in
d180 values (Figure 8). Bulk dolomites display a
relatively narrow isotopic range for both d3C val-
ues (between 3.84%o0 and 6.69%., average at
5.18%0) and d180 values (between—0.18%o and
3.2%o, average at 1.79%o) (Figure 9A). In contrast,
anhydrite-replacive calcites show markedly negative
values of d13C (—13.90%c to —8.01%o0, average
at—10.93%0] and d180 (—10.16%0 to —9.30%o,
average at —9.67%o) (Figure 9A).
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Fluid Inclusion Microthermometry

Two-phase aqueous inclusions are present only in
few anhydrite cements, whereas single-phase fluid
inclusions were observed in a small part of replacive
poikilotopic anhydrite and fine crystalline dolomite.
Two groups of primary two-phase aqueous inclusions
were obtained from anhydrite cements. One group
yielded a relatively low and narrow T} ranging from
55°C to 75°C (Figure 10; Table 2) with a variation of
mostly <10°C within a single FIA. By contrast, the
other group yielded much higher T, ranging from
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Figure 8. Lithology, textures, facies, and d"C and d"®0 isotopic compositions of bulk dolomite (dol) in the San Andres Formation in
well SSAU 2310 in the Seminole San Andres unit (SSAU). The facies and texture classification after Lucia et al. (1995) and Kerans et al.

(1994). MPZ 5 main pay zone; ROZ 5 residual oil zone.

80° C to 128° C (Figure 10; Table 2), with variations
from <10° C to ~20° C within a single FIA.

DISCUSSION

Origin of Dolomite

Dolomites in the SSAU display d3C and d80 values
similar to several other Permian dolostone intervals in
the Permian Basin (Figure 9), which are proven to have
formed predominantly during reflux dolomitization
(Lloyd, 1966; Ruppel and Cander, 1988; Lucia et al.,
1995; Saller and Henderson, 1998; Ruppel and Jones,
2006). Stable isotopes of d3C and d%80 for dolomites
have been widely used to constrain the fluid tempera-
ture and source, diagenetic environment, and thus the
correlated dolomitization model (Saller and Dickson,
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2011; Jiang et al., 2016). The markedly positive swing
of d80 (mostly from 0%o to 3.2%o) in these dolomites
was most plausibly attributable to seawater evapora-
tion, which would lead to increased d®8Oseuparer values
(Jiang et al., 2016). The wide occurrence of anhydrites
in many Permian intervals suggests a persistent arid cli-
mate and strong evaporation in the Permian Basin dur-
ing the middle to late Permian (Lloyd, 1966; Ruppel
and Cander, 1988; Lucia et al., 1995; Saller and Hen-
derson, 1998; Ruppel and Jones, 2006). Therefore,
large swings in d80 values among these dolomites
may be linked to varying degrees of brine evaporation
for reflux dolomitization (Saller and Henderson, 1998;
Ruppel and Jones, 2006; Jiang et al., 2016), dolomite
recrystallization at various burial depths (Land,
1980; Ruppel and Cander, 1988), or a combination of
these factors. Neither evaporation nor recrystallization
would change the d3C in precursor dolomites; the
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Figure 9. Carbon (carb) and oxygen isotopic compositions of bulk dolomite and diagenetic calcite cement from the Permian units in the Perm-
ian Basin. (A) Data measured from the San Andres Formation at the Central Basin platform in this study. (B) The sketch displays the isotopic
range of seawater, dolomite, and burial calcite in the Seminole San Andres unit (SSAU), arrows show the trajectory of dolomite in equilibrium

with seawater as it evaporates, and the trajectory of calcite produced by bacterial sulfate reduction. VPDB 3 Vienna Peedee belemnite.

small stratigraphic downward decrease in d13C,
therefore, may imply a secular change of d13C in sea-
water or diagenetic alterations. The latter is evident
in many sedimentary basins worldwide through the
incorporation of 12C-rich carbon from oxidation of
organic matter to COz (e.g., through BSR [Machel,
2001; Saller et al., 2014; Jiang et al., 2019] or mete-
oric diagenesis [Melim et al., 2001]).
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The presence of single-phase fluid inclusion indi-
cates low precipitation temperatures (e.g., <50°C)
for D1 dolomite formation (Goldstein and Reynolds,
1994). During San Andres carbonate deposition, the
surface temperature may have been higher than that
of the present-day (e.g., the average annual tempera-
ture of 18.6°C for Midland, Texas). A temperature
range of 25°C to 40°C (average at 32.5°C) is invoked
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Table 1. Carbon and Oxygen Isotopic Compositions of Bulk
Dolomite and Late Diagenetic Calcites in Well SSAU 2310 in
the Central Basin Platform

Sample Number Depth, ft  Mineral d"®0veps  d"*Cypps
SSAU-01 5008 Dolomite 1.47 6.23
SSAU-02 5013 Dolomite  —0.18 5.62
SSAU-03 5019 Dolomite 0.96 6.18
SSAU-04 5019 Dolomite 0.97 6.17
SSAU-05 5024 Dolomite 0.28 6.25
SSAU-06 5035.5 Dolomite 1.8l 6.16
SSAU-07 50459 Dolomite 0.58 6.23
SSAU-08 5055 Dolomite 257 5.79
SSAU-09 5059 Dolomite 1.73 5.47
SSAU-10 5079 Dolomite 226 421
SSAU-11 5088 Dolomite 2.0l 6.69
SSAU-12 5099 Dolomite 1.47 6.26
SSAU-13 5102 Dolomite 235 6.32
SSAU-14 5103.2 Dolomite 2.08 4.03
SSAU-15 5106 Dolomite 2.06 6.30
SSAU-16 5108 Dolomite 1.52 6.37
SSAU-17 5111 Dolomite 1.64 5.87
SSAU-18 5118 Dolomite 3.03 6.63
SSAU-19 5133 Dolomite 1.65 6.07
SSAU-20 5137 Dolomite 211 6.29
SSAU-21 5145 Dolomite 2.00 6.10
SSAU-22 51464 Dolomite 2.65 5.83
SSAU-23 5160 Dolomite 2.40 6.11
SSAU-24 5165 Dolomite 2.12 5.94
SSAU-25 51722 Dolomite 2.46 573
SSAU-26 5175 Dolomite 3.20 553
SSAU-27 5179.5 Dolomite 1.91 5.74
SSAU-28 5190 Dolomite 1.22 529
SSAU-29 5201 Dolomite 2.72 5.13
SSAU-30 5203.5 Dolomite 2.62 498
SSAU-31 5208 Dolomite 243 523
SSAU-32 5208.5 Dolomite 1.84 529
SSAU-33 5210 Dolomite 141 472
SSAU-34 5215 Dolomite 1.78 4.69
SSAU-35 5220 Dolomite 0.73 457
SSAU-36 5227 Dolomite 1.38 477
SSAU-37 5230 Dolomite 2.22 4.85
SSAU-38 5252 Dolomite 2.13 457
SSAU-39 5261 Dolomite 1.51 425
SSAU-40 5264 Dolomite 2.04 421
SSAU-41 5267.5 Dolomite 1.32 446
SSAU-42 5269.7 Dolomite 1.02 4.40
SSAU-43 5277 Dolomite 2.29 429
SSAU-44 5284.5 Dolomite 1.99 443
SSAU-45 52884 Dolomite 1.40 4.55
SSAU-46 5293 Dolomite 1.78 456
SSAU-47 5299 Dolomite 1.81 421
SSAU-48 5302 Dolomite 0.86 4.07
(continued)
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Table 1. Continued

Sample Number Depth, ft Mineral d'®Owps  d"*Cyeos

SSAU-49 5307.5 Dolomite 1.95 4.00
SSAU-50 5312 Dolomite 235 3.84
SSAU-51 5314 Dolomite 1.50 3.96
SSAU-52 5315 Dolomite 1.34 4.11
SSAU-53 5324.2 Dolomite 2.05 424
SSAU-54 5332.5 Dolomite 1.79 426
SSAU-55 5333.5 Dolomite 1.45 3.88
SSAU-56 53349 Dolomite 2.28 422
SSAU-57 5328 Calcite —13.90 —I10.16
SSAU-58 5333 Calcite —12.51 —97]
SSAU-59 53349 Calcite —8.0I —9.45
SSAU-60 5335 Calcite —9.30 —9.37

Standard deviations for d'*Cand d'®0 are 0.01 and 0.04, respectively.
Abbreviations: SSAU = Seminole San Andres unit; VPDB = Vienna Peedee
belemnite.

for tropics or subtropics surface temperatures during
the middle Permian, as revealed by carbonate
clumped isotope from fossil brachiopods (Henkes
et al., 2018). Assuming a depositional surface tem-
perature of 32.5°C, a geothermal gradient of 20°C/
km (Mazzullo and Harris, 1991), this dolomitization
event occurred at burial depths ranging from 0 to
2460 ft to generate temperatures between 32.5°C
and 50°C. However, the geothermal gradient was
probably higher in the past because of meteoric
waters circulation that may have cooled most of the
current San Andres subsurface (Saller and Stueber,
2018). Hence, the depth of 2460 ft is an estim-
ation of the maximum depth for dolomitization.
Diagenesis, including recrystallization, dissolution,
and reprecipitation, may have occurred during
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Figure 10. Box-plot image showing homogenization tempera-
tures of two groups of primary inclusions in individual FIA in dia-
genetic anhydrite cement in the San Andres Formation.
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Table 2. Fluid Inclusion Homogenization Temperatures Data
of Diagenetic Anhydrites in Well SSAU 2310 in the Central
Basin Platform

FIA Th Average
Number  Type Range, ‘C Number T, °C SD

1 Group I 55.9-75.3 15 65.9 6.3
2 Group |  64.3-77.5 9 70.8 3.2
3 Group Il 111.2-128.2 8 122.0 6.1
4 Group Il 85.6-119.6 13 100.7 12.5
5 Group Il 76.5-98.2 7 85.1 7.6
6 Group Il 79.5-107.7 19 88.2 7.5
7 Group Il 79.2-103.5 11 92.1 6.8
8 Group Il 85.5-106.5 9 95.8 741
9 Group Il 78.6-105.4 9 91.2 104

Abbreviations: SD = standard deviation; SSAU = Seminole San Andres unit;
Th=homogenization temperature.

burial and resulted in varying gray-tones SEM-CL
color in the growth zones of D1 dolomites (Figures
3D). In contrast, D2 dolomite displays mixed gray
and white (Figure 4H, I), whereas D3 dolomite dis-
plays homogeneous gray or white under SEM-CL
(Figure 3F), suggesting that they were precipitated
from fluids with distinctive chemical compositions
at different burial-diagenesis conditions (Leary and
Vogt, 1987; Ruppel and Cander, 1988; Major and
Holtz, 1990; Saller and Henderson, 1998).

Origin of Anhydrites

Bedded anhydrite in the San Andres Formation was
most likely precipitated in restricted, saline brine
bodies (e.g., lagoons) because of strong evaporation
under an arid climate condition (Lucia and Ruppel,
1996), whereas anhydrite nodules, especially the coa-
lescing nodules filling burrows, were formed during
early diagenesis and probably in parallel with reflux
dolomitization (Ruppel and Cander, 1988; Lucia and
Ruppel, 1996; Saller and Henderson, 1998). The
presence of single-phase fluid inclusions suggests low
precipitation temperatures (<50 C) for these early
anhydrites (Goldstein and Reynolds, 1994). By con-
trast, late anhydrite cements, occupying various types
of pore spaces, were formed during burial diagenesis
and likely emplaced after reflux dolomitization (Fig-
ure 11). Based on the primary fluid inclusion data,
we conclude that anhydrite cementation continued
to burial temperatures ranging from <55°C to 75°C
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(Figure 10), corresponding to burial depths lying
between 3355 and 6635 ft, which approached the
maximum burial depth for the Seminole San Andres
reservoir (Mazzullo and Harris, 1991). Note that the
present-day depths for reservoirs in the San Andres
Formation are predominantly between 4900 and
5600 ft (Lucia et al., 1995), with temperatures
between ~39.1°C and 59.1° C. This is consistent
with a measured reservoir temperature of 42° C for
the Seminole field (Galloway et al., 1983).

By contrast, some anhydrite cements were pre-
cipitated at remarkably high temperatures of 90° C to
128° C, which is much higher than the maximum
burial temperatures (60°C—92.6"C) of the Permian
strata in the Permian Basin (Mazzullo and Harris,
1991). This suggests the presence of a regional hydro-
thermal event in the Seminole San Andres carbo-
nates (Warren, 2000; Davies and Smith, 2006;
Smith, 2006). The recent discovery of hydrothermal
dolomites in several Permian intervals in the Permian
Basin (e.g., the Grayburg Formation in the Delaware
Basin) (T) ranging from 113" C to 224°C), the Cen-
tral Basin platform (T, ranging from 137°C to

205°C) (Lindsay, 2018), and the Pennsylvanian and
lowest Permian carbonates from the Reinecke field in
western Texas (T, ranging from 92°C to 118" C) (Sal-
ler and Dickson, 2011), supporting the occurrence of
regional hydrotromal event in the Permian units of
the Permian Basin. The hydrothermal waters were
linked to heating of the Neogene meteoric water
sourced from the western uplifted mountain region
(Saller and Stueber, 2018) by localized intrusive plu-
tons (Eaton, 2008), before they fluxed into the sub-
surface area of the Permian strata in the basin. The
hydrothermal fluid was likely in equilibrium with
dolomite and anhydrite by dissolution of carbonate
and evaporite during its pathways (Mazzullo and
Harris, 1991) and precipitated hydrothermal miner-
als in the subsurface reservoirs in Permian strata.

Bacterial Sulfate Reduction

The BSR, a redox reaction between sulfate and
organic matter (including oil) and mediated by
sulfate-reducing bacteria, was widespread in ancient
rocks during shallow burial at temperatures less than
80° C (Machel, 2001). The observation of small vol-
umes (average < 0.1%) of diagenetic pyrite replacing
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Figure 11. Burial depth-temperature curve and paragenetic sequence in the Seminole San Andres unit of the Central Basin platform.
Temperature on the basis of geothermal gradient of 20:C/km (5 1.2°F/100 ft). Onset of organic matter maturation and oil charging was
modified from Mazzullo and Harris (1991). Paragenetic sequence was established on the basis of petrological evidence combined with
homogenization temperatures measured from fluid inclusions. BSR 5 bacterial sulfate reduction.

anhydrite (Figures 3A; 4G; 5A, B) and dolomite (Fig-
ure 5C) indicates the occurrence of BSR (Machel,
2001). A small downward decreasing of d13C in
dolomites with sedimentary facies changing from
ramp interior to outer ramp (Figure 8) could be the
consequence of enhanced BSR from shallow to deep-
water sediments (Machel, 2001; Saller et al., 2014;
Jiang et al., 2019). Therefore, syndepositional dia-
genesis in different sedimentary facies is able to alter
primary geochemical signals in carbonates (e.g., C,
0, U isotopes) (Jiang et al., 2019). Caution should
be paid when applying the geochemistry proxies in
marine carbonates for paleoclimate reconstruction.
In this study, anhydrite-replacive calcites, with
markedly negative d3C values ranging from approxi-
mately—80%o to 10%o (Figure 9), were observed
in the ROZs of the San Andres Formation in well
SSAU 2310. This type of calcite has also been docu-
mented in several other Permian intervals in the
Permian Basin (Leary and Vogt, 1987; Saller and
Henderson, 1998; Ruppel and Jones, 2006; Saller
and Stueber, 2018). Markedly negative d13C values
in calcite indicate that a significant contribution of
carbon was sourced from the oxidation of hydrocar-
bons (Wiggins et al., 1993). Diagenetic carbonate
cements, with d3C values of greater than—10%o,
are commonly linked to BSR at burial temperatures
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of < 80°C (Machel, 2001; Londry and Des Marais,
2003; Saller et al., 2014), or to thermochemical sul-
fate reduction (TSR) at higher burial temperatures of
>100°C (Machel et al., 1995; Worden et al., 1995;
Vandeginste et al., 2009; Jiang et al., 2015). The rela-
tive low burial temperatures (<75°C; Figure 11) for
the studied San Andres Formation appear to support
the BSR model. Furthermore, it is evident that a late-
stage BSR is likely an ongoing event in the ROZs of
the Permian strata in Permian Basin (Leary and Vogt,
1987; Wiggins et al., 1993; Lindsay, 2018; Saller and
Stueber, 2018). However, we could not completely
rule out the possibility of the TSR model, which may
have also promoted calcite precipitation with
depleted d13C values during the local hydrothermal
activities.

Burial-Diagenesis Model

This study, to my knowledge, is the first holistic dia-
genesis study that places an emphasis on diagenetic
anhydrite and its effects on the Permian carbonate
reservoir quality of the San Andres Formation (Figure
11). Mazzullo and Harris (1991) discussed burial-
diagenesis models for several Permian intervals in the
Permian Basin, which are so far the most detailed
documented burial models in the Permian strata.
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None of their diagenesis models, however, docu-
mented in detail the diagenesis of widespread anhy-
drites within these carbonate reservoirs (Ruppel and
Cander, 1988; Lucia et al., 1995; Saller and Hender-
son, 1998).

The San Andres carbonates were initially depos-
ited as limestone in a marine ramp system at ambient
temperature conditions (Kerans and Fitchen, 1995).
As the basin became restricted, intense evaporation
elevated seawater salinities under an arid climate con-
dition, resulting in evaporite deposition and early
reflux dolomitization (Ruppel and Cander, 1988;
Lucia et al., 1995; Saller and Henderson, 1998; Saller
et al., 2014). Reflux dolomitization was responsible
for the generation of intercrystalline pores and micro-
pores (Figures 3B; 6G, I). Anhydrite deposition,
cementation, and replacement may have occurred in
parallel with reflux dolomitization (Ruppel and Can-
der, 1988; Saller et al., 2014; Jiang et al., 2016). The
widespread occurrence of the early stage of BSR may
have resulted in anhydrite nodules replaced by pyrite
(Figure 5A, B), and partial or complete dissolution of
dolomites (Figure 6B). The following diagenesis was
dominated by anhydrite cementation and recrystalli-
zation, dissolution and reprecipitation, mechanical
and chemical compaction (Figure 5E), and fracturing
(Figure 6E), with diagenetic fluids dominated by
evaporative brines. Finally, Neogene tectonism
enabled meteoric water from western mountain areas
fluxed into the San Andres Formation in Central
Basin platform, associated with a late-stage localized
hydrothermal event and a late-stage BSR, which
resulted in dolomite and anhydrite dissolution and
reprecipitation, and growth of calcite in the ROZs
(Figure 11).

Diagenesis Effects on Reservoir Quality

Combining the quantitative assessment of mineral
and porosity data with detailed petrology study and a
well-established diagenesis frame enables us to evalu-
ate the impact of diagenesis on reservoir quality in
facies-dependent rock types of the San Andres For-
mation (Figure 1B). Generally, reservoir quality for
grainstones and packstones is superior to wackestone
and mudstone (Figure 12). Porosity data in grain-
stones and packstones are quite similar, whereas
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permeability data in grainstones are markedly higher
than packstones (Figure 12). The different reservoir
quality and heterogeneous in each reservoir type
in the San Andres carbonates have been linked to dif-
ferent sedimentary facies and dolomite crystal sizes
(Lucia, 1995; Lucia and Ruppel, 1996). However,
the origin of porous and finely crystalline wacke-
stones in this study, displaying great reservoir poten-
tial (Figure 12), deserves a further explanation. Cru-
cially, the effects of anhydrite cements, which
comprise approximately 20%—30% of the total rock
volume in the San Andres Formation and many other
Permian intervals in Permian Basin, on reservoir
development is not well understood (Leary
and Vogt, 1987; Ruppel and Cander, 1988; Major
and Holtz, 1990; Lucia and Ruppel, 1996; Saller and
Henderson, 1998; Ruppel and Jones, 2006).
Anhydrite cements are commonly present in
interparticle pore spaces, whereas they are almost
absent in areas where grain-to-grain compaction is
present, suggesting that early emplacement of anhy-
drite may have prevented compaction and pressure-
dissolution during burial and reserved the original
rock structures. This is similar to the appearance and
effect of calcite cementation on grain-dominated car-
bonate reservoirs (Heydari, 2000; Jiang et al.,
2018b). However, calcite is relatively stable and pre-
cludes most further diagenetic alterations. Once pre-
cipitated, it commonly occludes pore spaces and
decreases carbonate reservoir quality (Jiang et al.,
2018b). By contrast, anhydrite is a more soluble min-
eral, and it would more easily be removed by normal
diagenetic fluids (e.g., meteoric water, seawater,
burial and hydrothermal fluids) (Hill, 1990; Jiang
et al., 2018a; Saller and Stueber, 2018). Hence,
“early-stage” anhydrite cementation may have pre-
served the primary rock textures, whereas “late-
stage” anhydrite dissolution would lead to an
enhanced reservoir quality. This dynamic nature of
anhydrite subjected to diagenesis may have been
underestimated in the reservoir development in the
San Andres carbonates (Lucia et al., 1995; Jiang et al.,
2018b). The discovery of porous wackestones associ-
ated with markedly high porosity and the lowest
anhydrite cement volume (Figure 7) from this study
1s likely attributed to the dynamics of anhydrite dur-
ing diagenesis. The great heterogeneity and complex
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Figure 12. Box-plot image showing the distribution ranges of porosity (A) and permeability (B) in each rock type in the San Andres For-
mation at well SSAU 2505 in the Seminole San Andres unit (SSAU). Petrophysical data were derived from Lucia et al. (1995) and Wang
et al. (1998). Average porosity and permeability for grainstones, packstones, porous wackestones, nonporous wackestone, and mudstone
is 10.8%, 10.1%, 13.8%, 8.8%, and 8.3%, and 23.6 md, 5.8 md, 19.8 md, 1.8 md, and 2.4 md, respectively.

pore systems in the present-day San Andres reser-
voirs are most plausibly linked to a varying degree of
diagenesis (e.g., dolomitization and recrystallization)
(Lucia and Ruppel, 1996), especially anhydrite
cementation and dissolution due to localized hydro-
thermal fluid or BSR (Figure 11) (Cowan and Harris,
1986; Lucia et al., 1995; Lucia and Ruppel, 1996;
Saller and Henderson, 1998; Ehrenberg, 2019). This
study may have implications on CO2 EOR of ROZs
in the Permian Basin because BSR 1is likely an ongoing
diagenetic event in the present-day reservoirs of the
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Permian carbonates (Trentham et al., 2015) and on
many other mixed carbonate and evaporite systems
worldwide (e.g., Sichuan, Tarim, and Ordos Basins
in China; Gulf of Mexico Basin; and Arabian Basin).

CONCLUSIONS
o C(Carbonate reservoir quality in the SSAU along

the Central Basin platform is predominantly con-
trolled by diagenesis including dolomitization,
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anhydrite and dolomite cementation and dissolu-
tion, BSR, and hydrothermal alteration. A new
holistic burial-diagenesis model, including anhy-
drite diagenesis, is provided by this study.

0 Reflux dolomitization began syndepositionally
and proceeded to a burial depth of up to 2460 ft
(875 m). The dolomitizing fluid was evaporated
seawater with salinities that vary from normal
seawater to brine close to gypsum saturation.
Recrystallization, dissolution, and precipitation
of dolomite resulted from carbonate compaction
and pressure solution, and an early-stage BSR.

¢ Bedded anhydrites and most nodular anhydrites
are syndepositional, whereas isolated nodular
anhydrite was likely formed in parallel with
reflux dolomitization. Anhydrite cementation
may have started along with reflux dolomitiza-
tion and continued to the maximum burial
depth of approximately 6637 ft (~2023 m) and
temperature of ~75°C. A hydrothermal event,
with temperatures up to 128°C, may have
occurred in SSAU by influx of meteoric water
during the western Neogene uplifting event.

0 An early-stage, syndepositional BSR may have
occurred and resulted in pyrite replacing anhy-
drite nodules or cements, coupled with a small
downward decreasing of d13C in carbonate host
rocks. The occurrence of a late-stage BSR in the
ROZs of the San Andres Formation was tied to
the Neogene meteoric water recharging event.

0 Although sulfate cementation has occupied
most of the primary pore spaces, it may have
preserved the primary textures and the rest of
the pore spaces from carbonate cementation by
pressure solution and compaction. Furthermore,
dissolution of anhydrite by later diagenesis (e.g.,
meteoric, hydrothermal, and BSR) may have
enhanced present-day reservoir quality along
with a greater heterogeneity. Hence, this study
offers an ideal example for understanding the
dynamics of anhydrite subjected to diagenesis in
a mixed carbonate and evaporite system.
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I N ..
Abstract

The objectives of this work are to understand the characteristics of oil saturation in residual oil zones (ROZs)
and to optimize water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and
elsewhere, and operators are using CO: injection for enhanced oil recovery (EOR) in these zones. ROZs
are thought to be formed by the flushing effect of regional aquifer flow acting over geological time. Both
the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones
(MPZs).

We conducted flow simulations of CO> injection into both synthetic and realistic geologic reservoirs to
find the optimal injection strategies for several scenarios. These simulations of CO> injection follow either
man-made waterflooding or long-term natural waterflooding. We examined the effects of CO; injection
rates, well patterns, reservoir heterogeneity, and permeability anisotropy on optimal WAG ratios. Optimal
is defined as being at minimal net CO- utilization ratios or maximal oil production rates).

Simulations of CO2 EOR show that the optimal WAG ratio for the ROZs is less than 1 (ratio of
injected water and CO: in reservoir volumes), and it depends, but in qualitatively different ways, upon
the well pattern and reservoir heterogeneity. The optimal WAG ratio tends to increase with changing from
inverted 9-spot (80-acres) to inverted 5-spot (40-acre) or increasing reservoir heterogeneity. The ratios for
ROZs are consistently less than those observed in the same geologic models experiencing CO: injection
after traditional (man-made) waterflooding. This is because the water saturation caused by slow regional
aquifer flow (~1ft/yr) differs from that created by traditional waterflooding. In ROZs, water prevails almost
everywhere and thus it is less needed to ease CO> channeling as compared to MPZs.

This work demonstrates that optimal WAG ratios for oil production in ROZs are different from those in
traditional MPZs because of oil saturation differences. Thus, commingled CO- injection into both zones or
directly copying WAG injection designs from MPZs to ROZs might not optimize production.
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Introduction

A residual oil zone (ROZ) is an oil zone whose oil saturation is at close to residual oil saturation to
waterflooding (Melzer, 2013; Koperna et al., 2006). It has been proposed that ROZs are formed from an
original main pay zone (MPZ) that has been flushed by regional aquifers (‘“natural waterflooding” (NWF))
over geological time scales. This type of oil zone is widely distributed in the Permian basin, West Texas,
USA (Koperna et al., 2006). ROZs have different types in terms of their origin and evolution. Harouaka et
al. (2013) have classified ROZ occurrences into two types: (1) Brownfield ROZs that are located below the
oil/water contact of MPZ reservoirs; (2) Greenfield ROZ that are not associated with MPZs. Melzer (2013)
divided ROZ into three types (Type I, Il and 1) resulting from different mechanisms. This work is based
on Type 11, which is caused by the change in the hydrodynamic of the underlying aquifer. This results in
regional groundwater flow and sweeps the lower portion of the oil column in main pay zones (Fig. 1).

Figure 1—A schematic illustration of the evolution of the Type Ill ROZ reservoir. As time proceeds from
(1) to (3), the bottom part of the original MPZ reservoir is flushed by natural aquifer water, and becomes
a ROZ. The upper part of the reservoir is currently under production, so it is called ‘producing MPZ’.

Oil from ROZs can be produced from through CO: injection, but not from primary production or
conventional, man-made waterflooding (MMWEF). ROZs in carbonate reservoirs in the Permian Basin
of West Texas were initially interpreted from wireline logs as being productive oil zones. However, if
these zones were completed for production, they produced water, occasionally with minor oil production.
Nevertheless, CO; injection can make these zones economic to produce, as demonstrated over the last decade
in the Permian Basin (Rassenfoss, 2017). For example, Melzer (2013) reported that, by 2012, 13,000 barrels
of oil per day were being produced from ROZ, with 6,500 barrels per day being produced from the ROZ in
the Seminole San Andres Unit alone. The estimated recoverable oil from the ROZ in both the San Andres
and Canyon Reef formations of Permian Basin are estimated by Koperna et al. (2016) to be 12 billion barrels.

By implementing CO> injection in brownfield ROZs, oil field operators can achieve three goals: extend
the life of old oilfields, access extra oil cheaply through repurposing old infrastructures, and storing COz in
oil reservoirs for climate consideration. As a result, ROZs in the Permian basin and elsewhere have become
attractive targets for CO.-EOR and storage.

The mechanisms behind CO, EOR are well-understood (Lake et al. 2014). They mainly include oil
swelling (causing viscosity reduction), CO>/oil interfacial tension reduction, and development of miscibility.
Although CO2 EOR has been applied in the oil industry for over 50 years, this technique has targeted
main pay zone reservoirs (as secondary or, more commonly, tertiary recovery methods). In this context,
many studies have been conducted to understand the effect of heterogeneity and injection strategies on the
performance of CO; EOR (e.g. Ambrose et al., 2007; Bermudez et al., 2007; Bunge and Radke, 1982; Chang
et al. 1994; Kulkarni and Rao, 2005; Malik and Islam 2000; Song et al., 2014; Zuo et al., 2014) and to
optimize CO2 WAG injection (e.g., Chen et al., 2010; Chen and Reynolds, 2016; Ettehadtavakko et al. 2014;
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Nwachukwu et al. 2018; Shehata et al. 2012). One of the main focus of these WAG injection studies is to
find optimal WAG ratios (maximal oil production).

The WAG ratio is an important parameter for WAG injection. The WAG ratio is defined as the cumulative
volume of water injected divided by the gas injected into reservoirs. High WAG ratios causes the effect
of water film blocking (Stalkup, 1970). This leads to oil trapping, and WAG injection performs like
waterflooding. Whereas, for small WAG ratios, injected CO: tends to easily breakthrough or channel,
hence compromising oil production rates. Thus, an optimal WAG ratio exists that yields the maximum oil
production rates or recovery factors (Afzali et al., 2018; Wu et al. 2004; Rogers and Grigg 2001; Stalkup,
1970).

All the above studies are focused on CO: injection into MPZs, rather than ROZs. While the controlling
physics of CO2-EOR should be the same, the specific characteristics of ROZs will influence the effectiveness
of CO2 WAG injection, given the oil saturation difference between ROZs and MPZs after MMWEF. This
difference would influence the interaction of CO2 and in-situ fluids, which impacts overall sweep and
displacement efficiencies. Thus, to maximize the effectiveness of CO> WAG injection, different strategies
should be used.

The main objective of this study is to understand how the optimal CO, WAG injection scheme is affected
by the differences in oil saturation between a ROZ and a MPZ (after MMWF). This understanding will help
answer questions like: are the optimal WAG ratios for MPZs still applicable for ROZs? Or, can WAG be used
on both the ROZ and MPZ of a pattern at the same time? To accomplish the objective, we conduct systematic
flow simulation of the processes of NWF (to generate ROZs), MMWF, and CO> WAG injection. These
simulations were run on both synthetic and realistic geological models. The synthetic models were realized
with controlled heterogeneity and well patterns; this enabled us to clearly see how both heterogeneity and
pattern geometries impact oil saturation distributions (after NWF and MMWF) and thus CO, WAG ratios.
The overall work provides a general approach for studying ROZs and MPZs when CO; EOR is considered
for both zones.

Theory and Approach

The work flow chart isin Fig. 2. All simulated cases started from geological models. We built both synthetic
and realistic geological models in these simulations. After this step, we conducted flow simulation of both
NWF and MMWF. Subsequently, CO> injection was started at the end of NWF or MMWF to evaluate CO»-
EOR performance and find optimal WAG ratios. The Eclipse reservoir flow simulator (Eclipse, 2016) is
used in this study. The details of each step are given below.
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Figure 2—Work flow chart of each simulated case.

Generation of Geological Models

Synthetic Geological Models. We generated a series of statistical realizations of permeability fields using
sequential gaussion simulation (Remy et al., 2009). The properties of these fields were listed in Table 1. Both
inverted 5- and 9-spot well patterns were considered. The permeability fields have different horizontal auto-
correlation lengths (Ax), and we made the length dimensionless following the work of Li and Lake (1995).
Dimensionless horizontal autocorrelation length (Apx) is defined as the ratio of Ax over the domain width
in the corresponding directions. Ax indicates how close or how far the permeability is spatially correlated,
which is mainly controlled by sedimentary environments and processes. The typical value of Apx is 2. Three
realizations of the permeability field (Apx =2, inverted 5-spot) are generated to test the effect on simulation
results. Layered geological models are also considered through generating the realization of permeability
fields with Apx equal to 100. The permeability anisotropy (kv/kn) is varied through decreasing k, while keeping
kn unchanged: 0.001, 0.01, and 0.1. The horizontal permeability (ki) field were statistically realized with
different log standard deviations: 0, 1, 2. The corresponding values of the Dykstra-Parsons coefficient are
0, 0.62, 0.85 (with increasing heterogeneity).

Table 1—Properties of synthesized permeability fields.

Well pattern Inverted 5-spot Inverted 9-spot
Patter size, acre 40 80
Synthetic domain sizes, ft 1320%x1320%96 1860x1860%x96
Model cell sizes, ft 30x30x3 30%30%3
Model dimensions 44x44%32 62%62x32
Permeability horizpntal dimensionless 0. 2% 100
auto-correlation length, Apy e
Horizontal permeability log mean, zun 5*
Horizontal permegbility 0.1% 2
log standard deviation, oiu e
Horizontal permeability Dykstra- 0,0.62*, 0.85

Parsons coefficient, Vpp

*means base case settings
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Then, using the Holtz's (2002) porosity-permeability correlation (refer to Eq. 1), we calculated the
porosity fields corresponding to the generated permeability fields. In Eg. 1, the units of permeability is mD.
The Holtz correlation might be applicable for rock types between the lithofacies packstone and mudstone.
As one realizes that the Holtz's correlation does not consider the facies-dependent permeability-porosity
characteristic in geological modeling, we considered this in the following realistic geological models.

i 119,61

$=(775) M)
Realistic Geological Models. A realistic geologic model, representing the San Andres residual oil zone, has
been built by Ren and Duncan (2019a). The ROZ reservoir is deposited in a carbonate ramp environment on
the margin of the Central Basin platform. It consists of carbonates with some evaporite intercalations that
developed carbonate-ramp reservoirs during the lower San Andres Formation (early Guadalupian, Middle
Permian). Based on the integration of core- and wireline-log data coupled with petrographic analyses,
five major depositional environments (lithofacies) with eight carbonate microfacies are identified. The
enviroment ranges from intertidale to open marine, with the principle lithofacies including dolowackstone,
dolopackstone, and dolograinstone (Sonnenfeld et al., 2003). Common diagenetic effects include dolomite
and anhydrite replacement and cementation, silica and pyrite mineralization, and dissolution. The most
common pore types include interparticle, moldic, and connected vugs.

All these sedimentary events and lithofacies characteristics created the heterogeneity in permeability
and porosity observed today. The porosity field is generated through sequential Gaussian simulation, and
then the permeability field is calculated using Lucia's rock typing method (Lucia 2007). The effect of
natural fractures on permeability is considered through incorporating the whole-core permeability- porosity
correlation. The detailed incorporation procedures are elaborated in the publication by Ren and Duncan
(2019a).

From the full-field geologic model, we cut out two sector models: sector #1 represents an inverted 5-
spot 40-acre pattern, and sector #2 is an inverted 9-spot 80-acre pattern. The areal sizes of the cells in these
models are 100x100 ft with a cell thickness of around 2ft. The petrophysical properties of the two sector
models are listed in Table 2. Fig. 3 shows the permeability field for the sector #1.

Figure 3—High-resolution horizontal permeability field for the sector #1 inverted 5-spot well pattern.

Table 2—Statistics of petrophysical properties of the two sector models.

Petrophysical property Sector #1, inverted 5-spot Sector #2, inverted 9-spot
Permeability log mean, zun 117 1.87
Permeability log standard deviation, o 1.05 1.48
Permeability anisotropy (ky/kn) 0.1 0.1
Porosity arithmetic mean, 0.10 0.12
Porosity standard deviation, o, 0.03 0.04
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After generating permeability and porosity fields, the corresponding capillary entry pressure fields were
calculated using the Leverett j-function (Leverett, 1941), through following the procedures detailed by
Ren (2017). The reason for considering capillary entry pressure heterogeneity in simulations is the small
regional aquifer flux during ROZ formation. The typical size of aquifer flux during NWF within the Permian
Basin is around 10-15 cm/yr (0.33-0.83 ft/d, Trentham (2012)), which is much less than that (1ft/day) of
MMWE. Such small flux pronounces the effect of capillary pressure heterogeneity on fluid migration and
oil saturations at the end of NWF, as demonstrated in the work by Ren and Duncan (2019b). Thus, capillary
pressure heterogeneity was considered in this work, and the implementation procedures are given in the
following Section of Rock/Fluid Interaction Models.

Flow Simulation of NWF and MMWF

Rock/Fluid Interaction Models. We assume the oil phase properties for the ROZ and MPZ are the same, so
we use one set of PVT equations for both. The oil properties are adopted from the publication of Honarpour
et al. (2010), whose analysis is based on the Seminole San Andres ROZ oil samples. A black oil model is
built for the flow modeling of both NWF and MMWF. At the reservoir condition (2119.9 psi and 104 °F),
the oil density is 657.71 kg/m?, and the oil viscosity is 1.21 cp. The gas oil ratio (GOR) is 688.15 scf/bbl.
When simulating CO, WAG injection, we employ a compositional model with the oil compositions shown
in Table 3. The Peng Robinson equation of state (PR EOS) is used with the parameter settings in Table 3.
The binary interaction coefficients are listed in Table 4. The minimum miscibility pressure for the CO2/oil
mixture is around 1400 psi (Honarpour et al. 2010), and the CO- flooding is set be miscible in simulations.

Table 3—Crude oil compositions representative of the Seminole San Andres ROZ and the parameter
settings for PR EOS (modified from Honarpour et al. (2010) and Jamali and Ettehadtavakkol (2017)).

Component COz C1Nz C2C3st C4-Ce C7-C10 Cu—Cls C17+
Mole 0.02 20.14 159 8.99 17.29 18.42 19.24
fraction, %
Critical
547.56 339.21 619.38 835.43 1117.84 1344.62 1686.57
temperature (R)
Critical 1071.34 666.77 722.56 4913 389.65 277.42 159.29
pressure (psi)
Critical volume
(fe/lb-mole) 151 1.56 271 5.02 7.73 12.13 22.15
Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195
Molecular 44.01 16.29 36.19 70.06 114.17 180.94 358.25
weights (g/mol)
Acentric Factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054
Coefficient Q, 0.45724 0.45724 0.45724 0.45724 0.45724 0.45724 0.45724
Coefficient Q, 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778
Table 4—Settings of binary interaction coefficients.
COmpOnent CO; CiN, CngHzS CA'CG C7'C10 C11'C15 Cin
CO, 0
CiN, 0.0976 0
C,C3H,S 0.1289 0.0103 0
C4-Cs 0.1271 0.0019 0.0063 0
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Component CO, CiN; C,C3H,S Cs-Cs Cs-Cyo Cu-Cys Cus
C7-Cyo 0.1105 0.0241 0.0196 0.003 0
C1u1-Cis 0.0943 0.0494 0.0333 0.0061 0 0
Ci 0.0997 0.1365 0.0588 0.012 0 0 0

We assume the relative permeability and capillary pressure curves (shown in Figs. 4a and 4b) are the
same for the two processes of NWF and MMWF for simplicity. Only drainage curves are considered in
the flow simulations. As mentioned above, the effect of capillary pressure heterogeneity on water/oil flow
was considered in the simulation of NWF. To capture this effect, the capillary pressure curve in Fig. 4b
was assigned to the cells with the arithmetic mean of the permeability of a given field, the corresponding
capillary pressure curves for other cells were scaled using the Leverett j-function (Ren and Duncan 2019b).
For the flow simulation of CO2, WAG injection, the relative permeability curves of gas/oil (Figs. 4a and
4c) are used. The Stone | model (Stone, 1970) is adopted to describe the oil relative permeability during 3-
phase flow. The hysteresis in both the relative permeability and capillary pressure curves are omitted for
computational efficiency. Both hysteresis and relative permeability has been experimentally shown to be
cycle-dependent (Egermann et al., 2000; Element et al., 2003; Skauge and Sorbie, 2014). We believe that
considering these cycle-depdent properties will not alter the observations of optimal WAG ratio positions,
although they have been shown to cause the difference in oil production rate prediction (Spiteri and Juanes,
2006; Zuo et al., 2014).

Injection/Production Schemes. To simulate the NWF process, a line drive geometry was used (Fig. 5a):
water injectors are put into every left boundary cell, and producers are put into every right boundary cell.

Figure 4—(a) Water/oil relative permeability curves (b) capillary
pressure curve for water/oil (c) gas/oil relative permeability curves.
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This uniformly-distributed inlet and outlet conditions are to mimic regional aquifer flow, which has been
demonstrated to be physically-applicable in reproducing ROZs (Ren and Duncan 2019b). The inlet water
flux is set to be 0.5 ft/yr (15.24 cm/yr). With the inlet flux, the water injection rate is calculated to be 0.0368
rb/day (reservoir bbl/day).

Figure 5—lllustration of NWF, MMWF, and CO, WAG simulation setup. The embedded tables on
the right column show the corresponding simulation settings for each flow simulation process.

For MMWEF, both the inverted 5-spot 40-acre pattern (Fig. 5b) and inverted 9-spot 80-acre pattern are
considered. The middle table in the figure shows the simulation parameter settings for both types of patterns.
For CO2 WAG injection (Fig. 5¢), the flow simulation parameters are listed in the lower table of the Fig.
5. The COz injection rate is set to be constant at 3000 Mscf/day; varing rates has no effect on optimal WAG
ratios although it changes oil production rates (Ren and Duncan, 2019a). The CO- half-cycle size is 2.5%
hydrocarbon pore volume (HCPV), based on the balance of good oil production and the operationability
of WAG cycle switches (Ettehadtavakko, 2013; Ren and Duncan, 2019a). The HCPV is calculated at the
end of NWF or MMWEF. WAG ratio is varied from 0 to 5, through changing water injection duration while
keeping CO: injection duration unchanged in each WAG cycle (see Appendix A for detailed illustration).
The other parameters of the flow simulation of NWF, MMWF and CO, WAG are all included in Fig. 5.
The boundaries of all simulation domains are closed (no flow). All the injectors and producers involved in
simulations are vertical, and their perforation is complete (along the depth range of the simulation model).
Additionally, to specifically examine the effect of oil saturation magnitudes on WAG ratios, we manually
assign uniform oil saturation (Sor) to geological models at the beginning of WAG injection. We consider
several magnitudes of Sor: 0.3, 0.35, 0.4, and 0.5. They cover the range of oil saturation magnitudes observed
for the virgin ROZ in the Permian Basin (Harouaka et al., 2013; Ren and Duncan, 2019b).
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Metrics of CO2 EOR Performance. We report how varying WAG ratios influences the following CO>
EOR performance metrics: net CO- utilization ratio, averaged oil production rate, and oil recovery factor.
Their definitions are:

Net CO; utilization ratio = (Total CO- injected-Total CO> produced) / total oil produced.

Averaged oil production rate = Total oil produced / injection duration/number of oil producers.

Oil recovery factor = cumulative oil produced during CO: injection / oil in place at the end of MMWF
and NWF.

The metric of net CO> utilization ratio indicates the net use of CO; to produce 1 bbl of oil. It measures
the cost-effectiveness of CO> injection for enhanced oil recovery (the biggest cost of implementing WAG
floods is getting CO»).

Results

Results from Synthetic Geological Models

Oil Saturation Magnitudes and Patterns after MMWF vs. after NWF. After 30 years of MMWF, water
has swept most of the oil in the bottom part of the reservoir, and the remaining oil is mainly in the upper
portion (Figs. 6a and 6c). Correspondingly, the arithmetic mean of remaining oil saturation is around 0.5.
However, after 10° years of NWF, the oil saturations for most of the cells of the reservoir have almost reached
the end point of relative permeability, and the saturation magnitudes are around 0.35 (Figs. 6e—6h); small
rates (large capillary pressure) tend to cancel the effect of reservoir heterogeneity in sweep. For NWF, the
distribution of remaining oil saturation is much narrower than that for MMWEF. Additionally, heterogeneity
always causes much more oil unrecovered than homogeneity does, irrespective of NWF or MMWF.

Figure 6—O0il saturation fields and oil saturation histograms at the end of MMWF (a-d) and at the end of NWF
(e-h). For the heterogeneous geological model used, Vor = 0.62, Aox = 2. Inverted 5-spot patterns were used.

Cumulative Oil Recovery Factors during WAG after NWF vs. after MMWF. Generally, the recovery
factors are larger for the WAG after MMWEF than for the WAG after NWF (Fig. 7a vs. 7b). This is because
the oil left in the upper part of the reservoir after MMWEF (refer to Figs. 6a and 6c) is effectively swept by the
less dense CO> (compared to oil and water). This gives rise to the better oil recovery factors. Additionally,
heterogeneity decreases the ultimate oil recovery efficiencies, but it yields a rapid increase of oil recovery
at the beginning of WAG injection.
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Well patterns influence oil recovery efficiencies in the studied ranges of PV (Fig. 7). The inverted 9- spot
pattern yields a larger recovery factor than the inverted 5-spot does at small pore volume (PV) of injected
CO.. This would be due to the larger producer-injector ratio for the former pattern.

Figure 7—Cumulative oil recovery factor during CO, WAG injection after MMWF vs. after NWF. For the heterogeneous
geological model used, Vor = 0.62, Aox = 2. The ultimately-injected CO, PV for the inverted 9-spot is about half of
that for the inverted 5-spot, due to both the pattern coverage area difference and the same WAG injection duration.

CO2 Net Utilization Ratios. The CO- net utilization ratios for the WAG after NWF are much larger than
those for the WAG after MMWEF (Fig. 8a vs. 8b). The latter ratios are in the range of 2-10 MScf/Stb, and
the former can be as high as 35 MScf/Stb. Such large differences are mainly due to the magnitudes of initial
oil saturation at the beginning of WAG injection.
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Figure 8—CO; net utilization ratios, averaged oil production rates, and oil recovery factors for the inverted 5-spot (40 acre)
and inverted 9-spot (80 acre) well patterns. CO, WAG injection is simulated following the processes of NWF or MMWF.
For the heterogeneous geological model used, Vor = 0.62, Aox = 2. A WAG ratio of 0 means continuous CO; injection.

The utilization ratios for both types of WAG (after NWF versus after MMWF) are dependent of the
injected WAG ratios, reservoir heterogeneity, and well patterns, but with different trends and extents (Figs.
8a and 8b). For the WAG after NWF, there is an optimal WAG ratio that yields the lowest net utilization
ratios, irrespective of the well pattern. The optimal ratio is around 1. However, for WAG after MMWF, the
net utilization ratio monotonically decreases with the WAG ratio. The different trend is noteworthy, and we
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specifically analyze the reason in the following section of “Effect of oil saturation magnitudes on optimal
WAG ratios”.

Reservoir heterogeneity does not alter these trends, but it leads to different net utilization ratios (Figs. 8a
and 8b). Heterogeneity acts on net utilization ratios in different ways for the WAG after NWF versus the
WAG after MMWEF: heterogeneity leads to larger utilization ratios than homogeneity does for the WAG after
NWEF, but this is not the case for WAG after MMWF. WAG ratio is a complicated metric that includes both
the net amount of COz left in reservoirs and the amount of oil produced. Simulated production data indicates
that heterogeneity for the WAG after NWF causes the CO> production increasing effect to be less than the oil
production decreasing effect. This gives rise to the higher net utilization ratio for the heterogeneous model
than for the homogeneous model.

Well patterns do not alter the above qualitative observations, except that the net utilization ratios for the
inverted 9-spot pattern are overall larger than those for the inverted 5-spot. Therefore, using inverted 5-spot
patterns can improve the effectiveness of WAG injection to enhance oil recovery. Similar observations of
the effect of well patterns on these metrics are made in the layered geological models (see Appendix B).

Averaged Oil Production Rates and Qil Recovery Factors. The averaged oil production rates for the WAG
after MMWEF are always better than those for the WAG after NWF (about one time higher) (Fig. 8c vs.
8d). The average rates are always negatively impacted by increasing WAG ratios for the CO, after NWF,
whereas, for the WAG after MMWF, heterogeneity necessitates a small WAG ratio (0.25-0.5) to achieve
the optimal oil production rates.

The optimal WAG ratios (at maximal oil production rates) are less for virgin ROZs than for the MPZs
after MMWEF when considering heterogeneous models (Fig. 8c vs. 8d). This is because the CO, WAG into
virgin ROZs starts with high water saturation. Most of the injected CO; displaces water rather than oil. Thus,
water injection during WAG has little effect. However, for the MPZ after MMWEF, the zone is relatively rich
in oil. Most of the injected CO> displaces oil, and CO. tends to break through early because of the mobility
ratio contrast between CO- and oil. Under this condition, the injected water during WAG cycles can divert
CO: and thus improve sweep efficiency. The high water saturation in virgin ROZs attenuates the need for
water injection during WAG.

The oil production rate (Stbd/Well) tends to be more heavily impacted by WAG injection for the
homogeneous models than for the heterogeneous ones (Fig. 8c vs. 8d). The average oil production rate for
the two models crosses at a WAG ratio around 0.5. WAG injection is much more effective for heterogeneous
models than for homogenous ones to improve oil production rates.

As the pattern changes from inverted 5-spot to inverted 9-spot, the average oil production rate decreases,
as does the oil recovery factor. The oil recovery factor trend versus WAG ratio is very similar to the above
trend for the oil production rate versus WAG ratio (Figs. 8e and 8f). This makes sense because the amount
of oil in place after NWF and MMWEF is similar.

Effect of Oil Saturation Magnitudes (Sor) on Optimal WAG Ratios. As shown in Figs. 6e—6h, the
spatial distribution of remaining oil saturation after NWF is almost uniform. This suggests an easy way of
generating ROZs: directly assigning a uniform initial oil saturation (Sor) to create virgin ROZs. Fig. 9 shows
the metrics of net utilization ratios and averaged oil production during WAG injection with the different Sor
for both inverted 5-spot and inverted 9-spot well patterns.
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Figure 9—CO; net utilization ratios and averaged oil production rates for the inverted 5-spot
pattern (a and b) and for the inverted 9- spot pattern (c and d). The initial oil saturation (Sor) at the
beginning of CO, WAG injection is manually set to be constant. For the heterogeneous geological

model used, Vop = 0.85, Aox = 2. The stars indicate the inflection or optimal points in the curves.

Initial oil saturations control the curve trend of the net utilization ratio versus the WAG ratio (Fig. 9a
and Fig. 9c). Ata low Sor, there is an optimal WAG ratio (minimal net utilization ratio). However, when Sor
increases to 0.5, the net utilization ratio becomes almost flat as the WAG ratio increases. The approximate
inflection point (labelled by a star) moves to the right as the Sor increases. This means small Sor yields small
optimal WAG ratios. This supports our previous analysis that small oil saturation in virgin ROZs decreases
the use of water during WAG cycles (i.e., decreasing WAG ratio).

For averaged oil production rates (Fig. 9b and Fig. 9d), the point of optimal return tends to move to
a higher WAG ratio as Sor increases. In other words, larger Sor necessities larger WAG ratios to achieve
the best oil production performance. This observation is consistent with that how net utilization ratios are
impacted by Sor.

Well patterns slightly influence optimal WAG ratios (Fig. 9a vs. Fig. 9c and Fig. 9b vs. Fig. 9d). As
the well pattern changes from inverted 5-spot to inverted 9-spot, the optimal WAG ratio (either at minimal
net utilization ratio or at maximal oil production rates) decreases marginally. The average large injector-
producer distance for the inverted 9-spot pattern might need less water to ease CO> breakthrough. This gives
rise to the small optimal WAG ratios.

Effect of Permeability Anisotropies (kv/kh) on Optimal WAG Ratios for ROZs. Increasing permeability
anisotropy (the ratio of kv/kn) improves CO> net utilization efficiency (Fig. 10a) for ROZs. The net utilization
ratio is dropped from about 20 to 10 Mscf/stb when kv/kn increases from 0.01 to 1, given a WAG ratio of
1. Large ky favors CO production more than oil production. That is the reason that the CO; net utilization
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ratios for the case of ki/kn =1 are the smallest, even though the corresponding oil production rate rapidly
decreases with the increase in the WAG ratio. Adjusting kv/kn has a similar effect on oil production rates (Fig.
10b) as adjusting reservoir heterogeneity (Figs. 8c—8f): oil production decreases as WAG ratio increase.

Figure 10—CO; net utilization ratios and averaged oil production rates for the synthetic geological model with different
permeability anisotropies. Inverted 5-spot patterns are used. The initial oil saturation (Sor) at the beginning of CO, WAG
injection is manually set to be constant (0.35). For the heterogeneous geological model used, Vor = 0.62, and Apx = 2.

Also, the ratio of kv/kn increases the optimal WAG ratio (at the minimal net utilization ratio) (Fig. 10a).
Large ky necessities more water injection to divert injected CO, and thus CO> can better sweep the reservoir.
This large ky, within the context of structural geology, might be due to vertical fractures. Some vertical
fractures have been observed in the cores of the Seminole San Andres ROZ (Duncan, unpublished data). In
this sense, the heterogeneity associated vertical natural fractures should be carefully characterized as they
have a significant effect on CO2 net utilization ratios.

Results from Realistic Geological Models

Results (Fig. 11) from the realistic geological models are consistent with the results from synthetic models.
The general observations of both the net utilization ratio and oil recovery factor versus the WAG ratio are
similar. For instance, the optimal WAG ratios (maximum oil recovery factor, labelled by stars in Fig. 11)
are larger for WAG after MMWEF than after NWF. This strengthens our key finding that the injected water
during WAG cycles for ROZs should be minimized for the EOR purpose.
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Figure 11—CO; net utilization ratios, averaged oil production rates, and oil recovery factors
based on the realistic geological models. Both the inverted 5-spot and inverted 9-spot patterns
are considered. CO, WAG injection is simulated following the processes of NWF or MMWF.

Discussion

One of the key findings from the flow simulations is that the optimal WAG ratios for the WAG after NWF is
smaller than those for the WAG after MMWEF. This has implications in the design of CO> injection projects.
When an operator prepares to target Greenfield ROZs for CO: flooding, they might benefit from starting
the ROZ flood with a very small WAG ratio, less than the typical WAG ratio (=1) used in most of current
oilfields (Christensen et al., 2001). For Brownfields, ROZs are hydraulically associated with MPZs. Since
optimal WAG ratios for the two different zones are different, additional characterization and simulations
need to be conducted to choose the WAG ratio when considering WAG injection into the ROZ. One should
not simply deepen wells targeting the MPZ and continue injecting at the same WAG ratio. Instead, WAG
injection might be started in the MPZ followed by the ROZ with the optimal WAG ratio specific to each zone.
When switching to the ROZ, the commingled production of both zones can be adopted because the injected
COz into the ROZ might move into the MPZ and help produce oil. Determining the optimal switching time
merits further study.

These flow simulations consider the geological heterogeneity variations that essentially control the sweep
efficiency of CO> during WAG injection. In this sense, the optimal WAG ratios should lead to the maximum
sweep efficiencies. To examine this point, the analysis method proposed by Walsh and Lake (1989), based
on the fractional flow theory, can be adopted to find the optimal WAG ratios in terms of maximizing CO-
displacement efficiency.
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The results from flow simulations contain several simplifications. First, inclined producing oil/water
contacts, as observed in fields (Honarpour et al., 2010), are not considered in the study. This contact is the
oil saturation transition from a MPZ to a ROZ. Considering this contact might have some effects on optimal
WAG ratios since such a contact is an oil saturation change. Second, this study assumes the same oil phase
properties for both ROZs and MPZs. The experimental characterization of oil samples by Aleidan et al.
(2017) demonstrates that the global compositions and overall quality for the both zones are very similar.
But, Honarpour et al. (2010) showed that the oil API gravity is different from each other. Further studies
are needed to investigate how significant phase property differences would influence the optimal WAG
ratios. Third, the optimal WAG ratios are determined based on the CO> utilization ratios or oil production
rates averaged over 20 year of WAG injection (refer to Fig. 5). Since the oil production response varies
significantly with time, changing the WAG duration would give different optimal WAG ratios. However,
the relative magnitudes of the optimal WAG ratios for ROZs vs. MPZs will not be altered.

Discrepancy of CO> EOR metrics between realistic and synthetic geological models occur. The
magnitudes of net utilization ratios and oil recover factors are different from those for the synthetic models
(Fig. 11 vs. Fig. 8), which should be caused by the different petrophysical properties and model thickness
of the two types of geological models (Table 1 vs. Table 2). Also, the heterogeneity of the real geological
model for the inverted 5-spot is different from that for the inverted 9-spot (refer to Table 2), the effect of
well patterns on net utilization ratios and oil recovery factors becomes complicated, so we omit the relevant
analysis.

Conclusions

Understanding the characteristics of oil saturation in residual oil zones (ROZs) and its difference from the
remaining oil saturation in main pay zones (MPZs) after man-made waterflooding (MMWF) is essential
in both evaluating oil potentials and designing injection strategies of CO. water alternating gas (WAG)
in stacked MPZ and ROZ reservoirs. This work investigated the effect of oil saturation on both CO> net
utilization ratios and oil recovery performance for both synthetic and realistic geological models. Several
conclusions can be drawn based on this work:

o After long-term natural waterflooding, the oil saturations in most of the simulation cells are reduced
to or close to residual levels.

o Optimal WAG ratios (either at the minimal net utilization ratios or at the maximal averaged oil
production rates) for virgin ROZs are consistently smaller than those for MPZs after MMWF. This

is essentially because of the prevalent high water saturation (and low oil saturation) in the ROZSs.

The optimal WAG ratio (at the minimal net utilization ratio) increases when i) increasing initial oil
saturation (before WAG) ii) the reservoir permeability anisotropy decreases (i.e., the ratio of kv/kn

increases) iii) the well pattern changes from inverted 9-spot to inverted 5-spot.

o The COg net utilization ratios during CO2 WAG injection for virgin ROZs are about 2-3 times larger
than those for MPZs after MMWEF. The ratios depend on well patterns, reservoir heterogeneity,

and WAG ratios.

o Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs are around
Ya-%4 of those for the WAG in the MPZs after MMWF.
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Nomenclature

Roman Symbols
k Permeability, mD
kn Horiozontal permeability, mD
kv Vertical permeability, mD
Sor Initial oil saturation before WAG injection
Vop Dykstra-Parson coefficient

Greek Symbols
Jx Horizontal autocorrelation length, ft
JApx Dimensionless horizontal autocorrelation length
Ink Horizontal permeability log mean, mD
omnk Horizontal permeability log standard deviation, mD
¢ Porosity, fraction

Acronyms
EOR Enhanced Oil Rcovery
HCPV Hydrocarbon Pore Volume
PR EOS Peng Robinson Equation of State
GOR Gas Oil Ratio
MPZ Main Pay Zone
MMWZF Man-made Waterflooding
NWF Natural Waterflooding
ROZ Residual Oil Zone
WAG Water Alternating Gas
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Appendix A
WAG Ratio Hlustration

This appendix illustrates the design of CO2 WAG injection for different WAG ratios. The ratio is defined
as the reservoir volume ratio between injected water and injected CO> in each WAG cycle. It is increased
through increasing water injection duration in each cycle while keeping CO: injection duration unchanged
(Fig. A-1). Thus, when the WAG ratio increases, the amount of cumulatively-injected CO> is decreased
with total water amount increased.

Figure A-1—Schematic illustration of WAG injection schemes for different WAG ratios.
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Appendix B

Net Utilization Ratios and Oil Production
Performance for Layered Geological Models

This appendix shows the effect of the WAG ratio and well patterns on the CO2 net utilization ration, average
oil production rates, and oil recovery factor during WAG injection in layered synthetic geological models.

Figure B-1—CO; net utilization ratios, averaged oil production rates, and oil recovery factors for
the inverted 5-spot and inverted 9-spot well patterns. CO, WAG injection is simulated following
the processes of NWF or MMWF. The layered geological model is used with Vpp = 0.62, Apx = 100.
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Abstract

Brownfield residual oil zones (ROZ) may benefit from specific strategies to maximize production. We
evaluated several strategies for producing from the Seminole ROZ. This ROZ lies below the main pay zone
(MP2Z) of the field. Such brownfield ROZs occur in the Permian Basin and elsewhere, formed by the action
of regional aquifers over geologic time. CO2 can be injected into these zones to enhance oil recovery and
carbon storage. Since brownfield ROZs are hydraulically connected to the MPZs, development sequences
and schemes should influence oil production, CO> storage, and net present value (NPV).

We conducted economic assessments of various CO: injection/production schemes in the Seminole
stacked ROZ-MPZ reservoir based on flow simulations. First, we constructed a high-resolution geocellular
model from a seismic survey, wireline logs and core data. To calibrate the geological model and constrain
the interface between the ROZ and the MPZ, we performed a comprehensive production-pressure history
matching of primary depletion and secondary waterflooding. After this, we conducted flow simulations of
water alternating gas (WAG) injection into the reservoir while considering several injection/productions
schemes (e.g., switching injection from the MPZ to the ROZ, commingled production). For each scheme,
various WAG ratios (i.e., reservoir volume ratio between injected water and CO_) were tested to find the
maximum oil production and maximum CO storage. We assessed the economic results for each WAG ratio
case on NPV.

The results from simulating various injection/production schemes showed that simultaneous CO>
injection into the MPZ and ROZ favors oil production. If instead, COz is injected into the MPZ and ROZ,
then into the ROZ alone, this leads to increased CO- storage. Storage performance is influenced by the
interplay between the crossflow from the MPZ to ROZ and WAG ratios. As the WAG ratio increases, the
amount of CO> stored decreases more for commingled injection cases than for separated ROZ injection
cases. Also, the WAG ratio leading to maximum oil production does not necessarily yield the largest NPV,
because of the complicated interactions among CO, consumption, reservoir heterogeneity, and oil recovery.
Brownfield ROZs are common below San Andres reservoirs in the Permian Basin, and they can be
exploited to increase oilfields’ NPV and carbon storage potential. Our case study on the Seminole MPZ-
ROZ is an analog for other similar reservoirs. We demonstrate that development sequences and WAG ratios
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influence the performance of CO2 EOR and storage. Thus, this work provides valuable insights into the
further optimization of brownfield ROZ development and helps operators to plan flexible storage goals for
stacked ROZ-MPZ reservoirs.

Introduction

Brownfield ROZs are hydraulically connected to previously-exploited oil reservoirs (Harouaka et al., 2016;
Melzer, 2017). Many brownfield ROZs have been found in Permian Basin (Melzer, 2017) and other places
around the world (Webb, 2019). These ROZs have been flooded by regional aquifers over a geological time,
and the remaining oil saturation ranges from 10-40% (Harouaka et al., 2016; Ren et al., 2019; Roueche and
Karacan, 2018; Webb, 2019). These huge reservoir potentials can be unlocked by improved oil recovery
techniques. One such technique of CO: injection has been demonstrated to be effective in producing oil
from these ROZs (Melzer, 2017). One challenge of developing brownfield ROZs when using CO; injection
is balancing the economics and carbon storage potentials between the ROZ and MPZ. Since these ROZs
are linked to MPZs, the interaction between the two zones should influence production performance and
development strategies. Some possible strategies include MPZ/ROZ commingled injection, switching from
MPZ to ROZ or MPZ/ROZ at a certain time (e.g., when the produced gas-oil-ratio is larger than a given value
in the MPZs), separate injection of CO. into MPZ and ROZ but commingled production, and partial or full
ROZ completion when developing ROZs. Selection of these strategies should be based on: i) understanding
the reservoir/geological characteristics; ii) estimating CO2 EOR and storage potentials in the reservoirs;
and iii) strategic goals for oil production and carbon storage. Several reservoir flow simulations have been
conducted to evaluate the influence of some of the above strategies on metrics (e.g., oil production) of CO-
EOR and storage. For example, Koperna et al. (2006), studying the Seminole San Andres unit, concluded
that "simultaneously implementing the flood in both the ROZ and MPZ" is a superior approach to "separately
completing either the MPZ or the ROZ" in term of cumulative oil production. Jamali and Ettehadtavakkol
(2017) showed that early expansion into brownfield ROZs compromises project economics. Webb (2019)
studied the Nobel field (brownfield) in the Illinois basin and found that complete perforation in both MPZ
and ROZ may not substantially increase oil production compared to the perforation in MPZ alone. The
author found that for comingled injection, the perforation interval in the ROZ injectors affects the fluid flow
interaction between the MPZ and ROZ, and thus significantly influences oil production.

This paper is focused on development strategies for brownfield ROZs to maximize oil recovery and
CO. storage in the Seminole San Andres Unit (SSAU) oilfield. Compared to previous works by Wang et
al. (1998), Koperna et al. (2006), Jamali and Ettehadtavakkol (2017), and Webb (2019), our contributions
include:

I. We built a high-resolution geological model for both the MPZ and ROZ from high quality subsurface
data, including seismic, well logs, cores, production/injection. This allowed us to decrease the
uncertainties in both history matching and predicting CO2 EOR and storage potentials compared
to similar papers.

ii.  We conducted an extensive investigation of how various development scenarios designed in the
work influence the brownfield ROZ project economics, oil production, and carbon storage. For
the development scenarios, we focused on how to manage the development of brownfield ROZ to
achieve the best project economics, given proposed carbon credits.

iii.  We found and compared two optimized WAG ratios (one is that which results in the maximum
NPV, and the other is at the maximum cumulative oil production). The relevant economic influential
factors were examined through conducting a thorough economic sensitivity analysis, including
lifting cost and carbon credit. We emphasize the interaction between oil sales and potential carbon
credits. The influence of this interaction on desired WAG ratio and NPV was specifically examined.
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The whole work provides a reference to the study of other similar brownfield ROZ reservoirs.

Seminole San Andres Unit (SSAU)

The SSAU oil field is located in the north-east corner of the terminus of the Central Basin Platform (Fig. 1).
The field was previously owned by Hess, and it was then acquired by Oxy in 2017. By 2010, the field had
produced approximately 700 million barrels of oil, dominantly from the MPZs of the Permian carbonate
San Andres Formation. Fig. 2 shows the brief history of the field. Before waterflooding in the late 1960s,
cumulative oil production was 200 million, less than 17 percent of the estimated 1.2 to 1.4 billion barrels
of OOIP (original oil in place). Waterflooding, through to the early 1980s, resulted in the recovery of an
additional 300 million barrels. CO: injection into the Seminole MPZ begun in the early 1980s slowed the
production decline associated with the mature water flood operation.

For the SSAU ROZ, two phases of CO; injection pilots were implemented. Phase 1, in July 1996, tested
the use of line drive patterns. Phase 2, initiated in June 2004, was based on 40-acre inverted 5-spot patterns
(Honarpour, 2012). Following the two pilot phases, three stages of full-field commercial ROZ development
began in Oct 2007, May 2011, and July 2013 (Melzer, 2017).

Figure 1—Paleogeographic map of the Permian Basin showing the location of the study
area (red box) in west Texas. Modified from Ruppel et al. (1995) and Dutton et al. (2005).

1936 1969 1985 1996 - Tnm;
Discove Primary Water CO, EOR CO, EOR
SCOVELY depletion flooding MPZ MPZ & ROZ
Figure 2—A brief production history of the SSAU oilfield.
Methods

Geological Characterization
The San Andres Formation is one of the several shallow water platform carbonate and mixed siliciclastic-
carbonate units that developed on shelves of the Permian basin in west Texas and New Mexico during the
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Permian (Leonardian-Guadalupian) (Ward et al., 1986). This formation corresponds to the Upper Permian
(Guadalupian) oil play. From the sequence studies of SSAU sequences by Kerans et al. (1994) and Lucia
et al. (1995), multiple shallowing-up cycles were interpreted. These cycles consist of basal mudstones
and wackestones grading upward into grain-dominated packstones and grainstones. True crossbedded ooid
grainstones are rare, but grain-dominated packstones and grainstones are common. The uppermost part of
these cycles consists of fenestral peritidal deposits, and in some cases anhydrite was precipitated (caprock).
Seven carbonate microfacies and one anhydrite dominated microfacies have been described from 10
continuous cores in the northern and central part of the Seminole Field (Baqués and Duncan in prep). The
cores exhibit well-developed cyclic depositional sequences, with at least five cycles of sedimentation. The
identified microfacies includes: i) crinoidal-fusilinid packstones and grainstones and fusilinid mudstones/
packstones representing deep-water facies (into the ROZ); ii) bryozoan packstones/wackestones and
boundstones (bafflestones); iii) peloidal-oolitic packstones/grainstones representing near-shoal and shoal
deposition; iv) dascyclad-peloidal packstones that are capped by tidal flat deposits with fenestral fabrics;
V) restricted subtidal peloidal deposits, overlying tidal flat deposits, grade up into well-developed tidal flat
deposits with pisolites, fenestral fabric, mud clasts, storm layers and anhydrite. In summary, the cores exhibit
a very thick lower cycle of sedimentation, dominated almost entirely by open-marine facies. Upper cycles
are thinner and exhibit a greater proportion of shallow restricted subtidal and tidal flat facies.

All facies in the Seminole San Andres Unit are pervasively dolomitized. Ruppel and Cander (1988)
observed that porosity preservation that in these reservoirs was a consequence of dolomitization. Fusilinid
mudstones/packstones exhibit variably-preserved porosities. The crinodal-rich facies, prevalent into the
ROZ, contains moderate to large amounts (up to greater than 20%) of preserved porosity. Most of
this porosity is secondary in origin. Intercrystalline porosity is variably occluded by anhydrite cement.
Bryozoan facies in the lower part of the cores have moderate porosities, generally ranging between 10-15%.
Pelodial-oolitic shoal deposits have quite variable porosities, ranging from a few percent up to 22%. Most
of the grainstones have their primary porosity reduced by anhydrite cements. Packstones exhibit high
intercrystalline and leached dolomite rhomb porosity.

Reservoir Modeling

We integrated a 3D seismic, well logs, and core description results into the geological modeling. The cored-
wells’ logs (including spontaneous potential, gamma, and neutron porosity) were analyzed, and through this
we assigned facies to non-cored wells. Next, we conducted semi-variogram analysis of each facies group
in each zone, adopting an exponential variogram model. Then, we employed sequential indictor simulation
to generate facies for the geomodel. Then, we employed sequential Gaussian simulation to generate 10
realizations of porosity fields. The corresponding permeability fields are created using Lucia's (1995) rock
fabric method (with details in Ren and Duncan (2019a and b), Ren et al. (2019)).

After building a full-field high resolution (cell size 20x20x2 ft) geological model, we generated a coarser,
upscaled model with the cell size of 100x100x2 ft. Then, we cut a sector model (Fig. 3d), upon which we
conducted history matching of primary depletion and waterflooding for calibration. The calibrated model
was then used for the prediction of CO, EOR and storage potentials. For the simulation input, the rock/fluid
interaction models (including fluid properties, relative permeability, and capillary pressure curves) refer to
Ren et al. (2019).

When predicting the performance of CO, EOR and storage, water alternating gas (WAG) injection
was considered. Inverted 9-spot 80-acre patterns were adopted, which are currently being used in the
development of the MPZ (Honarpour, 2012). The COz injection rate is set to 3000 Mscf/day, and water
injection rate is 1400 rb/day (reservoir barrel/day). The injection target pressure is at the reservoir fracturing
pressure of 3900 psi (Alcorn et al., 2019). Bottom hole pressure for producers is set to be the minimum
miscibility pressure, which was measured as 1400 psi (Honarpour et al., 2010). The WAG ratio (i.e.,
reservoir volume ratio between injected water and CO>) was varied from 0 to 4, through changing water
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injection duration while keeping CO: injection duration unchanged in each WAG cycle. The WAG ratio
equal to 1 (base case) corresponds to 90 days of water injection alternating with 70 days of CO: injection.
We run WAG injection for 40 years.

All the injectors and producers involved in simulations are vertical, and perforated according to the
development scenarios as shown in Table 1. Different switching schedules and injection/production schemes
were considered. Buffered boundary conditions as described by Ren and Duncan (2019a) were used in all
flow simulations.

Table 1—Designed development scenarios for the brownfield ROZ

Scenario # Injection Schemes Production Schemes Notes
1 MPZ.& RO.Z .40 yr MP.Z &ROZ 40 yr Develop MPZ & ROZ at the start
commingled injection comingled production

2 MPZ 40 yr injection MPZ 40 yr production Develop only MPZ

MPZ 20 yr injection + MPZ
& ROZ 20 yr injection

Develop MPZ initially and

MPZ 20 yr + MPZ & ROZ 20 yr then develop MP & ROZ

MPZ & ROZ 20 yr injection
+ ROZ 20 yr injection

Develop MPZ & ROZ

MPZ & ROZ 40 yr and then develop ROZ

Economic Modeling

We calculated the cumulative net present values (NPV) for all the development scenarios. For these
scenarios, we assumed CAPEX (mainly drilling costs at the beginning of MPZ development and installation
of CO- clean-up/recycle plants) is the same, and thus the difference in calculated NPV will be attributed
to different injection and production rates and the incurred expense and revenues. We focused on the
comparison of different scenarios, so the CAPEX is not included in NPV calculation.

For the purposes of this analysis, the NPV is assumed to consist of four components: oil revenue, carbon
credit, operational expenses, and cost of well deepening into the ROZ. For simplicity, we treated the carbon
credit as a revenue stream. The operational expenses include CO2 purchase, CO> recycle, produced water
management, and liquid lifting. The formula used to estimate NPV is in equation 1. The following equations
2-9 show how to calculate all these components. The cost assumptions are listed in Table 2. Sensitivity
analysis of these parameters was also conducted using the range in Table 2.

Table 2—The settings of economic parameters in NPV calculation. These settings are based
on the publications by Chen and Reynolds (2016), Godec (2014), Hultzsch et al. (2007).

Component Base Settings Range
Oil price ($/STB) 60 30-120
Carbon credit ($/Tonne) 0 0-40
CO2 purchase price ($/Tonne) Oil price x 0.42* Oil price x (0.33-0.50)
Gas recycling cost ($/MSCF) Oil price x 1%
**Produced water management cost ($/STB) 0.64
Liquid lifting cost ($/STB) 1.0%%* 0.40-1.50
Deepening cost ($/ft) 150
Annual discount rate 0.12

*assuming natural CO,. The price of CO, sold varies according to oil price, and conversion factor is 0.42 for base settings.
** produced water management cost consists of water injection, water recycling, and water disposal.

*** this is the liquid lifting cost for wells perforated in the MPZ only. The cost for other wells perforated in the ROZ or both the MPZ and ROZ is assumed
to linearly increase with reservoir depth.
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In the above equations,
Oil_ revenuen, revenue from oil production at the ny year, $

Carbon_pricen, price of carbon as incentive for carbon storage at the ni, year, $

Recurrent_costn, recurrent operation cost at the n year, $

Welldeepen_costn, well deepening cost for ROZ development at the ni, year, $

r, annual discount rate

n, year numbering since the start of development

op(n), cumulative oil production till the ny year, STB
Qop(n-1), cumulative oil production till the (n-1) year, STB
Oil_price, the price of oil, $/STB
Qui(n), cumulative gas injection till the ny year, MSCF
Qqi(n-1), cumulative gas injection till the (n-1)u year, MSCF
Qgp(n), cumulative gas production till the ny year, MSCF
Qgp(n-1), cumulative gas production till the (n-1)wn year, MSCF
Storagetax, carbon credit for storage, $/Tonne
Gaspurn, CO2 purchase cost at the ni, year, $
Gasrecyn, COz recycling cost at the ni, year, $
Water_costn, produced water management cost at the ny, year, $
Liquid_lift,, produced liquid lifting cost at the nw year, $
Gaspur_price, CO> purchase price, $/Tonne
Gasrecy_cost, COz recycling cost, $MSCF
Quwp(n), cumulative water production till the ny year, STB

wp(n-1), cumulative water production till the (n-1)w year, STB
Qui), cumulative water injection till the ny year, STB
Qui(n-1), cumulative water injection till the (n-1)t year, STB
Water_cost, cost of produced water management, $/STB
Lift_cost, cost of liquid lifting, $/STB
Cost_perft, cost of deepening wells into ROZ, $/ft
Deepen_length, depth of deepening for wells into ROZ, $

QQ/ }(”_n] )% Storagetax

] )* Gaspur_price

1)

e

3)
(4)
(5)

(6)
(7

(8)
9)
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Metrics Used to Evaluate CO2 EOR and Storage Performance

In addition to traditional EOR performance metrics (e.g., cumulative oil production), we also calculated
metrics used to measure the performance of CO> storage in the brownfield ROZ.

Stored CO2 amount = injected CO2 amount — produced CO, amount.

CO:z retention fraction = stored CO2 amount / injected CO, amount.

All these CO2 EOR and storage metrics change with time; the results given here are the values after 40
years.

Results and Discussion

Geological Models

Fig. 3 shows the full-field porosity and permeability, along with permeability for the sector model. This
porosity/permeability is selected from the batch of realizations that conform to geological characterizations
and reservoir heterogeneity. The cut sector consists of 25 inverted 9-spot 80-acre patterns, with 25 vertical
injectors and 94 vertical producers.

Figure 3—(a) The Petrel unit boundary of full-field geological model for Seminole with the dashed square

in (a) representing the outer boundaries of a cut sector model. (b) Porosity fence diagram. (c) Permeability

field with the two sectional cut for direct visualization. Four zones (gas cap, MPZ, ROZ, and water leg) are

differentiated with different colors for easy look. The depth cutoff for the three contacts are 1725 ft (gas-oil-
contact), 1935 ft (producing water-oil-contact or the contact between the MPZ and ROZ), and 2200 ft (free water

level). (d) Permeability field of the cut sector with all the vertical well locations shown on the top of model.
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History Matching

The purpose of history matching was to: i) calibrate petrophysical properties, including permeability,
porosity, and compressibility; ii) calibrate the depth of the producing water-oil contact (interface between the
MPZ and ROZ) and gas-oil contact. Fig. 4 shows the achieved good match of oil production rate, water cut,
and reservoir pressure. The history match of gas-oil-ratio (GOR) is challenging. GOR matching is hindered
by the lack of both the information about the gas cap size and knowledge of the vertical fracture permeability
of the reservoir. The GOR curve indicates that gas-solution-drive is the main driving mechanism during
primary depletion (1936-1969).

Figure 4—History matching of oil production rate (a), water cut (b), gas-oil-ratio (c), and reservoir pressure (d) during
primary depletion and waterflooding periods. Large dots are field measurements, and lines represent simulation results.

Comparison of Different Development Scenarios
Fig. 5 compares the CO. EOR and storage metrics for all the development scenarios. Comingled injection
and production (scenario #1) yields the largest oil production and NPV, and comingled injection followed
by ROZ injection only (scenario #4) gives the highest CO> storage amount and retention fraction. The
least favorable scenario is #2, MPZ development only. The corresponding EOR and storage metrics are the
smallest among all scenarios.

The commingled CO- injection (scenario #1) increases the contact of CO; to rocks and thus favors both
oil production and carbon storage, as compared to MPZ injection only (scenario #2). For the latter scenario
#2, most of the injected CO- is very likely to channel into producers and was then recycled (as revealed by
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Fig. 6). As acomparison, scenario # 4 with the largest CO; storage only perforated wells in the ROZ interval
at the late period, which helps decrease CO> production. This should be because the ROZ has a large initial
water saturation (~60%), and displacing water is more difficult than displacing oil by CO; (Ren et al., 2019).

Here, we purposely compared scenario #1 to #4. Wide variations of both oil production and NPV with
the WAG ratio are observed for scenario #1, as compared to scenario #4 (Figs. 5a and 5d). Meanwhile, as
the WAG ratio increases, the amount of CO; stored decreases more rapidly for scenario #1 than for scenario
#4 (Fig. 5b). We found similar results in the CO> retention fraction comparison (Fig. 5c).

Further comparison between scenario #1 and #4 shows the large difference in oil production (Fig. 5a)
but with similar CO> storage amount (Fig. 5b) when adjusting the WAG ratio. This indicates that gravity
segregation of CO2 might not be significant (i.e., CO> migration is probably confined into each zone because
of the interlayered low permeability flow barriers/baffles (refer to Fig. 3c)). Such indication was also
supported through surveying CO; saturation fields.

Figure 5—Comparison of CO, EOR and storage metrics for different development scenarios at the end of WAG
injection (at 40 years). (a) final oil production; (b) final amount of CO, stored; (c) final retention fraction of COy;
(d) final NPV. The WAG ratio is in the range of 0-4. The final NPV is calculated using the base settings in Table 2.

Fig. 6 shows the cost bar charts for scenarios #1, #2, and #4 after 40 years of development. For scenario
#4 with the largest CO: storage, the associated cost fraction of liquid lifting and water management is a
little larger than those for scenario #1 (commingled injection/production for 40 years, Fig. 6a). Most of the
costs for both scenarios is from CO> recycling and purchasing. For MPZ only development (scenario #2,
Fig. 6¢), the fraction of CO- recycling costs is much higher (75.5% versus 41.4% for comingled injection/
production).
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When moving from the MPZ to ROZ development, it appears that the large water saturation in the ROZ
does not greatly increase the fractions of the costs associated with liquid lifting and water management. The
cost fractions are specific to each reservoir and depend on reservoir characteristics and dynamics during
COz injection.

Comparison between scenario #1 and #4 shows that the cost fraction of CO2 recycling is less for scenario
#4 (38.7%) than for #1 (41.4%). This should indicate that CO> tends to be difficult to be produced out when
switching from the MPZ to ROZ (where water prevails), which is consistent with our above analysis of
the production metrics.

Figure 6—Bar charts for 40 years of cost for development scenarios #1 (a) and # 4 (b). Both of them
are associated with ROZ development. For comparison to only MPZ development, the cost pie charts
for the scenario #2 (c) was also included in the figure. The WAG ratio is 1 (i.e., 70 days of CO; half-
cycle alternating with 90 days of water half-cycle). Base settings for economic parameters in Table 2
were used. The cost of well deepening into the ROZ is minimal, so it was not included in the charts.

Sensitivity Analysis

Fig. 7 compares two types of WAG ratios: the WAG ratios at the maximum oil production versus the WAG
ratios at the maximum NPV. We focused on the effects of economic parameters (oil price, carbon credit and
conversion factor (from oil price to CO purchasing price)), rather than geological parameters. The main
observation from Fig. 7 is that, for most of the cases studied here, the WAG ratios that yield the maximum
oil production do not necessarily give the maximum NPV. Generally, large oil price increases the optimal
WAG ratio for NPV, whereas large carbon credit decreases it. Cheap CO2 (small conversion factor from oil
price to CO> purchasing price) decreases the optimal WAG ratio. The lifting cost shows no effect on the
WAG ratio comparison.
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Figure 7—Comparison between the WAG ratio corresponding to maximum cumulative oil production (at 40 year) and the
WAG ratio corresponding to maximum cumulative NPV for all the development scenarios. The settings for economical
parameters are for the base case (refer to Table 2). The effects of changing oil price, carbon credit, and conversion factor
(from oil price to CO, purchasing price) on the comparison between the two types of WAG ratios are shown in the figure.

Fig. 8 shows the sensitivity of NPV to several economic parameters (i.e., oil price, carbon credit, lifting
cost, conversion factor). The WAG ratio, as an example of engineering parameters, was also included to
show how different considerations of CO, EOR and storage will influence the NPV. For scenario #1, with the
largest oil production, the NPV is more sensitive to the WAG ratio than for the scenario #4, with largest CO;
storage ((Fig. 8a vs. Fig. 8b). This indicates the complexity of the interaction between economic parameters
and engineering ones. The effect of this interaction on the emphasis of some parameters should be considered
when switching CO; injection from MPZs to ROZs.

Figure 8—Tornado plots of final NPV for development scenario #1 (a) and #4 (b).

Summary, Conclusions, and Recommendations

We built a high-resolution geological model for both the main pay zone (MPZ) and residual oil zone (ROZ)
of the Seminole San Andres Unit based on integrated geological and reservoir characterization. The model
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was calibrated with historical primary and secondary production data matches. We used the geological
model to economically evaluate different development strategies and their associated uncertainties through
integrated full-physics flow simulation and economic assessment. To better compare these scenarios, we
defined and calculated a series of metrics for CO, EOR and storage. Water alternating gas (WAG) ratios were
tuned to maximize either oil production or net present value (NPV). The influence of economic parameters
(e.g., oil price and carbon credit) on favorable WAG ratios were examined. We found that:

. Simultaneous injection into both the MPZ and ROZ favors oil production, whereas, switching from
comingled injection to only ROZ injection in the later time period of projects helps CO; storage.
The optimal switching time needs further study.

il.  The WAG ratios at the maximum oil production are not equal to those at the maximum NPV for
most of the cases due to the uncertainties in economic parameters.

iii.  The sensitivity of NPV to economic and engineering parameters changes when considering the goals
of increasing oil production versus maximizing CO; storage.

The whole work provides a basis for future optimization of CO2 EOR and storage in brownfield ROZs.
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I  —————~—~—~—————
Abstract

The objective of this study is to improve understanding of the geostatistics of vertical (bed-normal)
permeability (k) and its influence on reservoir performance during CO2 enhanced oil recovery (EOR) and
storage. k; is scrutinized far less often than horizontal permeability (kx, ky) in most geological and reservoir
modeling. However, our work indicates that it is equally important to understand k; characteristics to better
evaluate their influence on CO2 EOR and storage performance prediction.

We conducted this study on about 9,000 whole-core triaxial permeability (kx, ky, k;) measurements from
42 wells in a San Andres carbonate reservoir. We analyzed k; data, including heterogeneity, correlation, and
sample sufficiency measures. We analyzed wells with the largest and smallest fractions of points with k; >
kmax = max(Kkx, ky), to explore geological factors that coincided with large k.. We quantified these geological
effects through conditional probabilities on potential permeability barriers (e.g., stylolites).

Every well had at least some whole-cores where k; > kmax. This is a statistically justifiable result; only
where Prob(k; > kmax) is statistically different from 1/3 are core samples non-isotropic. In conventional core
data interpretation, however, modelers usually assume k; is less than kmax. For the well with the smallest
fraction (11%) of cores where k; > kmax, the cumulative distribution functions differ and coincides with the
presence of stylolites. We found that k; is about twice as variable as kx in many wells. This makes k, more
difficult to interpret because it was (and usually is) heavily undersampled.

To understand the influence of k; heterogeneity on CO> flow, we built a series of flow simulation models
that captured these geostatistical characteristics of permeability, while considering k; realizations, flow
regimes (e.g., buoyant flow), CO> injection strategies, and reservoir heterogeneity. CO> flow simulations
showed that, for viscous flow, assuming variable kx similar to the reservoir along with a constant ki/kx =
0.1 yields a close (within 0.5%) cumulative oil production to the simulation case with both ky and k; as
uncorrelated variables. However, for buoyant flow, oil production differs by 10% (at 2.0 hydrocarbon pore
volume HCPV of CO; injected) between the two cases. Such flows could occur for small CO> injection
rates and long injection times, in interwell regions, and/or with vertically permeable conduits.

Our geostatistical characterization demonstrates the controls on k; in a carbonate reservoir and how
to improve conventional interpretation practices. This study can help CO2> EOR and storage operators
refine injection development programs, particularly for reservoirs where buoyant flow exists. More broadly,
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the findings potentially apply to other similar subsurface buoyancy-driven flow displacements, including
hydrogen storage, geothermal production, and aquifer CO2 sequestration.

Introduction

Vertical permeability (k;) is important in many subsurface processes where there is a density difference
between fluids, including gas (e.g., CO2) enhanced oil recovery (EOR) and geologic storage, geothermal
production, hydrogen storage, compressed air storage, tracer flow, steam injection, and water coning (Bryant
etal., 2008; Hassanpouryouzband et al., 2021; Hinton and Woods, 2019; Silin et al., 2009; Yang and Butler,
1992). Specifically, for CO, EOR and storage in oil reservoirs, k; characterization is important for reservoir
management and development endeavors, including optimization of injector/producer placement, design of
completion strategies, and deployment of reservoir monitoring programs during CO:> injection as well as
post-injection periods.

Vertical permeability (k.) can be measured at several scales. At core scales (i.e., cm and dm), whole core
samples are convenient because permeability is measured in three directions on the same sample. Core plugs
drilled orthogonal to local bedding planes can also be used. At larger scales, formation testers (e.g., Ayan et
al., 1994; Onur et al., 2011), history-matched reservoir simulation (e.g., Sutton et al., 2013), analytical and
semi-analytical calculations (e.g., Haldorsen and Lake, 1984; Begg and King, 1985), ocean tide pressure
variations (e.g., Wannell and Morrison, 1990) may be used to estimate k.. Of all these methods, core-scale
measurements are perhaps the most common.

Core-scale k; is often compared with the horizontal permeability (k) measured at the same or a nearby
location by calculating the ratio ki/kx. There appear to be two main reasons for using the ratio. First, one
may expect that k; and ky are positively correlated, so that k./k is less variable than either k; or ky. The less
variable a reservoir characteristic is, the easier it is to predict for areas beyond the wellbore. Second, kx
measurements are typically more abundant than k, measurements, so that a knowledge of kyx and kz/kx will
provide k; estimates at the same frequency as kx values. Typically, log-log plots of k; versus kx (Fig. 1) offer
a useful assessment of the ki/kx values present in a reservoir.

Fig. 1—Sherwood Sandstone core plug data from a strongly laminated fluvio-aeolian reservoir with kJ/kx lines
drawn to evaluate core-scale anisotropy. ki/kx varies by approximately four orders of magnitude while either k; or
kx change by six orders of magnitude. With 232 bi-directional pairs for this figure, Prob (kJ/kx > 1) = 63/232 = 0.27
(probabilities are equivalent to frequencies in this work). Because this probability is much different than %, it is

extremely unlikely (probability of approximately 2 x 107*?) to get only 63 out of 232 samples with ki/kx > 1 if the core-
scale permeability is isotropic for this data. See Morton et al. (2002) for more details on the Sherwood Sandstone.
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The use of ki/kx ratio is a common way of modeling k.. Then the question to be answered: what are the
consequences of avoiding k; measurements by using kx measurements instead? Several associated questions
also arise: i) is k; always dependent on ky or is it independent? ii) Do both permeabilities have the same/
similar statistical properties? iii) What are the influential factors of k; /kx ratio? The ki/kx ratio is typically
assumed to be 0.1. However, several studies on sandstones (Jones et al., 1987; Hanks et al., 2011, Baker
et al., 2005) and carbonates (Sun et al., 2017; Dernaika et al., 2018; Chandra et al., 2013), including the
work presented here, showed the occurrences where k; > kx. The underlying geological causes should be
well understood for reliable geomodels and multiphase flow simulations.

A considerable number of studies have focused on the influence of k; on flow prediction. Unfortunately,
most flow simulations that consider k; typically treated the k/kx ratio as a sensitivity parameter and examined
its influence on defined metrics (e.g., Abdelaal et al., 2021; Chang et al., 1994; Ren and Duncan, 2021).
Campero et al. (2014) made an analysis of k./kx based on the geological datasets collected in a field and
evaluated the influence of ki/kx ratio on history match and prediction during waterflooding. However, all
these studies avoided a fundamental question: how good is using a constant k; /ky ratio to populate vertical
permeability for flow prediction as compared to having variable k;?

Our objectives here are to: i) deepen our understanding of the statistical properties of k;; ii) examine
k;'s influence on CO: flow, storage, and production prediction; and iii) specifically compare performance
prediction between the case of using true k; versus the traditional wisdom of assuming a ratio for ki/ks.

Our study is based on a San Andres carbonate reservoir. The San Andres Formation is one of the richest
oil formations in the Permian Basin, and many CO, EOR projects are active in the formation (Jarrell et al.,
2002; Lake et al., 2018). It could be expected that CO, storage incidental to EOR will likely be implemented
into those Permian Basin carbonate formations in near future. In this sense, our case study on the carbonate
reservoir should provide a good reference for the understanding of k; and its influence on CO, EOR and
storage.

We conducted k; -related exploratory plots, including permeability profiles, histograms, heterogeneity
measures, and semivariogram analyses. Then, based on the geostatistical analysis, we selected the wells with
the extreme fractions of k; > kx. We analyzed whole core, thin sections, and core plug datasets of the selected
wells to explore the geological factors of k.. We also conducted probability analyses conditioned by potential
permeability barriers to quantify geological parameters. We then built a series of generic flow simulation
models based on these geostatistical understanding, while considering various injection strategies and flow
regimes, to quantify the influence of k; realizations on CO, EOR and storage performance.

San Andres Formation

The carbonate facies of the San Andres Formation (SAF) developed on the shelves of the Permian Basin
in west Texas and New Mexico during the Permian (Leonardian-Guadalupian) ages (Ward et al., 1986).
The SAF is one of several shallow water platform carbonate and mixed siliciclastic-carbonate units. From
the sequence stratigraphy studies by Kerans et al. (1994), Lucia et al. (1995), and Wang et al. (1998),
several upward-shallowing cycles were interpreted from their facies description. These cycles consist of
basal mudstones and wackestones grading upward into grain-dominated packstones and grainstones. A total
of 5 facies groups were identified from a 4002-feet-thick continuous core from 10 wells with both MPZ
and ROZ intervals. More complete studies for the MPZ were reported by Kerans et al. (1994) and Lucia
etal. (1995).

The most common pore types include interparticle, moldic, and vugs. Dolomitization is a key diagenetic
process that influences porosity distribution in the reservoir. Stylolites, which are common in the SAF, are
intergranular pressure solution features usually with wavy surfaces (Heap et al., 2014; Koepnick, 1987).
Most of the stylolites are sutured with cements, but some have solution seams. The stylolite-bearing horizons
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could be laterally extensive (100s of meters). They may act as barriers or paths for fluid flow depending
on both stylolite features and their extents relative to the flow directions. Vertical fractures are common but
and mostly filled in by anhydrite or dolomite cement.

Datasets

The k; -related dataset come from a SAF reservoir and include whole-core measurements (by Core Labs),
core plugs, as well as descriptions of lithology and diagenetic history. For the reservoir we studied, nearly
9,000 whole-core permeabilities from over 4 wells were available from Core Labs reports. We conducted
careful quality checks and cleaning of these datasets before exploratory analyses. Data cleaning consisted
of: i) removing measurement values below the threshold (e.g., < 0.001 md) for some evaluations, such as
averages, standard deviation, and semivariograms; and ii) removing incomplete measurements. Samples
where only kx was available without k;, might be from core plugs. For the collected whole cores, over 6000
samples have core lithology descriptions. Core descriptions in these reservoirs provide sedimentological
information such as textures, sedimentary structures, and post-depositional features.

A whole-core has a larger diameter and length than a conventional core plug (Fig. 2), thus the whole-
core includes more larger-scale geological information. The main advantage of whole cores is that they
are or approach exhaustive sampling. Whole cores are often used in reservoir characterization to measure
three-directional permeabilities: ky, ky, k; (Fig. 2). The horizontal (x, y) direction are varying randomly,
and usually kmax = max(kx, ky) and keo = min(kx, ky). More details of whole-core-based permeabilities and
their comparison to core plugs and probe permeameter measurements can be found in Camargo and Jensen
(2012), Honarpour et al. (2005), and Ringrose et al. (2005).

Fig. 2—Whole cores versus core plugs. Note that the measurements are not exactly on the same scale.

Theory and Approaches

Statistical Characterization
Based on the above datasets, it is helpful to begin with comprehensive geostatistical analysis on k; to
understand its characteristics as compared to ky. This will also guide the synthesis of generic geomodels
used in the flow simulations to examine the influence of k;, realizations on performance prediction during
CO2 EOR and storage.

Based on the 42 wells’ whole core measurements, we created a series of k.-related exploratory
plots, including vertical profiles for the three permeabilities. The histograms, well-based Dykstra-Parson
coefficient, semivariograms, k; - kyx cross plots, and permeability-porosity cross plots, Lorenz plots, and
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Koval plots (Koval, 1963) were produced. A Koval plot is the plot of (1-F)/F versus (1-C)/C where F is flow
capacity, and C is storage capacity. The vertical location of the curves on the plot measures the heterogeneity
that gives clues to vertical sweep efficiency (Salazar, 2018). Detailed explanations of the Koval plot and its
physical meaning are in Lake et al. (2014) and Salazar and Lake (2020).

When viewing plots such as Fig. 1 or listings of ki/kx values, it is tempting to assume that k./kx should
nearly always be less than one (e.g., Dernaika et al., 2018; Pamungkas et al., 2020), so there must be a
problem with the measurements if ki/kx > 1 for significant portions of the data set. This assumption may
be incorrect for reasons listed below and it is therefore useful to keep the questions below in mind when
assessing ki/kx values. We will use these considerations during analysis of data from the field.

. Avre the data from one geological unit (e.g., rock type or facies) or do they represent a larger domain?
A clearer picture of the ki/kx behavior is likely to emerge from unit-based data, so that characteristic
kz/kx values and how the values change can be identified.

i Is the formation isotropic? If the permeability is isotropic and a deterministic variable, then kx = ky
= kz. However, if we assume permeability to be isotropic and a random variable, then ky, ky, and k;
have the same probability distribution but might be unequal for any given sample. In that case, the
probability of ki/kx > 1 should be 1/3 (written as Prob(k./kx > 1) = 1/3) for tri-directional samples and
Y for bi-directional samples. Also, while the formation may not be locally isotropic, it may behave
at the larger scales as being isotropic because some areas have kz/kx > 1 while other areas have kz/kx <
1. There may be good geological reasons why some k./kx data exceed 1. For examplfne, in sandstone
reservoirs having burrowing or dewatering horizons, kz/kx > 1 (Jones et al., 1987; Hanks et al., 2011).
Carbonates also may show k./kx > 1 in dissolution enhanced or stylolite-bearing samples (e.g., Sun
et al., 2017; Dernaika et al., 2018; Chandra et al., 2013).

Flow Simulation

We ran flow simulations (using the Eclipse® simulator), to quantify the influence of k; on CO, flow/sweep
and performance prediction during CO2 EOR and storage. First, we synthesized a series of permeability
fields according to the geostatistical analysis. Second, we conducted flow simulations of CO; injection
into these synthetic models while considering the reservoir ROZ rock-fluid properties. Third, we compared
various k; realizations (including direct k; statistical realizations or true k; versus assuming kz/kx = 0.1) in
terms of simulation prediction for CO, EOR and storage.

Our procedure for generating permeability fields is to: i) employ the Box-Cox method (Box and Cox,
1964) to transform the reservoir permeability distributions to be more Gaussian; ii) use sequential Gaussian
simulation to generate permeability fields with a given set of heterogeneity indicators; iii) back-transform
to get the synthetic permeability field. Appendix A includes more details of the procedure and demonstrates
that the synthetic fields reproduce the global permeability statistics.

Table 1 shows the properties of the synthetic permeability fields. Simulation models for inverted 5-spot
and inverted 9-spot well patterns were created. The corresponding model dimensions and cell sizes are also
in the table. The porosity was set to be constant at 0.11, the arithmetic average of the reservoir ROZ, since
porosity is far less variable than permeability. It was known that vertical cell size influences miscible flood
predictions, especially when gravity is important (Stalkup, 1990). This work adopted a fixed cell size since
the simulation studies are designed for general sensitivity analysis.
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Table 1—Properties of synthetic permeability fields

Well pattern Inverted 5-spot Inverted 9-spot
Pattern size, acre 40 80
Model domain sizes, ft 1320x1320%x96 1860x1860x96
Model cell sizes, ft 30x30x3 30x30x3
Model dimensions 44x44x32 62x62x32
Horizontal dimensionless auto-correlation length 0.2,2°,20
Horizontal permeability log mean 1.5*
Vertical permeability log standard deviation 1.8*
Vertical permeability log mean 0.5*
Vertical permeability log standard deviation 2.3*

* Based on reservoir permeability geostatistics.

For the reservoir simulation model, the settings for the rock, fluids, and their interactions, including
oil properties, PVT models, relative permeability and capillary pressure curves, were described in Ren
and Duncan (2021). Since the whole simulation study is designed to examine the sensitivity of vertical
permeability on CO2 EOR and storage performance, we used a single set of relative permeability and
capillary pressure curves. More details are included in Appendix B.

Initially, the reservoir pressure is 2119.9 psi, and the reservoir temperature is 104 °F. Uniform fluid
saturations were assigned as per the average saturation magnitudes of the the reservoir ROZ (Ren and
Duncan, 2019), with an initial oil saturation of 0.4 and the rest of the pore space water.

We designed injection-production schemes with a focus on the effects of k; on flow. To achieve this,
we use a buoyancy number Npy (Shook et al., 1992, Eq. 1) to measure the relative importance of buoyant
force (k.-related) over viscous force (injection rate-related). The variation of Ny, along the distance from
an injector is in Fig. 3. CO flow is dominated by the buoyant force (Nou >1) in most of the inter-well
areas (around 115 to 1300 ft away from the injector). Thus, most of the CO> flow will tend to be gravity
segregated. Our study covers a wide Npy range of 0.0022 to 22 through adjusting either injection rates or
k; in simulation cases (see Table 2).

Npy is defined as

v, - /\piii‘_l:’i'co.su )
where Ap is the density difference between CO> and the mixture of brine and oil, g is the gravitational
constant, k; is vertical permeability, H is the well perforation height, « is the formation dip angle, un is CO2
entry velocity at the wellbore (it was calculated using CO> injection rate in a radial flow geometry), u is
the CO> viscosity at reservoir conditions, and L is the horizontal length of the simulation domain (same as
the distance from an injector in Fig. 3).
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Table 2—Values for the cases of CO2 flow simulations. The "truth" cases are for the case
with both variable kx and variable kz 2 realizations (i.e., case #4, 8, 12, 13, 16, 17, 19, and 23).
Case Injection Injector Buoyancy WAG |Autocorrelation
# kx mD ks, mD Rate, MScf/d | BHP, psi Numbera ratio Jox Well Pattern Notes
1 | constant 3000 NA 22E2 0 2 Inverted-5
& 40 acre
verted 5 Base settings:
2 | Constantd | Constantd 3000 NA 14E-2 0 2 '(;‘L"joe - Injection rate:
acre WAG ratio;
; i Horizontal
3 | Variable K 3000 NA 22E2 0 2b gngzcirg dimensionless
autocorrelation;
4 Variable Variable 3000 NA 1.4E-2 0 2 inverted-5
& 40 acre
1a | Variable 10%kxc 3000 NA 22E-1 0 2 inverted-5
& 40 acre
3a | Variable 0.1xk, 3000 NA 22E3 0 ) inverted-5
& 40 acre
. inverted-5
3b Variable 0.1 x Kk 30 NA 2.2E-1 0 2 & 40 acre
Inverted-5
5 Constant Ky 30 NA 2.2 0 2 &40 acre Effect of
- buoyancy
6 | Constant | Constant 30 NA 14 0 2 inverted-5 number
& 40 acre
. inverted-5
7 Variable Ky 30 NA 2.2 0 2 & 40 acre
8 | Variable | Variable 30 NA 14 0 ) inverted-5
& 40 acre
o | Variable 10xke 30 NA 22 E+ 0 2 inverted-5
& 40 acre
] inverted-5
10 Variable K 3000 NA 2.2E-2 1 2 & 40 acre
11 | Variable K 3000 NA 2.2E-2 4 2 2"23”'5
acre Effect of
- i WAG ratio
12 | Variable Variable 3000 NA 14E-2 1 2 inverted-5
& 40 acre
13 | Variable | Variable 3000 NA 14E-2 4 ) inverted-5
& 40 acre
14 | Variable Ky 3000 NA 2.2E-2 0 02 Inverted-5
& 40 acre
15 | Variable Ky 3000 NA 2.2E-2 0 20 gnged-5 Effect of
acre horizontal
] ] inverted-5 autocorrelation
16 Variable Variable 3000 NA 1.4E-2 0 0.2 & 40 acre length
17 | Variable Variable 3000 NA 14E-2 0 20 inverted-5
& 40 acre
18 | Variable ke 3000 NA 2.2E-2 0 2 gvgge‘j'g
acre Effect of
; R well pattern
19 | Variable Variable 3000 NA 14E-2 0 2 inverted-9
& 80 acre
Inverted-5
20 Constant K NA 2800 NA 0 2 &40 acre
- " Injectivity
21 Constant Constant NA 2800 NA 0 2 inverted-5
& 40 acre
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Case Injection Injector Buoyancy WAG |Autocorrelation
# kiemD ke, mD Rate, MScf/d | BHP, psi Numbera ratio Jiox Well Pattern Notes

. inverted-5
22 Variable Ky NA 2800 NA 0 2 & 40 acre
23 | Variable Variable NA 2800 NA 0 2 inverted-5
& 40 acre
22a | Variable 0.1k NA 2800 NA 0 2 inverted-5
& 40 acre
22b | Variable 0.01xk NA 2800 NA 0 2 inverted-5
& 40 acre

a These values of buoyancy number Ny, are along the wellbore. Note Ny, changes with the distance as shown in Fig. 3.
b Three realizations of permeability fields were created for the inverted-5 well pattern.
¢ With vertical fractures.

d Constant ky is 17.5 md, and constant k; is 11.1 md as per the reservoir arithmetic averages of permeabilities.

Fig. 3—The change of buoyancy number Nw, along the distance from a given CO, vertical injector. Nw is larger than 1 when
the distance is larger than 115 ft. This means that buoyant flow prevails in a large area between an injector to producers
(the interwell distance is 933 ft for the 40-acre inverted 5-spot and 1319 ft for the 80-acre inverted 9-spot well patterns).
Under r reservoir conditions, the CO, density is 768kg/m?, and CO; viscosity is 0.07 cp. The brine density is 915 kg/
ms3. The vertical permeability arithmetic average is 11.1 md, and the perforation length is 96 ft (same as the thickness of
the synthetic model in Table 1). The injection rate used for the calculation is 3000 MScf/d (based on settings in Table 2).

We considered four scenarios, the details of which are listed in Table 2. We provide a brief description
of the four scenarios below. Simulation predictions based on the settings in Scenario #4 (using true k;) are
considered to be "truth case™ in the result analysis.

Scenario #1: constant ky and k; = 0.1 kx;

Scenario #2: constant kx and k, from the reservoir arithmetic mean (i.e., average kyx and average k;);

Scenario # 3: variable kyx with the reservoir geostatistics, and k; = 0.1 ky;

Scenario #4: variable kx and k, with the reservoir geostatistics.

Several other parameters were also examined, including WAG ratios, horizontal dimensionless auto-
correlation length (Apx), and injector constraints. The WAG ratio is defined as the ratio of the reservoir
volumes of injected water to injected CO> for a cycle; The WAG ratio 0 represents continuous CO- injection.
The range of reported WAG ratios is 0 to 5 (Ettehadtavakkol et al., 2014). The ratio in this work was adjusted
through changing water half-cycle size while keeping CO: half-cycle size unchanged at 2.5% HCPV.
Dimensionless horizontal auto-correlation length, Apy, is the horizontal auto-correlation length divided by the
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domain horizontal length. For the base case, we set Apx = 2 considering the permeability variogram analysis
for the reservoir wells. We also examined two extreme values of 1px: 0.2 (very weak lateral autocorrelation)
and 20 (strong layering). The vertical dimensionless auto-correlation length is 0.

The base case injection schemes are: CO; injection rate is 3000 MScf/day, water injection rate is 1400 bbl/
day, and the total injection duration is 20 years with the WAG ratio 0 (Table 2). The base sets 200% HCPV
CO: injected considering carbon sequestration, which is larger than the typical range of 30-80% HCPV for
CO2 EOR (Merchant, 2010). Such a large HCPV, as demonstrated in our work, tends to interact with k; in
influencing CO2 EOR and storage performance. The injection duration for other cases proportionally varies
with injection rates for a given HCPV CO.. Both constant injection rate and constant bottom hole pressure
for injectors were considered, and producers were assigned a constant bottom hole pressure (minimum CO»-
oil miscible pressure). Other details for the settings of these parameters are in Table 2. These numerical
simulations are designed for general purposes, and the understanding from them might could also be
revealed from scaling groups that were mathematically derived from relatively simplistic models (e.g.,
Shook et al., 1992; Sikandar, 1994).

The metrics used are typical ones (Lake et al., 2019) to measure the influence of k; realizations on CO>
flow: the cumulative oil production (for EOR) and cumulative CO: retention fraction (for storage). The
retention fraction is (cumulative CO> injected — cumulative CO2 produced) / cumulative CO; injected. It
measures the efficiency of injected CO> that is stored in an oil reservoir.

Results and Discussion

Geological and Geostatistical Analysis Results

Statistical Analysis for An Example Well. A comprehensive geostatistical analysis is essential for
understanding the properties (e.g., variability, auto-correlation, and anisotropy) of k, as compared to k.
In this section, kx and ky corresponds to kmax, and keo, respectively, as termed by Honarpour et al. (2005).
Fig. 4 shows a set of k; -related exploratory plots for one example well, including permeability profiles,
histograms, semivariograms, Lorenz plots, Koval plots, and k; - ky cross plots.

k; tends to be overall less than ky; 74.7% of the whole cores have k; < kx (Fig. 4a). Several cycles of vertical
permeability variation can be observed from the permeability profiles. Semivariograms (SVs) for log base
10 permeability (Fig. 4b) showed that ky and ky are virtually the same but k, shows much more variability.
This observation is consistent with the permeability profiles (Fig. 4a): several spikes of small k, appear
with small-scale cycles. Log-permeability SVs reveal more small-scale variability than untransformed
permeability SVs, similar to behaviors observed by Jensen et al. (2000). Untransformed SVs (not shown)
indicate that kx and k; are virtually the same, which implies that large-scale correlation and variability for
both permeabilities are similar, a behavior also reported by Lucia et al. (1995). These analyses indicate that
k; shows both small- and large-scale variability and that it should be more variable than ky spatially.
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Fig. 4—A series of k;-related exploratory plots for example well A: (a) vertical profiles for three permeabilities (depths
indicated are not actual values); (b) semi-variograms for log permeability; (c) permeability histograms with Vg included;
(d) Lorenz plots; (e) Koval plots; (f) k-kx cross plot with the 1:1 line included; (g) permeability-porosity cross plots.

This observation is also supported by the plots for global statistics: permeability histograms (Fig. 4c),
Lorenz plots (Fig. 4d), and Koval plots (Fig. 4e). All permeability histograms are skewed right. This must
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Fig. 6—CDFs of whole core permeability of wells B (a) and C (b).

Possible reasons for the different k./kx behaviors of wells B and C were furthers investigated. Core
descriptions for both wells (by Core Labs) suggest predominant dolomite lithology with varying amounts
of anhydrite—mostly as nodules-and very fine silts. Stylolites and associated cements are also present.
For well B, the upper section (025 to 255 feet) has kz/kx values similar to those of C and similar densities
of stylolites; the upper section having 86% of the core samples with stylolites compared to 95% for well
5512R. The lower section of B (255 to 600 feet) has 37% of the samples with stylolites present. The Core
Lab data we had does not specify the number of stylolites in each whole core sample; it simply recorded if
one or more stylolites was present in the sample. To further test if there is a k./kx relationship with stylolites,
we evaluated the conditional probability of k; > kx when stylolites are present, Prob(k; > ky | stylolites). For
well C, Prob(k; > kx | stylolites) = 0.08 while for well B we obtained 0.26 for the upper section and 0.38
for the lower section. Thus, the well C values suggest a strong linkage between stylolites and permeability
anisotropy, while well B shows that there maybe a reduced impact of stylolites on the core-scale anisotropy.

Statistics of k; versus kx Heterogeneities for All Wells. Fig. 7 shows the comparison of Dykstra-Parsons
coefficient (Vap, Fig. 7a) between k; and kx, along with the similar plot for the Lorenz coefficient (L., Fig.
7b). From the scatter point distribution, it appears that both k; and kx have similar heterogeneity levels, i.e.,
both coefficients are mostly in the range of 0.6-0.9. However, k; tends to be a little more heterogeneous than
kx at the same well. The clustering behavior of points seen in Fig. 7a is a reflection of Vgp to compress large
variability changes between wells into the small interval of 0.6 to 0.9 (Jensen and Lake, 1988).

Considering that vertical flow is over a larger area but a with smaller pressure drop than horizontal flow,
even a very small k; could permit non-negligible vertical flow. Thus, the prediction of flow response to k;
may have a larger uncertainty than that to ky. Additionally, greater heterogeneity of k; as compared to kx
cannot be honored when assuming a fixed ki/ky ratio in reservoir simulations. We examined the consequences
of this in the flow simulation section.
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Fig. 7—Compilation of Dykstra-Parsons coefficient Vg, (2) and Lorenz coefficient
Lc (b) for both k; and k« for the 42 wells with whole-core measurements.

Reservoir Flow Simulation Results

Base Case Results. Fig. 8 shows the influence of various k; field realizations (corresponding to cases #1-4,
Table 2) on the predicted CO2 EOR and storage results. At small buoyancy number Npy, assuming k; = kx
gives comparable oil production (Fig. 8a) to variable k;, but CO retention (Fig. 8b) deviates by 6.3%. This
means that CO> flow is more sensitive to k, than oil flow, which agrees with our intuition. The differences
in metrics for homogeneous fields (black lines) are caused by different constants of permeabilities (17.5
vs. 11.1md, refer to Table 2).

Fig. 8—The variation of cumulative oil production (a) and CO; retention fraction (b) along with injected CO, HCPV. The
buoyant number are very similar for the four cases (Nw, = 2E-2). Refer to the case #1-4 in Table 2 for detailed settings.

Influence of Buoyancy Number on Metrics. Fig. 9 shows the influence of the buoyancy number Ny,
on the defined metrics when adjusting only injection rates. Increasing injection rates smears or decreases
the influence of k; realizations on oil production estimates (Fig. 9a). This is intuitive since the two factors
(i.e., injection rate and k;) have opposite influences on Nyy (Eq. 1). The influence of k; realizations on CO;
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retention forecasts (Fig. 9b) is stronger as the injection rate increases. This is because high rates cause large
COz plume volumes, which tends to be more sensitive to k; compared to small plume volumes caused by
low rates.

Fig. 9—Influence of buoyancy number Np, on the cumulative oil production (a) and CO, retention
fraction (b). The change of Nw is through adjusting injection rates while keeping k; equal to k«. The
four runs (in the sequence of legends) correspond to the cases #3-4 and cases #7-8 in Table 2.

Comparing Fig. 8 to Fig. 9 shows that, at large Ny, assuming k; = kx causes a large deviation (9.9%) in the
estimated ultimate oil production. However, the different k; field realizations have a negligible influence on
CO:z retention. This is because buoyant flow (large Npy) prevails in the CO2 plume, and the accessed volume
tends be small (reduced sweep).

Fig. 10 shows the CO2 spatial distribution for Npy = 2 at 0.5 HCPV CO: injected. Areally, the patches
that are swept by CO> vary significantly for different realizations of k., particularly in the upper and middle
layers. Vertically, the CO. distributions and saturations also show differences, particularly near the wellbore.

Fig. 11 shows the influence of Npy on the metrics when adjusting the k./ky ratio. At large injection rates, k;
= 0.1 ky yields a close agreement of both oil production (Fig. 11a) and COz retention (Fig. 11b) to the truth
case (variable k;), even though the Npy for the two cases are almost 10 times different. This implies that using
the wellbore-based Ny, cannot capture the influence of k; on flow. As Nby increases because of increasing
k;, the ultimate oil production increases, as does the ultimate CO> retention fraction. This is because the
increase in k; makes the reservoir less anisotropic, and thus the injected CO. contacts more oil.
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Fig. 10—CO; areal distribution (a) in the three selected layers and CO, vertical distribution (b) along the vertical slice across
the injector along the I-direction for the four cases (#5-8 in Table 2). The buoyancy number Nw is around 2.0 for all cases. The
areal distributions show much difference in both the upper and middle layers because of vertical permeability distribution.

At a small injection rate, using k; = 0.1 ky causes an underestimation of ultimate oil production by 6% (Fig.
11c). The deviation is larger than that for the large injection rate (Fig. 11c versus 11a). This is consistent
with the influence of Nyy on production and retention as explained above. Also, at the small injection rate,
the instantaneous retention fraction differs (e.g., in the interval 0.2-1.0 HCPV) and slightly decrease as Nbuy
increases, however, the ultimate CO; retention fractions ((Fig. 11d) were very similar regardless of the k;
realizations. This is because: in the late injection period, CO> flow paths form mostly in the upper portion
of the reservoir, and thus Ny or k; realizations exert a negligible influence on CO. retention.
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Fig. 11—Influence of buoyancy number on simulated performance. (a) and (b) are cumulative oil production and CO,
retention fraction, respectively, when varying buoyancy numbers (through changing k;) at a fixed large injection rate
of 3000 MScf/d, whereas (c) and (d) are the equivalents at a fixed small injection rate of 30 MScf/d. The scale factors
seem to work even the permeability field is heterogeneous. The four runs (in the sequence of legends) in the upper
row correspond to Cases #3a, 3, 1a, and 4 in Table 2, and the runs in the lower row are from the Cases # 3b, and 7-9.

Influence of WAG ratio on Metrics. Figs. 12a and 12b show the influence of WAG ratios on the estimated
performance. As the WAG ratio increases, the deviation between the case k; = kx and the truth case (variable
k;) for cumulative oil production estimation increases (Fig. 12a). An opposite influence is observed for
the COz retention fraction estimation (Fig. 12b). At the same WAG ratio, setting k; = kx yields larger oil
production than variable k;.
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Fig. 12—The change of simulated cumulative oil production (left) and CO, retention fraction (right) with the HCPV CO,
injected through adjusting WAG ratios (a and b), horizontal dimensionless autocorrelation length Ao« (c and d), and well
pattern geometries (e and f). Two main scenarios are compared: k; = kx versus variable k.. Nwu is around 2E-2 for all cases.
In (a), The WAG ratio at 1 corresponds to 21 days (2.5% HCPV) of CO, injection alternating with 21 days of water injection.

As the WAG ratio increases, the k; realization shows negligible influence on the ultimate CO- retention
fraction (Fig. 12b). This is because a large WAG ratio means more water injected and effective diversion of
CO. away from channeled paths and thus better sweep overall. In other words, large WAG ratios decrease
the sensitivity in k; spatial distributions for CO> retention efficiencies for small Npy.

Influence of Horizontal Auto-correlation Length on Metrics. Figs. 12c¢ and 12d show the influence of
horizontal auto-correlation length Apx on oil production and CO: retention. At intermediate /px (< 2), k;
exerts a limited influence on these results. At large Apx, however, there is a large effect. As Apx increases,
both the ultimate oil production and CO: retention decrease. This is because large autocorrelated regions
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of permeability give rise to lateral flow channels, which cause early CO, breakthrough and sub-optimal
results. The early breakthrough can also be seen from the very starting point of CO, retention decrease in
Fig. 12d. In particular, at the early injection period (< 0.8 HCPV), the retention fraction overall decreases
as Jpx increases for the variable k; realization cases. The ultimate retention is less influenced by Zpx when it
is large (>2). This may be because large Apx cases represent moderately- to strongly-layered systems where
the CO> flow paths become well-established by late injection.

Influence of Well Pattern Geometries on Metrics. Figs. 12e and 12f show the influence of well pattern
geometries on CO2 EOR and storage performance. Assigning k; = kx does not affect oil production for either
the inverted 5-spot or inverted 9-spot well patterns. However, the configuration affects the CO: retention
prediction more for the inverted 5-spot than inverted 9-spot (6.3% vs. 0.1%).

Influence of k; on CO, Cumulative Injection. The above results (Figs. 8-12) are based on constant
injection rates. Fig. 13 shows the influence of k; field realizations on the metrics when constraining the
injector to have constant bottom hole pressure. Under this constraint, if we assume k; = 0.1 kyx, then
simulations can give good estimates for oil production (Fig. 13a), CO> retention fraction (Fig. 13b), and
ultimate CO; injected volume (Fig. 13c). Among the three ki/kx ratios, the use of k; = 0.01 ky yields the
largest errors.

Fig. 13—The variation of cumulative oil production (a) and CO, retention fraction (b) along with the HCPV CO, injected
for different k; realizations. (c) is the cumulative volume of CO, injected versus CO, injection duration for these
realizations. Constant bottom hole pressure is imposed for the injector. Refer to Table 2 for the detailed case settings.
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Comparison to Literature and Discussion

Anisotropy (kz/kx) and Its Controls. Wang et al. (1998) also studied the ki/kx behavior in the Seminole
Field, in an area similar in geology to wells B and C. They suggest a core-scale formation average k./kx =
0.3 with 0.1 < ki/kx < 1. Examination of their Fig. 12a, however, shows many data with k./kyx > 1, especially
when ky < 3 md. Of the 144 points shown in their data, about 1/3 (50 points) have k./kx > 1, suggesting
that the formation might be considered as isotropic at the core scale. The lower section of well B, which is
similar to the area studied by Wang et al. (1998), shows similar behavior to their data (Fig. 14a). However,
well C exhibits smaller k./kyx values than Wang et al. (1998) reported (Fig. 14b).

Fig. 14—Whole core vertical and horizontal permeabilities for wells B (a) and C (b). The ki/kx = 0.02 line is the lower
value Wang et al. (1998) found appropriate by reservoir simulation. k:< kx for nearly all the points on the right plot.

Koepnick (1987) presents a nice description of stylolite characteristics. Whether stylolites represent flow
barriers depends on conditions during and after they form, leading to mixed reports of their flow effects. Ahr
(2011), for example, states that "The literature is replete with references to stylolites ... and how they form
permeability barriers...." but he cautions that "post-stylolite diagenesis can create porosity and permeability
in previously tight rocks ...." Other studies have observed stylolites to form occasional large-scale flow
barriers (Koepnick, 1987), but the evidence largely suggests they only form local impediments to vertical
flow (Koepnick, 1987; Heap et al., 2014; Al-Amrie et al., 2012). Data from wells B and C suggest that when
stylolites are abundant, the core-scale ki/kx values are reduced. This core-scale information will be useful
for defining the larger-scale k./kx value.

Our work through conditional probability analysis, identified the feature of stylolite that may influence
the core-scale ki/ky ratio for this carbonate reservoir. Comparing this result with the behavior of k./kx and
associated factors in sandstone reservoirs can prove instructive. At core scales, sandstone permeability
anisotropies are caused by small-scale structures, e.g., silt beds and shale patches (Clavaud et al., 2008;
Dernaika et al., 2018). Campero et al. (2014) noted that the k; /kx ratio is also a function of lithofacies
(mud fraction) in a sandstone reservoir. Similar observations were made by Armitage et al. (2011) and
Ringrose et al. (2005). These small-scale structures and lithofacies are difficult to explicitly model in the
large scale, except for some simple deterministic distributions of shale barriers with regular geometries
(Sikandar, 1994). Baker et al. (2015) showed that, in a sandstone reservoir, the k; - kx cross plot show only
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a few points with k; > ky, while their carbonate example shows many more k; >ky values. Their fraction of
k; > ky is less than that in our carbonate case.

Scale Dependence of k./kx. What do the core-based anisotropic values imply for the large-scale ki/ky?
Lishman (1970) states, "it is not logical to transfer anisotropy measurements made on a core sample ... to
a reservoir" and thus, for this large-scale ki/kx values, geological factors beyond the wellbore must play a
role. Core-scale kz/kx values are largely controlled by small-scale geological heterogeneities (Lake, 1988;
Clavaud et al., 2008). At the larger scales, different geological heterogeneities may dominate and thereby
change the ki/kx values (Dernaika et al., 2018). For example, for large-scale sedimentary environments,
wave-dominated shoreface deposits tend to have more k; > ky than river-dominated deltaic deposits (Hanks
etal., 2011).

Reports on the relationship of core- to large-scale k./kx values is very limited, but Baker et al. (2015) show
a decrease of ki/kx by 2 to 3 orders of magnitude from core- to large-scale in three clastic formations. Morton
et al. (2002) undertook a detailed comparison of core plugs, probe permeameter, and wireline tester ki/kx
values in one of the formations reported by Baker et al. (2015). Generally, they find agreement between the
upscaled probe (using arithmetic and harmonic averages) and tester values. They also determined that core
plugs sampled the heterogeneities insufficiently to give agreement with either the probe or tester values.
Thus, Morton et al.'s (2002) results suggest extrapolation of core-scale k./kx ratios depends not only on how
the local heterogeneities compare with the large-scale heterogeneities, but on having sufficient sampling at
the core scale to render statistically meaningful values.

Unlike clastics, carbonates appear to show weaker ki/kx trends with scale, perhaps decreasing by 1 or 2
orders of magnitude from core- to large-scale (e.g., Chandra et al., 2013; Wang et al., 1994; Pamungkas et al.,
2020). This smaller change than sandstones may be partly due to better core-scale sampling, since carbonates
tend to be well consolidated, have good core recoveries, and are exhaustively measured (in the vertical
direction) when using whole core samples. For example, Wang et al. (1998) suggest large-scale simulation-
based ki/kx values of 0.02 to 0.04 for the area they studied in the Seminole Field. Using harmonic and
arithmetic averages of data from 3 wells, they predict ko/kx = 0.05 to 0.06 from the whole core permeabilities
(Wang et al., 1994). The reasonably good agreement between upscaled core and simulation k/kx values
suggests the core-based values need only modest "adjustment” to represent larger-scale properties. In
contrast, the report of Chandra et al. (2013) is a case study where core plug permeabilities were inadequate
to characterize the ki/k« in their carbonate field.

All these demonstrate the scale dependence of anisotropies or ki/kx ratios. The core-scale k./kx ratio thus
may not be the ratio at other scales (e.g., grid blocks in reservoir simulations), particularly if poor sampling
is done. The geological controls of ki/kx ratio can be scale-dependent, and a geologically guided procedure
may be needed to scale up the ratio from cores to grid-blocks. For scales larger than grid cells, the formation
anisotropy could be evaluated through using interference well tests and possibly seismic (Ayan et al., 1994;
Onur et al., 2011; Wannell and Morrison, 1990).

Influence of k; Realizations on CO> Flow/Injectivity, Retention, and Implications. Our direct comparison
of heterogeneity between k; and kx based on the whole-core datasets showed that k; tends to be more
heterogeneous and complicated than kx for this carbonate reservoir. A similar observation was made by
Ringrose et al. (2005), and they found that traditional estimation functions for ky cannot give a satisfactory
prediction of k; in a sandstone reservoir. Their sandstone study, along with our carbonate one here, strongly
indicate that the flow influenced by k; will be more complicated than that by ky, and thus flow prediction
will be much more difficult.
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Such flow here mostly refers to buoyant flow, and it occurs in subsurface porous media where two
contrasting-density fluids exist (e.g., aquifer CO; storage (Bryant et al., 2008; Ren et al., 2018) and
subsurface hydrogen storage (Hassanpouryouzband et al., 2021; Heinemann et al., 2021)). In this sense,
the geological characterization of k; for these processes should be even more important than for k. Since
permeability is related with capillary pressure, the latter heterogeneity on buoyant flow has received
considerable attention in the context of aquifer CO; storage. It has been shown that capillary pressure
heterogeneity tends to exert much more influence on small-scale upward flow paths and associated trapping
quantification than permeability does (Krishnamurthy et al., 2019; Saadatpoor et al., 2018; Trevisan et al.,
2017).

For the influence of k; on CO; storage, Abdelaal et al. (2021) studied the effect of the ki/kx ratio on
ultimate CO. storage capacities in a saline aquifer undergoing CO: injection. Our result (Fig. 13) showed
similar findings that, at the initial period of injection, cumulative CO; injected are almost independent of
kz/kx ratios. However, at late injection, the cumulatively injected amount becomes different for these ratios.
We showed that, for the studied carbonate reservoir, using the k/kx ratio equal to 1 is better than 0.1 in terms
of COz injection estimation (Fig. 13). The effect is however very limited for the time scale we investigated.
Our work further shows that, as the injection duration increases, its effects on oil production become large
when varying the k./kx ratio. This threshold point is around 60-100% HCPV as revealed from Figs. 9-12.
This is because a long injection duration causes more CO> to be affected by buoyant flow, and the influence
of k; on CO2 displacing oil is thereby enhanced.

Campero et al. (2014) found that using constant ki/kx to populate vertical permeability works in
homogeneous reservoirs but fails in heterogeneous reservoirs having complex depositional environments
(related to autocorrelation length). This is consistent with our findings that the oil production and CO;
retention metrics change as the horizontal autocorrelation length increases. Further, our distinct contribution
here is that we demonstrated the injection strategies (i.e., injection rates and WAG ratio choices) interact
with reservoir heterogeneity in influencing both oil production and CO2 retention prediction (Figs. 12 and
15). This interplay makes the influence of ki/kx on flow complicated.

Generally, at the same buoyancy number (Nby = 2E-2), assuming k, = kx overestimates both the cumulative
oil recovery factor and CO; retained HCPV compared to the true case (Fig. 15). This assumption, therefore,
affects the vertical positions of inflection points at which CO. retained HCPV flattens with the increase
in CO; injection (Fig. 15b). The point represents the maximum injection duration for increased storage,
and, after that point, injected CO> cannot be further retained. It appears that large WAG ratios and small
autocorrelation lengths (less heterogeneity) shorten the time duration of reaching the inflection points. These
points were not extensively observed in the report by Lake et al. (2018) because of the relatively short (1
HCPV) CO: injection duration for the reviewed projects. More work is needed to understand the controlling
factors of the inflection point and possible operational strategies for moving the point toward the left top in
the figure (i.e., rapid and large CO; retention) for CCUS storage. The understanding of improving volumetric
sweep efficiency strategies and their interplay with reservoir heterogeneity should be the key here (Lake
etal., 2018, 2019).
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Fig. 15—The change of cumulative oil recovery (HCPV, left column) and cumulative CO, retention (HCPV,
right column) change cumulative CO; injection (HCPV) through adjusting WAG ratios (a and b) and horizontal
autocorrelation length (c and d). Nwu is around 2E-2 for all cases. The figure is similar to Fig. 12a-d except two

changes: i) produced oil and retained CO, was measured by HCPV; ii) the x-axis was extended from 2 to 4 HCPV.

Another noteworthy aspect of Fig. 15d is that, for continuous CO- injection, the retained CO> can be
larger than 1 HCPV as injection proceeds. After 1 HCPV CO. retention, the subsequently injected CO2 must
occupy the space that was previously occupied by water (i.e., water displacement must be occurring). The
combined voidage replacement and dissolution/miscibility analysis, as demonstrated by Lake et al (2018),
is very helpful to understand CO: storage mechanisms here.

More generally, what is the ki/kx value that would be important as a threshold if a formation appears to
be anisotropic? This value depends on the flow process under consideration. For example, performance
differences between ki/kx = 1 and k./kx < 0.7 might be significant for steam-assisted gravity drainage (Azom
and Srinivasan, 2011) while ki/kx = 0.05 might be the threshold value for gas coning (Addington, 1981).
For our study on CO, EOR and storage here, it appears that the threshold kz/kx ratio for flow simulations
is in the range of 0.1 to 1, which can give a good forecast of both oil production and carbon sequestration
performance.
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Summary, Conclusions, and Recommendations

For CO, EOR and storage in oil reservoirs, it is important to understand the intrinsic geological controls of
k; to better evaluate CO> flow/sweep, oil production, and CO; storage performance. We conducted analyses
of the effect of different k; estimates based on a San Andres carbonate reservoir dataset, including whole-
core measurements, core facies, and thin sections. We also conducted generic flow simulations based on
the geostatistical understanding of the reservoir and studied the influence of k; on CO2 EOR and storage
performance prediction. Our conclusions are:

1. k; tends to be more heterogeneous and complicated than kx, as revealed from heterogeneity
measurements. This means that assuming a fixed ki/kx ratio is not representative; if ki/k ratios are
taken as constants they should have the same variability.

2. k> kyis not unusual and, indeed, should be expected for isotropic sediments. For the reservoir studied,
it appears that stylolites show statistically significant effects on k; for the core-scale anisotropy.

3. kg versus ky crossplots need care when being evaluated for characteristic kz/kx values, paying particular
attention to how many samples have k; > ky. The assumption that ki/kx < 1 can bias interpretation of
these plots and give k./kx estimates which are too small.

4. The change of ki/kx with increasing scale depends primarily on two factors: the change(s) of geological
features controlling fluid flow and on how well the permeability measurements fully represent the
core-scale heterogeneities. Whole-core measurements of carbonates may better capture the core-scale
controls and thereby reduce the change in ki/ky as scale increases.

5. The influence of k; on performance predictions depends on the flow process and regimes. The
buoyancy number proved to be a useful method to characterize the gravity-viscous competition.

6. The accuracy of results by assuming a constant k./kx ratio for flow performance prediction is heavily
influenced by WAG ratios and autocorrelation lengths, but less by well patterns.

7. As CO> injection duration increases, the influence of k, on flow also increases. k, shows limited
influence on cumulative CO- injected volumes.

To evaluate CO2 EOR and storage performance, we recommend a serial of flow numerical tests on k;, as
shown in this work, before any large or full-field scale flow simulation efforts.
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Nomenclature
C Storage capacity
F Flow capacity
H Well perforation length
krg Gas relative permeability
krw Water relative permeability
kro Oil relative permeability
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kx x-direction permeability
ky y-direction permeability
k; Vertical permeability
kmax Maximum horizontal permeability
koo Minimum horizontal permeability
L Lateral length of the simulation domain
L. Lorenz coefficient
Nbu Buoyancy Number
un CO2 entry velocity at the wellbore
Vap Dykstra-Parsons coefficient
o Formation dip angle
Apx Horizontal dimensionless auto-correlation length
p Phase density
A Difference
1 Phase viscosity
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Appendix A
Reproduction of Reservoir Permeability Geostatistics in Synthetic Models

This appendix illustrates detailed procedures of using both the Box-Cox method and sequential Gaussian
simulation to reproduce the permeability statistics in synthetic models. For the Box-Cox method, the
transformation of Y has the form: Y (1) = (Y*-1)/4, if A #£0; Y(1) = logY, if 2 = 0. Based on the reservoir
whole-core measurements of kmax (see the light blue curve in Fig.A-1(a)), we calculated that the optimal 4
is 0.081 that results in the best approximation of a normal distribution of kmax. Then, based on the global
statistics of normal distribution, we generated the corresponding three-dimensional permeability field with
a set of other constraints (including model dimensions and autocorrelation length) using sequential gaussian
simulation. After this step, we substituted the generated permeability back into the Box-Cox equation
and back-calculated Y to get the simulated permeabilities. They are compared to the core permeability in
Fig. A-1. Both the cumulative distribution function and Q-Q plot demonstrate that the global permeability
statistics of the reservoir are captured in the synthetic permeability field.

Fig. A-1—Comparative plots used to show the reproduction of the core permeability through using
the proposed procedures. (a) is the permeability cumulative distribution function for cores versus
the simulated permeability field with the horizontal dimensionless autocorrelation length 2 for an

inverted 5-spot well pattern. (b) The Q-Q plot for the two permeability datasets (cores vs. simulated).
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Appendix B
Reservoir Simulation Model Inputs

This appendix lists the main inputs for the reservoir flow simulation model. These inputs include crude oil
properties, CO2-oil interaction, relative permeability curves. The reservoir oil viscosity is 1.2 cp with the
density of 657.7 kg/m? at the reservoir condition. The minimum miscibility pressure for the CO2-oil system
is around 1400 psi. Peng-Robinson equation of state (EOS) was used to model the PVT behaviors. More
details are in Ren and Duncan (2021). Table B-1 shows the oil compositions, and Table B-2 are the binary
interaction coefficients for pseudo components. Fig. B-1 shows the relative permeability curves for the oil-
water and oil-gas systems. The Stone | model was used to calculate oil relative permeability during 3-phase
flow. Hysteresis was not considered, and its influence on performance prediction was discussed in Ren and
Duncan (2021). End-point scaling is used to consider the influence of permeability variations on relative
permeability curves in flow simulations.

Table B-1—Representative crude oil compositions for the San Andres ROZ.

Component COz ClNz CngHzS C4'Cﬁ C7'C10 C11'C15 C17+
Mole 0.02 20.14 159 8.99 17.29 18.42 19.24
fraction, %
Critical
temperature 547.56 339.21 619.38 835.43 1117.84 1344.62 1686.57
R)
Critical 1071.34 666.77 722,56 491.3 389.65 277.42 159.29
pressure (psi)
Critical
volume (ft¥/ 151 156 271 5.02 7.73 12.13 2215
Ib-mole)
Critical 0.275 0.287 0.295 0.275 0.251 0.233 0.195
Z-factor
Molecular
weights 44.01 16.29 36.19 70.06 114.17 180.94 358.25
(g/mol)
Acentric 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054
Factor
Coefffz':'e”t 0.457 0.457 0.457 0.457 0.457 0.457 0.457
Coefgg'c'e”t 0.077 0.077 0.077 0.077 0.077 0.077 0.077
b

Table B-2—Binary interaction coefficients for pseudo components.

Component CO, CiN, C,C3H,S C4-Cs C;-Coo Cu-Cys Curs

CO, 0

CiN; 0.0976 0

C,CsH.S 0.1289 0.0103 0

Cs-Cs 0.1271 0.0019 0.0063 0

Cr-Cpo 0.1105 0.0241 0.0196 0.003 0

Cui-Cys 0.0943 0.0494 0.0333 0.0061 0 0
Ci 0.0997 0.1365 0.0588 0.012 0 0 0
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Relative permeability curves for oil-water (a) and oil-gas (b) systems.

Fig. B-1
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Appendix C
Koval Plots and k.—kx Crossplots for Other Wells

This appendix shows the compilation of Koval plots and k.-kx crossplots for other wells.

Fig. C-1—Koval plots for several selected wells. The curves for kx(Kmax)
and ky(keo) are virtually identical because they are from unoriented cores.

Fig. C-2—Vertical permeability versus maximum horizontal permeability cross plots for
several selected wells. Both permeability measurements are reported on alog scale.
A 1:1lineis provided for reference. The probability of k; > k«is included in each plot.
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Summary

The objective of this study is to improve understanding of the geostatistics of vertical (bed-normal) permeability (k,) and its influence on
reservoir performance during COz enhanced oil recovery (EOR) and storage. k, is scrutinized far less often than horizontal permeability
(k,. k,) in most geological and reservoir modeling. However, our work indicates that it is equally important to understand k, characteristics
to better evaluate their influence on CO2 EOR and storage performance prediction.

We conducted this study on approximately 9,000 whole-core triaxial permeability (k,, k,, k) measurements from 42 wells in a San
Andres carbonate reservoir. We analyzed k, data, including heterogeneity, correlation, and sample sufficiency measures. We analyzed
wells with the largest and smallest fractions of points with k, > k.., = max(k,, k) to explore geological factors that coincided with large
k,. We quantified these geological effects through conditional probabilities on potential permeability barriers (e.g., stylolites).

Every well had at least some whole cores where k, > k...,.. This is a statistically justifiable result; only where Prob(k, > k.,,.) is statis-
tically different from 1/3 are core samples nonisotropic. In conventional core data interpretation, however, modelers usually assume k; is
less than k... For the well with the smallest fraction (11%) of cores where k, >k ., the cumulative distribution functions (CDFs) differ
and coincide with the presence of stylolites. We found that k, is approximately twice as variable as k, in many wells. This makes k, more
difficult to interpret because it was (and usually is) heavily undersampled.

To understand the influence of k, heterogeneity on CO2 flow, we built a series of flow simulation models that captured these geosta-
tistical characteristics of permeability, while considering k, realizations, flow regimes (e.g., buoyant flow), CO: injection strategies, and
reservoir heterogeneity. CO2 flow simulations showed that, for viscous flow, assuming variable k, similar to the reservoir along with
a constant k,/k, = 0.1 yields a close (within 0.5%) cumulative oil production to the simulation case with both k, and k, as uncorrelated
variables. However, for buoyant flow, oil production differs by 10% [at 2.0 hydrocarbon pore volume (HCPV) of CO: injected] between
the two cases. Such flows could occur for small COz injection rates and long injection times, in interwell regions, and/or with vertically
permeable conduits.

Our geostatistical characterization demonstrates the controls on k, in a carbonate reservoir and how to improve conventional interpre-
tation practices. This study can help CO2 EOR and storage operators refine injection development programs, particularly for reservoirs
where buoyant flow exists. More broadly, the findings potentially apply to other similar subsurface buoyancy-driven flow displacements,
including hydrogen storage, geothermal production, and aquifer CO2 sequestration.

Introduction

Vertical permeability is important in many subsurface processes where there is a density difference between fluids, including gas (e.g.,
CO2) EOR and geologic storage, geothermal production, hydrogen storage, compressed air storage, tracer flow, steam injection, and water
coning (Bryant et al. 2008; Hassanpouryouzband et al. 2021; Hinton and Woods 2018; Yang and Butler 1992; Silin et al. 2008). Specifically,
for CO2 EOR and storage in oil reservoirs, k, characterization is important for reservoir management and development endeavors, includ-
ing optimization of injector/producer placement, design of completion strategies, and deployment of reservoir monitoring programs
during COz2 injection as well as post-injection periods.

Vertical permeability can be measured at several scales. At core scales (i.e., cm and dm), whole-core samples are convenient because
permeability is measured in three directions on the same sample. Core plugs drilled orthogonal to local bedding planes can also be used.
At larger scales, formation testers (e.g., Ayan et al. 1994; Onur et al. 2011), history-matched reservoir simulation (Sutton et al. 2013),
analytical and semianalytical calculations (e.g., Haldorsen and Lake 1984; Begg and King 1985), and ocean tide pressure variations (e.g.,
Wannell and Morrison 1990) may be used to estimate k,. Of all these methods, core-scale measurements are perhaps the most common.

Core-scale k, is often compared with the horizontal permeability measured at the same or a nearby location by calculating the ratio k,/
k.. There appear to be two main reasons for using the ratio. First, one may expect that k, and k, are positively correlated, so that k,/k, is
less variable than either k, or k.. The less variable a reservoir characteristic is, the easier it is to predict for areas beyond the wellbore.
Second, k, measurements are typically more abundant than k, measurements, so that a knowledge of k, and k,/k, will provide k, estimates
at the same frequency as k, values. Typically, log-log plots of k, vs. k, (Fig. 1) offer a useful assessment of the k,/k, values present in a
reservoir.

The use of k,/k, ratio is a common way of modeling k,. Then the question to be answered is: What are the consequences of avoiding k,
measurements by using k, measurements instead? Several associated questions also arise: (i) Is k, always dependent on k, or is it indepen-
dent? (ii) Do both permeabilities have the same/similar statistical properties? (iii) What are the influential factors of k /k, ratio? The k/k,
ratio is typically assumed to be 0.1. However, several studies on sandstones (Jones et al. 1987; Hanks et al. 2011; Baker et al. 2015) and
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Fig. 1—Sherwood Sandstone core plug data from a strongly laminated fluvio-aeolian reservoir with k,/k, lines drawn to evaluate
core-scale anisotropy. k,/k, varies by approximately four orders of magnitude while either k, or k, change by six orders of
magnitude. With 232 bidirectional pairs for this figure, Prob(k,/k, > 1) = 63/232 = 0.27 (probabilities are equivalent to frequencies in
this work). Because this probability is much different from %, it is extremely unlikely (probability of approximately 2x107?) to get
only 63 out of 232 samples with k,/k, > 1 if the core-scale permeability is isotropic for these data. See Morton et al. (2002) for more
details on the Sherwood Sandstone.

carbonates (Chandra et al. 2013; Sun et al. 2017; Dernaika et al. 2018), including the work presented here, showed the occurrences where
k, > k. The underlying geological causes should be well understood for reliable geomodels and multiphase flow simulations.

A considerable number of studies have focused on the influence of k, on flow prediction. Unfortunately, most flow simulations that
consider k, typically treat the k,/k, ratio as a sensitivity parameter and examine its influence on defined metrics (e.g., Kerans et al. 1994;
Ren and Duncan 2021; Abdelaal et al. 2021). Campero et al. (2014) went further and analyzed k,/k, based on the geological data sets
collected in a field and evaluated the influence of k,/k, ratio on history match and prediction during waterflooding. However, all these
studies avoided a fundamental question: How good is using a constant k,/k, ratio for each facies or reservoir to populate vertical permea-
bility for flow prediction as compared to having variable k,?

Our objectives here are to deepen our understanding of the statistical properties of k,, examine k,’s influence on CO: flow, storage, and
production prediction, and specifically compare performance prediction between the case of using true k, vs. the traditional approach of
assuming a ratio for k,/k,.

Our study is based on a San Andres carbonate reservoir. The San Andres Formation (SAF) is one of the richest oil formations in the
Permian Basin, and many CO2 EOR projects are active in the formation (Jarrell et al. 2002; Lake et al. 2018). It could be expected that
CO:2 storage incidental to EOR will likely be implemented in those Permian Basin carbonate formations in the near future. In this sense,
our case study on the carbonate reservoir should provide a good reference for the understanding of k, and its influence on CO2 EOR and
storage.

We conducted k,-related exploratory plots, including permeability profiles, histograms, heterogeneity measures, and semivariogram
(SV) analyses. Then, based on the geostatistical analysis, we selected the wells with the extreme fractions of k, > k,. We analyzed whole
core, thin sections, and core plug data sets of the selected wells to explore the geological factors of k,. We also conducted probability
analyses conditioned by potential permeability barriers to quantify geological parameters. We then built a series of generic flow simula-
tion models based on this geostatistical understanding, while considering various injection strategies and flow regimes, to quantify the
influence of k, realizations on CO2 EOR and storage performance.

San Andres Formation

The carbonate facies of the SAF developed on the shelves of the Permian Basin in west Texas and New Mexico during the Permian
(Leonardian-Guadalupian) ages (Ward et al. 1986). The SAF is one of several shallow-water platform carbonate and mixed siliciclastic-
carbonate units. From the sequence stratigraphy studies by Kerans et al. (1994), Lucia et al. (1995), and Wang et al. (1998), several
upward-shallowing cycles were interpreted from their facies description. These cycles consist of basal mudstones and wackestones grad-
ing upward into grain-dominated packstones and grainstones. A total of five facies groups were identified from a 4,002-ft-thick continuous
core from 10 wells with both main pay zone (MPZ) and residual oil zone (ROZ) intervals. More complete studies for the MPZ were
reported by Kerans et al. (1994) and Lucia et al. (1995).

The most common pore types include interparticle, moldic, and vugs. Dolomitization is a key diagenetic process that influences poros-
ity distribution in the reservoir. Stylolites, which are common in the SAF, are intergranular pressure solution features usually with wavy
surfaces (Koepnick 1987; Heap et al. 2014). Most of the stylolites are sutured with cement, but some have solution seams. The stylolite-
bearing horizons could be laterally extensive (100s of meters). They may act as barriers or paths for fluid flow depending on both stylolite
features and their extents relative to the flow directions. Vertical fractures are common and mostly filled in by anhydrite or dolomite
cement.
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Data Sets

The k,-related data set comes from an SAF reservoir and includes whole-core measurements (by Core Laboratories, Houston, Texas,
USA), core plugs, as well as descriptions of lithology and diagenetic history. For the reservoir we studied, nearly 9,000 whole-core per-
meabilities from more than four wells were available from Core Laboratories reports. We conducted careful quality checks and cleaning
of these data sets before exploratory analyses. Data cleaning consisted of (i) removing measurement values below the threshold (e.g.,
<0.001 md) for some evaluations, such as averages, standard deviation, and SVs; and (ii) removing incomplete measurements. Samples
where only k, was available without k, might be from core plugs. For the collected whole cores, over 6,000 samples have core lithology
descriptions. Core descriptions in these reservoirs provide sedimentological information, such as textures, sedimentary structures, and
post-depositional features.

A whole core has a larger diameter and length than a conventional core plug (Fig. 2), thus the whole-core includes more larger-scale
geological information. The main advantage of whole cores is that they are or approach exhaustive sampling. Whole cores are often used
in reservoir characterization to measure three-directional permeabilities: k,, ky, k, (Fig. 2). The horizontal (x, y) direction varies randomly
and usually k., = max(k,, ky) and kqy = min(k,, ky). More details of whole-core-based permeabilities and their comparison to core plugs
and probe permeameter measurements can be found in Honarpour et al. (2005), Nieto Camargo and Jensen (2012), and Ringrose et al.
(2005).

Fig. 2—Whole cores vs. core plugs. Note that the measurements are taken on very different rock volumes.

Theory and Approaches

Statistical Characterization. Based on the above data sets, it is helpful to begin with a comprehensive geostatistical analysis on k, to
understand its characteristics as compared to k. This will also guide the synthesis of generic geomodels used in the flow simulations to
examine the influence of k, realizations on performance prediction during CO2 EOR and storage.

Based on the 42 wells’ whole-core measurements, we created a series of k,-related exploratory plots, including vertical profiles for the
three permeabilities. The histograms, well-based Dykstra-Parson coefficient, SVs, k,-k, crossplots, and permeability-porosity crossplots,
Lorenz plots, and Koval plots (Koval 1963) were produced. A Koval plot is the plot of (1 — F)/F vs. (1- C)/C, where F is flow capacity
and C is storage capacity. The vertical location of the curves on the plot measures the heterogeneity that gives clues to vertical sweep
efficiency (Salazar 2018). Detailed explanations of the Koval plot and its physical meaning are in Lake et al. (2014) and Salazar and Lake

2020).

( Wr)len viewing plots, such as Fig. 1, or listings of k,/k, values, it is tempting to assume that k,/k, should nearly always be less than one
(e.g., Dernaika et al. 2018; Pamungkas et al. 2020), so there must be a problem with the measurements if k,/k, > 1 for significant portions
of the data set. This assumption may be incorrect for reasons listed below and it is therefore useful to keep the questions below in mind
when assessing k,/k, values. We will use these considerations during analysis of data from the field.

1. Are the data from one geological unit (e.g., rock type or facies) or do they represent a larger domain? A clearer picture of the k,/k,
behavior is likely to emerge from unit-based data so that characteristic k,/k, values and how the values change can be identified.

2. Is the formation isotropic? If the permeability is isotropic and a deterministic variable, then k, =k, = k,. However, if we assume
permeability to be isotropic and a random variable, then k,, k , and k, have the same probability distribution but might be unequal
for any given sample. In that case, the probability of k/k, > 1 should be 1/3 [written as Prob(k,/k, > 1) = 1/3] for tri-directional
samples and % for bidirectional samples. Also, while the formation may not be locally isotropic, it may behave at the larger scales
as being isotropic because some areas have k,/k, > 1 while other areas have k,/k, < 1. There may be good geological reasons why
some k,/k, data exceed 1. For example, in sandstone reservoirs with burrowing or dewatering horizons, k,/k, > 1 (Jones et al. 1987;
Hanks et al. 2011). Carbonates also may show k,/k, > 1 in dissolution enhanced or stylolite-bearing samples (e.g., Chandra et al.
2013; Sun et al. 2017; Dernaika et al. 2018).
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Flow Simulation. We ran flow simulations (using the Eclipse® simulator) to quantify the influence of k, on CO2 flow/sweep and
performance prediction during CO2 EOR and storage. First, we synthesized a series of permeability fields according to the geostatistical
analysis. Second, we conducted flow simulations of CO: injection into these synthetic models while considering the reservoir ROZ rock-
fluid properties. Third, we compared various k, realizations (including direct k, statistical realizations or true k, vs. assuming k,/k, = 0.1)
in terms of simulation prediction for CO2 EOR and storage.

Our procedure for generating permeability fields is to (i) use the Box-Cox method (Box and Cox 1964) to transform the reservoir
permeability distributions to be more Gaussian; (ii) use sequential Gaussian simulation to generate permeability fields with a given set of
heterogeneity indicators; and (iii) back-transform to get the synthetic permeability field. Appendix A includes more details of the proce-
dure and demonstrates that the synthetic fields reproduce the global permeability statistics.

Table 1 shows the properties of the synthetic permeability fields. Simulation models for inverted 5-spot and inverted 9-spot well pat-
terns were created. The corresponding model dimensions and cell sizes are also in Table 1. The porosity was set to be constant at 0.11,
the arithmetic average of the reservoir ROZ, because porosity is far less variable than permeability. It was known that vertical cell size
influences miscible flood predictions, especially when gravity is important (Stalkup and Dean 1990). This work adopted a fixed cell size
because the simulation studies are designed for general sensitivity analysis.

Well Pattern Inverted 5-Spot Inverted 9-Spot
Pattern size (acre) 40 80

Model domain sizes (ft) 1,320%1,320%96 1,860x1,860%96
Model cell sizes (ft) 30%30%3 30%x30%3
Model dimensions 44x44x32 62x62x32
Horizontal dimensionless autocorrelation length 0.2,2% 20

Horizontal permeability log mean 1.5*

Vertical permeability log standard deviation 1.8*

Vertical permeability log mean 0.5*

Vertical permeability log standard deviation 2.3*

*Based on SAF reservoir permeability statistics.

Table 1—Properties of synthetic permeability fields.

For the reservoir simulation model, the settings for the rock, fluids, and their interactions, including oil properties, pressure/volume/
temperature models, relative permeability, and capillary pressure curves, were described in Ren and Duncan (2021). Because the whole
simulation study is designed to examine the sensitivity of vertical permeability on CO2 EOR and storage performance, we used a single
set of relative permeability and capillary pressure curves. More details are included in Appendix B.

Initially, the reservoir pressure is 2,119.9 psi, and the reservoir temperature is 104°F. Uniform fluid saturations were assigned the
average saturation magnitudes of the reservoir ROZ (Ren and Duncan 2019), with an initial oil saturation of 0.4 and the rest of the pore
space water.

Fig. 3—The change of buoyancy number N, along the distance from a given CO; vertical injector. N, is larger than 1 when
the distance is larger than 115 ft. This means that buoyant flow prevails in a large area between an injector to producers (the
interwell distance is 933 ft for the 40-acre inverted 5-spot and 1,319 ft for the 80-acre inverted 9-spot well patterns). Under reservoir
conditions, the CO; density is 768 kg/m?, and CO, viscosity is 0.07 cp. The brine density is 915 kg/m?®. The vertical permeability
arithmetic average is 11.1 md, and the perforation length is 96 ft (same as the thickness of the synthetic model in Table 1). The
injection rate used for the calculation is 3,000 Mscf/D (based on settings in Table 2).
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We designed injection-production schemes with a focus on the effects of k, on flow. To achieve this, we use a buoyancy number N,
(Shook et al. 1992, Eq. 1) to measure the relative importance of buoyant force (k,-related) over viscous force (injection rate-related). The
variation of Ny, along the distance from an injector is in Fig. 3. CO2 flow is dominated by the buoyant force (N, > 1) in most of the
interwell areas (around 115 to 1,300 ft away from the injector). Thus, most of the CO2 flow will tend to be gravity segregated. Our study
covers a wide Ny, range of 0.0022 to 22 through adjusting either injection rates or k, in simulation cases (see Table 2).

Injector
Case Injection Rate Bottomhole Buoyancy Well
No. k, (md) k, (md) (Mscf/iD) Pressure (psi) Number® WAG Ratio  Autocorrelation, 2, Pattern Notes
1 Constant Ig( 3,000 NA 2.2x 1072 0 2 Inverted-5 and
40 acre
d -2
2 Constant Constant® 3,000 NA 1.4 x 10 0 2 Inverted-5 and Base settings: injection
40 acre rate:
3 Variable K, 3,000 NA 2.2 x 102 0 2 Inverted-5 and WAG ratio;
40 acre autocorrelation;
4 Variable Variable 3,000 NA 1.4 %1072 0 2 Inverted-5 and
40 acre
la Variable 10 x k,° 3,000 NA 2.2x107% 0 2 Inverted-5 and
40 acre
3a Variable 0.1 xKk, 3,000 NA 22x10° 0 2 Inverted-5 and
40 acre
3b Variable 0.1 xk, 30 NA 22x10" 0 2 Inverted-5 and
40 acre
5 Constant K, 30 NA 22 0 2 Inverted-5 and
40 acre Effect of buoyancy
6 Constant Constant 30 NA 14 0 2 Inverted-5 and number
40 acre
7 Variable K, 30 NA 22 0 2 Inverted-5 and
40 acre
8 Variable Variable 30 NA 14 0 2 Inverted-5 and
40 acre
9 Variable 10xk,’ 30 NA 2.2x 10 0 2 Inverted-5 and
40 acre
10 Variable K, 3,000 NA 22x107 1 2 Inverted-5 and
40 acre
11 Variable K, 3,000 NA 22x107 4 2 Inverted-5 and
40 acre Effect of
12 Variable Variable 3,000 NA 1.4 x 107 1 2 Inverted-5 and WAG ratio
40 acre
13 Variable Variable 3,000 NA 1.4 x 107 4 2 Inverted-5 and
40 acre
14 Variable K, 3,000 NA 22x107 0 02 Inverted-5 and
40 acre
15 Variable K, 3,000 NA 22x107 0 20 Inverted-5 and
40 acre Effect of horizontal
16 Variable Variable 3,000 NA 1.4 x 1072 0 02  Inverted-5and  autocorrelationlength
40 acre
17 Variable Variable 3,000 NA 1.4 %1072 0 20 Inverted-5 and
40 acre
18 Variable K, 3,000 NA 22x107 0 2 Inverted-9 and
80 acre
Effect of well pattern
19 Variable Variable 3,000 NA 1.4x10? 0 2 Inverted-9 and
80 acre
20 Constant K, NA 2,800 NA 0 2 Inverted-5 and
40 acre
21 Constant Constant NA 2,800 NA 0 2 Inverted-5 and
40 acre
22 Variable K, NA 2,800 NA 0 2 Inverted-5 and
40 acre
Injection rates
23 Variable Variable NA 2,800 NA 0 2 Inverted-5 and
40 acre
22a Variable 0.1xk, NA 2,800 NA 0 2 Inverted-5 and
40 acre
22b Variable 0.01xk, NA 2,800 NA 0 2 Inverted-5 and
40 acre

"These values of buoyancy number N,, are along the wellbore. Note N, changes with the distance as shown in Fig. 3.
bThree realizations of permeability fields were created for this case.

<With vertical fractures.

“Constant k,is 17.5 md, and constant k, is | .| md as per the reservoir arithmetic averages of permeabilities.

Table 2—Values for the cases of CO, flow simulations. The “truth” cases are for the case with both variable k, and variable k, realizations
(i.e., Cases 4, 8, 12, 13, 16, 17, 19, and 23).
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N, is defined as:

_ Apgk,Hcosa
NbU - Uh}—ll— 1 (l)

where Ap is the density difference between CO2 and the mixture of brine and oil, g is the gravitational constant, k, is the vertical perme-
ability, H is the well perforation height, is the formation dip angle, up is the CO2 entry velocity at the wellbore (it was calculated using
CO:z injection rate in a radial flow geometry), p is the CO2 viscosity at reservoir conditions, and L is the horizontal length of the simula-
tion domain (same as the distance from an injector referred to in Fig. 3).

We considered four scenarios, the details of which are listed in Table 2. We provide a brief description of the four scenarios below.
Simulation predictions based on the settings in Scenario 4 (using true k,) are considered to be “truth case” in the results analysis.

Scenario 1: constant k, and k, = 0.1 k,;

Scenario 2: constant k, and k, from the reservoir arithmetic averages (i.e., average k, and average k,);

Scenario 3: variable k, with the reservoir geostatistics, and k, = 0.1 k,;

Scenario 4: variable k, and k, with the reservoir geostatistics.

Several other parameters were also examined, including water alternating gas (WAG) ratios, horizontal dimensionless autocorrelation
length (/p,), and injector constraints. The WAG ratio is defined as the ratio of the reservoir volumes of injected water to injected CO2 for
a cycle; the WAG ratio 0 represents continuous CO: injection. The range of reported WAG ratios is 0 to 5 (Ettehadtavakkol et al. 2014).
The ratio in this work was adjusted through changing water half-cycle size while keeping CO2 half-cycle size unchanged at 2.5% HCPV.
Dimensionless horizontal autocorrelation length, 4y,, is the horizontal autocorrelation length divided by the domain horizontal length. For
the base case, we set 1, =2 considering the permeability variogram analysis for the reservoir wells. We also examined two extreme values
of /p,: 0.2 (very weak lateral autocorrelation) and 20 (strong layering). The vertical dimensionless autocorrelation length is 0.

The base case injection schemes are CO: injection rate is 3,000 Mscf/D, water injection rate is 1,400 B/D, and the total injection dura-
tion is 20 years with the WAG ratio 0 (Table 2). The base sets 200% HCPV CO:z injected considering carbon sequestration, which is larger
than the typical range of 30 to 80% HCPYV for CO2 EOR (Merchant 2010). Such a large HCPV, as demonstrated in our work, tends to
interact with k, in influencing CO2 EOR and storage performance. The injection duration for other cases proportionally varies with injec-
tion rates for a given HCPV COz2. Both constant injection rate and constant bottomhole pressure for injectors were considered, and pro-
ducers were assigned a constant bottomhole pressure (minimum COz-oil miscible pressure). Other details for the settings of these
parameters are in Table 2. These numerical simulations are designed for general purposes, and the understanding from them might also
be revealed from scaling groups that were mathematically derived from relatively simplistic models (e.g., Shook et al. 1992; Sikandar
1994).

The metrics used are typical ones (Lake et al. 2019) to measure the influence of k, realizations on CO; flow: the cumulative oil produc-
tion (for EOR) and cumulative CO2 retention fraction (for storage). The retention fraction is (cumulative COz2 injected — cumulative CO2
produced)/cumulative CO2 injected. It measures the efficiency of injected COz2 that is stored in an oil reservoir.

Results and Discussion

Geological and Geostatistical Analysis Results. Statistical Analysis for an Example Well. A comprehensive geostatistical analysis is
essential for understanding the properties (e.g., variability, autocorrelation, and anisotropy) of k, as compared to k,. In this section, k, and
k, correspond to K, and kg, respectively, as termed by Honarpour et al. (2005). Fig. 4 shows a set of k,-related exploratory plots for one
example well, including permeability profiles, histograms, SVs, Lorenz plots, Koval plots, and k,-k, crossplots.

k, tends to be overall less than k,; 74.7% of the wholecores have k, <k, (Fig. 4a). Several cycles of vertical permeability variation can
be observed from the permeability profiles. SVs for log base 10 permeability (Fig. 4b) showed that k, and k, are virtually the same butk,
shows much more variability. This observation is consistent with the permeability profiles (Fig. 4a): Several spikes of small k, appear with
small-scale cycles. Log-permeability SVs also indicate more small-scale variability than untransformed permeability SVs, similar to
behaviors observed by Jensen et al. (2000). Untransformed SVs (not shown) indicate that k, and k, are virtually the same, which implies
that large-scale correlation for both permeabilities is similar, a behavior also reported by Lucia et al. (1995). These analyses indicate that
k, shows both small- and large-scale variability and that it should be more variable than k, spatially.

This observation is also supported by the plots for global statistics: permeability histograms (Fig. 4c), Lorenz plots (Fig. 4d), and
Koval plots (Fig. 4e). All permeability histograms are skewed right. This must be considered when populating permeability fields or
estimating other permeability-related parameters (Jensen et al. 1987). Both the Dykstra-Parsons and Lorenz coefficients are statistically
significantly larger for vertical permeability than for horizontal ones. The well-based Koval plots (Fig. 4e) showed the horizontal perme-
ability holds a different trend as compared with that of vertical permeability. Similar observations were made in the plots for other wells
(Appendix C).

Fig. 4f shows the k,-k, crossplots for the example well. Approximately 25% of the points have k, > k,, where k, is large (>10 md). In
fact, the anisotropic behavior is observed for more wells (Appendix C). These wells, and indeed all wells analyzed, show the existence of
points with k, > k,, with the fractions ranging from 11 to 35%. Considering the importance of anisotropy and its implications to both
geomodeling and flow, we further analyze the anisotropy and its geological controls in the next section.

The permeability-porosity crossplots (Fig. 4g) show that, at a given porosity, vertical permeability tends to be less than horizontal
permeabilities (consistent with Fig. 4a). It appears that log k, is better correlated with porosity than the other two permeabilities.

Anisotropy Analysis for Two Contrasting Wells. We chose two wells for k,/k, analysis to further identify causes for that anisotropy. As
a first step, depth plots and CDFs show two distinct behaviors (Figs. 5 and 6). Well B shows k, and k, behaving similarly, with k /k, values
fluctuating around unity (Fig. 5a). The well’s CDFs (Fig. 6a) show some differences between k, and k, values and, on closer inspection,
the uppermost 230 ft show decreased k,/k, values compared to the bottom 340 ft (Fig. 5a). This change appears to be primarily a result
of the number of stylolites; lithology differences are quite small. Well C, on the other hand, has k, a factor of 10 smaller than k, (Figs. 5b
and 6b) and looks to have similar behavior throughout the cored section.
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Fig. 4—A series of k,-related exploratory plots for example Well A: (a) vertical profiles for three permeabilities (depths indicated
are not actual values); (b) SVs for log permeability; (c) permeability histograms with Vdp included; (d) Lorenz plots; (e) Koval plots;
(f) k,-k, crossplot with the 1:1 line included; (g) permeability-porosity crossplots.
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Fig. 5—Vertical profiles of k,/k, ratios for Wells B (a) and C (b). Depths shown are not actual values.

Fig. 6—CDFs of whole-core permeability of Wells B (a) and C (b).

Possible reasons for the different k,/k, behaviors of Wells B and C were further investigated. Core descriptions for both wells (by Core
Laboratories) suggest predominant dolomite lithology with varying amounts of anhydrite—mostly as nodules—and very fine silts.
Stylolites and associated cements are also present. For Well B, the upper section (025 to 255 ft) has k,/k, values similar to those of C and
similar densities of stylolites; the upper section has 86% of the core samples with stylolites compared to 95% for Well C. The lower sec-
tion of B (255 to 600 ft) has 37% of the samples with stylolites present. The Core Laboratories data we had do not specify the number of
stylolites in each whole-core sample; they simply recorded if one or more stylolites was present in the sample. To further test if there is a
k,/k, relationship with stylolites, we evaluated the conditional probability of k, > k, when stylolites are present, Prob(k, > k| stylolites).
For Well C, Prob(k, >k, | stylolites) = 0.08 while for Well B we obtained 0.26 for the upper section and 0.38 for the lower section. Thus,
the Well C values suggest a strong linkage between stylolites and permeability anisotropy, while Well B shows that there may be a reduced
impact of stylolites on the core-scale anisotropy.

Statistics of k, vs. k, Heterogeneities for All Wells. Fig. 7 shows the comparison of the Dykstra-Parsons coefficient (Vy,, Fig. 7a)
between k, and k,, along with a similar plot for the Lorenz coefficient (L., Fig. 7b). From the scatter point distribution, it appears that
both k, and k have similar heterogeneity levels (i.e., both coefficients are mostly in the range of 0.6-0.9). However, k, tends to be more
heterogeneous than k, at the same well. The clustering behavior of points seen in Fig. 7a is a reflection of V,, to compress large variability
changes between wells into the small interval of 0.6 to 0.9 (Jensen and Lake 1988).

Considering that vertical flow is over a larger area but with a smaller pressure drop than horizontal flow, even a very small k, could
permit nonnegligible vertical flow. Thus, the prediction of flow response to k, may have a larger uncertainty than that to k,. Additionally,
greater heterogeneity of k, as compared to k, cannot be honored when assuming a fixed k/k, ratio in reservoir simulations. We examined
the consequences of this in the flow simulation section.

Reservoir Flow Simulation Results. Base Case Results. Fig. 8 shows the influence of various k, field realizations (corresponding to
Cases 1-4, Table 2) on the predicted CO2 EOR and storage results. At small buoyancy number N, assuming k, = k, gives comparable
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Fig. 7—Compilation of Dykstra-Parsons coefficient Vip (@) and Lorenz coefficient L (b) for both k, and k, for the 42 wells with
whole-core measurements.

Fig. 8—The variation of cumulative oil production (a) and CO; retention fraction (b) along with injected CO, HCPV. The buoyancy
numbers are very similar for the four cases (N,, = 2E-2). Refer to Cases 1-4 in Table 2 for detailed settings.

oil production (Fig. 8a) to variable k,, but CO2 retention (Fig. 8b) deviates by 6.3%. This means that CO2 flow is more sensitive to k, than
oil flow, which agrees with our intuition. The differences in metrics for homogeneous fields (black lines) are caused by different constant
permeability values (17.5 vs. 11.1 md, refer to Table 2).

Influence of Buoyancy Number on Metrics. Fig. 9 shows the influence of Ny, on the defined metrics when adjusting only injection
rates. Increasing injection rates smears or decreases the influence of k, realizations on oil production estimates (Fig. 9a). This is as
expected because the two factors (i.e., injection rate and k,) have opposite influences on N, (Eq. 1). The influence of k, realizations on
CO:z retention forecasts (Fig. 9b) is stronger when the injection rate increases. This is because high rates cause large CO2 plume volumes,
which tend to be more sensitive to k, compared to small plume volumes caused by low rates.

Comparing Fig. 8 to Fig. 9 shows that, at large N, assuming k, = k, causes a large deviation (9.9%) in the estimated ultimate oil
production. However, the different k, field realizations have a negligible influence on CO2 retention. This is because buoyant flow (large
N,,) prevails in the CO2 plume, and the accessed volume tends to be small (reduced sweep).

Fig. 10 shows the CO: spatial distribution for Ny, = 2 at 0.5 HCPV CO: injected. Areally, the patches that are swept by CO2 vary
significantly for different realizations of k,, particularly in the upper and middle layers. Vertically, the CO2 distributions and saturations
also show differences, particularly near the wellbore.

Fig. 11 shows the influence of N, on the production and retention metrics when adjusting the k,/k, ratio. At large injection rates, k, =
0.1 k, yields close agreement of both oil production (Fig. 11a) and CO2 retention (Fig. 11b) to the truth case (variable k,), even though
the N, for the two cases are almost 10 times different. This implies that using the wellbore-based N, cannot capture the influence of k,
on flow. As N, increases because of increasing k,, the ultimate oil production increases, as does the ultimate CO2 retention fraction. This
is because the increase in k, makes the reservoir less anisotropic, and thus the injected CO2 contacts more oil.

Atasmall injection rate, using k, = 0.1 k, causes an underestimation of ultimate oil production by 6% (Fig. 11c). The deviation is larger
than that for the large injection rate (Fig. 11c vs. Fig. 11a). This is consistent with the influence of Ny, on production and retention as
explained above. Also, at the small injection rate, the instantaneous retention fraction differs (e.g., in the interval 0.2-1.0 HCPV) and
slightly decreases when N, increases; however, the ultimate CO2 retention fractions (Fig. 11d) were very similar regardless of the k,
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Fig. 9—Influence of buoyancy number N, , on the cumulative oil production (a) and CO; retention fraction (b). The change of N,
is through adjusting injection rates while keeping k, equal to k,. The four runs (in the sequence of legends) correspond to Cases
3-4 and Cases 7-8in Table 2.

Fig. 10—CO, areal distribution (a) in the three selected layers and CO, vertical distribution (b) along the vertical slice across the
injector along the I-direction for the four cases (Cases 5-8 in Table 2). The buoyancy number N, is around 2.0 for all cases. The
areal distributions show large difference in both the upper and middle layers because of vertical permeability distribution.

realizations. This is because in the late injection period, CO2 flow paths form mostly in the upper portion of the reservoir, and thus N, or
k, realizations exert a negligible influence on COz retention.

Influence of WAG Ratio on Metrics. Figs. 12a and 12b show the influence of WAG ratios on the estimated performance. As the WAG
ratio increases, the deviation between the case k, = k, and the truth case (variable k,) for cumulative oil production estimation increases
(Fig. 12a). An opposite influence is observed for the CO2 retention fraction estimation (Fig. 12b). At the same WAG ratio, setting k, =k,
yields larger oil production than variable k,.
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Fig. 11—Influence of buoyancy number on simulated performance. (a) and (b) are cumulative oil production and CO; retention
fraction, respectively, when varying buoyancy numbers (through changing k,) at a fixed large injection rate of 3,000 Mscf/D,
whereas (c) and (d) are the equivalents at a fixed small injection rate of 30 Mscf/D. The scale factors seem to work, even the
permeability field is heterogeneous. The four runs (in the sequence of legends) in the upper row correspond to Cases 3a, 3, 1a,
and 4 in Table 2, and the runs in the lower row are from Cases 3b and 7-9.

As the WAG ratio increases, the k, realization shows its negligible influence on the ultimate CO2 retention fraction (Fig. 12b). This is
because a large WAG ratio means more water injected and effective diversion of CO2 away from channeled paths and thus better sweep
overall. In other words, large WAG ratios decrease the sensitivity in k, spatial distributions for CO> retention efficiencies for small N,

Influence of Horizontal Autocorrelation Length on Metrics. Figs. 12c and 12d show the influence of horizontal autocorrelation
length Ap, on oil production and CO, retention. At intermediate 1y, (<2), k, exerts a limited influence on these results. At large 1p,, how-
ever, there is a large effect. As A, increases, both the ultimate oil production and CO: retention decrease. This is because large autocor-
related regions of permeability give rise to lateral flow channels, which cause early CO2 breakthrough and suboptimal results. The early
breakthrough can also be seen from the very starting point of CO2 retention decrease in Fig. 12d. In particular, at the early injection period
(<0.8 HCPV), the retention fraction overall decreases as A, increases for the variable k, realization cases. The ultimate retention is less
influenced by Ay, when it is large (>2). This may be because large 1y, cases represent moderately to strongly layered systems where the
CO:2 flow paths become well-established by late injection.

Influence of Well Pattern Geometries on Metrics. Figs. 12e and 12f show the influence of well pattern geometries on CO2 EOR
and storage performance. Assigning k, = k, does not affect oil production for either the inverted 5-spot or inverted 9-spot well patterns.
However, the configuration affects the COz retention prediction more for the inverted 5-spot than inverted 9-spot (6.3% vs. 0.1%).

Influence of k, on CO2 Cumulative Injection. The above results (Figs. 8-12) are based on constant injection rates. Fig. 13 shows the
influence of k, field realizations on the metrics when constraining the injector to have constant bottomhole pressure. Under this constraint,
if we assume k, = 0.1 k,, then simulations can give good estimates for oil production (Fig. 13a), CO2 retention fraction (Fig. 13b), and
ultimate CO2 injected volume (Fig. 13c). Among the three k,/k, ratios, the use of k, = 0.01 k, yields the largest errors.

Comparison to Literature and Discussion. Anisotropy (k,/k,) and Its Controls. Wang et al. (1998) also studied the k,/k, behavior in the
Seminole Field, in an area similar in geology to Wells B and C. They suggest a core-scale formation average k,/k, = 0.3 with 0.1 <k /k, <
1. Examination of their figure, however, shows many data with k,/k, > 1, especially when k, <3 md. Of the 144 points shown in their data,
approximately 1/3 (50 points) have k,/k, > 1, suggesting that the formation might be considered as isotropic at the core scale. The lower
section of Well B, which is similar to the area studied by Wang et al. (1998), shows similar behavior to their data (Fig. 14a). However,
Well C exhibits smaller k /k, values than Wang et al. (1998) reported (Fig. 14b).

Koepnick (1987) presents a nice description of stylolite characteristics. Whether stylolites represent flow barriers depends on condi-
tions during and after they form, leading to mixed reports of their flow effects. Ahr (2011), for example, states that “The literature is
replete with references to stylolites ... and how they form permeability barriers....” but he cautions that “post-stylolite diagenesis can
create porosity and permeability in previously tight rocks ....”. Other studies have observed stylolites to form occasional large-scale flow
barriers (Koepnick 1987), but the evidence largely suggests they only form local impediments to vertical flow (Koepnick 1987; Al-Amrie
et al. 2012; Heap et al. 2014). Data from Wells B and C suggest that when stylolites are abundant, the core-scale k,/k, values are reduced.
This core-scale information will be useful for defining the larger-scale k,/k, value.

Using conditional probability analysis, we can assess the influence of stylolites on the core-scale k,/k, ratio for this carbonate reservoir.
Comparing this result with the behavior of k,/k, and associated factors in sandstone reservoirs can prove instructive. At core scales, sand-
stone permeability anisotropies are caused by small-scale structures (e.g., silt beds and shale patches) (Clavaud et al. 2008; Dernaika et al.
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Fig. 12—The change of simulated cumulative oil production (left) and CO; retention fraction (right) with the HCPV CO; injected
through adjusting WAG ratios (a and b), horizontal dimensionless autocorrelation length A, (c and d), and well pattern geometries
(e and f). Two main scenarios are compared: k, = k vs. variable k,. N, is around 2E-2 for all cases. In (a), the WAG ratio at 1
corresponds to 21 days (2.5% HCPV) of CO; injection alternating with 21 days of water injection.

2018). Campero et al. (2014) noted that the k,/k, ratio is also a function of lithofacies (mud fraction) in a sandstone reservoir. Similar
observations were made by Armitage et al. (2011) and Ringrose et al. (2005). These small-scale structures and lithofacies are difficult to
explicitly model in the large scale, except for some simple deterministic distributions of shale barriers with regular geometries (Sikandar
1994). Baker et al. (2015) showed that, in a sandstone reservoir, the k,-k, crossplot show only a few points with k, > k,, while their car-
bonate example shows many more k, > k, values. Their fraction of k, > k, is less than that in our carbonate case.

Scale Dependence of k,/k,. What do the core-based anisotropic values imply for the large-scale k,/k,? Lishman (1970) states, “it is not
logical to transfer anisotropy measurements made on a core sample ... to a reservoir” and, thus, for these large-scale k,/k, values, geolog-
ical factors beyond the wellbore must play a role. Core-scale k,/k, values are largely controlled by small-scale geological heterogeneities
(Lake 1988; Clavaud et al. 2008). At the larger scales, different geological heterogeneities may dominate and thereby change the k,/k,
values (Dernaika et al. 2018). For example, for large-scale sedimentary environments, wave-dominated shoreface deposits tend to have
more k, > k, values than river-dominated deltaic deposits (Hanks et al. 2011).

Reports on the relationship of core- to large-scale k,/k, values are very limited, but Baker et al. (2015) show a decrease of k,/k, by 2 to
3 orders of magnitude from the core- to large-scale in three clastic formations. Morton et al. (2002) undertook a detailed comparison of
core plugs, probe permeameter, and wireline tester k,/k, values in one of the formations reported by Baker et al. (2015). Generally, they
find agreement between the upscaled probe (using arithmetic and harmonic averages) and tester values. They also determined that core
plugs sampled the heterogeneities insufficiently to give agreement with either the probe or tester values. Thus, Morton et al.’s (Morton
et al. 2002) results suggest extrapolation of core-scale k,/k, ratios depends not only on how the local heterogeneities compare with the
large-scale heterogeneities but on having sufficient sampling at the core scale to render statistically meaningful values.

Unlike clastics, carbonates appear to show weaker k,/k, trends with scale, perhaps decreasing by 1 or 2 orders of magnitude from the
core- to large-scale (e.g., Wang et al. 1994; Chandra et al. 2013; Pamungkas et al. 2020). This smaller change than sandstones may be
partly resulting from better core-scale sampling because carbonates tend to be well consolidated, have good core recoveries, and are
exhaustively measured (in the vertical direction) when using whole-core samples. For example, Wang et al. (1998) suggest large-scale
simulation-based k,/k, values of 0.02 to 0.04 for the area they studied in the Seminole Field. Using harmonic and arithmetic averages of
data from three wells, they predict k,/k, = 0.05 to 0.06 from the whole-core permeabilities (Wang et al. 1994). The reasonably good agree-
ment between upscaled core and simulation k,/k, values suggests the core-based values need only modest “adjustment” to represent
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Fig. 13—The variation of cumulative oil production (a) and CO, retention fraction (b) along with the HCPV CO; injected for different
k, realizations. (c) The cumulative volume of CO; injected vs. CO; injection duration for these realizations. Constant bottomhole
pressure is imposed for the injector. Refer to Table 2 for the detailed case settings.
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Fig. 14—Whole-core vertical and horizontal permeabilities for Wells B (a) and C (b). The k,/k, =0.02 line is the lower value Wang
et al. (1998) found appropriate by reservoir simulation. k, <k, for nearly all the points on the right plot.

larger-scale properties. In contrast, the report of Chandra et al. (2013) is a case study where core plug permeabilities were inadequate to
characterize the k/k, in their carbonate field.
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Fig. 15—The change of cumulative oil recovery (HCPV, left column) and cumulative CO; retention (HCPV, right column) with
cumulative CO; injection (HCPV) through adjusting WAG ratios (a and b) and horizontal autocorrelation length (c and d). N,
is around 2E-2 for all cases. The figure is similar to Figs. 12a-12d except two changes: (i) produced oil and retained CO, was
measured by HCPV; (ii) the x-axis was extended from 2 to 4 HCPV.

All these demonstrate the scale dependence of anisotropies on k,/k, ratios. The core-scale k,/k, ratio thus may not be the ratio at other scales (e.g.,
gridblocks in reservoir simulations), particularly if poor sampling is done. The geological controls of k/k, ratios can be scale-dependent, and a
geologically guided procedure may be needed to scale up the ratio from cores to gridblocks. For scales larger than grid cells, the formation anisot-
ropy could be evaluated through using interference well tests and possibly seismic (Ayan et al. 1994; Onur et al. 2011; Wannell and Morrison 1990).
Influence of k, Realizations on CO2 Flow/Injectivity, Retention, and Implications. Our direct comparison of k, and k, based on the whole-core
data sets showed that k, tends to be more heterogeneous and complicated than k, for this carbonate reservoir. A similar observation was made by
Ringrose et al. (2005), and they found that traditional estimation functions for k, cannot give a satisfactory prediction of k, in a sandstone reservoir.
Their sandstone study, along with our carbonate one here, strongly indicates that the flow influenced by k, will be more complicated than that by k,,
and thus flow prediction will be much more difficult.

Such flow here mostly refers to buoyant flow, and it occurs in subsurface porous media where two contrasting-density fluids exist [e.g., aquifer
CO:; storage (Bryant et al. 2008; Ren et al. 2018) and subsurface hydrogen storage (Hassanpouryouzband et al. 2021; Heinemann et al. 2021)]. In
this sense, the geological characterization of k, for these processes should be even more important than for k,. Because permeability is related with
capillary pressure, the latter heterogeneity on buoyant flow has received considerable attention in the context of aquifer CO2 storage. It has been
shown that capillary pressure heterogeneity tends to exert much more influence on small-scale upward flow paths and associated trapping quanti-
fication than permeability does (Krishnamurthy et al. 2019; Saadatpoor et al. 2010; Trevisan et al. 2017).

For the influence of k, on CO: storage, Abdelaal et al. (2021) studied the effect of the k,/k, ratio on ultimate CO- storage capacities in a saline
aquifer undergoing CO:z injection. Our results (Fig. 13) showed similar findings that, at the initial period of injection, cumulative CO: injected is
almost independent of k /k, ratios. However, at late injection, the cumulatively injected amount becomes different for these ratios. We showed that,
for the studied carbonate reservoir, using the k,/k, ratio equal to 1 is better than 0.1 in terms of CO2 injection estimation (Fig. 13). The effect is,
however, very limited for the time scale we investigated. Our work further shows that, as the injection duration increases, its effects on oil produc-
tion become large when varying the k,/k, ratio. This threshold point is around 60 to 100% HCPV as revealed from Figs. 9-12. This is because as
injection time lengthens, it causes more CO; to be affected by buoyant flow, and the influence of k, on CO displacing oil is thereby enhanced.

Campero et al. (2014) found that using constant k,/k, to populate vertical permeability works in homogeneous reservoirs but fails in heteroge-
neous reservoirs with complex depositional environments (related to autocorrelation length). This is consistent with our findings that the oil produc-
tion and COz2 retention metrics change as the horizontal autocorrelation length increases. Furthermore, our distinct contribution here is that we
demonstrated the injection strategies (i.e., injection rates and WAG ratio choices) interact with reservoir heterogeneity in influencing both oil pro-
duction and CO; retention prediction (Figs. 12 and 15). This interplay makes the influence of k,/k, on flow complicated.

Generally, at the same buoyancy number (N, = 2E-2), assuming k, = k, overestimates both the cumulative oil recovery factor and CO; retained
HCPV compared to the true case (Fig. 15). This assumption, therefore, affects the vertical positions of inflection points at which CO- retained
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HCPV flattens with the increase in COz injection (Fig. 15b). The point represents the maximum injection duration for increased storage, and, after
that point, injected CO2 cannot be further retained. It appears that large WAG ratios and small autocorrelation lengths (less heterogeneity) shorten
the time duration of reaching the inflection points. These points were not extensively observed in the report by Lake et al. (2018) because of the
relatively short (1 HCPV) COz injection duration for the reviewed projects. More work is needed to understand the controlling factors of the inflec-
tion point and possible operational strategies for moving the point toward the left top in the figure (i.e., rapid and large COz retention) for storage.
The understanding of improving volumetric sweep efficiency strategies and their interplay with reservoir heterogeneity should be the key here
(Lake et al. 2018, 2019).

Another noteworthy aspect of Fig. 15d is that, for continuous CO2 injection, the retained CO> can be larger than 1 HCPV as injection proceeds.
After 1 HCPV COz retention, the subsequently injected CO2 must occupy the space that was previously occupied by water (i.e., water displacement
must be occurring). The combined voidage replacement and dissolution/miscibility analysis, as demonstrated by Lake et al. (2018), is very helpful
to understand COz storage mechanisms here.

More generally, what is the k,/k, threshold value if a formation appears to be anisotropic? This value depends on the flow process under consid-
eration. For example, performance differences between k,/k, = 1 and k/k, < 0.7 might be significant for steam-assisted gravity drainage (Azom and
Srinivasan 2011) while k /k, = 0.05 might be the threshold value for gas coning (Addington 1981). For our study on CO2 EOR and storage here, it
appears that the threshold k,/k, ratio for flow simulations is in the range of 0.1 to 1, which can give a good forecast of both oil production and carbon
sequestration performance.

Conclusions and Recommendations

For CO2 EOR and storage in oil reservoirs, it is important to understand the intrinsic geological controls of k, to better evaluate CO2 flow/sweep,
oil production, and COz storage performance. We conducted analyses of the effect of different k, estimates based on a San Andres carbonate reser-
voir data set, including whole-core measurements and core facies. We also conducted generic flow simulations based on the geostatistical under-
standing of the reservoir and studied the influence of k, on CO2 EOR and storage performance prediction. Our conclusions are:

1. k, tends to be more heterogeneous and complicated than ky, as revealed from heterogeneity measurements. This means that assuming a fixed
k,/k, ratio is not representative; if k/k, ratios are taken as constants they should have the same variability.

a. k, >k, is not unusual and, indeed, should be expected for isotropic sediments. For the reservoir studied, it appears that stylolites
show statlstlcally significant effects on k, for the core-scale anisotropy.

2. k, vs. k, crossplots need to be carefully prepared when evaluating for characteristic k/k, values, paying particular attention to how many samples
have k > k,. The assumption that k,/k, < 1 can bias interpretation of these plots and give k,/k, estimates that are too small.

3. The change of k,/k, with increasing scale depends primarily on two factors: the change(s) of geological features controlling fluid flow and on
how well the permeability measurements fully represent the core-scale heterogeneities. Whole-core measurements of carbonates may better
capture the core-scale controls and thereby reduce the change in k,/k, as scale increases.

4. The influence of k, on performance predictions depends on the flow process and regimes. The buoyancy number proved to be a useful
method to characterize the gravity-viscous competition.

5. The accuracy of results by assuming a constant k,/k, ratio for flow performance prediction is heavily influenced by WAG ratios and autocorrela-
tion lengths but less by well patterns.

6. As COz injection duration increases, the influence of k, on flow also increases. k, shows limited influence on cumulative CO; injected volumes.

To evaluate CO2 EOR and storage performance, we recommend a serial of flow numerlcal tests on k,, as shown in this work, before undertaking

any large or full-field scale flow simulation efforts.

Nomenclature
C = storage capacity
F = flow capacity
H = well perforation length
Kgo = minimum horizontal permeability
max = maximum horizontal permeability
= gas relative permeability
I% = oil relative permeability
k., = water relative permeability
[(X = x-direction permeability
k, = y-direction permeability
k, = vertical permeability
L = lateral length of the simulation domain
L. = Lorenz coefficient
N, = buoyancy number
u, = CO, entry velocity at the wellbore
Vgp = Dykstra-Parsons coefficient
o = formation dip angle
A = difference
W = phase viscosity
Apx = horizontal dimensionless autocorrelation length
p = phase density

k
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Appendix A—Reproduction of Reservoir Permeability Geostatistics in Synthetic
Models

This appendix illustrates detailed procedures of using both the Box-Cox method and sequential Gaussian simulation to reproduce the permeability
statistics in synthetic models. For the Box-Cox method, the transformation of a random variable X has the form: Y(X, 2) = (X*— 1)/4, if 1 #0; Y(X,
0) = logX. Based on the reservoir whole-core measurements of k., (see the light blue curve in Fig. A-1a), we calculated that the optimal / = 0.081
that results in the best approximation of a normal distribution of k... Then, based on the global statistics of normal distribution, we generated the
corresponding 3D permeability field with a set of other constraints (including model dimensions and autocorrelation length) using sequential
Gaussian simulation. After this step, we substituted the generated permeability back into the Box-Cox equation and back-calculated Y to get the
simulated permeabilities. They are compared to the core permeability in Fig. A-1. Both the CDF and Q-Q plots demonstrate that the global perme-
ability statistics of the reservoir are captured in the synthetic permeability field.
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Fig. A-1—Comparative plots used to show the reproduction of the core permeability through using the proposed procedures. (a)
The permeability CDF for cores vs. the simulated permeability field with the horizontal dimensionless autocorrelation length 2 for
an inverted 5-spot well pattern. (b) The Q-Q plot for the two permeability data sets (cores vs. simulated).

Appendix B—Reservoir Simulation Model Inputs

This appendix lists the main inputs for the reservoir flow simulation model. These inputs include crude oil properties, CO2-oil interaction,
and relative permeability curves. The reservoir oil viscosity is 1.2 cp with a density of 657.7 kg/m? at reservoir conditions. The minimum
miscibility pressure for the CO2-0il system is around 1,400 psi. The Peng-Robinson equation of state was used to model the pressure/
volume/temperature behaviors. More details are in Ren and Duncan (2021). Table B-1 shows the oil compositions, and Table B-2 lists
the binary interaction coefficients for pseudocomponents. Fig. B-1 shows the relative permeability curves for the oil-water and oil-gas
systems. The Stone | model was used to calculate oil relative permeability during three-phase flow. Hysteresis was not considered, and its
influence on performance prediction was discussed in Ren and Duncan (2021). Endpoint scaling was used to consider the influence of
permeability variations on relative permeability curves in flow simulations.

Component co, CN, CCgH,S C,C, CC, CuCus Cuire
Mole fraction (%) 0.02 20.14 15.9 8.99 17.29 18.42 19.24
Critical temperature (°R) 547.56 339.21 619.38 835.43 1,117.84 1,344.62 1,686.57
Critical pressure (psi) 1,071.34 666.77 722.56 491.3 389.65  277.42 159.29
Critical volume (ft/Ib-mole) 151 1.56 271 5.02 7.73 12.13 22.15
Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195
Molecular weights (g/mol) 44.01 16.29 36.19 70.06 114.17  180.94 358.25
Acentric factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054
Coefficient, Q, 0.457 0.457 0.457 0.457 0.457 0.457 0.457
Coefficient, Q, 0.077 0.077 0.077 0.077 0.077 0.077 0.077

Table. B-1—Representative crude oil compositions for the San Andres ROZ.

Component CO, CN, C,C.H,S CAQS C.-C C,,-C C

,,,,, ~=7—=10  =11—=16 =17+
co, 0
CN, 00976 0
C,C.H,S 0.1289 0.0103 0
C,-Cq 01271 00019  0.0063 0
C,-Cyy 01105 00241 00196  0.003 0
C,1-Cis 00943 00494 00333 00061 O
c 00997 01365 00588  0.012 0 0 0

17+

Table. B-2—Binary interaction coefficients for pseudo-components.
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Fig. B-1—Relative permeability curves for oil-water (a) and oil-gas (b) systems.

Appendix C—Koval Plots and k,-k, Crossplots for Other Wells

This appendix shows the compilation of Koval plots and k,-k, crossplots for more wells (Figs. C-1 and C-2).

Fig. C-1—Koval plots for several selected wells. The curves for k (k

_ ) and ky(kgo) are virtually identical because they are from
unoriented cores.

max.

Fig. C-2—Vertical permeability vs. maximum horizontal permeability crossplots for several selected wells. Both permeability
measurements are reported on a log scale. A 1:1 line is provided for reference. The probability of k, >k, is included in each plot.
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Abstract

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such reservoirs cannot be
produced by conventional production techniques. ROZs in carbonate reservoirs in the Permian Basin of West Texas were initially
interpreted (from wireline logs), as being productive oil zones. If these zones were completed for production, they produced
largely water. Over the last decade it has been demonstrated that CO: injection can make these zones economic to produce. As a
result, ROZs in the Permian basin and elsewhere have become attractive targets for CO2-EOR (CO: enhanced oil recovery) and
have a large potential for CO2 sequestration consequential to the EOR activity. The viability of CO2 EOR in ROZs is currently
being demonstrated by the results of CO2 injection into the ROZs at the Seminole, Wasson Denver Unit, and Goldsmith oil field.
The recoverable oil from ROZs in both the San Andres and Canyon Reef formations of Permian Basin, have been estimated as 12
billion barrels. A key question is the capacity of ROZs to sequester COs.

The current project is the first study of ROZs based on extensive studies of cores, wireline logs, and production data from
several ROZs in the San Andreas Formation. Understanding the magnitude of oil saturation and how it varies within ROZs is
important to modelling both EOR and sequestration. The commonly accepted model for the formation of ROZ is based on the
hydrodynamic effects of tectonically-controlled increased water flows in aquifer at the base of oil fields. In this work, the nature
of this process was modelled using a commercial reservoir simulator. These flow simulations were designed to understand how
the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil saturations in
ROZs. A special emphasis was on understanding the impact of reservoir heterogeneity on the variation of capillary pressures
throughout ROZs. Heterogeneities in capillary pressures appear to dominate the distribution of oil saturation within the ROZ and
will also strongly influence the performance for both oil production from CO:2 injection, as well as associated CO2 storage.
Finally, we discuss the implications of our results to the understanding of both CO2 EOR and storage in ROZs.

Keywords: Oil Saturation, Residual Oil Zone, CO2 EOR and Storage, Flow Modeling.

1. Introduction

Residual oil zones (ROZs) can be defined as an oil reservoir in which the oil is at, or is close to, residual oil
saturation. ROZs have the apparent characteristics of a reservoir after the completion of a water flood. ROZs in
carbonate reservoirs in the Permian Basin of Texas were initially interpreted from wireline logs as being productive

* Corresponding author. Tel.: +1-512-471-5117; fax: +1-512-471-0140
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oil zones. However, if these zones were completed for production, they produced water only occasionally with
traces of oil. Thus, ROZs can be produced by neither conventional pumping nor water flooding. Rather, producing
from these zones requires some form of enhanced oil recovery such as CO2-EOR (providing incidental sequestration
of CO).

ROZs have different types in terms of their origin and evolution [1]: (i) an oil accumulation is subject to a tilt
(from differential subsidence or tectonic movements), resulting in re-equilibration of water-oil contacts and the
formation of ROZs; (ii) the original oil accumulation leaks through seal (perhaps temporally), again leading to ROZ
formation; (iii) a change in the hydrodynamics of the underlying aquifer resulting in regional groundwater flow.
This flow sweeps the lower portion of oil columns, resulting in the development of ROZs. The consensus of
opinions is that the ROZs in the Permian Basin represent the third of these categories and the simulations made in
the current study are based on this scenario.

As a result of many years of testing and analysis by Permian Basin petroleum engineers and geologists, it has
been demonstrated that CO- injection enables economically viable oil production from ROZs [1-4]. The San Andres
Formation has over 10 Billion bbls of cumulative production. Estimates of the volume remaining from the original
oil in place (OOIP) vary between 50 to 80%. CO2 EOR in ROZs is currently taking place in eight San Andres oil
fields in the Permian Basin, including the Seminole San Andres Unit, the East Seminole field, the Goldsmith San
Andreas Unit, the Wasson Denver Unit, Tall Cotton, Hanford field, Means, and the Vacuum San Andres field.
Significant volumes of CO2 are being sequestered incidental to these CO2-EOR projects, providing a possible path
for large scale market-driven carbon capture and storage (CCS). The estimated recoverable oil from ROZs in both
the San Andres and Canyon Reef formations of Permian Basin, are estimated by Koperna et al. [5] as 12 billion
barrels. This represents a little over a third of the estimated original oil in place. Bachu et al. [6] noted that ROZs are
“regarded in the industry as the most optimum part of oil reservoirs to store CO2”. They based this on: the typically
large volume of ROZs; their high water saturation; and “hydrocarbon availability”.

Unfortunately, almost all the research on ROZ formation and characteristics has not been published in refereed
journals but rather is available in contract reports, presentations, and conference proceedings. Trentham and his
coworkers [7] have assumed that, high aquifer flow rates would have been initially established across the San
Andreas formation from the uplift of the Guadalupe Mountains along the western margin of the Permian Basin. This
uplift apparently peaked around 20 Ma associated with the formation of the Rio Grande Rift [8]. Subsequent erosion
of these mountains would have reduced hydraulic heads in the regional aquifer lowering flow rates. Harouaka et al.
[9] suggested that the hydrodynamic impact continued unabated, “albeit at a very slow pace like one foot/1000
years”, an assertion they based on “analytical modeling” using the analysis of Hubbert [10]. A recent study by
Trentham et al. [7] attempted to model the probable flow pathways, of what they termed “hydrodynamic fairways”.
However, absent a creation of a set of robust regional groundwater flow models extending back to the regional uplift
event in the Permian Basin, the groundwater flow directions cannot be well constrained. Jamali and Ettehadtavakkol
[11] modelled the ROZ formation process through mimicking the natural waterflooding process, however, their
specific simulation is based on a simplified static reservoir model and physics.

This paper is the first attempt to use multiphase and full-physics flow simulations to make a comprehensive study
of the hydrodynamic model for the development of (and the implications of for CO2-EOR) ROZs in the San Andres
Formation. In the following, we describe our modeling approach and analyze several factors that are potentially
significant in the evolution of ROZs. Finally, we evaluate the significance of these results to both oil production and
incidental CO2 sequestration in future CO2-EOR projects in these zones.

2. Methodology

This project set out to study the formation of ROZs in the San Andres Formation, based on creating simulations
modelling the “natural waterflood” scenario. We create simulations of these reservoirs that aim to explore the nature
and spatial patterns of oil saturation in ROZs in response to variations in the flow of regional aquifers. The simulator
used is Eclipse-E100 [12], an efficient and multidimensional black-oil simulator.

Our modeling is based on the reservoir characteristics of the residual oil zone associated with the Seminole Field,
however, we do not model this field specifically. A three-dimensional (3D) static reservoir model, representative of
the geology and petrophysical variation of the ROZ underlying the Seminole Field, was built from the published
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reservoir property data [13-15]. The model was populated using data from these published sources and from
petrophysical measurements made on cores, and interpretation of wireline logs from the BEG log library.

Two 2-D section geologic models were cut from the 3-D reservoir model: one is along the E-W (X-Z slice, the
approximate dip direction), and the other is along the N-S (Y-Z slice, the approximate strike direction). The purpose
of selecting these two sections is to examine how flow direction affects evolution the oil saturation in the ROZ. The
two vertical sections cross along a vertical line. This line overlaps a drilled vertical well with detailed well
properties published by Honarpour et al. [15]. Specifically, this well has an oil saturation profile, based on
measurements (made prior to CO2 injection into the ROZ) from sponge cores. This data provides an important way
for us to validate the reasonableness of our simulations.

The corner point grid system is used, and the dimensions of each model is 63x100. The cell size in the horizontal
direction is 100 ft., and the vertical cell size varies in different layers with the average ~2ft. The two 2-D orthogonal
models have similar means and standard deviation for the porosity and permeability (Table 1). Published
permeability measurements by Honarpour et al. [15] show that the horizontal and vertical permeability’s are largely
similar. These authors note that the presence of low permeability layers of fine-grained, anhydrite-rich facies,
creates a strongly anisotropic permeability. They suggest the resultant vertical component is approximately one
tenth of the horizontal component. Initially, hydrostatic pressure is set for the reservoir with the middle depth
pressure at 2119.9 psi, and the reservoir temperature is 104 ‘F. The oil saturation is initialized using the gravity-
capillary equilibrium method.

A capillary entry pressure field is generated using the Leverett j-function [16] that links permeability, porosity,
and capillary pressure. The reference capillary pressure curve is assigned to the cells with the permeability of 16 mD
as this reference curve is measured on the core with this permeability. These cells are considered as reference cells.
The other cells in the model are assigned with different capillary pressure curves by scaling the capillary pressure of
each cell with the corresponding permeability and porosity. The interfacial tension for each cell is assumed to be the
same, and contact angle has the same assumption. So each cell can be assigned with a capillary pressure curve that is
consistent with its upscaled permeability and porosity while omitting interfacial tension and contact angle.

Flow simulations are designed to model the key relevant physics for understanding the ROZ origin associated
with the San Andreas Formation in the Permian Basin. To understand the relevant physics, we first introduce a
gravity number (Ngr), and this number describes the influence of competitive gravity versus viscous forces on water
flooding. Ngr is a dimensionless ratio of the gravitational force acting on the fluids to the viscous force that drives
water migration.

In the 2D models, the volume of water injected is approximately 27 pore volumes (PV) for the base case
(corresponding to the regional water flux of 0.5 ft./yr.). This PV is consistent with the suggestions of Trentham et
al., [7] about the time scale and flux of regional natural water flooding impacting the ROZs within the Permian
Basin. The sensitivity of the magnitude of oil saturation in the ROZs to varying the magnitude and duration of
regional hydraulic head, is also investigated. The regional hydraulic head was varied over three orders of magnitude.
Additionally, changes in the nature of ROZs (e.g., oil saturation and geometry) in response to the lowering of
hydraulic head are examined. This lowering decreases regional water flow rate, so the study is designed to
approximate the decreasing rate of flow through three sequential simulation processes with the decreasing water
fluxes from 5ft/yr, 0.5ft/yr to 0.05 ft/yr, with each modeled time period lasting for 50,000 years (refer to case #12 in
Table 2). More importantly, both single and heterogeneous capillary pressure are purposely considered in these
simulations. Single capillary pressure means that the capillary pressure curve is used for all the cells in the domain,
whereas, heterogeneous capillary pressure means that scaled capillary pressure curves are employed.

Table 1 Injection simulation schemes in the 2D models

Water flux entering formation Injection rate, Injection duration, Total injected Ngralong the .
Dominant force
from wellbore, ft./yr. rb/d** Year water, PV wellbore
5.0 1834 50k 268 4.7E+3 Gravity
05" 18.3* 50k* 26.8* 4.7E+4* Gravity
0.05 1.83 50k 27 4.7E+5 Gravity

*means base case settings; ** rb means reservoir barrel
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A vertical injector and a producer are used to mimic regional water filtration in the ROZ, and the two wells are
placed on the left and right boundary cells, respectively. Both wells are perforated along the intervals of both the
producing ROZ and the water leg, for which, their heights are approximated through the field tests and
measurements [15]. Constant water rate is imposed on the injector with the values shown in Table 2, and the same
rate of liquid production is imposed on the right producer. Boundary settings in the N-S slice are the same. The
condition settings for all the simulated cases are summarized in Table 2.

Table 2 Summary of conditions for simulations. The time duration in parentheses, correspond to the adjacent PV.

Case No Water flux, ft/yr Injected PV Flow direction Capillary pressure

1 0.5 26.8 (50K yrs) W-E w/o

2 0.5 32.1 (60K yrs) W-E w/o

3 0.5 26.8 W-E Single

4 0.5 26.8, 268, 536 (LMM yrs) W-E Heterogeneous
5 5.0 268 W-E Single

6 5.0 268 W-E Heterogeneous
7 0.05 2.7 W-E Single

8 0.05 2.7, 27,54 (IMM yrs) W-E Heterogeneous
10 0.5 26.8 N-S Heterogeneous

3. Results

We firstly describe the evolution of oil saturation fields during the ROZ formation process. Particularly, we
emphasize the effect of the interplay between water flux magnitude and capillary pressure on the remaining oil
saturation in the ROZ. Next, we compare our simulation results to the down the well measurements of oil saturation
in the San Andres Seminole Field.

3.1 Effect of the duration of regional aquifer flow on oil saturation in ROZs

To evaluate the effect of the duration of regional aquifer flow on the nature of ROZ formation, we started with
the case that considers no capillary pressure (#1 in Table 2). This case shows a similar oil saturation field as another
case that considers single capillary pressure (#3 in Table 2). For the MPZ, the oil saturation is initialized using the
gravity-capillary equilibrium, and the initial oil saturation is high and around 0.8. The capillary transition zone in
these simulations is very small and almost not observable as shown around the interface between the yellow and
blue areas. As water influx proceeds (T=10,000 to 50,000 yrs.), the vertical extent of the ROZ increases. At a
timescale of 50,000 years, further changes in the magnitude and spatial distribution of oil saturation values are
negligible.

The variation of oil saturation with depth is perhaps the most important feature of ROZs. The intervals with high
saturation represent the low permeability/low porosity (<0.05) areas, and this oil cannot be efficiently displaced by
water as shown in Fig. 1. To quantify oil saturation vertical profiles, we plot the change of oil saturation along depth
at different times (Fig. 2). Overall, the oil saturation profiles attained an approximate or pseudo-steady state after
approximately 50,000 years. The attainment of pseudo-steady-state oil saturation is further illustrated in Fig. 3 that
shows the evolution cell oil saturation in several selected depths. It appears that, in this simulation, the upper part of
the ROZ requires a much longer time to reach this pseudo-steady state (note the light blue line in Fig.3).
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Fig. 1. The evolution of oil saturation fields considering single capillary pressure. The water inlet flux is 0.5 ft/yr. X/Z aspect ratio is 5.7.
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Fig. 2. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well
with measured oil saturation in the ROZ) of the oil saturation fields in Fig. 6.

Fig. 3. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the
ROZ top, the two depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom.

3.2 Effect of the interplay between inlet flux magnitude and capillary pressure
We first analyze the effect of water flux magnitude (aquifer flow-rate) on ROZs when considering single
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capillary pressure (left column in Fig. 4). ROZ thickness is sensitive to the magnitude of the upstream water flux in
the aquifer. This is because of the competition between the viscous and gravitational forces (the ratio is gravity
number Ngr,): large viscous force (large water flux) suppresses the effect of water gravity on the displacement
profile, and a thick ROZ is created. Additionally, the contact between the MPZ (yellow in Fig. 4) and ROZ (light
blue) becomes less inclined as water flux decreases; this is obviously because decreasing water flux tends to create
hydrostatic distribution of oil/water.

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the middle row in Fig. 4) and analyse the effect
of capillary pressure heterogeneity on the development of ROZs in response to this water flow. When capillary
pressure heterogeneity is taken into account, the producing water-oil contact is enlarged (relative to single capillary
pressure). In addition, the transition zone (black circled area in the middle row) between the ROZ and the MPZ is
distinct, with a thickness of 10-15 ft. The oil saturation in this transition zone varies significantly, from around 0.30
in light green spots to 0.80 in the light yellow patches. However, for the case considering single capillary pressure,
the transition zone is thin and poorly defined (refer to the middle left oil saturation field in Fig. 4).

Fig. 4. Oil saturation fields at 50000 yrs of flow simulation. Each row represents different regional water fluxes. The left column considers single
capillary pressure, whereas, the right column considers heterogeneous capillary pressure. The dashed lines represent the approximated transition
areas between the top of producing ROZ and the base of producing MPZs. X/Z aspect ratio is 5.7.

More importantly, the interplay between capillary pressure heterogeneity and upstream water flux largely
influences the thickness of the upper transition zone (the dashed circle area). Through comparing the middle
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saturation field to the lower one in the right column in Fig. 4, it can be seen that the upper transition zone becomes
thick as the upstream water flux decreases. Again, this is because of the lower viscous force, which in turn enhances
the effect of capillary dispersion on oil saturation.

The above analyses concentrate on the evolution of oil saturation in ROZs. The time scale of achieving quasi
steady-state oil saturation in a ROZ is much less than the geologic time of mountain uplift and erosion (~Ma).
Generally, the evolution of oil saturation in a given cell is mainly controlled by both relative permeability curves
and imposed pressure gradient (equivalent to inlet water flux). Thus, any changes in both of them would cause
different time consumed to achieve steady states.

3.3 Effect of regional water flow directions

The noteworthy issue is the nature of oil-water contacts (dashed blue lines in Fig. 5) for the two different regional
water flow directions. The inclination of the contact along the strike direction is smaller than in the dip direction.
This observation is consistent with greater lateral sedimentary continuity along the strike.

Fig. 5. Impact of flow direction on oil saturation fields in the ROZ. The oil saturation is at the 50,000 yrs of flow simulation with capillary
pressure heterogeneity considered. The black dashed lines circle the oil stripes with large oil saturation in the ROZ, and the blue dashed lines
approximate the inclined producing water-oil contacts. The imposed water flux for both oil saturation fields is 0.5 ft/yr. Left: X/Z aspect ratio is

5.7. Right: Y/Z ratio is 7.7.

4. Discussion

This study has not attempted to specifically model the Seminole Field, rather, we have modelled the formation of
a generic ROZ by starting with an oil-saturated reservoir. Its thickness is equivalent to the sum of current SSAU
ROZ and producing MPZ. Our simulations reproduce many of the features reported from San Andreas ROZ
reservoirs. The simulation results are consistent with an effectively steady state being reached (at least with respect
to oil saturation) on a time scale of 50 thousand years. It is significant that, even after 1MM vyrs of regional water
flush, the oil saturation in several patches remains similar to the initialized values (0.7~0.8). These patches are local
areas of lower porosity and permeability. This observation is consistent with the observed presence of oil stains in
the less permeable patches of San Andres core samples.

The influence of capillary pressure heterogeneity on the flow paths of water/oil and thus on the ROZ
characteristics, is one of the key discoveries of this study. Heterogeneous capillary pressures are known to be
significant for a number of subsurface processes that are characterized by slow flow rates, e.g., buoyant flow of CO-
during geological carbon sequestration [17,18] and secondary hydrocarbon migration/ accumulation [19]. Even for
conventional water flooding with flow rates three orders of magnitudes larger than that associated with the hydraulic
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head gradient and consequent subsurface regional aquifer flow rates preferred in this study, capillary pressure
heterogeneity apparently significantly affects oil saturation under some conditions [20, 21].

This study is subject to several limitations. First, the predictions of average oil saturation in the ROZs from our
simulations are marginally larger than those measured by Honarpour et al. [15]. One possibility is that, in some
cells, the 50,000 years of the flow simulations presented is insufficient to achieve a steady state. This is the
consequence of the fractional flow curve for water. The fractional flow of oil is reduced to a very small value
(<0.008) when water saturation increases to 0.5. Another complication is the impact of our limited ability to
accurately model the heterogeneous nature of the reservoir. The simulations in this study utilized a cell size of 100
ft. x ~2 ft. However, the estimates of porosity and permeability were based on measurements of core plugs with the
size of 1~2 inches. Upscaling these detailed measurements to the scale of the simulation grid inevitably averages out
the true heterogeneous nature of the reservoir. Additionally, the water-oil-rock interaction might need to be studied
to examine its effect on oil properties and reservoir petrophysical properties. Such geochemical reactions have been
demonstrated to be important in other similar subsurface flow dynamics [22, 23].

The capacity of ROZs to store CO2 associated with EOR is not well understood. Commercial scale ROZ floods
have only been implemented in the last decade and no studies of ROZ reservoirs have been published. Bachu et al.
[6] suggested that the oil industry regard ROZs as a superior target for geological carbon storage. They noted that
CO2-EOR will provide a mechanism to defray the costs of carbon capture and storage (CCS) projects. The current
study can be used as the basis for developing strategies to utilize CO: injection to optimize oil production and
sequestration. For example, heterogeneities in permeability, porosity, and capillary pressures are highly likely to
result in three-dimensional spatial heterogeneities in oil saturation. Such patches and layers of higher saturation
could be exploited by using multiple horizontal wells. Additionally, the extensive distribution of water in ROZs
should have some effects in selecting and optimizing CO- injection strategies. This extensive water distribution is
different from that in MPZ after man-made water flooding since, for MPZ, water saturations are locally high around
the water streamlines connecting injectors and producers. This difference would bring different optimized schemes
of WAG injection into ROZ reservoirs, including water cycle size and WAG ratio.

5. Conclusions and Recommendations

The key characteristic of residual oil zones (ROZs) is the spatial and depth dependant variation of oil saturation.
This information is important essential to assess reserves, design CO2-EOR projects, and estimate the sequestration
capacity in ROZs. This study has demonstrated that the key features of ROZs can be simulated using a commercial,
full-physics, multi-phase flow simulator. The results support the plausibility of the hydrodynamic model suggested
by earlier researchers, but do not rule out other models for the origin of ROZs.

The magnitudes of water flux (aquifer flow rate) and capillary pressure within the reservoir influences the
variation of oil saturation (both spatially and temporally) and geometry of ROZs. Larger water fluxes result in
thicker ROZs, and heterogeneous capillary pressures will lead to development of diffuse water-oil contacts. During
the formation of ROZ, the evolving oil saturation is controlled by the relative permeability curves. A very large
amount of oil resides in ROZ reservoirs in the San Andres Formation and these reservoirs are attractive targets for
CO2 EOR and associated storage. Additionally, the spatial distribution of oil in ROZs are different from that in
MPZs undergoing water flooding. This difference will be important in the optimization of CO2 EOR and storage in
ROZs.
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Abstract

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such reservoirs cannot be
produced by conventional production techniques. ROZs in carbonate reservoirs in the Permian Basin of West Texas were initially
interpreted (from wireline logs), as being productive oil zones. If these zones were completed for production, they produced
largely water. Over the last decade it has been demonstrated that CO2 injection can make these zones economic to produce. As a
result, ROZs in the Permian basin and elsewhere have become attractive targets for CO2-EOR (CO2 enhanced oil recovery) and
have a large potential for CO2 sequestration consequential to the EOR activity. The viability of CO2 EOR in ROZs is currently
being demonstrated by the results of COz injection into the ROZs at the Seminole, Wasson Denver Unit, and Goldsmith oil field.
The recoverable oil from ROZs in both the San Andres and Canyon Reef formations of Permian Basin, have been estimated as 12
billion barrels. A key question is the capacity of ROZs to sequester COx.

The current project is the first study of ROZs based on extensive studies of cores, wireline logs, and production data from
several ROZs in the San Andreas Formation. Understanding the magnitude of oil saturation and how it varies within ROZs is
important to modelling both EOR and sequestration. The commonly accepted model for the formation of ROZ is based on the
hydrodynamic effects of tectonically-controlled increased water flows in aquifer at the base of oil fields. In this work, the nature
of this process was modelled using a commercial reservoir simulator. These flow simulations were designed to understand how
the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil saturations in
ROZs. A special emphasis was on understanding the impact of reservoir heterogeneity on the variation of capillary pressures
throughout ROZs. Heterogeneities in capillary pressures appear to dominate the distribution of oil saturation within the ROZ and
will also strongly influence the performance for both oil production from CO:2 injection, as well as associated CO2 storage.
Finally, we discuss the implications of our results to the understanding of both CO2 EOR and storage in ROZs.

Keywords: Oil Saturation, Residual Oil Zone, CO2 EOR and Storage, Flow Modeling.

1. Introduction

Residual oil zones (ROZs) can be defined as an oil reservoir in which the oil is at, or is close to, residual oil
saturation. ROZs have the apparent characteristics of a reservoir after the completion of a water flood. ROZs in
carbonate reservoirs in the Permian Basin of Texas were initially interpreted from wireline logs as being productive

* Corresponding author. Tel.: +1-512-471-5117; fax: +1-512-471-0140
E-mail address: ian.duncan@beg.utexas.edu


mailto:ian.duncan@beg.utexas.edu

GHGT-14 Bo Ren, lan J. Duncan 2

oil zones. However, if these zones were completed for production, they produced water only occasionally with
traces of oil. Thus, ROZs can be produced by neither conventional pumping nor water flooding. Rather, producing
from these zones requires some form of enhanced oil recovery such as CO2-EOR (providing incidental sequestration
of CO).

ROZs have different types in terms of their origin and evolution [1]: (i) an oil accumulation is subject to a tilt
(from differential subsidence or tectonic movements), resulting in re-equilibration of water-oil contacts and the
formation of ROZs; (ii) the original oil accumulation leaks through seal (perhaps temporally), again leading to ROZ
formation; (iii) a change in the hydrodynamics of the underlying aquifer resulting in regional groundwater flow.
This flow sweeps the lower portion of oil columns, resulting in the development of ROZs. The consensus of
opinions is that the ROZs in the Permian Basin represent the third of these categories and the simulations made in
the current study are based on this scenario.

As a result of many years of testing and analysis by Permian Basin petroleum engineers and geologists, it has
been demonstrated that CO- injection enables economically viable oil production from ROZs [1-4]. The San Andres
Formation has over 10 Billion bbls of cumulative production. Estimates of the volume remaining from the original
oil in place (OOIP) vary between 50 to 80%. CO2 EOR in ROZs is currently taking place in eight San Andres oil
fields in the Permian Basin, including the Seminole San Andres Unit, the East Seminole field, the Goldsmith San
Andreas Unit, the Wasson Denver Unit, Tall Cotton, Hanford field, Means, and the Vacuum San Andres field.
Significant volumes of CO2 are being sequestered incidental to these CO2-EOR projects, providing a possible path
for large scale market-driven carbon capture and storage (CCS). The estimated recoverable oil from ROZs in both
the San Andres and Canyon Reef formations of Permian Basin, are estimated by Koperna et al. [5] as 12 billion
barrels. This represents a little over a third of the estimated original oil in place. Bachu et al. [6] noted that ROZs are
“regarded in the industry as the most optimum part of oil reservoirs to store CO2”. They based this on: the typically
large volume of ROZs; their high water saturation; and “hydrocarbon availability”.

Unfortunately, almost all the research on ROZ formation and characteristics has not been published in refereed
journals but rather is available in contract reports, presentations, and conference proceedings. Trentham and his
coworkers [7] have assumed that, high aquifer flow rates would have been initially established across the San
Andreas formation from the uplift of the Guadalupe Mountains along the western margin of the Permian Basin. This
uplift apparently peaked around 20 Ma associated with the formation of the Rio Grande Rift [8]. Subsequent erosion
of these mountains would have reduced hydraulic heads in the regional aquifer lowering flow rates. Harouaka et al.
[9] suggested that the hydrodynamic impact continued unabated, “albeit at a very slow pace like one foot/1000
years”, an assertion they based on “analytical modeling” using the analysis of Hubbert [10]. A recent study by
Trentham et al. [7] attempted to model the probable flow pathways, of what they termed “hydrodynamic fairways”.
However, absent a creation of a set of robust regional groundwater flow models extending back to the regional uplift
event in the Permian Basin, the groundwater flow directions cannot be well constrained. Jamali and Ettehadtavakkol
[11] modelled the ROZ formation process through mimicking the natural waterflooding process, however, their
specific simulation is based on a simplified static reservoir model and physics.

This paper is the first attempt to use multiphase and full-physics flow simulations to make a comprehensive study
of the hydrodynamic model for the development of (and the implications of for CO2-EOR) ROZs in the San Andres
Formation. In the following, we describe our modeling approach and analyze several factors that are potentially
significant in the evolution of ROZs. Finally, we evaluate the significance of these results to both oil production and
incidental CO2 sequestration in future CO2-EOR projects in these zones.

2. Methodology

This project set out to study the formation of ROZs in the San Andres Formation, based on creating simulations
modelling the “natural waterflood” scenario. We create simulations of these reservoirs that aim to explore the nature
and spatial patterns of oil saturation in ROZs in response to variations in the flow of regional aquifers. The simulator
used is Eclipse-E100 [12], an efficient and multidimensional black-oil simulator.

Our modeling is based on the reservoir characteristics of the residual oil zone associated with the Seminole Field,
however, we do not model this field specifically. A three-dimensional (3D) static reservoir model, representative of
the geology and petrophysical variation of the ROZ underlying the Seminole Field, was built from the published
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reservoir property data [13-15]. The model was populated using data from these published sources and from
petrophysical measurements made on cores, and interpretation of wireline logs from the BEG log library.

Two 2-D section geologic models were cut from the 3-D reservoir model: one is along the E-W (X-Z slice, the
approximate dip direction), and the other is along the N-S (Y-Z slice, the approximate strike direction). The purpose
of selecting these two sections is to examine how flow direction affects evolution the oil saturation in the ROZ. The
two vertical sections cross along a vertical line. This line overlaps a drilled vertical well with detailed well
properties published by Honarpour et al. [15]. Specifically, this well has an oil saturation profile, based on
measurements (made prior to CO2 injection into the ROZ) from sponge cores. This data provides an important way
for us to validate the reasonableness of our simulations.

The corner point grid system is used, and the dimensions of each model is 63x100. The cell size in the horizontal
direction is 100 ft., and the vertical cell size varies in different layers with the average ~2ft. The two 2-D orthogonal
models have similar means and standard deviation for the porosity and permeability (Table 1). Published
permeability measurements by Honarpour et al. [15] show that the horizontal and vertical permeability’s are largely
similar. These authors note that the presence of low permeability layers of fine-grained, anhydrite-rich facies,
creates a strongly anisotropic permeability. They suggest the resultant vertical component is approximately one
tenth of the horizontal component. Initially, hydrostatic pressure is set for the reservoir with the middle depth
pressure at 2119.9 psi, and the reservoir temperature is 104 ‘F. The oil saturation is initialized using the gravity-
capillary equilibrium method.

A capillary entry pressure field is generated using the Leverett j-function [16] that links permeability, porosity,
and capillary pressure. The reference capillary pressure curve is assigned to the cells with the permeability of 16 mD
as this reference curve is measured on the core with this permeability. These cells are considered as reference cells.
The other cells in the model are assigned with different capillary pressure curves by scaling the capillary pressure of
each cell with the corresponding permeability and porosity. The interfacial tension for each cell is assumed to be the
same, and contact angle has the same assumption. So each cell can be assigned with a capillary pressure curve that is
consistent with its upscaled permeability and porosity while omitting interfacial tension and contact angle.

Flow simulations are designed to model the key relevant physics for understanding the ROZ origin associated
with the San Andreas Formation in the Permian Basin. To understand the relevant physics, we first introduce a
gravity number (Ngr), and this number describes the influence of competitive gravity versus viscous forces on water
flooding. Ngr is a dimensionless ratio of the gravitational force acting on the fluids to the viscous force that drives
water migration.

In the 2D models, the volume of water injected is approximately 27 pore volumes (PV) for the base case
(corresponding to the regional water flux of 0.5 ft./yr.). This PV is consistent with the suggestions of Trentham et
al., [7] about the time scale and flux of regional natural water flooding impacting the ROZs within the Permian
Basin. The sensitivity of the magnitude of oil saturation in the ROZs to varying the magnitude and duration of
regional hydraulic head, is also investigated. The regional hydraulic head was varied over three orders of magnitude.
Additionally, changes in the nature of ROZs (e.g., oil saturation and geometry) in response to the lowering of
hydraulic head are examined. This lowering decreases regional water flow rate, so the study is designed to
approximate the decreasing rate of flow through three sequential simulation processes with the decreasing water
fluxes from 5ft/yr, 0.5ft/yr to 0.05 ft/yr, with each modeled time period lasting for 50,000 years (refer to case #12 in
Table 2). More importantly, both single and heterogeneous capillary pressure are purposely considered in these
simulations. Single capillary pressure means that the capillary pressure curve is used for all the cells in the domain,
whereas, heterogeneous capillary pressure means that scaled capillary pressure curves are employed.

Table 1 Injection simulation schemes in the 2D models

Water flux entering formation Injection rate, Injection duration, Total injected Ngralong the .
Dominant force
from wellbore, ft./yr. rb/d** Year water, PV wellbore
5.0 1834 50k 268 4.7E+3 Gravity
05" 18.3* 50k* 26.8* 4.7E+4* Gravity
0.05 1.83 50k 27 4.7E+5 Gravity

*means base case settings; ** rb means reservoir barrel
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A vertical injector and a producer are used to mimic regional water filtration in the ROZ, and the two wells are
placed on the left and right boundary cells, respectively. Both wells are perforated along the intervals of both the
producing ROZ and the water leg, for which, their heights are approximated through the field tests and
measurements [15]. Constant water rate is imposed on the injector with the values shown in Table 2, and the same
rate of liquid production is imposed on the right producer. Boundary settings in the N-S slice are the same. The
condition settings for all the simulated cases are summarized in Table 2.

Table 2 Summary of conditions for simulations. The time duration in parentheses, correspond to the adjacent PV.

Case No Water flux, ft/yr Injected PV Flow direction Capillary pressure

1 0.5 26.8 (50K yrs) W-E w/o

2 0.5 32.1 (60K yrs) W-E w/o

3 0.5 26.8 W-E Single

4 0.5 26.8, 268, 536 (LMM yrs) W-E Heterogeneous
5 5.0 268 W-E Single

6 5.0 268 W-E Heterogeneous
7 0.05 2.7 W-E Single

8 0.05 2.7, 27,54 (IMM yrs) W-E Heterogeneous
10 0.5 26.8 N-S Heterogeneous

3. Results

We firstly describe the evolution of oil saturation fields during the ROZ formation process. Particularly, we
emphasize the effect of the interplay between water flux magnitude and capillary pressure on the remaining oil
saturation in the ROZ. Next, we compare our simulation results to the down the well measurements of oil saturation
in the San Andres Seminole Field.

3.1 Effect of the duration of regional aquifer flow on oil saturation in ROZs

To evaluate the effect of the duration of regional aquifer flow on the nature of ROZ formation, we started with
the case that considers no capillary pressure (#1 in Table 2). This case shows a similar oil saturation field as another
case that considers single capillary pressure (#3 in Table 2). For the MPZ, the oil saturation is initialized using the
gravity-capillary equilibrium, and the initial oil saturation is high and around 0.8. The capillary transition zone in
these simulations is very small and almost not observable as shown around the interface between the yellow and
blue areas. As water influx proceeds (T=10,000 to 50,000 yrs.), the vertical extent of the ROZ increases. At a
timescale of 50,000 years, further changes in the magnitude and spatial distribution of oil saturation values are
negligible.

The variation of oil saturation with depth is perhaps the most important feature of ROZs. The intervals with high
saturation represent the low permeability/low porosity (<0.05) areas, and this oil cannot be efficiently displaced by
water as shown in Fig. 1. To quantify oil saturation vertical profiles, we plot the change of oil saturation along depth
at different times (Fig. 2). Overall, the oil saturation profiles attained an approximate or pseudo-steady state after
approximately 50,000 years. The attainment of pseudo-steady-state oil saturation is further illustrated in Fig. 3 that
shows the evolution cell oil saturation in several selected depths. It appears that, in this simulation, the upper part of
the ROZ requires a much longer time to reach this pseudo-steady state (note the light blue line in Fig.3).
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Fig. 1. The evolution of oil saturation fields considering single capillary pressure. The water inlet flux is 0.5 ft/yr. X/Z aspect ratio is 5.7.
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Fig. 2. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well
with measured oil saturation in the ROZ) of the oil saturation fields in Fig. 6.

Fig. 3. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the
ROZ top, the two depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom.

3.2 Effect of the interplay between inlet flux magnitude and capillary pressure
We first analyze the effect of water flux magnitude (aquifer flow-rate) on ROZs when considering single
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capillary pressure (left column in Fig. 4). ROZ thickness is sensitive to the magnitude of the upstream water flux in
the aquifer. This is because of the competition between the viscous and gravitational forces (the ratio is gravity
number Ngr,): large viscous force (large water flux) suppresses the effect of water gravity on the displacement
profile, and a thick ROZ is created. Additionally, the contact between the MPZ (yellow in Fig. 4) and ROZ (light
blue) becomes less inclined as water flux decreases; this is obviously because decreasing water flux tends to create
hydrostatic distribution of oil/water.

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the middle row in Fig. 4) and analyse the effect
of capillary pressure heterogeneity on the development of ROZs in response to this water flow. When capillary
pressure heterogeneity is taken into account, the producing water-oil contact is enlarged (relative to single capillary
pressure). In addition, the transition zone (black circled area in the middle row) between the ROZ and the MPZ is
distinct, with a thickness of 10-15 ft. The oil saturation in this transition zone varies significantly, from around 0.30
in light green spots to 0.80 in the light yellow patches. However, for the case considering single capillary pressure,
the transition zone is thin and poorly defined (refer to the middle left oil saturation field in Fig. 4).

Fig. 4. Oil saturation fields at 50000 yrs of flow simulation. Each row represents different regional water fluxes. The left column considers single
capillary pressure, whereas, the right column considers heterogeneous capillary pressure. The dashed lines represent the approximated transition
areas between the top of producing ROZ and the base of producing MPZs. X/Z aspect ratio is 5.7.

More importantly, the interplay between capillary pressure heterogeneity and upstream water flux largely
influences the thickness of the upper transition zone (the dashed circle area). Through comparing the middle
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saturation field to the lower one in the right column in Fig. 4, it can be seen that the upper transition zone becomes
thick as the upstream water flux decreases. Again, this is because of the lower viscous force, which in turn enhances
the effect of capillary dispersion on oil saturation.

The above analyses concentrate on the evolution of oil saturation in ROZs. The time scale of achieving quasi
steady-state oil saturation in a ROZ is much less than the geologic time of mountain uplift and erosion (~Ma).
Generally, the evolution of oil saturation in a given cell is mainly controlled by both relative permeability curves
and imposed pressure gradient (equivalent to inlet water flux). Thus, any changes in both of them would cause
different time consumed to achieve steady states.

3.3 Effect of regional water flow directions

The noteworthy issue is the nature of oil-water contacts (dashed blue lines in Fig. 5) for the two different regional
water flow directions. The inclination of the contact along the strike direction is smaller than in the dip direction.
This observation is consistent with greater lateral sedimentary continuity along the strike.

Fig. 5. Impact of flow direction on oil saturation fields in the ROZ. The oil saturation is at the 50,000 yrs of flow simulation with capillary
pressure heterogeneity considered. The black dashed lines circle the oil stripes with large oil saturation in the ROZ, and the blue dashed lines
approximate the inclined producing water-oil contacts. The imposed water flux for both oil saturation fields is 0.5 ft/yr. Left: X/Z aspect ratio is

5.7. Right: Y/Z ratio is 7.7.

4. Discussion

This study has not attempted to specifically model the Seminole Field, rather, we have modelled the formation of
a generic ROZ by starting with an oil-saturated reservoir. Its thickness is equivalent to the sum of current SSAU
ROZ and producing MPZ. Our simulations reproduce many of the features reported from San Andreas ROZ
reservoirs. The simulation results are consistent with an effectively steady state being reached (at least with respect
to oil saturation) on a time scale of 50 thousand years. It is significant that, even after 1MM vyrs of regional water
flush, the oil saturation in several patches remains similar to the initialized values (0.7~0.8). These patches are local
areas of lower porosity and permeability. This observation is consistent with the observed presence of oil stains in
the less permeable patches of San Andres core samples.

The influence of capillary pressure heterogeneity on the flow paths of water/oil and thus on the ROZ
characteristics, is one of the key discoveries of this study. Heterogeneous capillary pressures are known to be
significant for a number of subsurface processes that are characterized by slow flow rates, e.g., buoyant flow of CO-
during geological carbon sequestration [17,18] and secondary hydrocarbon migration/ accumulation [19]. Even for
conventional water flooding with flow rates three orders of magnitudes larger than that associated with the hydraulic
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head gradient and consequent subsurface regional aquifer flow rates preferred in this study, capillary pressure
heterogeneity apparently significantly affects oil saturation under some conditions [20, 21].

This study is subject to several limitations. First, the predictions of average oil saturation in the ROZs from our
simulations are marginally larger than those measured by Honarpour et al. [15]. One possibility is that, in some
cells, the 50,000 years of the flow simulations presented is insufficient to achieve a steady state. This is the
consequence of the fractional flow curve for water. The fractional flow of oil is reduced to a very small value
(<0.008) when water saturation increases to 0.5. Another complication is the impact of our limited ability to
accurately model the heterogeneous nature of the reservoir. The simulations in this study utilized a cell size of 100
ft. x ~2 ft. However, the estimates of porosity and permeability were based on measurements of core plugs with the
size of 1~2 inches. Upscaling these detailed measurements to the scale of the simulation grid inevitably averages out
the true heterogeneous nature of the reservoir. Additionally, the water-oil-rock interaction might need to be studied
to examine its effect on oil properties and reservoir petrophysical properties. Such geochemical reactions have been
demonstrated to be important in other similar subsurface flow dynamics [22, 23].

The capacity of ROZs to store CO2 associated with EOR is not well understood. Commercial scale ROZ floods
have only been implemented in the last decade and no studies of ROZ reservoirs have been published. Bachu et al.
[6] suggested that the oil industry regard ROZs as a superior target for geological carbon storage. They noted that
CO2-EOR will provide a mechanism to defray the costs of carbon capture and storage (CCS) projects. The current
study can be used as the basis for developing strategies to utilize CO: injection to optimize oil production and
sequestration. For example, heterogeneities in permeability, porosity, and capillary pressures are highly likely to
result in three-dimensional spatial heterogeneities in oil saturation. Such patches and layers of higher saturation
could be exploited by using multiple horizontal wells. Additionally, the extensive distribution of water in ROZs
should have some effects in selecting and optimizing CO- injection strategies. This extensive water distribution is
different from that in MPZ after man-made water flooding since, for MPZ, water saturations are locally high around
the water streamlines connecting injectors and producers. This difference would bring different optimized schemes
of WAG injection into ROZ reservoirs, including water cycle size and WAG ratio.

5. Conclusions and Recommendations

The key characteristic of residual oil zones (ROZs) is the spatial and depth dependant variation of oil saturation.
This information is important essential to assess reserves, design CO2-EOR projects, and estimate the sequestration
capacity in ROZs. This study has demonstrated that the key features of ROZs can be simulated using a commercial,
full-physics, multi-phase flow simulator. The results support the plausibility of the hydrodynamic model suggested
by earlier researchers, but do not rule out other models for the origin of ROZs.

The magnitudes of water flux (aquifer flow rate) and capillary pressure within the reservoir influences the
variation of oil saturation (both spatially and temporally) and geometry of ROZs. Larger water fluxes result in
thicker ROZs, and heterogeneous capillary pressures will lead to development of diffuse water-oil contacts. During
the formation of ROZ, the evolving oil saturation is controlled by the relative permeability curves. A very large
amount of oil resides in ROZ reservoirs in the San Andres Formation and these reservoirs are attractive targets for
CO2 EOR and associated storage. Additionally, the spatial distribution of oil in ROZs are different from that in
MPZs undergoing water flooding. This difference will be important in the optimization of CO2 EOR and storage in
ROZs.
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