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INTRODUCTION 

 

The discovery of ROZ (residual oil zone) underlying and lateral to major oil fields in the 

Permian of Texas have provided the potential for sequestering very large volume of CO2. The 

purpose of this study is to understand the nature of ROZs in the context of CO2EOR and 

geosequestration. The study was the first to gather detailed information on ROZs. It also provides a 

detailed and comprehensive analysis of the role of ROZ compared to MPZ (main pay zones) in 

achieving long term CO2 storage. This study has a wide scope and the potential to guide to the 

impacts of geological storage on GHG in the atmosphere. This report was developed based on a 

series of published papers. 
 

 

CONCLUSIONS 

This study has provided the understanding that allows accurate estimates of the CO2 

sequestration capacity of CO2-EOR in ROZs. This required an understanding of the incidental 

storage based on many years of production history and computer reservoir simulation. This 

project completed a detailed characterization of the largest producing ROZ, Hess’s Seminole San 

Andres Unit. The project used the detailed reservoir characterization of the field, to constrain 

reservoir simulations of multiphase fluid flow. These simulations were designed to evaluate 

strategies to increase CO2 storage as well as maximize oil production. A comprehensive 

reservoir characterization of Hess’s Seminole San Andres Unit was based on core logging, 

petrography, and stratigraphic correlation of faces using core and wireline logging results. We 

have investigated what controls sweep efficiency in ROZ reservoirs. This efficiency has a large 

impact on both the effectiveness of oil recovery and the volume of CO2 that will be sequestered. 

To understand what can be done to improve sweep efficiency we have used this new reservoir 

model. We have developed for the ROZ to design sophisticated multiphase fluid flow 

simulations to test different injection strategies for the ROZ. These simulations have allowed us 

to identify the WAG ratio that maximizes sweep. We have also completed an economic analysis 

of flooding ROZ reservoirs, based on simulations of flooding and using a Net Present Value 

(NPV) criteria. 

 

SUMMARY 

The study of the ROZ (residual oil zone) versus the MPZ (main pay zone) of the Seminole Field 

provided a unique insight into the nature of ROZ. This is because we had access to an order of 

magnitude of core available in other fields. We were also able to use an extensive petrophysical 

data base with one-foot sampling interval made available by the operator. We also obtained an 

extensive and unique data base containing the entire production history for the field at full 

resolution. The data set also includes a unique complete, highly-granular information on volumes 

of CO2 injection and CO2 production. We created a unique high-resolution model of the 

reservoir. This is the first such model that has been created. Using this very high-resolution data 

base we were able to make high resolution, multiphase fluid flow simulations. These fluid flow 

simulations have enabled our team to evaluate CO2 sweep in the ROZ in comparison with the 

MPZ. 
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EXECUTIVE SUMMARY 

 
ROZs (residual oil zones) have the potential for very large-scale CO2 sequestration and will 

likely play a major role in CCUS (carbon capture utilization and storage). Although significant 

DOE funding has gone into ROZ investigations little if any quantitative information have been 

made available on the geology, mineralogy, and geochemistry (particularly diagenesis and 

isotope geochemistry). 

The study of the ROZ (residual oil zone) versus the MPZ (main pay zone) of the Seminole Field 

provided a unique insight into the nature of ROZ. This is because we had access to an order of 

magnitude of core available in other fields. We were also able to use an extensive petrophysical 

data base with one-foot sampling interval made available by the operator. We also obtained an 

extensive and unique data base containing the entire production history for the field at full 

resolution. The data set also includes a unique complete, highly-granular information on volumes 

of CO2 injection and CO2 production. We created a unique high-resolution model of the 

reservoir. This is the first such model that has been created. Using this very high-resolution data 

base we were able to make high resolution, multiphase fluid flow simulations. These fluid flow 

simulations have enabled our team to evaluate CO2 sweep in the ROZ in comparison with the 

MPZ. 

Section 1 Nature of ROZs 

 
A residual oil zone (ROZ) is characterized by oil saturations close to residual values, similar to 

those found at the termination of waterflooding. It has been proposed that ROZs are formed from 

an original oil saturated or main pay zone (MPZ) that has been flushed by a regional aquifer 

(“natural waterflooding” (NWF)) over geological time scales. An alternative model for the origin 

of ROZ as the result of capillary trapping along oil migration pathways. This type of oil zone is 

widely distributed in the Permian basin, West Texas 

Steve Melzer of Melzer Consulting and Trentham of the Geology Department of the University 

of Texas Permian Basin (together with their co-authors Koperna, Kruuska, Hill, Hovorka and 

others), have pioneered the study of ROZs and generated significant interest from the DOE. 



These researchers have had a significant impact on interest in ROZs in the context of oil 

production and CO2 sequestration. 

Naturally occurring ROZs in carbonate reservoirs in the Permian Basin of Texas were initially 

interpreted from wireline logs as being productive oil zones. However, if these zones were 

subjected to drill stem tests or were completed for production, they produced water, occasionally 

with minor oil. Given that by definition that the ROZ will only produce water through primary or 

secondary (waterflood) production, the fields that are currently producing from the ROZ use 

CO2 injection. 

Residual oil zones (ROZs) are characterized by oil volumes near to residual saturation, 

underlying (brown field) and lateral (greenfield) to oil reservoirs. The oil in the ROZ is largely 

immobile (at or near irreducible saturation) and cannot be produced by primary or secondary 

recovery means. 

ROZs have been defined by Sue Hovorka in 2014, as a reservoir volume of “significant scale”, 

that has accumulated oil that was later naturally displaced [presumably by aquifer flow], leaving 

“behind a low, largely immobile remaining oil saturation”. Hovorka suggests that “ROZs are 

predictable at the regional scale according to the principles of buoyancy and hydrodynamics”. 

Melzer described three types of ROZs, each begins with an MPZ that subsequent to trapping is 

impacted by the structural and hydrodynamic history of an area: ROZ Type 1. Regional tilt of a 

basin; ROZ Type 2. Breach of the reservoir seal with secondary healing; and ROZ Type 3. 

Changed hydrodynamic conditions within the underlying aquifer. Type 1 and Type 3 ROZs are 

characterized by OWCs that are tilted. Such tilted OWCs can be developed in response larger 

pressure on one side of the structure. If there is a significant increase the water velocity of the 

original MPZ it becomes naturally water flooded forming a ROZ. it has been suggested that in 

the Permian Basin the direction of tilted OWC form a coherent pattern across the San Andres 

reservoirs in the north CBP and NWS 

A Type 1 ROZ occurs when an existing hydrocarbon accumulation in a structural or stratigraphic 

trap is subjected to a regional (tectonically induced) tilt. Type 1 ROZ is related to a gravity- 

dominated shift of the oil water contact (OWC). 



The origin of ROZs is controversial however their significance to CCUS is becoming well 

characterized, with computer simulation and ongoing production over that last two decades. The 

Permian Basin is the largest area with CCUS projects focused on ROZ. Several operators are 

flooding this resource, exclusively now through the use of CO2 injection. Currently, there are 

twelve commercial and field pilots in the west Texas Permian Basin region exploiting CO2-EOR 

technology to target this oil. 

 

 
Section 2: CO2 Sweep in ROZ 

 

 
 

The volumetric sweep efficiency is the pore volume swept (or contacted by injected by CO2) 

typically normed by the total pore volume. The macroscopic sweep efficiency is that portion of 

the reservoir volume swept by CO2. The macroscopic sweep efficiency for CO2 WAG injection, 

is in large part controlled by the reservoir’s heterogeneity. The key heterogeneity is in the 

petrophysical properties such as porosity and permeability. Poor sweep efficiency is associate 

with high residual-water-saturation that may degrade reservoir-performance. A systematic 

approach to improved sweep-efficiency is lacking. 

The sweep-efficiency of a segment of a reservoir, in some cases can be engineered to improve 

the sweep. For example, surfactants can be used to lower the interfacial tension between CO2 

and water and as a result improve displacement efficiency of oil may be increased. For example, 

WAG (water alternating gas) lowers the propency of CO2 to focus flow dominantly in high 

permeability. In the current study we conducted multi-phase computer simulations of WAG to 

examine the difference in sweep between the ROZ and MPC. 

Improvement in sweep efficiencies have been observed in vertical displacement experiments as 

the capillary number Cn increases. The capillary number characterizes the ratio of viscous forces 

to interfacial tension forces. CO2 flooding is often characterized by poor volumetric-sweep- 

efficiency, a result of the high CO2 mobility and formation heterogeneity. The volumetric, macro 

sweep-efficiency also is dependent on the injection pattern used, nature of reservoir fracturing, 

location of gas-oil and oil-water contacts, reservoir thickness, mobility ratio, and the density 

difference between the displacing and displaced fluid. However, this definition of Cn is an 



oversimplification as the ratio of viscous and capillary force is scale-dependent. As a result, 

predicting the role of volumetric sweep efficiency on oil production for specific reservoirs 

requires multiphase flow simulations. 

Two key metrics for WAG-injection are “WAG ratios” and “CO2 half-cycle sizes”. WAG 

injections are characterized by the ratio of volumes of water slugs to CO2 slugs utilized. 

Experimental studies of oil saturated sand packs concluded that WAG ratios for CO2 of 1 

maximize oil production. The same result was obtained from simulations of real reservoirs. Also, 

most of the most common reported WAG ratio in fields are around 1.0. 

The optimization of this process has been studied extensively in the past. It has been observed 

that the optimum slug sizes are 0:1 (continuous slug process) and 1:1 for tertiary oil recovery by 

CO2 injection for water-wet and oil-wet systems, respectively. They noted that maximum 

recovery is a stronger function of slug size in secondary CO2 flood than in tertiary flooding. 

Tertiary floods in the water-wet models were dominated by gravity forces while tertiary floods in 

an oil-wet medium were controlled by viscous fingering. 

If the maximizing oil production is desired, the WAG ratios resulting in the minimum- retention 

fractions should be implemented. In contrast continuous CO2 injection that corresponds to a 

WAG ratio of zero. In this case Ren and Duncan have shown that in this case the fraction of CO2 

retained can be nearly 70% of injected CO2. The sizes of CO2 half-cycle sizes are best 

characterized in terms of the %HCPV (hydrocarbon pore volumes). %HCPV is a proxy for time 

scaled to the nature of the reservoirs. In a mature CCUS project, WAG injections, recycling of 

over half of the CO2 may be achieved. 

In reservoirs that are very heterogeneous, continuous CO2 flooding displaces less of the OOIP, 

with oil in low permeability layers not being produced as a result of the high CO2 mobility. The 

effect of wettability on the performance of WAG is crucial, especially at high WAG ratios. High 

WAG ratios result in less oil recovery by extraction. In water-wet rocks, this effect is significant 

and no extraction at high WAG ratios is observed. In mixed-wet rocks, however, significant oil 

recovery is obtained due to extraction regardless of WAG ratio. In the case of oil-CO2 

miscibility, the IFT of oil–CO2 becomes zero obviously less than the oil-water IFT, resulting in 

more effective mobilization of oil trapped oil pores with complex geometries, resulting in an 

increase of oil recovery. 



It was discovered that WAG had the effect of temporarily blocking CO2 from flowing through 

high permeability/porosity. This has the effect of forcing the CO2 to contact more of the volume 

of the reservoir. WAG injection results in increasing the effectiveness of displacement by CO2 

and improved sweep efficiency of water. In WAG injections, a result of alternating slugs of CO2 

and water, is the reduction of viscous instability and an increase in the effectiveness of oil 

production. WAG has been used by most operators to increase overall oil recovery, 

Two CO2 /WAG injection rate patterns were distinguished by in the SACROC field as either 

WAG-sensitive or WAG insensitive. It has been noted that WAG-sensitive portions of the 

reservoir were characterized by injectivity losses for CO2, sometimes on the order of 80%. They 

suggested that the WAG-insensitive patterns were characterized by fracture flow rather than by 

flow in the matrix. Their study of SACROC showed that over time, the injectivity of CO2 

mostly returned to the initial levels before WAG was initiated. The analysis of concluded WAG- 

insensitive patterns was characterized by fracture flow not matrix flow. Their simulations, in the 

context of injection and production rates (for the SACROC field) suggest that WAG injections 

with “longer CO2 cycles and shorter water cycles improved the injectivity and pattern 

production”. 

The WAG process, is the mobility control strategy of choice for injection CO2. Despite its 

popularity, limited fluid phase simulations, have been published in journals with history 

matching, detailed static reservoir models, and well-based injection and production data. In 

water-wet reservoirs, it has been argued that the oil recovery for CO2–WAG scenarios is lower 

when the injection pressure is less than the MMP (minimum miscibility pressure) and the 

spreading coefficient is negative. The bypassed oil in the reservoir in these circumstances will 

have the smallest contacted surface area per volume. Current research is focused on such thing as 

manipulating the system to enhance the surface area contacted. For example, using a pre-flush of 

CO2 saturated reservoir water can impact the interfacial tensions (IFT) between the reservoir 

fluids and the spreading coefficient. A pre-flush of CO2-saturated water can result of changing 

the spreading coefficient from negative to positive. As a result (In a water-wet reservoir), this 

increases surface contact area between the CO2 and oil, improving oil production. It has been 

suggested that WAG injection increases the storage on CO2 in the reservoir relative to 

continuous CO2 injection. This conclusion is not supported by our simulations. 



The effectiveness of CO2 injection as EOR is in part a function of the sweep efficiency. The 

mobility ratio, is a metric for the factors influencing the volumetric sweep. This ratio for 

injected CO2 predicts a poor sweep, because of the low viscosity of the gas relative to that of the 

oil. Both the microscopic and macroscopic sweep efficiencies are important metrics. 

Macroscopic heterogeneity determines the parts of the reservoir swept by the CO2. The 

macroscopic efficiency is driven in part by the density contrast between the water, oil and CO2 

phases as well as the heterogeneity of the reservoir. In highly heterogenous reservoirs, in zones 

undergoing high permeability water flooding, has effective volumetric sweep that results in low 

residual oil saturations. 

Improved microscopic displacement efficiency is typically related to changes in capillary 

number. The capillary number (Nc), is based on the ratio of viscous to capillary forces. The 

factors controlling microscopic sweep are complex, including the interfacial tensions, dynamic 

fluid-fluid and fluid mineral contact angles, the shape of pores and their wettability. As a result, 

surface tension, viscosity, and wettability may be the only properties that can be manipulated to 

increase oil recovery through increased microscopic displacement. These issues can be included 

in the design of the WAG injection. 

Storage of CO2 in depleted oil reservoirs has the advantage that they are typically are well 

characterized. Currently there are over 100 CO2-EOR projects most in Texas. The first 

commercial scale CO2-EOR project was at the Kelly Snyder field (now known as SACROC) 

began in 1972 in West Texas. Hence, CO2-EOR technology has been used as CCUS for five 

decades. The initial SACROC CO2 floods were carried out with anthropogenic CO2 captured 

from a natural gas field. 

We conducted flow simulations of CO2 injection into both synthetic and realistic geologic 

reservoirs to find the optimal injection strategies for several scenarios. These simulations of CO2 

injection follow either man-made waterflooding or long-term natural waterflooding. We 

examined the effects of CO2 injection rates, well patterns, reservoir heterogeneity, and 

permeability anisotropy, on optimal WAG ratios. Optimal is defined as being at minimal net 

CO2 utilization ratios or maximal oil production rates. 



Simulations of CO2 EOR show that the optimal WAG ratio (the ratio of injected water and CO2, 

in reservoir volumes) for the ROZs is less than 1, and it depends, but in qualitatively different 

ways, upon the well pattern and reservoir heterogeneity. The optimal WAG ratio tends to 

increase with changing from inverted 9-spot (80-acres) to inverted 5-spot (40-acre) or increasing 

reservoir heterogeneity. The ratios for ROZs are consistently less than those observed in the 

same geologic models experiencing CO2 injection after traditional (man-made) waterflooding. 

This is because the water saturation caused by slow regional aquifer flow (~1ft/yr) differs from 

that created by traditional waterflooding. In ROZs, water prevails almost everywhere and thus it 

is less needed to ease CO2 channeling as compared to MPZs. 

This work demonstrates that optimal WAG ratios for oil production in ROZs are different from 

those in traditional MPZs because of oil saturation differences. Thus, commingled CO2 injection 

into both zones or directly copying WAG injection designs from MPZs to ROZs might not 

maximize oil production. 

Our simulation results show that the CO2 net utilization ratios for the WAG after NWF found 

in the current study are larger than those for the WAG after MMWF. The large differences found 

are apparently the result of the relative magnitudes of initial oil saturation at the beginning of WAG 

injection. The utilization ratios for both types of WAG (after NWF versus after MMWF) are 

dependent on the WAG ratios, reservoir heterogeneity, and well patterns, but with different trends 

and extents. In the case of WAG following NWF, there is a WAG ratio (approximately 1.0) that 

yields the lowest net utilization ratios, irrespective of the well pattern. However, for WAG 

following MMWF, the net utilization ratio monotonically decreases with the WAG ratio. The 

different trend is essentially because of the oil saturation magnitudes at the beginning of WAG 

injection. 

Reservoir heterogeneity does not alter the trends described above, however it leads to different 

net utilization ratios. Heterogeneity influences net utilization ratios in different ways for the cases 

of WAG following NWF versus following MMWF. The presence of heterogeneity results in larger 

utilization ratios relative to homogeneous reservoirs, for WAG following NWF. This is not the 

case for WAG following MMWF. Simulated production data indicates that heterogeneity for the 

WAG after NWF results in the rate of increasing production of CO2 being less than the rate at 



which oil production decreases. This results in higher net utilization ratios for the heterogeneous 

case compared to the homogeneous one. 

 
 

Several conclusions can be drawn based on our work on simulations: 

 
 

 Capillary pressure influences remaining oil saturation more significantly for NWF than for 

MMWF. Small aquifer rates for the geologically-lasting NWF enhances capillary spreading and 

thus cancels the effect of heterogeneity in sweep. This reduces oil saturation to be close to 

residual levels in every portion of ROZs. 

 
 WAG ratios for either minimizing net utilization ratios or maximizing averaged oil production 

rates) for virgin ROZs are consistently smaller than those for MPZs after MMWF. This is 

because of the prevalent high-water saturation (and low oil saturation) in the ROZs. 

 
 The optimal WAG ratio (at the minimal net utilization ratio) increases when: (i) increasing initial 

oil saturation (before WAG); (ii) the ratio of kv/kh increases; and (iii) the well pattern changes 

from inverted 9-spot to inverted 5-spot. 

 
 The CO2 net utilization ratios during CO2 WAG injection for virgin ROZs are about 2-3 times 

larger than those for MPZs after MMWF. The utilization ratios depend on well patterns, reservoir 

heterogeneity, and WAG ratios. 

 
 Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs are 

around ¼-¾ of those for the WAG in the MPZs after MMWF. 

 
The results of this study are important for designing injection strategies for WAG in stacked MPZ 

and ROZ reservoirs. Four main trapping mechanisms for CO2 are typically recognized: structural/ 

stratigraphic trapping; residual trapping of CO2; solubility trapping; and mineral trapping: 

1. Geological trapping is based on either structural or stratigraphic traps. Structural traps are 

formed by folding, in some cases combined with faulting of a seal (a non-permeable rock 

forming a capillary barrier to flow. Stratigraphic traps are formed by the overlapping of 



relatively high porosity/permeability reservoir facies and low permeability seal facies. 

Local and regional unconformities are also form common geologic configuration for 

stratigraphic traps. 

2. Residual trapping: Injection of CO2, flushes a portion of the oil and water in the reservoir’s 

pores. Of this volume of CO2 is in part split into many micrometer-sized bubbles so that 

only a portion of the CO2 is mobile, the rest is immobilized by fixing in pores due to 

capillary forces. This process is known as residual trapping and thus presumably an 

effective mechanism for long-term storage. Voidage-trapping for CO2 storage in oil 

reservoirs, is often referred to as voidage-replacement. In this case, injected-CO2 occupies 

the pore-volume that oil and water have been displaced from. 

3. Solubility trapping is based on the dissolution of CO2 into formation fluids. Following the 

dissolution in the reservoir fluid their physical properties change. For example, dissolution 

of CO2 into oil results in it swelling as a very small molecule (CO2) dissolves into a fluid 

(oil), dominated by long chain hydrocarbon polymers. This results in oil that becomes 

lower in density (buoyancy) and viscosity. It also impacts the oil IFT. A significant portion 

of CO2 dissolves in the oil in the reservoir but is capillary trapped and thus not produced. 

CO2 solubility in a water phase is a function of pressure. temperature, and salinity. CO2 

dissolution in the water phase results in lower pHs and a resultant increase in the solubility 

of some minerals. 

4. Mineral trapping involves chemical reaction between injected CO2 and reservoir minerals 

that results in very long-term immobilization by the formation of carbonate minerals. 

These trapping mechanisms reduce the portion of CO2 that is mobile and that can potentially leak 

from a reservoir. By storing oil that has become a single phase via dissolution the relative volume 

of structurally trapped gas is decreased resulting in a reduced likelihood of leakage. The volume 

of mobile CO2 varies within and between reservoirs. It depends on factors such as the solubility of 

CO2 in the oil and the reservoir water, the wettability of the pore surface, and the interfacial tension 

(IFT) between the oil and CO2, at pressures above the MMP. Solubility trapping in oil increases 

over time with a rate, during post injection periods, depending on the diffusion rate; the dimensions 

of oil in pore spaces; and convection. A strong aquifer at the base of a reservoir can carry away 

CO2 dissolved in water resulting in further dissolution of CO2 into the water leg of the field. WAG 

injection significantly increases the sweep efficiency and as a result increases CO2 trapping. 



We evaluate different development strategies and their associated uncertainties through integrated 

full-physics flow simulation and economic assessment for a San Andres Unit Brownfield residual 

oil zone. The assessment is based on a high-resolution geological model with integrated geological 

and reservoir characterization and careful calibration through historical primary and secondary 

production data matches. 

 
To better compare development strategies, we defined and calculated a series of metrics (e.g., 

cumulative oil production, CO2 storage amount, CO2 retention fraction, and net present value 

(NPV)) for CO2 EOR and storage. Water alternating gas (WAG) ratios were tuned to maximize 

either oil production or NPV. The influence of economic parameters (e.g., oil price and carbon 

credit) on favorable WAG ratios were examined. We found that: 

i) Simultaneous WAG injection into both the MPZ and ROZ maximizes oil production 

and NPV, as compared to other injection strategies. 

ii) The NPV is more sensitive to the WAG ratio when co-developing the ROZ and MPZ 

than in MPZ-only flooding. 

iii) When targeting CO2 storage, switching from comingled injection to only ROZ injection 

after two decades of production is a viable strategy. The optimal switching time needs 

further study. 

iv) As the CO2 tax credit varies, the best WAG ratios to maximize NPV change to balance 

benefits from oil production and carbon storage. 

This work provides a basis for future optimization of CO2 EOR and storage in brownfield ROZs. 

 

 

 
For six field-scale CO2 floods that the more CO2 is injected, the less is retained. For example, for 

the Means Unit when 20% of the pore volume was injected, about 15% of the pore volume of CO2 

has been retained. Under ideal circumstances, the amount of CO2 retained or trapped by 

subsequent water injection should approximately be equal to the residual oil saturation to 

waterflooding. Note the difference between the different CO2 storage patterns between the Horse 

Shoe Atoll fields (SACROC and Salt Creek) and the Central Basic Platform and North West Shelf 

(Wasson, Means, Seminole, Goldsmith, Hanford etc.) 



 

 

Section 3: Geology and Geochemistry 

 
An understanding of the impact of diagenesis on San Andres ROZ reservoirs is important for both 

understanding the heterogeneity of porosity and permeability at the reservoir scale and 

assessing/predicting the differences in oil productivity between ROZ and MPZ reservoirs. 

One aim of our study was to investigate the diagenetic characteristics of the San Andres Formation 

(focusing on the ROZ) to elucidate the factors that control the reservoir quality and sweep. The 

current project is the first study of ROZs within the San Andreas based on studies of extensive 

cores, wireline logs, and petrophysical data. We document the petrography of the dolomite and 

anhydrite textures and attempt to quantify the conditions under they were formed, (2) the origin 

and evolution of the paleo-waters that modified the San Andres carbonates inferred from the 

isotopic geochemistry, and (3) the sequence and timing of diagenetic events that these deposits 

have subsequently undergone. 

In this study, 130 thin sections were prepared from 5 cores of wells SSAU #2714, SSAU 

#2921, SSAU #3903R, SSAU #5309, and SSAU #5505R. These thin sections were impregnated 

with blue dye to highlight megapores (>~10 µm) and with blue-fluorescent dye to highlight 

micropores (<~10 µm). For the petrographic observations the thin sections were examined by 

transmitted-light microscopy and cathodoluminescence microscopy (optical-CL) using a Reliotron 

III Cathodoluminescence attachment operated at 10-18 kV gun potential and 0.5-0.6 V beam 

current. 

Textural characteristics of dolomites and diagenetic cements were investigated using a Zeiss 

Sigma High Vacuum Field Emission scanning electron microscope (HV FE-SEM) at the Bureau 

of Economic Geology, The University of Texas at Austin. Carbon-coated samples (~15 µm) were 

imaged under SEM-CL with a Gatan MonoCL4 detector operated at 5 kV and 120 µm aperture. 

Elemental analysis were analyzed by energy dispersive x-ray spectroscopy (EDS). 



Powder samples (~30-50 mg per single sample) of dolostone were extracted for carbon and 

oxygen isotope measurements. The powered samples were heated to remove organic materials and 

then reacted with anhydrous phosphoric acid, under vacuum, to release CO2 at 50°C for 24 hours. 

The CO2 was then analyzed for carbon and oxygen isotopes on a Finnigan MAT251 mass 

spectrometer standardized with NBS-18. All carbon and oxygen data are reported in ‰ units 

relative to the Vienna Pee Dee Belemnite (VPDB) standard. The precision for both δ13C and δ18O 

measurements is better than ±0.1‰. 

Eight dolomite and six anhydrite samples were leached in 0.2 M ammonium acetate with a pH 

of 8 prior to acid digestion for Sr isotopic analysis. Dolomite in 8% acetic acid for 15 minutes and 

anhydrite Sr was separated in 3M HNO3 using Eichrom Sr Specific resin in 70 ul columns. Total 

procedure blank for Sr samples was l<30 pg. Sr samples were loaded onto single Re filaments with 

tantalum fluoride and 0.05M phosphoric acid and subsequently analyzed on a ThermoFisher Triton 

thermal ionization mass spectrometer in static mode. Intensity of 88Sr of 8 V (using 10−11 Ohm 

resistors) ± 5 % was maintained for 8 blocks of 20 cycles with 8 second integration time. The 

87Sr/86Sr ratio was corrected for mass fractionation using 88Sr/86Sr = 8.375209 and an exponential 

law. 

Two types of dolomite and two types of dolomitic sediments are distinguished based on crystal 

size and geometry (Sibley and Gregg, 1987). Type-1 dolomites (Dol-1 in Figure 3a) consists on a 

very finely crystalline brownish dolomite, non-planar and anhedral dolomite crystals, up to 10 μm 

in size, typically showing red, dull, luminescence (Figure 3b and 3c). Under SEM-CL the crystals 

are relatively homogeneous, dark gray in color. This type of dolomite appears within the skeletal 

components and thus is dominant in dolo-wackestones, dolo-packstones, and skeletal-peloid- 

bryozoan dolo-baffelstone/dolo-rudstone (microfacies b, c and d). Type-2 dolomite (Dol-2 in 



Figure 4a), is constituted by medium to coarse crystalline, planar-s and subhedral-dolomite 

crystals, ranging from 50 to 200 μm in size, and showing red bright luminescence (Figure 4 a-c). 

This dolomite shows relatively lighter (white) CL color. This type of dolomite appears in all 

microfacies. 

Dolomite sediment-1 is made up red bright luminescent anhedral dolomite crystals, 25-150 μm 

in size. The sediment has yellow color and is abundant in packstones, grainstones and wackestones 

(microfacies b, c and f). 

Dolomite sediment-2 consist of white-brownish sediment made up of dull red luminescent 

anhedral dolomite crystals, <10 μm in size, partially filling the moldic porosity. The sediment 

includes reworked dolomite crystals, medium crystalline (up to 75 μm in size). Under the SEM- 

CL, the fined grained sediment is dark luminescent whereas the reworked dolomite crystals are 

light (white) color. This dolomite sediment is very common within microfacies b and c. 

Sulfate cemented dolomite reservoir rocks in Seminole San Andres Unit (SSAU) in Central 

Basin platform have been widely studied for decades due to the importance of these reservoirs to 

oil production in one for the great petroleum provinces. Understanding the role of diagenesis in 

controlling the porosity and permeability of these reservoirs has proved a challenge. With the 

recent surge in development of residual oil zones, occurring at the base of many (perhaps all) of 

these reservoirs there have been and increased interest in the factors controlling porosity and 

permeability distribution in these San Andreas reservoirs. 

Melzer has suggested that sweeping low salinity water through the lower parts of the reservoir 

resulting Type III ROZs. He sees the results as late-stage, “pervasive dolomitization with 

enhanced porosities and permeabilities”. He also suggests anaerobic processes are responsible 

for the release off sulfur as H2S. He suggested that H2S results souring of the oil and gas, as well 

as alteration of disseminated anhydrite to calcite. He also asserted that aquifer “flushing” 

converts the calcite to dolomite via abiotic chemical reactions such as CaCO3 + Mg (aq) = 

1/2MgCa(CO3 ) and that biogenic (microbial mediated) chemical reactions consume 



hydrocarbons and produce native sulfur such as CaSO4 + HC = CaCO3 + H2O + S (Melzer, 

2012). He suggests that this “late stage pervasive dolomitization” results in enhanced porosities 

and permeabilities. 

 

 
Trentham and Melzer have suggested that the common characteristics of ROZs in the Permian 

Basin are: 

(1) Enhanced porosity and permeability, resulting from diagenesis of the carbonate reservoir 

rocks, specifically dissolution of anhydrites 

(2) “What is typically referred to as sulfur water” in contrast to higher salinity “connate water” in 

the main pay zone. 

(3) Porosities and permeability’s slightly higher than in the main pay zone, which he ascribes to 

an “overlay of late (sweep stage) dolomitization” 

(4) The occurrence of native sulfur associated with anhydrite nodules. Melzer (2013) asserted 

that another characteristic of the diagenesis on ROZs is the presence of native sulfur. He further 

asserts that sulfate reducing bacteria mediate “anhydrite dissolution and the precipitation of 

sulfur”. 

It has been asserted that porosities and permeabilities can be higher in the ROZ than in the main 

pay zone as a result of the meteoric dissolution due to pervasive “late” dolomitization caused by 

sweep of meteoric aquifers. 

Assuming that dolomite formation is occurring in shallow conditions where the initial dolomite 

is characterized by carbon and oxygen stable isotopes that were consistent with formation from 

evaporated Permian (Guadalupian) sea water. Such brines were the dolomitizing fluids. Gypsum 

apparently precipitated during the main dolomitization event. At a later stage anhydrite formed 

replacement nodules and cement. 

The assertion that dolomitic reservoirs in ROZs underlying dolomitic MPZs are chemically 

modified and recrystallized is not supported by any mineralogical, chemical, or isotopic data. 

This data demonstrates that there are no changes in the mineralogical, chemical or isotopic data 

between the MPZ and the ROZ of the Seminole field. This field (known as the gold standard of 



ROZs) is the only ROZ that has been quantitively studied. None of the four characteristics of 

ROZs enumerated above are found in the Seminole Field. This undermines their model for the 

genesis of ROZs. Hovorka’s assertion that “Oils in ROZs and main reservoir zones of the 

Permian Basin are known to be biodegraded as a result of interaction with inflowing meteoric 

waters” is not supported by any evidence. 

 

 
Section 4: Overall Conclusions 

 
This study has provided the understanding that allows accurate estimates of the CO2 

sequestration capacity of CO2-EOR in ROZs. This required an understanding of the incidental 

storage based on many years of production history and computer reservoir simulation. This 

project completed a detailed characterization of the largest producing ROZ, Hess’s Seminole San 

Andres Unit. The project used the detailed reservoir characterization of the field, to constrain 

reservoir simulations of multiphase fluid flow. These simulations were designed to evaluate 

strategies to increase CO2 storage as well as maximize oil production. A comprehensive 

reservoir characterization of Hess’s Seminole San Andres Unit was based on core logging, 

petrography, and stratigraphic correlation of faces using core and wireline logging results. We 

have investigated what controls sweep efficiency in ROZ reservoirs. This efficiency has a large 

impact on both the effectiveness of oil recovery and the volume of CO2 that will be sequestered. 

To understand what can be done to improve sweep efficiency we have used this new reservoir 

model. We have developed for the ROZ to design sophisticated multiphase fluid flow 

simulations to test different injection strategies for the ROZ. These simulations have allowed us 

to identify the WAG ratio that maximizes sweep. We have also completed an economic analysis 

of flooding ROZ reservoirs, based on simulations of flooding and using a Net Present Value 

(NPV) criteria. 

Several conclusions can be drawn based on our work on simulations: 

 

 Capillary pressure influences remaining oil saturation more significantly for NWF than 

for MMWF. Small aquifer rates for the geologically-lasting NWF enhances capillary 

spreading and thus cancels the effect of heterogeneity in sweep. This reduces oil 

saturation to be close to residual levels in every portion of ROZs. 



 WAG ratios for either minimizing net utilization ratios or maximizing averaged oil 

production rates) for virgin ROZs are consistently smaller than those for MPZs after 

MMWF. This is because of the prevalent high-water saturation (and low oil saturation) in 

the ROZs. 

 The optimal WAG ratio (at the minimal net utilization ratio) increases when: (i) 

increasing initial oil saturation (before WAG); (ii) the ratio of kv/kh increases; and (iii) the 

well pattern changes from inverted 9-spot to inverted 5-spot. 

 The CO2 net utilization ratios during CO2 WAG injection for virgin ROZs are about 2-3 

times larger than those for MPZs after MMWF. The utilization ratios depend on well 

patterns, reservoir heterogeneity, and WAG ratios. 

 Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs 

are around ¼-¾ of those for the WAG in the MPZs after MMWF. 

 

 
Assuming that dolomite formation is occurring in shallow conditions where the initial dolomite 

is characterized by carbon and oxygen stable isotopes that were consistent with formation from 

evaporated Permian (Guadalupian) sea water. Such brines were the dolomitizing fluids. Gypsum 

apparently precipitated during the main dolomitization event. At a later stage anhydrite formed 

replacement nodules and cement. 

The assertion that dolomitic reservoirs in ROZs underlying dolomitic MPZs are chemically 

modified and recrystallized is not supported by any mineralogical, chemical, or isotopic data. 

This data demonstrates that there are no changes in the mineralogical, chemical or isotopic data 

between the MPZ and the ROZ of the Seminole field. This field (known as the gold standard of 

ROZs) is the only ROZ that has been quantitively studied. None of the four characteristics of 

ROZs enumerated above are found in the Seminole Field. This undermines their model for the 

genesis of ROZs. Hovorka’s assertion that “Oils in ROZs and main reservoir zones of the 

Permian Basin are known to be biodegraded as a result of interaction with inflowing meteoric 

waters” is not supported by any evidence. 
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Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either 

underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential 

to produce volumes of oil sufficiently significant to make appreciable impacts on the US’s oil reserves and 

associated incidental CO2 sequestration. The objective of this study is to improve our understanding the 

impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water 

alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators 

are using CO2 injection for enhanced oil recovery (EOR) in these zones. The consensus model for the 

formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over 

millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from 

water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted 

simulations of CO2 injection into synthetic geologic reservoirs. These simulations focused on injection 

into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By 

exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability 

anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection. 

WAG ratios (the ratio of injected water and CO2, in reservoir volumes) of interest are those that either 

minimize the net CO2 utilization ratios or maximize oil production rates. In general, the most effective 

WAG ratios for ROZs, are consistently less than those observed undergoing CO2 injection in the same 

geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that 

most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs 

because of oil saturation differences. Thus, CO2 injection into both zones or directly copying WAG in- 

jection designs from MPZs to ROZs might not maximize oil production. 

© 2021 Elsevier Ltd. All rights reserved. 

 
 

 

 

1. Introduction 

 
Residual oil zones (ROZs) are widespread reservoirs, character- 

ized by oil close to residual saturation, underlying (brown field) and 

lateral (greenfield) to oil reservoirs [1]. The oil resource in ROZs is 

not yet well characterized but is almost certainly substantial. For 

example, the volume of oil in-place in the ROZs of the San Andres 

formation within a twelve county in the Permian Basin of Texas and 

New Mexico has been estimated as 191 billion barrels with 42 

billion barrels of oil underlying existing oil fields [2]. Very little 

information has been published on ROZ reservoirs. Any information 

or modeling that is published, will be novel and potentially 
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important in understanding ROZ reservoirs. A key question is are 

ROZs essentially the same in their geology, petrophysical proper- 

ties, and production potential as the main pay zones (MPZs) after 

waterflooding. 

It has been proposed that ROZs are formed from an original oil- 

saturated MPZ that has been flushed by a regional aquifer (“natural 

waterflooding” or NWF) over geological time scales. The previously 

proposed mechanisms for the formation of ROZs result in the oil 

content coming to a quasi-equilibrium with water flows on a time 

scale of thousands of years. Such quasi-equilibrium values will 

effectively be the residual oil saturation [1,3,4]. An alternative 

model for the origin of ROZs as the result of capillary trapping along 

oil migration pathways [5]. It has been asserted that ROZs are 

characterized by oil saturations close to those found at the termi- 

nation of waterflooding [4,6]. However, there is little if any high- 

quality data that supports this. In reality waterfloods are 
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terminated for economic reasons not because they reduce the oil 

content to the level of residual saturation. When CO2-EOR is 

planned for a reservoir, waterflooding may be terminated earlier 

than economic cutoff. 

Despite the significant potential of both ROZs and MPZs for oil 

production and incidental CO2 storage the differences between the 

two are controversial. While the controlling physics of CO2-EOR are 

the same for ROZs and MPZs, the specific characteristics of ROZs 

will influence the effectiveness of CO2 WAG injection and CO2 

retention. One important issue is possible differences in oil satu- 

ration between ROZs and MPZs (after MMWF). Differences in oil 

saturation influence the interaction of CO2 and in-situ fluids, and 

this in turn, impacts overall sweep and displacement efficiencies. In 

this sense, different strategies may have to be used to maximize the 

effectiveness of CO2 WAG injection either for oil production or CO2 

sequestration. 

Almost all previous CO2-EOR studies focused on injection into 

MPZs, rather than ROZs. There have been two published studies of 

WAG injection into ROZs based on full physics simulations [7,8]. The 

study by Jamali and Ettehadtavakkol focused on evaluating the 

“Natural Aquifer” model for the origin of ROZs and their potential 

for CO2 storage. Our earlier study [8] provided an understanding of 

the nature of WAG injection of CO2 and the factors controlling CO2 

storage. It also explored varying CO2 WAG injection strategies to 

improve oil production in ROZ reservoirs. Ren and Duncan [8] 

showed the WAG ratio (at maximum oil production) for the 

Seminole ROZ reservoir are smaller than the published WAG ratios 

for MPZ reservoirs. The reasons behind this observation were not 

addressed in that paper. The current study provides one possible 

explanation for this observation. 

The difference in oil saturation between MPZs (after water 

flooding) and ROZs depends in part on both the efficiency of pri- 

mary production and the time elapsed between initiation of 

waterflooding and the transition to CO2 flooding. This transition is 

typically either an economic decision or based on some corporate 

strategic reasons. In all cases waterflooding is almost always 

terminated long before the reservoir approaches residual 

saturation. 

From an industry perspective considering CO2 flooding pro- 

cesses in residual oil zones (ROZs) versus main pay zones (MPZs), is 

essential to develop strategies to maximize oil production and 

minimize CO2 utilization. This work investigated CO2 water alter- 

nating gas (WAG) injection into relatively simple synthetic reser- 

voir models of the ROZ underlying MPZ reservoirs. The reasoning 

for using these synthetic (and therefor accurately characterized) 

models was to clearly understand the factors that enable maxi- 

mizing oil production and minimizing CO2 utilization. The effects of 

oil saturation on the foregoing metrics were investigated by uti- 

lizing full physics reservoir simulations with varying WAG ratios 

and reservoir heterogeneity. 

The main objective of the current study is to understand how 

the effectiveness of oil recovery from CO2 WAG injection is affected 

by the differences in oil saturation between a ROZ and a MPZ (after 

MMWF). This understanding will help answer questions such as: 

are the WAG ratios that maximize oil recovery from MPZs, appli- 

cable to ROZs? Or, can a WAG strategy be found that maximizes oil 

recovery from both the ROZ and MPZ at the same time? To 

accomplish the objective, we conducted a series of simulations of 

CO2 WAG injection following on from NWF and MMWF. These 

simulations were run on synthetic reservoir models. This enabled 

us to clearly evaluate how variations in reservoir heterogeneity 

impact oil saturation distributions after NWF and MMWF and thus 

CO2 WAG ratios. This study investigates the desired WAG ratios that 

will maximize oil production, and understand how MPZs differ 

from ROZs in their response. Such a comparison has not been 

2 

conducted or reported by others. The issues explored on the current 

study have important implications to field designs of WAG injection 

into ROZs and understanding when to switch from MPZ to ROZ 

injection or to institute commingled injection/production. 

 
2. Theory and approach 

 
2.1. Multi-phase flow simulations 

 
The reservoir flow simulator used in this study is Eclipse-300 

[9]. This simulator is an efficient, equation-of-state (EOS) based, 

multi-phase flow simulator. It utilizes robust equation-solvers that 

can achieve efficient numerical solutions for the flow of CO2, water, 

and oil in porous-media. The simulator is reliable and widely used 

for evaluating oil production and carbon storage performance 

during CO2-EOR (e.g., Refs. [8,10e12]. 

A flow chart summarizing our approach is illustrated in Fig. 1. All 

simulated cases started from synthetic geological models. After this 

step, we conducted flow simulation of both NWF and MMWF. 

Subsequently, CO2 injection was started at the end of NWF or 

MMWF to evaluate CO2-EOR performance and find favorable WAG 

ratios. The details of each step are given below. 

 
2.2. Factors impacting WAG injection 

 
The mechanisms of CO2-EOR are well-understood [13]. The 

WAG ratio, defined as the cumulative volume of water injected 

divided by the gas injected into the reservoir, is an important metric 

to describe the nature of CO2-EOR [14]. At large WAG ratios, water 

film blocking is known to occur [15], resulting oil trapping. In these 

circumstances, WAG injection essentially becomes ineffective- 

waterflooding. Small WAG ratios typically result in channeling 

and early breakthrough of injected CO2. Both of these phenomena 

result in less than optimal oil production. Thus, in most circum- 

stances, the maximum oil production rate or recovery factor will 

correspond to the most favorable WAG ratio [15e18]. Also, the ef- 

fects of heterogeneity and injection strategies on the production 

efficiency  of  CO2-EOR  have  been  well  studied  (e.g. 

Refs. [19e23,52,53]). Others (e.g. Refs. [24e28]) have examined 

optimizing CO2 WAG injection. A focus of these WAG injection 

studies for MPZs has been to identify the WAG ratios that yield 

maximum oil production. 

 
2.3. Generation of reservoir models 

 
We generated a series of statistical realizations of permeability 

fields using sequential Gaussian simulation [29,30]. The properties 

 
 

Fig. 1. Work flow chart of each simulated case. 
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of these fields were listed in Table 1. Both inverted 5- and 9-spot 

well patterns were considered. The permeability fields have 

different horizontal auto-correlation lengths (lx), and we made the 

length dimensionless following the work of Li and Lake [31]. 

Dimensionless horizontal autocorrelation length (lDx) is defined as 

the ratio of lx over the domain width in the corresponding direc- 

tion. lx indicates how close or how far the permeability is spatially 

auto-correlated, which is mainly controlled by sedimentary envi- 

ronments and diagenesis processes. The typical value of lDx is 2. A 

series of auto-correlated permeability fields (Table 1) are generated 

to test the effect of autocorrelation length on simulation results. 

Specifically, layered geological models are considered through 

assigning the permeability field with a large lDx (100, as shown by 

Tavassoli et al. [32]). The permeability anisotropy (kv/kh) is varied 

through decreasing kv while keeping kh unchanged: 0.001, 0.01, and 

0.1. The horizontal permeability (kh) field were statistically realized 

with different natural-log standard deviation (slnk): 0, 1, 2. The 

corresponding values of the Dykstra-Parsons coefficient are 0, 0.62, 

0.85 (with increasing heterogeneity). The permeability natural-log 

mean (mlnk) is set to be 5, which is close to that of the Seminole 

residual oil zone [8]. Changing mlnk will cause different recovery 

factors for a given time period, but that should not alter the desired 

WAG ratios that are focused in this study. Additionally, considering 

several different permeability spatial distributions can be charac- 

terized by one single set of heterogeneity indicators, we generated 

three realizations of the base permeability field (see Table 1) to 

evaluate the influence of permeability uncertainties on oil pro- 

duction during CO2 injection. 

Then, using the Holtz’s [33] porosity-permeability correlation 

(refer to Eq. (1)), we calculated the porosity fields corresponding to 

the generated permeability fields. In Eq. (1), the unit of perme- 

ability is mD. The Holtz correlation might be applicable for rock 

types between the lithofacies packstone and mudstone of carbon- 

ate reservoirs. 

pressure heterogeneity should be considered, and the imple- 

mentation procedures are given in the following Section of Rock/ 

Fluid Interaction Models. 

 

3. Flow simulation of NWF and MMWF 

 
3.1. Rock/Fluid Interaction Models 

 
We assume the oil phase properties for the ROZ and MPZ are the 

same, so we use one set of PVT equations for both. The oil properties 

are adopted from the publication of Honarpour et al. [39]; whose 

analysis is based on the Seminole San Andres ROZ oil samples. A 

black oil model is built for the flow modeling of both NWF and 

MMWF. At the reservoir condition (2119.9 psi and 104 ◦F), the oil 

density is 657.71 kg/m3, and the oil viscosity is 1.21 cp. The gas oil 

ratio (GOR) is 688.15 scf/bbl. 

When simulating CO2 WAG injection, we employ a composi- 

tional model with the oil compositions shown in Table 2. The Peng 

Robinson equation of state (PR EOS) is used with the parameter 

settings in Table 2. The binary interaction coefficients are listed in 

Table 3. The minimum miscibility pressure for the CO2/oil mixture 

is around 1400 psi [39], and the CO2 flooding is miscible in 

simulations. 

For simplicity, we assume the relative permeability and capillary 

pressure curves (shown in Fig. 2a and b) are the same for the two 

processes of NWF and MMWF. 

For flow simulation of NWF, the effect of capillary pressure 

heterogeneity on water/oil flow was considered. To capture this 

effect, the capillary pressure curve in Fig. 2b was assigned to the 

cells with the arithmetic mean of the permeability of a given field, 

the corresponding capillary pressure curves for other cells were 

scaled using the Leverett j-function [37]. Additionally, we also 

tested how ignoring capillary pressure or utilizing a single capillary 

pressure in our simulations influenced the resultant oil saturation 

k 
4 = (

7E + 

 
1/9.61 

7 

in ROZs. A “single capillary pressure” corresponds to a model where 

the same capillary pressure curve (Fig. 2b) is assigned to all the cells 

in a simulated domain. 

After generating permeability and porosity fields, the corre- 

sponding capillary entry pressure fields were calculated using the 

Leverett j-function [34], following the procedures as detailed by 

Ren [35]. The reason for considering capillary entry pressure het- 

erogeneity in simulations is the small regional aquifer flux during 

ROZ formation. The reported aquifer flux during NWF within the 

Permian Basin is around 10e15 cm/yr (0.33e0.83 ft/yr, Trentham 

[36]), which is much less than that (~1 ft/day) of MMWF. Such small 

flux pronounces the effect of capillary pressure (Pc) heterogeneity 

on fluid migration and oil saturations, as demonstrated in the work 

by Ren and Duncan [37] and other works [38]. Thus, capillary 

For the flow simulation of CO2 WAG injection, the used relative 

permeability curves are in Fig. 2a and c. The Stone I model [40] is 

adopted to describe the oil relative permeability during 3-phase 

flow. The hysteresis in both the relative permeability and capil- 

lary pressure curves are omitted for computational efficiency. Both 

hysteresis and relative permeability has been experimentally 

shown to be cycle-dependent [41e43]. We believe that considering 

these cycle-dependent properties will not alter the observations of 

the relative magnitude of favorable WAG ratios for MPZs versus 

ROZs, although they have been shown to cause the difference in oil 

production rate prediction [23,44]. 

 

Table 1 

Properties of synthesized permeability fields. 
 

Well pattern Inverted 5-spot Inverted 9-spot 

Patter size, acre 40 80 

Synthetic domain sizes, ft 

Model cell sizes, ft 

Model dimensions 

1320 × 1320 × 96 

30 × 30 × 3 

44 × 44 × 32 

1860 × 1860 × 96 

30 × 30 × 3 

62 × 62 × 32 

Permeability horizontal dimensionless auto-correlation length, lDx 

Horizontal permeability log mean, mlnk 

Horizontal permeability log standard deviation, slnk 

Horizontal permeability Dykstra-Parsons coefficient, VDP 

0, 2*, 100 

5* 

0, 1*, 2  

0, 0.62*, 0.85 

 

*means base permeability field (i.e., base case). 
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Table 2 

Crude oil compositions representative of the Seminole San Andres ROZ and the parameter settings for PR EOS (modified from Honarpour et al. [39], and Jamali and Ette- 

hadtavakkol [7]. 

Component CO2 C1N2 C2C3H2S C4eC6 C7eC10 C11eC16 C17+ 

Mole fraction, % 0.02 20.14 15.9 8.99 17.29 18.42 19.24 

Critical temperature (R) 547.56 339.21 619.38 835.43 1117.84 1344.62 1686.57 

Critical pressure (psi) 1071.34 666.77 722.56 491.3 389.65 277.42 159.29 

Critical volume (ft3/lb-mole) 1.51 1.56 2.71 5.02 7.73 12.13 22.15 

Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195 

Molecular weights (g/mol) 44.01 16.29 36.19 70.06 114.17 180.94 358.25 

Acentric Factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054 

Coefficient Ua 0.457 0.457 0.457 0.457 0.457 0.457 0.457 

Coefficient Ub 0.077 0.077 0.077 0.077 0.077 0.077 0.077 

 
 

Table 3 

Settings of binary interaction coefficients. 
 

 Component  CO2 C1N2 C2C3H2S C4eC6 C7eC10  C11eC16  C17+  
 

CO2 0    
C1N2 0.0976 0  

C2C3H2S 0.1289 0.0103 0 

C4eC6 0.1271 0.0019 0.0063 0  

C7eC10 0.1105 0.0241 0.0196 0.003 0  

C11eC16 0.0943 0.0494 0.0333 0.0061  0 0 

 C17+ 0.0997  0.1365  0.0588 0.012 0 0 0  

 

4. Injection/production schemes 

 
To simulate the NWF process, a line drive geometry was used 

(Fig. 3a): water injectors are put into every left boundary cell, and 

producers are put into every right boundary cell. Such uniformly- 

distributed inlet and outlet conditions are to mimic regional 

aquifer flow, which has been demonstrated to be physically- 

applicable in reproducing ROZs [37]. The inlet water flux is set to 

be 0.5 ft/yr (15.24 cm/yr). With the inlet flux, the water injection 

rate is calculated to be 0.0368 rb/day (reservoir bbl/day). The 

ultimately-injected water pore volume (PV) is 86 for the single 

inverted 5-spot pattern and 43 for the inverted 9-spot pattern. All 

these models are saturated with oil as initial conditions. 

For MMWF, both the inverted 5-spot 40-acre pattern (Fig. 3b) 

and inverted 9-spot 80-acre pattern are considered. The middle 

table in the figure shows the simulation parameter settings for both 

types of patterns. The ultimately-injected water PV is 5.8 and 2.9 for 

the inverted 5-spot and inverted 9-spot well pattern, respectively. 

For CO2 WAG injection (Fig. 3c), the flow simulation parameters 

are listed in the lower row of Fig. 3. The CO2 injection rate is set to 

be constant at 3000 Mscf/day; varying rates has no effect on 

favorable WAG ratios although it changed oil production rates [8]. 

The CO2 half-cycle size is 2.5% hydrocarbon pore volume (HCPV), 

based on the balance of good oil production and the operation 

ability of WAG cycle switches [8,45]. The HCPV is calculated at the 

end of NWF or MMWF. WAG ratio is varied from 0 to 5, through 

changing water injection duration while keeping CO2 injection 

duration unchanged in each WAG cycle (see Appendix B for 

detailed illustration). 

The other parameters of the flow simulation of NWF, MMWF 

and CO2 WAG are included in Fig. 3. The boundaries of all simula- 

tion domains are closed (no flow). All the injectors and producers 

involved in simulations are vertical, and they are completely 

perforated along the depth range of simulation models. 

Additionally, to specifically examine the effect of oil saturation 

 
 

 
 

Fig. 2. (a) Water/oil relative permeability curves; (b) capillary pressure (pc) curve for water/oil, here the capillary pressure is defined as non-wetting phase (water) pressure minus 

wetting phase (oil) pressure, and the reservoir is presumed to be completely oil-wet; (c) gas/oil relative permeability curves. 
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Fig. 3. Illustration of NWF, MMWF, and CO2 WAG simulation setup. The embedded tables on the right column show the corresponding simulation settings for each flow simulation 

process. 

 

on WAG ratios, we manually assign uniform oil saturation (Sor) to 

geological models at the beginning of WAG injection. We consider 

several values of Sor: 0.3, 0.35, 0.4, and 0.5. They cover the range of 

oil saturation observed for the virgin ROZ in the Permian Basin 

[1,37]. 

 
4.1. Metrics of CO2-EOR performance 

 

We report how varying WAG ratios influences the following 

CO2-EOR performance metrics: net CO2 utilization ratio, averaged 

oil production rate, and dimensionless oil recovery factor. Their 

definitions are: 

Net CO2 utilization ratio (Total CO2 injectedetotal CO2 pro- 

duced)/total oil produced, (MScf/Stb). 

Averaged oil production rate Total oil produced/injection 

duration/number of oil producers, (Stbd/Well, standard tank barrel 

per day per well). 

Dimensionless oil recovery factor ¼ cumulative oil produced 

during CO2 injection/oil in place after MMWF and NWF, (%). 

The metric of net CO2 utilization ratio indicates the net use of 

CO2 to produce 1 bbl of oil. It measures the cost-effectiveness of CO2 

injection for enhanced oil recovery. Typically, the largest cost of 

implementing WAG floods is acquiring CO2 [46]. The dimensionless 

oil recovery factor is defined based on the oil remaining after either 

NWF or MMWF, rather than on the traditional original oil in place 

(OOIP). Thus, it can be expected the calculated dimensionless fac- 

tors here are larger than those reported in the literature. Adding 

‘dimensionless’ into our definition is to differentiate it from the 

traditional term. 

 
5. Results 

 
5.1. Influence of multiple realizations on oil production 

 
The multiple realizations of the base permeability field showed 

minor influence on ultimate oil production (see Appendix A). Thus, 

we employed a single realization of the permeability fields in this 

work. 
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Fig. 4. Oil saturation fields at the end of MMWF (a and b, after 60 years of water- 

flooding) and at the end of NWF (c and d). For the heterogeneous geological model 

used, VDP ¼ 0.62, lDx ¼ 2. Inverted 5-spot patterns were used, and heterogeneity 

capillary pressure was considered in these flow simulations. 

 
 

5.2. Oil saturation magnitude and patterns after MMWF vs. after 

NWF 

 
The oil saturation fields at the end of MMWF versus those at the 

end of NWF are shown in Fig. 4. After 60 years of MMWF (Fig. 4a-b), 

waterflooding has swept much of the oil from the lower part of the 

reservoir, and the remaining oil is mainly in the upper portion and 

edges. In contrast, after 106 years of NWF, the oil saturations for 

most of the cells of the reservoir have almost reached the end point 

of relative permeability (0.35) (Fig. 4c-d). 

The effect of capillary pressure on oil saturation histograms after 

MMWF versus after NWF has been explored, and histograms for 

computed oil saturations are shown in Fig. 5. For MMWF (Fig. 5a), 

the three histograms for the cases of without Pc, single Pc, and 

heterogeneous Pc overlap. For the NWF case, the different as- 

sumptions for the Pc yield result in different histograms as shown in 

Fig. 5b and elaborated in the figure caption. 
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Fig. 5. The histograms of remaining oil saturation (So) at the end of MMWF (a) and at the end of NWF (b) when considering no Pc, single Pc, and heterogeneous Pc. In Fig. 5b, the case 

of No Pc shows the greatest number of cells with the oil saturation close to 0.35 (the endpoint of relative permeability as shown in Fig. 2a). However, the zoom-in plot into the So 

interval of 0.38e0.48 shows that the case of heterogeneous Pc yields the largest frequency around this interval (note the logarithmic scale in the Y-axis). In Fig. 5a, the arithmetic 

mean of oil saturation for the three different considerations of Pc is the same (0.43), however, in Fig. 5b, the mean varies. It is 0.376, 0.380, 0.384 for the case considering no Pc, single 

Pc, and heterogeneous Pc correspondingly. The heterogeneous geological model was used with VDP ¼ 0.62, lDx ¼ 2, and inverted 5-spot patterns. 

 

 

5.3. Cumulative dimensionless oil recovery factors during 

continuous CO2 injection after NWF vs. MMWF 

 
A key objective of this study was to evaluate the dimensionless 

oil recovery factors for continuous CO2 injection following MMWF, 

compared to those following NWF. Fig. 6a and b show the metric for 

the continuous CO2 injection after MMWF, and for the WAG after 

NWF, respectively. The final oil recovery factor for the inverted 5- 

spot pattern in the homogenous ROZ model is about 21.8%, which 

is less that the corresponding value (around 28.9%) for the 

continuous CO2 injection after MMWF. The oil remaining in the 

upper portion of the reservoir after MMWF was effectively swept 

by the injected CO2. Qualitatively similar observation of oil recovery 

factors is made for the inverted 9-spot patterns. Table 4 lists the 

dimensionless oil recovery for the WAG injection into the different 

heterogeneous synthetic models. The recovery factors for the WAG 

after MMWF is overall larger than those for the WAG after NWF, 

and the differences between the factors for the two processes in- 

creases with the WAG ratio. 

Another noteworthy difference between Fig. 6a and b is the oil 

production starting time during WAG injection. Oil production 

response is quick for the WAG after MMWF versus delayed 

production for WAG after NWF (the oil starts to produce at around 

0.12 PV of CO2 injection for WAG after NWF in the inverted 9-spot 

pattern). This delay is longer for the inverted 5-spot patterns than 

for the inverted 9-spot. 

 
5.4. CO2 net utilization ratios 

 
The CO2 net utilization ratios for the WAG after NWF and after 

MMWF are shown in Fig. 7a and 7b, respectively. The latter ratios 

are in the range of 2e10 MScf/Stb, and the former ones can be as 

high as 35 MScf/Stb. Obvious inflection points exist in the curves of 

CO2 utilization ratios versus WAG ratios for the WAG after NWF, 

However, the equivalent curves for the WAG after MMWF become 

almost flat as the WAG ratio increases. The WAG ratios (at the 

minimum net utilization ratios) for the latter WAG are around 1.5, 

larger than that (around 1) for the former WAG. The simulations 

completed in this study found that the utilization ratios for WAG 

after NWF versus after MMWF depend on the WAG ratios, reservoir 

heterogeneity, and well patterns area/configuration (Fig. 7a and b). 

The net utilization ratios for the inverted 9-spot pattern are 

overall larger than those for the inverted 5-spot (dashed curves are 

above solid curves in both Fig. 7a and b). Similar observations of the 

 
 

 
 

Fig. 6. Dimensionless oil recovery factors versus pore volume (PV) of CO2 injected during continuous CO2 injection after MMWF vs. after NWF. For the heterogeneous geological 

model used, VDP ¼ 0.62, lDx ¼ 2. The homogeneous models show slower oil production response than heterogeneous ones because of the uniform CO2 flood conformances, however, 

the final oil production for homogeneous models are apparently always better than heterogeneity ones. The ultimately-injected CO2 PV for the inverted 9-spot is about half of that 

for the inverted 5-spot, due to both the pattern coverage area difference and the same WAG injection duration (refer to Fig. 3). 
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Table 4 

Dimensionless oil recovery factors for WAG injection in both inverted 5-spot and 9-spot well patterns. The recovery factors for both WAG ratio 0 (continuous CO2) and 1 are 

listed in the table. For the heterogeneous geologic models, slnk ¼ 1, mlnk ¼ 5.  

Well pattern  Model 

Heterogeneity 

WAG after MMWF: WAG 

ratio ¼ 0 

WAG after NWF: WAG 

ratio ¼ 0 

WAG after MMWF: WAG 

ratio ¼ 1 

WAG after NWF: WAG 

ratio ¼ 1 

Inverted 5- 

spot 

 
Inverted 9- 

spot 

VDP ¼ 0, lDx ¼ 0 28.9% 21.8% 22.7% 12.4% 

VDP ¼ 0.62, lDx ¼ 2  21.7% 13.8% 26.1% 11.9% 

VDP ¼ 0.62, lDx ¼ 100 23.2% 15.6% 27.1% 13.2% 

VDP ¼ 0, lDx ¼ 0 12.9% 8.1% 11.9% 6.2% 

VDP ¼ 0.62, lDx ¼ 2  11.8% 6.9% 13.6% 5.9% 

VDP ¼ 0.62, lDx ¼ 100 10.2% 6.4% 11.9% 5.6% 
 

 

 

 
 

 

Fig. 7. CO2 net utilization ratios and averaged oil production rates for the inverted 5-spot (40 acre) and inverted 9-spot (80 acre) well patterns. CO2 WAG injection is simulated 

following the processes of NWF or MMWF. For the heterogeneous geological model used, VDP ¼ 0.62, lDx ¼ 2. A WAG ratio of 0 means continuous CO2 injection. Note that for WAG 

following NWF, there is a favorable WAG ratio that yields the lowest net utilization ratios irrespective of the well pattern, and this ratio is around 1. However, for WAG after MMWF, 

the net utilization ratio monotonically decreases with the WAG ratio. The unit of Stbd/Well means standard tank barrel per well. The WAG injection here is started following 30 

years of MMWF. 

 
 

effect of well patterns on these metrics are made in the layered 

geological models (see Appendix C). Therefore, using inverted 5- 

spot patterns can improve the effectiveness of WAG injection to 

enhance oil recovery. 

 

 
 

5.5. Averaged oil production rates and oil recovery factors 

 
For the synthetic reservoir models utilized in this study, the 

average oil production rates for the WAG following MMWF are 

larger than those for the WAG following NWF (Fig. 7c vs. 7d). The 

average rates are impacted negatively by increasing WAG ratios for 

the CO2 after NWF, whereas, for the WAG after MMWF, heteroge- 

neity necessitates a small (0.25e0.5) WAG ratio to achieve the 

maximum oil production rates. For simulations of the heteroge- 

neous models shown in Fig. 7c and d, the WAG ratios at maximum 

oil production rates are less for virgin ROZs than for the MPZs 

subject to MMWF. 

7 

5.6. Effect of oil saturation (Sor) on favorable WAG ratios 

 
Net utilization ratios and average oil production during WAG 

injection with different initial oil saturation (Sor) are shown in Fig. 8. 

Sor controls the curve trend of the net utilization ratio versus the 

WAG ratio (Fig. 8a and c). At a low Sor, there is a favorable WAG ratio 

(at the minimum net utilization ratio). However, when Sor increases 

to 0.5, the net utilization ratio becomes almost flat as the WAG ratio 

increases. The approximate inflection point (labelled by a star) 

moves to the right as the Sor increases. As a result, small Sor results 

in small WAG ratios minimizing net utilization. 

For average oil production rates (Fig. 8b and d), the point of 

optimal return tends to move to a higher WAG ratio as Sor increases. 

Larger Sor requires larger WAG ratios to maximize oil production 

rates. 

Well patterns slightly influence the favorable WAG ratios. As the 

well pattern changes from inverted 5-spot to inverted 9-spot, the 

favorable WAG ratio (either at minimum net utilization ratio or at 

maximum oil production rates) decreases marginally (Fig. 8a vs. 

 
 



¼ 

B. Ren and I.J. Duncan Energy 222 (2021) 119915 

 

 
Fig. 8. CO2 net utilization ratios and averaged oil production rates for the inverted 5-spot pattern (a and b) and for the inverted 9-spot pattern (c and d). The initial oil saturation 

(Sor) at the beginning of CO2 WAG injection is manually set to be constant. For the heterogeneous geological model used, VDP ¼ 0.85, lDx ¼ 2. The stars indicate the inflection or 

optimal points in the curves. 

 

 
Fig. 8c and b vs. Fig. 8d). For example, for the inverted 5-spot 

pattern, as Sor increases from 0.3 to 0.5, the favorable WAG ratio 

increases from 0.45 to 1.5 (Fig. 8a), whereas, the corresponding 

ratio for the inverted 9-spot pattern are comparatively small, 

increasing from 0 to 1 (Fig. 8c). 

 
5.7. Effect of permeability anisotropies (kv/kh) on favorable WAG 

ratios for ROZs 

 
Increasing permeability anisotropy (the ratio of kv/kh) improves 

CO2 net utilization efficiency (Fig. 9a) for ROZs. The net utilization 

ratio decreases from 20 to 10 Mscf/Stb when kv/kh increases from 

0.01 to 1, given a WAG ratio of 1. Large kv favors CO2 production 

more than oil production. That is the reason that the CO2 net uti- 

lization ratios for the case of kv/kh 1 are the smallest, even though 

the corresponding oil production rate rapidly decreases with the 

increase in the WAG ratio. Adjusting kv/kh has a similar effect on oil 

production rates (Fig. 9b) as adjusting reservoir heterogeneity does 

 
(Fig. 7c-f): oil production decreases as the WAG ratio increases. 

Also, the ratio of kv/kh increases the favorable WAG ratio (at the 

minimum net utilization) (Fig. 9a). Large kv necessities more water 

injection to divert injected CO2, and thus CO2 can better sweep the 

reservoir. This large kv, within the context of structural geology, 

might be due to vertical fractures. Some vertical fractures have 

been observed in the cores of the Seminole San Andres ROZ 

(Duncan, unpublished data). In this sense, the heterogeneity asso- 

ciated vertical natural fractures should be carefully characterized as 

they have a significant effect on CO2 net utilization ratios. 

 
6. Discussion 

 
Our companion paper [8] set out to make a comparison between 

WAG injection into the ROZ versus the MPZ for the Seminole San 

Andres Unit. Simulations presented in that study showed that the 

desired WAG ratios (at maximum oil production) for the ROZ are 

smaller than the published WAG ratios (arithmetic mean is 1.6, and 

 
 

 
 

Fig. 9. CO2 net utilization ratios (a) and averaged oil production rates (b) for the heterogeneous model with different permeability anisotropies. Inverted 5-spot patterns are used. 

The initial oil saturation (Sor) at the beginning of CO2 WAG injection is manually set to be constant (0.35). For the heterogeneous geological model used, VDP ¼ 0.62, and lDx ¼ 2. 
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standard deviation is 1.0) by Christensen et al. [14] for typical MPZ 

reservoirs. Ren and Duncan [8] did not identify the underlying 

reasons behind this observation. The current study explored a 

possible explanation by examining the impact of oil saturation 

differences on WAG injection between ROZs and MPZs. 

 
6.1. Magnitude and patterns of oil saturation after MMWF vs. NWF 

 
The interplay between flow rates and capillary pressure, and its 

effect on flow and oil saturation is illustrated in Fig. 5. High injec- 

tion rates for MMWF create relatively large viscous forces that 

override capillary pressure effects. As a result, the frequency his- 

tograms for oil saturation (Fig. 5a) are almost the same for the 

scenarios of without Pc, single Pc, and heterogeneous Pc. However, 

for NWF, the lower flow rates enhance the effect of Pc. The histo- 

grams, shown in Fig. 5b, vary significantly in the oil saturation in- 

terval of 0.35e0.46. As the simulation inputs are changed from no 

Pc to heterogeneous Pc, the frequency of occurrence for the 

endpoint oil saturation (0.35) decreases, whereas, the frequency of 

occurrence for the oil saturation in the range 0.38e0.46 increases. 

This is consistent with both relative permeability and capillary 

pressure controlling oil saturation for NWF. The relative perme- 

ability curves in these flow simulations apparently dominate the 

result of oil saturation. As a consequence, the maximum points of 

the histograms are always around the endpoint saturation (0.35, in 

Fig. 5b). 

It should be noted that pore-scale capillary trapping, which is an 

‘implicit’ capillary pressure effect [13], controls relative perme- 

ability endpoints. The ‘explicit’ capillary pressure effect is reflected 

in the frequency change of the oil saturation interval 0.38e0.46 

when the way of incorporating the capillary pressure curve differs. 

Heterogeneous Pc causes capillary entry pressure effects, and the oil 

surrounded by capillary barriers (with high entry capillary pres- 

sure) is not swept. Thus, the case considering heterogeneous Pc 

retains large (0.6e0.8) oil saturation (refers to Fig. 5b). 

 
6.2. CO2 net utilization ratios 

 
The simulation results presented in Fig. 7a and b show that the 

CO2 net utilization ratios for the WAG after NWF found in the 

current study are larger than those for the WAG after MMWF. The 

large differences found are apparently the result of the relative 

magnitude of initial oil saturation at the beginning of WAG injec- 

tion. The utilization ratios for both types of WAG (after NWF versus 

after MMWF) depend on the WAG ratios, reservoir heterogeneity, 

and well patterns, but with different trends and extents (Fig. 7a and 

b): in the case of WAG following NWF, there exists a WAG ratio 

(approximately 1.0) that yields the lowest net utilization ratio, 

irrespective of the well pattern. However, for WAG following 

MMWF (Fig. 7a), the net utilization ratio monotonically decreases 

with the WAG ratio. The different trends are due to the oil satura- 

tion variations as supported by Fig. 8a and c. 

Reservoir heterogeneity does not alter the trends described 

above, however it leads to different net utilization ratios (Fig. 7a 

and b). Heterogeneity influences net utilization ratios in different 

ways for the cases of WAG following NWF versus following MMWF. 

The presence of heterogeneity results in larger utilization ratios 

relative to homogeneous reservoirs for WAG following NWF, but 

not for WAG following MMWF. Simulated production data indicates 

that heterogeneity for the WAG after NWF results in the rate of 

increasing production of CO2 being less than the rate at which oil 

Table 5 

Comparison of remaining oil saturation statistics between core measurement of oil 

saturation in the Seminole ROZ by Honarpour et al. [39] and NWF flow simulation 

results in this work. 
 

Parameters Measurementsa Simulationsb 

Mean 0.388 0.383 

Median 0.368 0.361 

Standard deviation 0.045 0.058 

Maximum 0.499 0.811 

Minimum 0.350 0.350 

a The original measurement is every 1 ft, averaging over every 3 ft was made here 

to be consistent with the scale that is used in flow simulations. 
b this is corresponding to the flow simulation using heterogeneous capillary 

pressure as shown in Fig. 5b. 

 
 

production decreases. This causes the higher net utilization ratios 

for the heterogeneous case compared to the homogeneous one. 

 
6.3. Averaged oil production and recovery factor 

 
For heterogeneous reservoir models, the WAG ratios corre- 

sponding with maximum rates of oil production are less for ROZs 

than for the MPZs after MMWF (Fig. 7c vs. 7d). The CO2 WAG into 

virgin ROZs starts with high water saturation and a large portion of 

the injected CO2 is suspected to displace water, rather than oil. 

Consequently, CO2 tends to break through late as a result of the 

relative small mobility ratio contrast between CO2 and water 

compared to the CO2/oil system. Under these conditions, the large 

water saturation in virgin ROZs attenuates the need for water in- 

jection during WAG. 

Oil production rates are more sensitive to WAG ratios for the 

homogeneous models than for the heterogeneous ones (Fig. 7c vs. 

7d). The average oil rate for the two models crosses at a WAG ratio 

around 0.5. WAG injection is much more effective for heteroge- 

neous models than for homogenous ones to improve oil production 

rates. As the pattern changes from inverted 5-spot to inverted 9- 

spot, the average oil production rate decreases, as does the oil re- 

covery factor. 

 
6.4. Favorable WAG ratios at maximum oil production or minimum 

net utilization ratio 

 
One of the key findings from the flow simulations is that the 

favorable WAG ratios for the WAG injection after NWF, is smaller 

than those for the WAG after MMWF. This has implications in the 

design of CO2 injection projects. When an operator prepares to 

target Greenfield ROZs for CO2 flooding, they might benefit from 

starting the ROZ flood with a small (<1) WAG ratio. For Brownfields, 

ROZs are hydraulically connected with MPZs. Since the favorable 

WAG ratio for the two zones is different, additional characterization 

and simulations need to be conducted to choose the WAG ratio 

when considering WAG injection into the ROZ. One might not 

simply deepen wells targeting the MPZ and continue injecting at 

the same WAG ratio. WAG injection might be started in the MPZ 

followed by the ROZ with the most desired WAG ratio specific to 

each zone. When switching to the ROZ, the commingled production 

of both zones can be adopted because the injected CO2 into the ROZ 

might move into the MPZ and help produce oil. Determining the 

optimal switching time merits further study. 

Our flow simulations consider the geological heterogeneity 

variations that essentially control the sweep efficiency of CO2 

during WAG injection. In this sense, these favorable WAG ratios 
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should lead to maximum sweep efficiencies. However, it is not sure 

that whether such ratios lead to maximum displacement effi- 

ciencies. To examine this point, the analysis method proposed by 

Walsh and Lake [47]; based on the fractional flow theory, is 

recommended. 

 
6.5. Comparison to field/Lab measurements and observations 

 
We compared the statistics of simulated remaining oil satura- 

tion after MMWF to those of Seminole ROZ cores by Honarpour 

et al. [39]. These sponge cores were extracted from the virgin ROZ 

interval, and the in-situ remaining oil saturation was measured 

using Dean Stark analysis and a spectrophotometer technique [39]. 

As shown in Table 5, the remaining oil saturation statistics between 

core measurements and our simulations are close, including the 

mean, median, standard deviation, and minimum of oil saturation. 

The maximum remaining oil saturation show discrepancy between 

measurements and simulations. This discrepancy should be due to 

the un-swept cells with low permeability/porosity in flow 

simulations. 

Additionally, Gong and Gu [48] conducted coreflooding simu- 

lation of ROZ generation using carbonate cores, and the measured 

remaining oil saturation was in the range of 34.33e36.86%. This 

range is covered by our simulation results. This makes sense since 

cores tend be much more homogeneous compared to the 

statistically-generalized permeability fields used in this work. 

For the median of remaining oil saturation (0.361), it is very 

close to the residual oil saturation to waterflooding or minimum oil 

saturation (0.350). At such low oil saturation, oil production 

response was delayed till CO2 breakthrough (as shown in Fig. 6b). 

Such delay has been observed and confirmed in Tall Cotton ROZ 

reservoir (not associated with a MPZ) undergoing CO2 injection 

[49]. 

 
6.6. Limitations and further considerations 

 
The results from flow simulations are based several simplifica- 

tions. First, inclined producing oil/water contacts, as have been 

inferred for some ROZ fields \[39,54,57,58], are not considered in 

the study. This contact is the oil saturation transition from a MPZ to 

a ROZ. Considering this contact might have some effects on favor- 

able WAG ratios since such a contact is an oil saturation change. 

Second, this study assumes the same oil phase properties for both 

ROZs and MPZs. The experimental characterization of oil samples 

by Aleidan et al. [50] demonstrates that the global compositions 

and overall quality for the both zones are very similar. However, 

Honarpour et al. [39] showed that the oil API gravity is different for 

the MPZ and the ROZ. Further studies are needed to investigate how 

significant phase property differences would influence WAG ratios. 

Third, the favorable WAG ratios were estimated on the basis of the 

CO2 utilization ratios or oil production rates averaged over 20 year 

of WAG injection. Since the oil production response varies signifi- 

cantly with time, changing WAG duration would give different 

favorable WAG ratios. However, their relative magnitude for ROZs 

versus MPZs will not be altered. Last, our work assumed the same 

geological models for both MPZs and ROZs, in order to focus on the 

effect of oil saturation differences (as caused by distinct flow re- 

gimes) on favorable WAG ratios. For the effect of other differences 

between the two oil zones, particularly reservoir permeability/ 

porosity properties, needs to be further studied through invoking 

realistic geological models, which is our next step. 

7. Summary and conclusions 

 
We conducted a systematic numerical simulation of i) the oil 

saturation characteristics between main pay zones (MPZs) after 

man-made waterflooding (MMWF) and virgin residual oil zone 

(ROZs) ii) the influence of this difference on the performance and 

strategies of water alternating gas (WAG) injection in both zones. 

Since the whole study is mostly based on numerical assessment, 

the conclusions could be tempered by the limitations and simpli- 

fications involved in our work. Several qualitative, rather than 

quantitative, conclusions are tentatively drawn below based on this 

work: 

 

Favorable WAG ratios (either minimizing net utilization ratios or 

maximizing oil production rates) for virgin ROZs are consis- 

tently smaller than those for MPZs after MMWF. This is specu- 

lated to be due to the prevalent large water saturation in ROZs. 

Capillary pressures influence oil saturations more significantly 

for natural waterflooding (NWF) than for MMWF. Small aquifer 

flow rates for NWF enhance the effect of capillary heterogeneity 

on water/oil flow, and thus small portions of the ROZ retain large 

(0.4e0.5) remaining oil saturation. This capillary effect, how- 

ever, is not shown for MMWF, mainly due to relatively large 

injection rates (viscous pressure). 

The favorable WAG ratio, corresponding to the minimum net 

utilization ratio, appears to increases when: (i) initial oil satu- 

ration (before WAG) increases; (ii) the ratio of kv/kh increases; 

and (iii) the well pattern changes from inverted 9-spot to 

inverted 5-spot. 

The CO2 net utilization ratios during CO2 WAG injection for 

virgin ROZs are overall larger than those for MPZs after MMWF. 

The net utilization ratios depend, in qualitatively different ways, 

upon well patterns, reservoir heterogeneity, and WAG ratios. 

Both averaged oil production rates and oil recovery factors for 

the WAG in virgin ROZs appear to be less than those for the WAG 

in the MPZs after MMWF. This is mainly because remaining oil 

after NWF is comparatively less than that after MMWF. 
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Nomenclature 

 
 

Roman Symbols 

k Permeability, mD 

kh Horizontal permeability, mD 

kv Vertical permeability, mD 

Pc Capillary pressure, psi 

Sor Initial oil saturation before WAG injection 

VDP Dykstra-Parson coefficient 

 
Greek Symbols 

lx Horizontal autocorrelation length, ft 

lDx Dimensionless horizontal autocorrelation length 

mlnk Horizontal permeability log mean, mD 

slnk Horizontal permeability log standard deviation, mD 

4 Porosity, fraction 

 
Acronyms 

EOR Enhanced Oil Recovery 

HCPV Hydrocarbon Pore Volume 

PR EOS Peng Robinson Equation of State 

GOR Gas Oil Ratio 

MPZs Main Pay Zones 

MMWF Man-made Waterflooding 

NWF Natural Waterflooding 

rb Reservoir Barrel 

ROZs Residual Oil Zones 

Stbd/Well Standard Tank Barrel per Day per Well 

WAG Water Alternating Gas 

 
Appendix A. Influence of Multiple Realizations on Oil 

Production 

 
This appendix shows the influence of multiple realizations of a 

permeability field on oil production. Three realizations of the base 

permeability field (refer to Table 1) were created and then used for 

the flow simulation of continuous CO2 injection (i.e., WAG 

ratio ¼ 0). As shown in Fig. A-1, multiple realizations show a minor 

effect on the ultimate oil production (all the curves almost overlap 

with each at the end). This means that the ultimate oil production 

performance is controlled by global heterogeneity indicators as 

shown in Table 1. The initial cumulative oil production varies for 

multiple realizations due to the different local heterogeneity inside 

synthesized permeability fields. 

 
 

 
Fig. A1. Cumulative oil production versus CO2 injection duration for three realizations 

of the base permeability field during continuous CO2 injection into an inverted 5-spot 

well pattern. The CO2 injection follows 60 years of waterflooding as illustrated in the 

section of ‘Flow Simulation of NWF and MMWF’. 

 

 

 

 
 

Appendix B. WAG Ratio Illustration 

 
This appendix illustrates the design of CO2 WAG injection for 

different WAG ratios. The ratio is defined as the reservoir volume 

ratio between injected water and injected CO2 in each WAG cycle. It 

is increased through increasing water injection duration in each 

cycle while keeping CO2 injection duration unchanged (Fig. A-1). 

Thus, when the WAG ratio increases, the amount of cumulatively- 

injected CO2 is decreased with total water amount increased. 

 

 
 

Fig. B1. Schematic illustration of WAG injection schemes for different WAG ratios. 
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Appendix C. Production Metrics for Layered Geological 

Models 

 

This appendix shows the effect of the WAG ratio and well pat- 

terns on the CO2 net utilization ration, average oil production rates, 

and oil recovery factor during WAG injection in layered synthetic 

geological models. 

 

Fig. C1. CO2 net utilization ratio and averaged oil production rates for the inverted 5-spot and inverted 9-spot well patterns. CO2 WAG injection is simulated following the processes 

of NWF or MMWF. The layered geological model is used with VDP ¼ 0.62, lDx ¼ 100. The WAG injection here is started following 30 years of MMWF. 
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H  I  G  H  L  I  G  H  T  S  

 

• Residual oil zone development improves CO2 utilization and storage economics. 

• Joint development of MPZ and underlying ROZ are the best production strategy. 

• Ideal water–gas injection ratio depends on a balance of oil prices and carbon credit. 

 

A  B  S  T  R  A  C  T  
 

Residual oil zones (ROZ) undergoing CO2 Enhanced Oil Recovery (CO2-EOR) may benefit from specific strategies to maximize their value. We evaluated several 

strategies for producing from a Permian Basin, West Texas, USA field’s ROZ. This ROZ lies below the main pay zone (MPZ) of the field. Such brownfield ROZs occur in 

the Permian Basin and elsewhere. Since brownfield ROZs are hydraulically connected to the MPZs, development sequences and schemes influence oil production, 

CO2 storage, and net present value (NPV). We conducted economic assessments of various CO2 injection/production schemes in the stacked ROZ-MPZ reservoir based 

on flow simulations of a high-resolution geocellular model built from wireline logs and core data and calibrated through production history matching. Flow sim- 

ulations of water alternating gas (WAG) injection, such as switching injection from the MPZ to the ROZ and commingled production, were studied. Simulation results 

showed that simultaneous CO2 injection into the MPZ and ROZ lead to the largest oil production and, generally, the largest NPV. If instead, CO2 was simultaneously 

injected into the MPZ and ROZ, then into the ROZ alone, this maximized CO2 storage. CO2 storage can be used as a tax credit under the Internal Revenue Code, 

Section 45Q. Storage performance depends on the development approach and WAG ratio. Developing the ROZ increased storage compared to only producing from 

the MPZ. The WAG ratio to maximize oil production did not always yield the largest NPV. These findings are potentially applied to other Brownfield ROZs, which are 

common below San Andres reservoirs in the Permian Basin and other basins. ROZ development can increase oilfields’ NPV and carbon storage potential. Our study 

can serve as an analog for similar reservoirs. This work provides valuable insights into the further optimization of brownfield ROZ development and information for 

operators to plan to develop stacked ROZ-MPZ reservoirs. 
 

 

1. Introduction 

 
CO2 enhanced oil recovery (CO2-EOR) is an established technology 

that can provide revenue and long-term CO2 storage [1]. CCUS (carbon 

capture utilization and storage) is based on integration of CO2-EOR with 

long term storage of anthropogenic CO2 (CO2-sequestration). Also, if the 

CO2 used in the CCUS is anthropogenic, Section 45Q of the US Internal 

Revenue Code provides tax credits for capturing and sequestering the 

carbon during EOR. 

For Section 45Q, as described in the Congressional Research Service 

[2], the US Internal Revenue Service lays out ways in which companies 

can receive tax credits if they capture CO2 that would otherwise be in the 

atmosphere and geologically sequester it. There are different rates 

depending on when the carbon capture equipment began service and 

whether it was used in CO2-EOR. For instance, a facility that began 

construction before 2026 and was finished in 2026 could earn $50/ton 

credits if the CO2 was subsequently geologically sequestered, and $35/ 

ton if it was used to enhance oil recovery. 

Most CO2 injection projects in oilfields target the main pay zones 

(MPZs) that were under primary production or being waterflooded. 

However, operators have also used this technology to target residual oil 

zones (ROZs). In ROZs, the oil saturation is too low for oil to flow 

 
 

 

Abbreviations: CCUS, Carbon Capture Utilization and Storage; EOR, Enhanced Oil Recovery; MPZ, Main Pay Zone; ROZ, Residual Oil Zone; NPV, Net Present 

Value; CAPEX, Capital Expenditures; OPEX, Operational Expenditures. 
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Fig. 1. (a) Tectonic map of the Permian Basin showing the location of the study area (red box) in west Texas. Modified from Ruppel et al. [41] and Dutton et al. [42]. 

(b) brief production history of the oilfield. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
 

without intervention [3,4,5]. ROZs cannot be successfully waterflooded 

but can be produced by CO2-EOR or de-watering [6]. Brownfield ROZs 

underlie and connect to conventional oil reservoirs, whereas greenfield 

ROZs are laterally far from traditional MPZs [7]. Many brownfield ROZs 

occur in the US Permian Basin [8,3] and around the world, such as in 

Canada [9], China [10], the North Sea [11], and the Norwegian Conti- 

nental Shelf [12]. 

ROZs are a good candidate for CO2 EOR and storage. Reservoir 

processes make storing CO2 in the ROZ easier than using aquifers [13]. 

Sanguinito et al. [14] evaluated CO2 storage capacities in ROZs at the 

national and regional scales, and the results showed a large potential of 

CO2 storage. CO2 injection has produced oil from ROZs in several San 

Andres reservoirs in the Permian Basin [3]. There are disagreements 

about how to better exploit the ROZ reservoirs. Koperna et al. [15] 

concluded that “simultaneously implementing the flood in both the ROZ 

and MPZ” is a superior approach to “separately completing either the 

MPZ or the ROZ” in term of cumulative oil production. Jamali and 
Ettehadtavakkol [16] asserted that early expansion into brownfield 

ROZs compromises project economics. There is an increasing interest in 

oil production and incidental sequestration associated with ROZs [17]. 

A future challenge for CO2 injection into ROZs will be to balance two 

economic drivers, producing oil and sequestering anthropogenic CO2. 

The best strategy may be different for the ROZ versus the MPZ. Thus, 

there are advantages and disadvantages for co-developing the zones 

versus developing them in sequence. Since these ROZs are connected to 

MPZs, the interaction between the two zones will influence both pro- 

duction performance and the best development strategies. Such strate- 

gies include: 

 
1) Co-developing the MPZ and ROZ 

2) Developing only the MPZ 

3) Expanding to the ROZ years or decades after developing the MPZ 

4) Co-developing the MPZ and ROZ, but eventually stopping MPZ 

injection. 

Selecting between these strategies should be based on: 

• understanding the reservoir and geological characteristics, 

estimating the potential for CO2 EOR and storage in the reservoirs, 

and 

• strategic goals for oil production and carbon storage. 

Several groups have performed economic analysis of CO2 seques- 

tration and evaluated the economics of different strategies for CO2 in- 

jection (see for example [18,19]). These issues have also been studied by 

van ‘t Veld et al. [20], Wang et al. [21], Farajzadeh et al. [22], and 

Attanasi and Freeman [23], among others. Ettehadtavakkol et al [24] 

evaluated the impact of carbon tax credits for sequestration on eco- 

nomics of CO2-EOR in conjunction with sequestration. Tayari et al. [25] 

investigated the impact of reservoir heterogeneity on the economics of 

CO2 floods. They created a model based on three cost modules: injection, 

production, and CO2 recycling, for valuing EOR projects. They then 

identified key model parameters including “production rate and 
composition, injection fluid rate and composition, and bottom-hole 

pressure,” combined with reservoir simulations to enable estimating 
injection, production, and CO2 recycling, and thus the costs and revenue 

for specific development scenarios for different types of reservoirs. Zekri 

and Jerbi [19] determined that the nature and structure of the tax 

regime is critical to the viability of many EOR projects. Some projects 

are profitable only if there are tax incentives. Although the study of 

Tayari et al. [25] largely focused on CO2 foam flooding, a topic outside 

the focus of the current study, these authors did explore how reservoir 

heterogeneity impacts project economics. 

This paper is the first study to conduct a simulation of CO2 injection 

into a ROZ using modern, a state-of-the-art simulator and a high- 

resolution static geologic model. Unlike previous studies by, for 

example, Wang et al. [26], Koperna et al. [15], Jamali and Ettehadta- 

vakkol [16], Webb [27], and Liu and Ettehadtavakkol [17], who used 

static reservoir model that are low resolution and often highly upscaled, 

we minimized upscaling. We identified development strategies for 

brownfield ROZs that maximize either oil recovery, CO2 storage, or NPV. 

This is the first study that uses high-resolution study of reservoir simu- 

lation, coupled to economic-analysis, to understand the economics of 
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ROZ versus MPZ and ROZ/MPZ being flooded at the same time. 

 
 

Table 1 
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A San Andres oilfield with a long history of commercial-scale ROZ Designed development scenarios for the brownfield ROZ. 

production is used in this study. The static model was created from a 

comprehensive database of subsurface information, including well logs, 
Scenario 

# 

Injection Schemes Production Schemes Notes 

core logs, and per-well production and injection data. We then con- 

ducted simulations to evaluate the influence of the four strategies on oil 

production as well as the utilization and retention (sequestration) of CO2 

in the reservoir. In comparison to many published studies, this high- 

1 MPZ & ROZ 40 yr 

commingled 

injection 

2 MPZ 40 yr 

MPZ & ROZ 40 yr 

comingled 

production 

MPZ 40 yr 

Develop MPZ & ROZ 

at the start 

Develop only MPZ 

quality reservoir model enabled decreasing the uncertainties in both 
3 

our history match and prediction of oil production and CO2 storage 

associated with CO2-EOR. Based on this, we can conduct an extensive 
investigation of how various reservoir development scenarios impact the 

4 

injection 

MPZ 20 yr 

injection + 

MPZ & ROZ 20 yr 

injection 

production 

MPZ 20 yr + 

MPZ & ROZ 20 yr 

Develop MPZ initially 

and then develop MP & 

ROZ 

economic viability of brownfield ROZ projects. 

Our analysis models the oil production and mass of CO2 stored as a 

function of the WAG ratio and development scenarios. For each sce- 

nario, we focused on managing the development of brownfield ROZ to 
achieve the best financial outcome for the project, considering plausible 

MPZ & ROZ 20 yr 

injection + 

ROZ 20 yr 

injection 

MPZ & ROZ 40 yr Develop MPZ & ROZ 

and then develop ROZ 

values for carbon credits. We compared the optimal WAG ratios for NPV 

and cumulative oil production. The factors influencing economic results 

were used to conduct an economic sensitivity analysis. We also exam- 

ined how tax credits impact economics. This study enhances our un- 

derstanding of the economics of CO2 EOR and storage in ROZs. 

2. Background and methods 

 
The field studied is in the northeast corner of the Central Basin 

Platform (Fig. 1a). The field has experienced primary production, 

waterflooding, and CO2 injection (Fig. 1b). By 2010, the field had pro- 

duced approximately 700 million barrels of oil, mostly from the MPZs of 

the Permian carbonate San Andres Formation. Fig. 1b shows a brief 

history of the field. CO2 injection into the MPZ, begun in the early 1980s, 

slowed the production decline associated with the mature water flood 

operation. The operator began full-field ROZ development in 2007. 

2.1. Geological characterization 

 
The San Andres Formation is one of the several shallow water plat- 

form carbonates and mixed siliciclastic-carbonate units that developed 

on the shelves of the Permian basin in west Texas and New Mexico 

during the Permian (Leonardian-Guadalupian) [28]. This formation 

hosts the Upper Permian (Guadalupian) oil play. The sequence stratig- 

raphy of the reservoir sequences by Kerans et al. [29] and Lucia et al. 

[30] found multiple, shallowing-up cycles. These cycles consist of 

mudstones and wackestones grading upward into grain-dominated 

packstones and grainstones. The reservoir caprock is a thick anhydrite 

layer. Seven carbonate microfacies and one anhydrite dominated 

microfacies have been described from 10 continuous cores in the 

northern and central part of the field [31]. The cores exhibit well- 

developed cyclic depositional sequences, with at least five cycles of 

sedimentation. The cores exhibit a very thick lower cycle of sedimen- 

tation, dominated almost entirely by open-marine facies. Upper cycles 

are thinner and exhibit a greater proportion of shallow restricted sub- 

tidal and tidal flat facies. 

The facies within the reservoir studied are pervasively dolomitized. 

Ruppel and Cander [32] suggested that porosity preservation in these 

reservoirs was a consequence of dolomitization. Fusilinid mudstones/ 

packstones exhibit variably preserved porosities. It has been suggested 

that the crinodal-rich facies, prevalent in the San Andres ROZ, is char- 

acterized by moderate to large (up to greater than 20%) porosity. Most 

of this porosity is secondary in origin [31]. Intercrystalline porosity is 

variably occluded by anhydrite cement. Bryozoan facies in the lower 

part of the cores have moderate porosities, generally ranging between 

10 and 15%. Peloidal-oolitic shoal deposits have variable porosities, 

ranging from a few percent up to 22%. Most of the grainstones have their 

primary porosity reduced by anhydrite cements. Packstones exhibit high 

intercrystalline and leached dolomite rhomb porosity. A study by 

Duncan and Baqu´es (in prep) reveals no significant change in the nature 

of the facies or diagenesis between the MPZ and ROZ in the reservoir. 

 
2.2. Reservoir geomodeling and calibration 

 
We integrated information from well logs, and core descriptions into 

a 3-D geological model. The cored-wells’ logs (including spontaneous 

potential, gamma ray, density porosity, and neutron porosity) were 

analyzed, and through this we assigned facies to non-cored wells. Next, 

we conducted semi-variogram analysis of each facies group in each 

zone, adopting an exponential variogram model. Then, we used 

sequential indictor simulation to generate facies for the geomodel and 

sequential Gaussian simulation to generate porosity fields. The corre- 

sponding permeability fields were estimated as described in Ren and 

Duncan [5,33] and Ren et al. [13]. 

After building a full-field high resolution (cell size 20 20 2 ft) 

geological model, we generated a coarser model with cell sizes of 100 

100 2 ft. We then cut a sector model and used it to history match the 

primary depletion and waterflooding for calibration of the MPZ portion 

of the reservoir model. More details are included in Appendix A. 

 
2.3. Multiphase flow simulation of CO2 injection and development 

scenarios 

The calibrated reservoir model was then used to predict CO2 EOR 

and storage potentials. For the simulation input, the rock/fluid inter- 

action models (including fluid properties, relative permeability, and 

capillary pressure curves) refer to Ren et al. [13]. 

When predicting the performance of CO2 EOR and storage, water 

alternating gas (WAG) injection was considered. Inverted 9-spot 80-acre 

patterns were adopted, which are currently being used in some cases to 

develop the MPZ (see for example [34]. The CO2 injection rate is set to 

3000 Mscf/day, and water injection rate is 1400 rb/day (reservoir 

barrel/day). The injection target pressure is at the reservoir fracturing 

pressure of 3900 psi [35]. Bottom hole pressure for producers is set to be 

the minimum miscibility pressure, which was measured as 1400 psi 

(based on the examples provided by [34]. The WAG ratio (i.e., reservoir 

volume ratio between injected water and CO2) was varied from 0 to 4, 

through changing water injection duration while keeping CO2 injection 

duration unchanged in each WAG cycle. The WAG ratio equal to 1 (base 

case) corresponds to 90 days of water injection alternating with 70 days 

of CO2 injection. We run simulations of WAG injection for 40 years. 

In our model scenarios, all injectors and producers involved in sim- 

ulations are vertical and perforated according to the development sce- 

narios as shown in Table 1. Different switching schedules and injection/ 

production schemes were considered. Buffered boundary conditions as 

described by Ren and Duncan [5] were used in all simulations to mimic 

realistic flow scenarios. 
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Table 2 

The settings of economic parameters in NPV calculation. These settings are 

based on the publications by Chen and Reynolds [43],Godec [44],Hultzsch et al. 

[45], and Tayari et al. [25].  

Component Base Settings Range 

Oil price ($/STB) 60 30–90 

Oil price basis ($/STB) 1 – 

Gas price ($/Mscf) 1.80 1.2–5 

Gas price basis ($/Mscf) 0.25 – 

Tax credit for carbon storage ($/ton) 0 0–90 
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ROZ projects is limited to the cost of deepening wells from the MPZ to 

ROZ. 

The cost assumptions are listed in Table 2. Sensitivity analysis of 

these parameters was also conducted using the range in Table 2. Spe- 

cifically, our setting for the carbon storage tax credit was varied from $0 

to $90/ton, with the base case at $0/ton. This covers the range of credit 

rates in Section 45Q. According to the Congressional Research Service 

[2], the carbon tax credits directly go to capture entities, and some 

operators are building capture facilities. The carbon credit was $11.91/ 
ton in 2020 and inflation-adjusted annually for equipment set up before 

CO2 purchase price ($/ton) Oil price × 0.42 
* 

Oil price × 
(0.33–0.50) 2018. For equipment placed on or after that date, the carbon tax credit is 

Gas recycling cost ($/MSCF) Oil price × 1% – $20.22/ton in 2020, increasing to $35/ton by 2026, and inflation- 
Produced water management cost 

($/STB)
𝛙 

0.85 – adjusted annually onward. Carbon credits can impact the oil prices, 

just as oil prices currently impact CO2 costs. We examined the influence 
Liquid lifting cost ($/STB) 

: 
0.19 0.10–0.40 

Deepening cost ($/ft) 150 – 
Annual discount rate 0.12 – 

of this interaction on the optimal WAG ratio and NPV. 

 
 

* the price of CO2 sold varies according to oil price. 
𝛙 produced water management cost consists of water injection, water recy- 

cling, and water disposal. 

NPV N 

n=1 

Oilrevenuen + Carbonpricen 
— Recurrentcostn — Welldeepencostn 

(1 + r) 
 

(1) 

: this is the liquid lifting cost for wells perforated in the MPZ only. The cost for 

other wells perforated in the ROZ or both the MPZ and ROZ is assumed to lin- 

early increase with reservoir depth. 

 
2.4. Economic modeling 

 
The economics of CO2 floods were studied by Flanders et al. [36] and 

are well understood. For most economic analyses of oil and gas projects 

the key approach is estimating the Net Present Value (NPV). The NPV is 

based on estimating the projects annual cash income; subtracting the 

capital and operational expenditures (CAPEX and OPEX); discounting 

the resultant cash flow to the time of the beginning of the project; and 

finally summing the annual estimates to compute the NPV. In some 

applications, the discount rate is based on the cost of borrowing money. 

In oil production projects, a higher discount rate is used to account for 

risk, particularly the risk that oil prices or the value of sequestering CO2 

may decrease during the lifetime of the project. In traditional CO2-EOR 

projects, the cost of CO2 has dominated the economics. When seques- 

tration is considered, with some combination carbon credits and tax 

abatements, the economics can change significantly. In traditional CO2- 

EOR operations, the CAPEX includes the cost of: infill drilling (where 

required); installation of a CO2 cleanup plant; installation of a CO2 

compression system and pipeline networks for water and CO2; well 

workovers (where required); and other surface installation expenses. 

OPEX includes the following major cost drivers: the cost of CO2 purchase 

and the costs of electricity for running compressors to recycle CO2 and 

pumps to produce fluids and to reinject water. 

Project revenues come from sales of crude oil, short-chain hydro- 

carbon liquids (recovered from the CO2 cleanup plant), and natural gas, 

as well as tax credits and carbon sequestration payments from the 

incidental storage of CO2. In this analysis, the NPV consists of four 

components: oil revenue, carbon credits, operational expenses, and cost 

of well deepening into the ROZ. The OPEX (operational expenses) 

include CO2 purchase, CO2 recycling, produced water management, and 

liquid lifting costs. 

The formula used to estimate NPV is equation (1). We consider the 

carbon storage credit a revenue term for simplicity. This is valid for 

Oilrevenuen = 
[
Qop(n) — Qop(n—1) 

] 
× Oilprice (2) 

Carbonpricen =
 [

Qgi(n) — Qgi(n—1) 

] 
— 

[
Qgp(n) — Qgp(n—1) 

] ) 
× Storagetax  (3) 

Recurrentcostn = Gaspurn + Gasrecyn + Watercostn + Liquidliftn (4) 

Gaspurn =
 [

Qgi(n) — Qgi(n—1) 

] 
— 

[
Qgp(n) — Qgp(n—1) 

] ) 
× Gaspurprice (5) 

Gasrecyn = 
[
Qgp(n) — Qgp(n—1) 

] 
× Gasrecycost (6) 

Watercostn =
 [

Q℘(n) — Q℘(n—1) 

] 
— 

[
Qwi(n) — Qwi(n—1) 

] ) 
× Watercost (7) 

LiquidLiftn =
 [

Qop(n) — Qop(n—1) 

] 
+ 

[
Q℘(n) — Q℘(n—1) 

] ) 
× Liftcost (8) 

Welldeepencostn = Costperft*Deepenlength (9) 

In the above equations, 

Oilrevenuen, revenue from oil production at the nth year, $. 

Carbonpricen , price of carbon as incentive for carbon storage at the nth 

year, $. 

Recurrentcostn, recurrent operation cost at the nth year, $. 

Welldeepencostn, well deepening cost for ROZ development at the nth 

year, $. 

r, annual discount rate. 

n, year numbering since the start of development. 

Qop(n), cumulative oil production till the nth year, STB. Qop(n—

1), cumulative oil production till the (n-1)th year, STB. Oilprice, 

the price of oil, $/STB. 

Qgi(n), cumulative gas injection till the nth year, MSCF. Qgi(n—

1), cumulative gas injection till the (n-1)th year, MSCF. 

Qgp(n), cumulative gas production till the nth year, MSCF. 

Qgp(n—1), cumulative gas production till the (n-1)th year, MSCF. 

Storagetax, tax credit for carbon storage, $/Tonne. 

Gaspurn, CO2 purchase cost at the nth year, $. 

Gasrecyn, CO2 recycling cost at the nth year, $. 

Watercostn, produced water management cost at the nth year, $. 
Liquidliftn, produced liquid lifting cost at the nth year, $. 

comparing cases or for companies with sufficient tax liabilities. The 

following equations, 2–9, show how to calculate all of the components of Gaspur 
 

price , CO2 purchase price, $/Tonne. 

NPV. We calculated the differences in cumulative net present values 

(NPV) between the various development scenarios. For these scenarios, 

we assumed the capital expenditures or CAPEX for MPZ development 

are sunk costs. This study focuses on the difference in calculated NPV 

that will be attributed exclusively to the development of brownfield ROZ 

projects. The current study investigates the impact of different CO2 in- 

jection strategies on the project’s NPV. It is assumed that the CAPEX for 

Gasrecycost, CO2 recycling cost, $/MSCF. 

Q℘(n), cumulative water production till the nth year, STB. 

Q℘(n—1), cumulative water production till the (n-1)th year, STB. 

Qwi(n), cumulative water injection till the nth year, STB. Qwi(n—

1), cumulative water injection till the (n-1)th year, STB. 

Watercost , cost of produced water management, $/STB. 

Liftcost, cost of liquid lifting, $/STB. 
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Fig. 2. Comparison of CO2 EOR and storage metrics for different development scenarios at the end of WAG injection (at 40 years). Blue shows scenario #1, orange 

scenario #2, green scenario #3, and red scenario #4. (a) final oil production; (b) final amount of CO2 stored; (c) final retention fraction of CO2; (d) final NPV. The 

WAG ratio is in the range of 0–4. The final NPV is calculated using the base settings in Table 2. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
 

Costperft, cost of deepening wells into ROZ, $/ft. 

Deepenlength, depth of deepening for wells into ROZ, $. 

 
2.5. Metrics used to evaluate CO2 EOR and storage performance 

 
In addition to traditional EOR performance metrics (e.g., cumulative 

oil production), we also calculated metrics used to measure the perfor- 

mance of CO2 storage in the brownfield ROZ. 

Stored CO2 amount = injected CO2 amount – produced CO2 amount. 
CO2 retention fraction = stored CO2 amount / injected CO2 amount. 

All these CO2 EOR and storage metrics change with time; the results 

given here are the values after 40 years. 

3. Results 

 
In this section, we show results for the simulation and economic 

 

 

Fig. 3. Bar charts for 40 years of cost for development scenarios 1 through 4. The WAG ratio is 1 (70 days of CO2 half-cycle alternating with 90 days of water half- 

cycle). We used the base case economics (see Table 2). The scenarios are as follows: 1) Co-developing the MPZ and ROZ 2) Developing only the MPZ 3) Expanding to 

the ROZ years or decades after developing the MPZ 4) Co-developing the MPZ and ROZ, but eventually stopping MPZ injection. 
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Fig. 4. Dependence of the NPV for different WAG ratios corresponding to maximum cumulative NPV on oil price. The vertical axis is the fraction improvement to the 

NPV compared to the worst WAG ratio (usually zero, for these cases). A fractional improvement of 100% means 2x better NPV than the worst WAG ratio at that oil 

price. The settings for other economic parameters match the base case (refer to Table 2). Note the different vertical scales. 

 
metrics from developing a sector of the field in several different ways 

over 40 years. First are the development scenario comparisons, then we 

show the sensitivity to several uncertain economic variables. 

 
3.1. Comparing different development scenarios 

 
Fig. 2 compared the CO2 EOR and storage metrics for each devel- 

opment scenario (Table 1). Comingled injection and production (sce- 

nario #1) yield the largest oil production and NPV at all WAG ratios, and 

comingled injection followed by ROZ injection only (scenario #4) leads 

 

 

 

Fig. 5. Dependence of the NPV for different WAG ratios corresponding to maximum cumulative NPV on carbon credit. The vertical axis is improvement to the NPV 

compared to the worst WAG ratio. 100% improvement means twice the NPV over the worst WAG ratio. The CO2 purchasing cost is $50/Ton. The settings for other 

economic parameters match the base case (refer to Table 2). Note the different vertical scales. Inflection points occur when CO2 credits are high enough that oil 

production is less important. 
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Fig. 6. Dependence of the NPV on different WAG ratios and development scenarios for the three levels of carbon credit reported in Section 45Q. The x-axis is the 

water-to-gas injection ratio, where 0 is all gas injection and 4 is four reservoir bbl of water injection to one reservoir bbl of gas injection. The y-axis is the net present 

value in million dollars. Color of the lines indicate different development scenarios, and the line style is the carbon tax credit. 

 
to the largest CO2 storage amount for each WAG ratio. The lowest NPV is 

for scenario #2, which is MPZ development only. Not developing the 

ROZ leads to the lowest oil production and CO2 storage. 

Injecting into the ROZ (scenarios #1, 3, and 4) increases the volume 

CO2 accesses compared to MPZ injection only (scenario #2). Scenario 4 

has the largest CO2 storage because MPZ injection perforations were 

squeezed after 20 years of production, limiting CO2 recycling. In some 

cases, the WAG ratio impacts project economics via oil sales. In scenarios 

 
1 and 2, oil production depends on WAG ratio, but scenarios 3 and 4 do 

not display this sensitivity (Fig. 2a). For most scenarios, a WAG ratio of 1 

achieves optimal or near-optimal NPV. 

Storage is heavily dependent upon WAG ratio (Fig. 2b). As WAG ratio 

increases, less CO2 is sequestered because less CO2 is purchased, leading 

to increasing CO2 retention fractions (Fig. 2c). This WAG effect on CO2 

retention is strongest when ROZ and MPZ are co-developed (scenario 

#1). At a WAG ratio of 1, constant MPZ + ROZ production leads to 40% 

 

 

Fig. 7. Dependence of the NPV for high, low, and base cases of six key parameters, where the NPV-maximizing WAG ratio has been selected for each scenario. The x- 

axis of each subplot shows the modified variable. Along the y-axis is the project net present value (same scale for each plot). Different colors represent the different 

development scenarios. Shading shows the uncertainty in the average NPV for these sensitivities. 
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more oil being produced, but roughly the same amount of CO2 seques- 

tered as stopping MPZ production after 20 years. We examined the CO2 

saturation at the end of simulation, and it appears that CO2 did not 

largely migrate from the ROZ to the MPZ. 

The largest NPV came from adopting a WAG ratio of 1 and jointly 

developing the ROZ and MPZ. The lowest NPVs came from never 

developing the ROZ. The main difference between these extremes came 

from oil sales; operating costs were comparable (Fig. 3). 

Operational costs far outweigh capital costs when considering 

developing the ROZ after having built an MPZ CO2 flood. It costs roughly 

$150/ft to deepen vertical wells in a conventional onshore field (not 

including lost production). The cost of deepening all 119 wells into the 

ROZ is 4.5 million dollars. This is equivalent to purchasing about 200 

thousand tons of CO2, whereas in scenario #1, 6–15 million tons of CO2 

are purchased. 

Most of the costs for all scenarios come from recycling and pur- 

chasing of CO2. Fig. 3 shows the operational cost bar charts after 40 

years of development, given a WAG ratio of 1. The total OPEX of the 

scenario #1 is the most ($871 million), and scenario 2 is the least ($700 

million). The other two are in between. For MPZ-only development 

(scenario #2), CO2 purchasing costs are far lower than recycling cost. 

When moving from the MPZ to ROZ development, the large ROZ water 

saturation does not greatly increase lifting and water management costs. 

Therefore, there are few differences in these costs between scenarios, 

except some water management savings in scenario #3 from delayed 

ROZ development. 

3.2. Sensitivity analysis 

 
We performed a sensitivity analysis on the economic assumptions 

and WAG ratio. This included oil price, carbon sequestration tax credits, 

CO2 purchasing price, and lifting cost. Geologic and fluid parameters 

were held fixed during this analysis since we focused on economic 

assessment. To focus on the effect of WAG ratio rather than the obvious 

(and linear) effect of price, we generated plots normalized to the lowest 

NPV WAG ratio to see the uplift for selecting a better water–gas injection 
ratio. 

WAG ratios can significantly change the NPV for both EOR and CCUS 

applications (Figs. 4-5). This uplift varies from over 100% for only 

developing the MPZ and focusing on carbon tax credits to less than 1% 

for co-developing the ROZ and MPZ but stopping MPZ exploitation after 

20 years. Without considering carbon credits, the benefit of selecting the 

best WAG ratio can be from 65% at high oil prices when developing only 

the MPZ to less than 2% at low oil prices when delaying ROZ 

development. 

The optimal WAG ratio depends on the oil price and is not necessarily 

the WAG ratio for the largest oil production (Fig. 4). When co- 

developing the ROZ, selecting a WAG ratio of 1 is consistently the best 

option, but when only developing the MPZ, at low prices a WAG ratio of 

1 is ideal, but above $30/bbl, a WAG ratio of 2 is better. When delaying 

development of the ROZ, higher WAG ratios improve the NPV. 

For almost all scenarios and oil prices, a WAG ratio of 0 is the worst 

choice. This is due to lower total oil production and higher CO2 pur- 

chasing and recycling costs. Both CO2 purchasing and recycling scale 

with oil price. However, when co-developing the ROZ at sub-$30/bbl oil 

prices, it is better than a high WAG ratio because of lower operational 

costs from fluid lifting and water recycling. 

Carbon storage tax credits for CCUS also affect the ideal WAG ratio 

(Fig. 5). In Scenario #3, where the operator develops the ROZ 20 years 

after starting CO2 injection in the MPZ, the ideal WAG ratio varies from 

4 at no tax credit to 0 for a tax credit of greater than $70/ton carbon 

dioxide sequestered. The increase in NPV from optimizing WAG ratio 

can be from over 100% to about 1% for different scenarios and carbon 

tax credits. 

The maximum CO2-EOR related tax credit proposed in 45Q is $35/ 

Ton. We show the NPV for different development scenarios and 45Q 
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carbon credits in Fig. 6. At all carbon credit levels, co-developing the 

ROZ maximizes NPV, followed by co-developing the ROZ and stopping 

MPZ exploitation after 20 years, then developing the ROZ after 20 years, 

and finally, developing the MPZ has the lowest NPV. 

Fig. 7 shows the sensitivity of NPV to several economic parameters (i. 

e., oil price, natural gas sales price, lifting cost, and recycling water and 

CO2 prices). We selected the WAG ratio that maximized NPV for each 

scenario. The most important parameters, in order, are oil price, CO2 

cost, and gas sales price. Co-developing the ROZ leads to the best NPV 

expectations at all oil prices greater than $6/bbl. After development 

costs for the MPZ CO2 flood have been paid off, all scenarios have a 

breakeven price for oil prices between $2/bbl (MPZ only) and $5/bbl 

(develop ROZ, close MPZ after 20 years) for base case operating ex- 

penditures and the costs of extending to the ROZ (if the scenario includes 

ROZ development). 

4. Discussion 

 
The focus of this paper is on the economics, but the simulations of 

these different development scenarios tell us a few things about CO2- 

EOR. For instance, for MPZ-only development, most of the injected CO2 

channels into producers and is recycled (as illustrated in Fig. 2). This 

channeling is less prominent in the ROZ. A comparison between sce- 

narios #1 and #4 shows a large difference in oil production (Fig. 2a) but 

similar CO2 storage (Fig. 2b). The lack of CO2 migration we see is 

consistent with surveys we conducted of the CO2 saturation fields. 

4.1. Economics for ROZ versus MPZ CO2 flood projects 

 
Brownfield ROZ projects are able to use the same recycle plant and 

other infrastructure as the original CO2 EOR development in the MPZ. 

Therefore, expanding an MPZ CO2 flood to the ROZ requires little capital 

expenditure. As a result, in the payback period (the time from the 

initiation of the project to the time at which positive cash flow begins) is 

shorter. Co-developing the ROZ also accelerates the oil production and 

maximizes the ultimate recovery (Fig. 2). Accelerating the production 

improves the NPV, further improving the economics over MPZ-only CO2 

floods. 

4.2. Role of varying the WAG ratios on the economics of CO2 floods 

 
Previous studies (e.g., [37,38]) of optimal WAG ratios for CO2-EOR 

projects have largely ignored economics. As the WAG ratio represents 

the relative volume of CO2 versus water being injected, CO2 prices and 

tax breaks mean the ratio will significantly affect the operational 

expenses. 

The NPV is more sensitive to the WAG ratio when only developing 

the MPZ than for scenarios where the ROZ is also developed (Figs. 3 and 

4). In the MPZ, continuous CO2 injection leads to early breakthrough 

and more CO2 recycling, thus increasing operational expenses while 

simultaneously decreasing oil production when compared to WAG. In 

the ROZ, the low mobility of oil slows channeling, which decreases the 

effect of the WAG ratio on the NPV. 

CO2 tax breaks affect the ideal WAG ratio by over 20% for much of 

the range of carbon credits when either only developing the MPZ or co- 

developing the ROZ (Fig. 4). There are complex interactions between the 

oil price, carbon credit, WAG ratio, and their effects on the NPV for both 

MPZ and ROZ project development. 

4.3. Role of CO2 sequestration tax credits 

 
Ettehadtavakkol et al. [24] modeled the economics of different rates 

of fluid injection, WAG ratio and pattern flood duration. They examined 

the discounted cash flows from CO2 EOR projects. They examined 

breakeven oil prices as CO2 utilization, oil production rate and purchase 

price of CO2 are varied. Significantly, they also considered the impact of 
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Fig. A1. (a) The Petrel unit boundary of full-field geological model for the field with the dashed square in (a) representing the outer boundaries of a cut sector model. 

(b) Porosity fence diagram. (c) Permeability field with the two sectional cut for direct visualization. Four zones (gas cap, MPZ, ROZ, and water leg) are differentiated 

with different colors for easy look. The depth cutoff for the three contacts are 1725 ft (gas-oil-contact), 1935 ft (producing water–oil-contact or the contact between 
the MPZ and ROZ), and 2200 ft (free water level). (d) Permeability field of the cut sector with all the vertical well locations shown on the top of model. 

 

CO2 sequestration payments. Their main findings included a recom- 

mended range ($20 - $40/tonne) of CO2 storage tax for sustainable CO2 

EOR-storage operations. 

We found that carbon tax credits could be a significant source of 

income for CO2-EOR projects. Even when the carbon credit is signifi- 

cantly less than the cost of acquiring anthropogenic CO2, this can make 

CO2-EOR projects more profitable. Also, as said above, adding carbon 

credits can lead to changes in the NPV-maximizing WAG ratio. 

A significant point in the applicability of tax credits appears to be 

when CO2 storage becomes more important than oil sales for selecting 

the NPV (Fig. 5). This is heavily scenario-dependent, and it happens at 

the lowest CO2 credit for immediate ROZ development. Thus, we may 

conclude that ROZ development allows for more flexibility in selecting 

the best WAG ratio to balance oil sales with carbon credits. 

Section 45Q requires projects to capture 500,000 metric tons/year to 

apply for this credit. In the most carbon-storage-intensive scenario, our 

whole field study sequestered 59 million metric tons for the first 20 years 

(note, our simulations only covered a portion of the field), or about 1.6 

million metric tons/year. The least carbon-intensive development sce- 

nario would still sequester 0.2 million metric tons per year. 

For comparison, a 500-megawatt coal-fired power plant emits about 

3 million metric tons a year [39]. Thus, it is possible to use the full CO2 

output of a power plant to supply CO2 to a ROZ flood of this size and 

meet the minimum requirements for Section 45Q. 

Furthermore, the Permian basin has an extensive CO2 pipeline 

network, so a CO2 storage project in this area would have many potential 

CO2 CCUS sites to supply. There are 71 projects in West Texas served by 

the Denver City CO2 Hub [40]. 

4.4. Sensitivity of results to variations in income and costs 

 
The WAG ratio that yields the maximum oil production does not 

necessarily give the maximum NPV. Oil prices from $40–80/bbl tend to 
have the same ideal WAG ratio (Fig. 4). For carbon storage, though at 

sufficiently large carbon credits, the ideal WAG ratio drops (Fig. 5). 

While oil prices, gas prices, and CO2 costs affect the project NPV 

significantly, the best NPV always resulted from co-developing the ROZ 

when developing the MPZ CO2 flood. The lift cost, CO2 recycling cost, 

and water management cost did not greatly affect project economics 

(Fig. 7). 

5. Summary and conclusions 

 
We evaluated different development strategies and their associated 

uncertainties through integrated full-physics flow simulation and eco- 

nomic assessment for a San Andres Unit Brownfield residual oil zone. 
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Fig. A2. History matching of oil production rate (a), water cut (b), gas-oil-ratio (c), and reservoir pressure (d) during primary depletion and waterflooding periods. 

Large dots are field measurements, and lines represent simulation results. 

 
The assessment is based on a high-resolution geological model with 

integrated geological and reservoir characterization and careful cali- 

bration through historical primary and secondary production data 

matches. To better compare development strategies, we defined and 

calculated a series of metrics (e.g., cumulative oil production, CO2 

storage amount, CO2 retention fraction, and net present value (NPV)) for 

CO2 EOR and storage. Water alternating gas (WAG) ratios were tuned to 

maximize either oil production or NPV. The influence of economic pa- 

rameters (e.g., oil price and carbon credit) on favorable WAG ratios were 

examined. We found that: 

i) Simultaneous WAG injection into both the MPZ and ROZ maxi- 

mizes oil production and NPV, as compared to other injection 

strategies. 

ii) The NPV is more sensitive to the WAG ratio when co-developing 

the ROZ and MPZ than in MPZ-only flooding. 

iii) When targeting CO2 storage, switching from comingled injection 

to only ROZ injection after two decades of production is a viable 

strategy. The optimal switching time needs further study. 

iv) As the CO2 tax credit varies, the best WAG ratios to maximize 

NPV change to balance benefits from oil production and carbon 

storage. 

This work provides a basis for future optimization of CO2 EOR and 

storage in brownfield ROZs. 
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Appendix A:. Model construction and validation 

 
Geological Models 

Fig. A1 shows the full-field porosity and permeability, along with 

permeability for the sector model. We selected this porosity/perme- 

ability distribution from the batch of realizations that conform to 

geological characterizations and reservoir heterogeneity. The cut sector 

consists of 25 inverted 9-spot 80-acre patterns, with 25 vertical injectors 

and 94 vertical producers. 

History Matching 
The simulation in this study were based in part on a reservoir model 

for the MPZ that was used to history match the oil production, water cut, 

gas-oil-ratio (GOR), and mean reservoir pressure. The static model is 

calibrated, and a good match was found for oil production rate, water 

cut, and reservoir pressure (Fig. A2). The history match of GOR is 

challenging. GOR matching is hindered by the both the lack of infor- 

mation about the gas cap size and lack of knowledge of the vertical 

fracture permeability of the reservoir. Still, the overall trend and peak 

GOR rates are captured. 
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A  B  S  T  R  A  C  T  
 

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such 

reservoirs cannot be produced by conventional techniques; rather some forms of enhanced oil recovery 

(EOR), such as CO2 injection is required. As a result, these zones have a potential for CO2 storage asso- 

ciated with EOR activities. In West Texas, the oil production potential of these zones, associated with the 

San Andres Formation alone, has been estimated as on the order of tens of billions of barrels. A series of 

numerical simulations of CO2 miscible flooding were conducted on 11 Sub-Volumes cut from a larger 

static reservoir that represents the range of heterogeneity in permeability and porosity found in San 

Andres ROZs. This work set out to evaluate the effects of injection strategies and reservoir heteroge- 

neities on the performance of CO2 sequestration. The injection techniques investigated were: continuous 

CO2 injection and water alternating gas (WAG). Multiple factors were examined, including domain 

boundary conditions, well patterns, injection rates, permeability anisotropies, and natural fractures. It 

was found that ROZs could have higher retention fractions (i.e., volume fraction of injected CO2 retained 

in ROZs) for a combination of inverted five-spot well patterns and large WAG ratios. Based on the results 

of these numerical simulations, the long-term potential for CO2 storage associated with CO2-EOR of ROZs 

can be assessed. Our results provide key insights into how future CO2 storage projects associated with 

EOR in ROZs within carbonate sequences may be implemented. 

© 2018 Elsevier Ltd. All rights reserved. 

 
 

 

 

1. Introduction 

 
Residual oil zones (ROZs) are reservoirs in which oil is largely at 

levels near those for residual saturation [1]. The oil in ROZ reser- 

voirs cannot be produced by conventional techniques, but rather 

requires either CO2 enhanced oil recovery (CO2-EOR) or uncon- 

ventional strategies, such as horizontal drilling and intense 

depressurization by dewatering (see Ref. [2]). ROZs are widely 

distributed in the Permian Basin of West Texas. The volume of oil 

recoverable from ROZs in both the San Andres and Canyon Reef 

formations of Permian Basin, have been estimated by Koperna et al. 

[3] as 12 billion barrels, with unpublished estimates an order of 

magnitude or more. Thus, the potential for large scale CO2 

 

 
* Corresponding author. 

E-mail addresses: boren@utexas.edu (B. Ren), ian.duncan@beg.utexas.edu 

(I.J. Duncan). 

sequestration associated with future CO2-EOR projects is very sig- 

nificant. Such projects are already underway with commercial scale 

WAG injections into ROZs currently taking place in eight San 

Andres oil fields in the Permian Basin utilizing WAG (water alter- 

nating gas) injection of CO2 [4]. 

This study presents a series of simulations of the outcomes of 

WAG injections designed to give insights into oil production and 

CO2 storage associated with EOR projects in the ROZs of the San 

Andres Formation. Apart from a limited, preliminary simulation 

study by Jamali and Ettehadtavakkol [5] there have been no pub- 

lished full-physics studies of WAG injections into ROZ reservoirs. 

Given that the use of depleted oil reservoirs for CO2 sequestra- 

tion was suggested at least 25 years ago [6,7], surprisingly few 

detailed studies were based on both full-physics simulation and 

real heterogeneous reservoir data, designed to elucidate the nature 

of incidental storage associated with EOR. The comprehensive re- 

view of CO2-EOR by WAG injection by Afzali et al. [8] did not 

reference any publications on this topic, equivalent in scope and 
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detail to the current study. Numerous core flooding and rock-water- 

CO2 interaction studies have been made on CO2 injections (for 

example [9e12]). Such experiments are useful to understand the 

processes involved in WAG flooding. However, they provide only 

limited insights into the field scale response of real reservoirs, 

which have multiple spatial scales of heterogeneity. 

Many studies that have used multi-phase fluid flow simulations 

to evaluate CO2 injection strategies, at the level of individual 5-spot 

(or similar patterns). Of these, only a few have attempted to un- 

derstand the factors impacting both CO2 storage and oil recovery in 

the saturated zones of oil reservoirs (see for example [13e17]). The 

applicability of most of these studies to field-based EOR operations 

is limited, in that they: have not utilized fact-based, high-resolu- 

tion, three-dimensional static models; do not include realistic 

representations of the natural heterogeneity found in real reser- 

voirs; fail to evaluate the validity of the no-flow conditions they 

assume at the boundaries of the “5-spot” or other injection patterns 

being studied; do not compute metrics such a CO2 utilization and 

CO2 retention that can be compared to those in characterizing 

actual oilfields; make no evaluation of the impact of reservoir 

model cell size on the simulation results; and often use injection 

conditions that are incompatible with the operational re- 

quirements of CO2-EOR projects. The current study makes a unique 

contribution in that it addresses these issues. The study by Ette- 

hadtavakkol et al. [18] was based on synthetic reservoirs with 

simulated heterogeneous properties. Their analysis included a 

study of the impact of varying the WAG ratio (the volume ratio 

between a water slug and a CO2 slug at the reservoir condition) on 

CO2 utilization and oil production. Compared with [18], the current 

study is more comprehensive, evaluates the role of boundary 

conditions, cell size, and variations in reservoir heterogeneity in 

permeability. In addition, the current study extends their study to 

ROZ reservoirs. 

It has been suggested [19] that, oil recovery from WAG injection 

of CO2 is more sensitive to heterogeneity than is water flooding. No 

studies designed to understand the effects of the heterogeneity of 

ROZ reservoirs on their oil production and CO2 storage response 

appear to have been published. Simulation of WAG injection stra- 

tegies into model reservoirs that do not account for observed het- 

erogeneity in parameters such as porosity and permeability, are 

unlikely to yield realistic oil production and CO2 storage 

performance. 

The capacity of ROZs to sequester CO2 through EOR is not well 

understood as commercial scale ROZ floods have only been 

implemented in the last decade. Although Bachu et al. [20] asserted 

that ROZs are regarded by the oil industry as superior targets for 

geological CO2 sequestration, there is little published supporting 

information or analysis. 

The objective of the current work is to understand the factors 

controlling the performance of CO2 injection for EOR and the vol- 

ume of associated CO2 storage in ROZs. Initially this study examined 

the impact of varying the: (1) the size of the cells in the simulated 

model; (2) the nature of domain boundary conditions; (3) the na- 

ture of well conditions (perforation length, injection rate, and 

bottom hole pressure); and (4) injection strategies (such as 

continuous CO2 injection and WAG). As noted above the impact of 

these factors on the results of simulations of WAG injections have 

largely been ignored in previous work. The current study demon- 

strates that these issues can have a significant effect on the esti- 

mates of the efficiency of CO2 storage associated with EOR and has 

broad applicability to simulations of EOR in general. This study set 

out to evaluate the influence on CO2 storage and EOR performance 

of: varying WAG injection strategies; well configurations (by 

comparing 40-acre, 5-spot injection patterns with 80-acre, 9-spot 

patterns); and simulating reservoir volumes with the range of 

heterogeneous reservoir properties found in a real San Andreas ROZ 

reservoir. The work presented here would help us to better un- 

derstand the future of ROZ reservoirs as targets for both CO2 storage 

and EOR. 

 
2. Theory and approach 

 
The simulator used in the study, Eclipse-300 [21], is an efficient, 

multidimensional, equation-of-state based, compositional simu- 

lator. The software uses robust equation solvers and algorithms that 

enable efficient numerical solutions to solve mass and energy 

balance (continuum equations) describing the multi-phase flow of 

CO2, water, and oil in a heterogeneous porous media. The flow 

governing equations used in this work are the same as those 

described in Zuloaga et al. [22]. The dispersion of CO2 in oil reser- 

voirs is not considered in simulations. 

We employ a single rather than a dual permeability model for 

the carbonate reservoir. In this reservoir fractures are limited in 

occurrence and frequently filled by anhydrite cements (Duncan, 

unpublished data based on extensive core and thin section obser- 

vations). To understand the sensitivity of flow to the limited open 

fractures observed, we employ matrix permeability multipliers to 

approximate their effect. 

 
2.1. Description of geology of selected study-areas 

 
A carbonate ramp is the consensus depositional model used by 

geologists in interpreting the depositional environment of the 

carbonate hosted oil reservoirs in the San Andres Formation 

[23e25]. This ramp sloped seaward at less than 2◦ and was char- 

acterized by sedimentary facies belts, roughly parallel to the shelf 

margin. San Andres oil reservoirs are typically found in the ramp 

crest facies where wave energy belt is sufficient to produce “grain- 

dominated rock-fabric facies” [23]. We utilized the three- 

dimensional static reservoir model for a ROZ reservoir built by 

Ren and Duncan [4] constructed to represent a typical San Andres 

ROZ reservoir in carbonate ramp environment on the margin of the 

Central Basin Platform. The ROZ reservoir consists largely of a facies 

association of wackestones, packstones and rare grainstones that 

formed on the seaward, deeper-water side of the ramp crest. The 

overlying facies belts that formed the main reservoir prograded 

over these rocks (Duncan, unpublished data). The reservoirs have 

been pervasively dolomitized. The interaction of this event with the 

original rock fabrics, together with later stage dolomite and anhy- 

drite cementing of pores spaces, created the heterogeneity in 

permeability and porosity observed today. From this model, we cut 

out three dimensional reservoir volumes representing eleven Sub- 

Volumes. These were selected to represent the likely range in 

variability of the petrophysical properties (Table 1). Sub-Volumes 

 

Table 1 

Statistics of permeability fields for the study area before and after incorporating the 

whole-core permeability-porosity correlation. 
 

Study area model mk_before, mD sk_before, mD mk_after, mD sk_after, mD 

#1 5.3 22.7 6.1 22.3 

#2 21.0 44.0 21.3 43.7 

#3 22.3 54.6 22.7 54.3 

#4 27.7 69.4 28.2 69.1 

#5 11.5 59.8 11.6 59.2 

#6 14.4 38.8 14.8 38.3 

#7 17.4 54.6 18.0 54.3 

#8 18.9 46.7 19.3 46.3 

#9 15.2 73.3 15.2 72.8 

#10 22.0 62.1 22.5 61.8 

#11 21.1 56.4 21.4 56.1 



× × 

× × × × 
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#1, 2, 3, 4, 5, 10, 11 represent the variability of the ROZ reservoir 

along the long axis of the reservoir paralleling to the coastal margin 

(along the strike). Sub-Volumes #7, 2, 6 and #9, 3, 8 represent two 

parallel transects orthogonal to the long axis of the reservoir 

(across the strike or along the dip, with #7 and 9 being close to the 

shelf margin and #6 and 8 being on the interior side of the Central 

Basin platform). These selected Sub-Volumes represent the range of 

reservoir facies associated the San Andres ROZ. Computing the 

arithmetic mean and standard deviation of the permeability's in 

each Sub-Volume is used to represent the reservoir heterogeneity 

in each. 

The Sub-Volumes #1 through #9 (Table 1) were created with 

inverted 5-spot (40-acre) well patterns where the model di- 

mensions  (number  of  cells  in  each  direction)  are 

41 41 398 cells, with a cell size of 100 ft 100 ft ~2 ft. The cell 

size in the vertical direction varies in different layers with the 

average 2 ft. For Sub-Volumes #10 and #11 (Table 1), 9-spot (80- 

acre) well patterns were used with the model dimensions of the 

modeled volume being 80 80 398 cells, with the same cell sizes 

as for the 5-spot (40-acre) patterns. The initial pressure is assumed 

to be hydrostatic, and the reservoir temperature is set to be 105 ◦F. 

The average and standard deviations of permeability and 

porosity computed for these nine Sub-Volumes were listed in 

Table 1. To incorporate the effects of core-scale heterogeneity on 

permeability, we utilized the permeability data published by 

Honarpour et al. [26]. These data sets include the measurements 

from core plugs and whole cores (Fig. 1b). Whole-core measure- 

ments reveal the effects of core-scale heterogeneity and natural 

fractures on a larger spatial scale than core plugs. The arithmetic 

mean and standard deviation of the permeability in Table 1 are both 

before and after incorporating the effects of large-scale heteroge- 

neity represented in the whole-core measurements. The perme- 

ability fields before incorporation were generated through using 

the rock type model (Fig. 1a) that were developed by Lucia [27]. 

Some adjustments were made in order to properly incorporate 

the whole-core permeability-porosity correlation into the reservoir 

model. As shown in Fig. 1b, the permeability measured on the 

wholes cores can be orders of magnitudes larger than the perme- 

ability of the core plugs when porosity is less than 15%. Considering 

this, for cells with porosity larger than 15%, the permeability- 

porosity transformation derived from the whole cores is used to 

populate permeability in these cells in the geocellular model. 

Permeability in the other cells is the same as before when using the 

 
rock type method. After using the correlation, the mean of 

permeability increases and the standard deviation decreases 

(Table 1). The fields with a large fraction of low porosity should 

have a large increase in permeability. 

The ROZ oil properties used in this study are those reported by 

Honarpour et al. [26]. At the reservoir conditions, the minimum 

miscibility pressure for the CO2/oil mixture is approximately 

1300e1450 psi [26]. Miscible flooding is easily achieved, and the 

following flow simulation is based on this flood mode. 

The relative permeability and capillary pressure curves were 

adapted from Refs. [26,28]. Both the drainage and imbibition modes 

were considered, and the settings in the relative permeability 

curves were consistent with those in the capillary pressure curves. 

 
2.2. Injection/production simulation schemes 

 
The overall injection and production scheme designs were 

based on the typical field operation in San Andres and similar 

reservoirs in the Permian Basin. In the field, WAG injections are run 

with injection pressures controlled by the depth of the reservoir, 

together with the pipeline/recycle pressure and production pres- 

sures. Our simulation designs were intended to be general and thus 

cover different types of operational scenarios, including injection 

strategies, well patterns, and pressures. Only vertical injectors are 

considered in this work as the current practice of operators is to 

deepen the current vertical wells into the ROZs. 

For the lateral boundary conditions of the domain (Fig. 2), two 

different types were investigated: closed and ‘buffered’ boundaries. 

Closed boundaries are almost universally implemented in the 

simulation of hydrocarbon production [29,30]. The buffered 

boundaries introduced in this study are an attempt to create a more 

realistic evaluation of the results of storage operations. For the 

buffered boundaries, the pattern volume of interest, is surrounded 

by the same well patterns by cutting a larger sub-volume from the 

geocellular model. The outer boundaries of these rimming patterns 

were closed. For example, in Fig. 2, eight well patterns were 

employed to surround the middle one, and we called this buffered 

boundary as “one rimming layer”. Similarly, two and three rimming 

layers were also tested through cutting larger models. All the 

quantitative evaluations were made only on the middle well 

pattern. 

For the domain upper boundary, it was assumed to be closed or 

no-flow since our study is focused on ROZs. Some ROZs in the San 

 
 

 
 

Fig. 1. (a) Rock type model used in building the permeability field, and the model is adapted from Lucia [27]; (b) the blue curve was the permeability-porosity correlation built on 

the whole-core data. The green curve was built on the permeability-porosity data measured on core-plugs. These two curves were adapted from the publication by Honarpour et al. 

[26]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. Different lateral boundary conditions tested in this study. For the buffered boundaries, the middle well pattern was rimmed by eight of the same well patterns to 

approximate realistic flow conditions. The evaluation was made only on the middle pattern. 

 

Andres Formation underlie the main pay zones (MPZs). In this case, 

some portion of the CO2 injected through ROZs would be likely to 

move upward into the MPZs. For the domain lower boundary, it was 

connected to an underlying aquifer with different body size tested 

in the study. The nature of this underlying aquifer was modeled by 

using the Carter-Tracy analytical aquifer [21]. 

Table 2 summarized the nature of the cases studied. Note that 

the variable parameters are divided into three groups: domain 

boundaries and sizes; injection parameters; and static reservoir 

parameters. The first group consists of closed boundaries, buffered 

boundaries, different sizes of underlying aquifers, and different cell 

areal sizes (Lx and Ly in Table 2). The second group is comprised of: 

injection rates; the depth of well perforations, the magnitude of 

injected pore volumes (or PV), WAG ratios, CO2 half-cycle sizes, well 

patterns (inverted 5-spot or 9-spot), and pattern coverage areas. 

The third group of parameters are permeability anisotropies, het- 

erogeneity differences between the dip and strike directions, nat- 

ural fractures, and the thickness of the underlying aquifer. All the 

simulations were run for 25 years, which is a typical duration for a 

pattern in a commercial CO2 EOR operation. 

 
2.3. Metrics for CO2 EOR and storage performance 

 
The use of metrics to evaluate the behavior of CO2 floods dates 

back at least to the work of Hadlow [6] who plotted the “cumulative 

CO2 retention versus cumulative CO2 injection” for five major CO2 

EOR projects in the Permian Basin. Hadlow also used a metric he 

termed overall or gross CO2 utilization, defined as the volume of 

CO2 injected per incremental barrel of oil produced. 

Azzolina et al. [31] have presented a more comprehensive set of 

metrics. Following Melzer's definition [32], we defined CO2 reten- 

tion by the relation: 

 

CO2 retention fraction = (total CO2 injected — CO2 produced) / total 
CO2 injected 

 

Where: CO2 retention = percent of injected CO2 retained in the 

reservoir (%); total CO2 injected = total injected volumes of CO2 
[purchased plus recycled CO2] (% of the total hydrocarbon pore 

volume (HCPV)); and CO2 produced = total produced volumes of 
CO2 [recycled CO2] (%HCPV). 

 
3. Results 

 
In the following, we examined the results of simulations in the 

context of systematically varying the nature of the models, the 

boundary conditions, and the nature of the reservoir Sub-Volumes 

selected. The relevant physics were added into the flow simulations 
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Table 2 

Summary of conditions for simulations. 
 

Lx, 

ft 

Ly,  Domain lateral 

ft boundary conditions 

Sub- 

Volume 

model 

label 

Well 

pattern, 

size 

CO2 

injection 

rate, MScf/ 

d 

CO2 

injector 

perforation 

Underlying 

aquifer 

thickness, ft 

WAG 

ratio 

CO2 half- 

cycle size, 

HPCV 

Incorporating the 

hole-core perm- 

porosity correlation 

kv/ 

kh 

Mainly tested parameters 

100 100 Closed, Buffered: #1 Inverted 3000 Complete 0 0 NA No 0.1 Boundary conditions 
 one layer, two-layer,  5-spot,         

 three-layer  40-acre         

20 20  Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1 Cell areal sizes 
   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1  

   5-spot,         

   40-acre         

200 200 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1  

   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Lower 0 0 NA No 0.1 Perforation lengths 
   5-spot,  quarter       

   40-acre         

100 100 Buffered: one layer #1 Inverted 6000 Complete 0 0 NA No 0.1 Injection rates 
   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25, 2.5% No 0.1 WAG ratios 
   5-spot,    0.5, 1,     

   40-acre    2     

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25 1.0%, 2.5%, No, Yes 0.1 CO2 half-cycle sizes, natural 
   5-spot,     5.0%   fractures 
   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0, 2.5% Yes 0.1, Permeability anisotropies, 
   5-spot,    0.25,   1, WAG ratios 
   40-acre    0.5, 1,   10  

       2     

100 100 Buffered: one layer #1 Inverted 3000 Complete 125, 250, 0.25 2.5% Yes 0.1 Underlying aquifer thickness 
   5-spot,   500, 1000      

   40-acre         

100 100 Buffered: one layer #2 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1 Different sub-volume models, 

   5-spot, 

40-acre 

   0.25 5.0%   Continuous CO2 injection vs. 

WAG injection 

100 100 Buffered: one layer #3 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #4 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 2.5% Yes 0.1,  

   5-spot,    0.25,   1,  

   40-acre    0.5, 1,   10  

       2     

100 100 Buffered: one layer #6 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #7 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #8 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #9 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #10 Inverted 3000 Complete 0 0, 2.5% Yes 0.1 Well patterns, Different sub- 
   9-spot,    0.25,    volume models 
   80-acre    0.5, 1,     

100 100 Buffered: one layer #11 Inverted 3000 Complete 0 0, 2.5% Yes 0.1  

   9-spot,    0.25,     

   80-acre    0.5, 1,     
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in steps to explore their specific contribution to CO2 retention. 

Varying the parameters in Table 2 affect both CO2 retention and 

oil production. The impact on associated storage can be quantified 

in two ways: the time-averaged retention fractions (averaged over 

the whole injection period) and the instantaneous retention frac- 

tion. These metrics can be computed by using both numerical re- 

sults and field data. These metrics do not measure the relative 

importance of CO2 storage modes such as the free state and capil- 

lary trapped CO2 [33,34]. As oil reservoirs appear to have a very low 

leakage risk during CO2 storage [35], our work focused on CO2 

retention, rather than the detailed quantification of storage modes. 

 
3.1. Effect of cell size 

 
The size of cells in the geocellular model used for simulations is 

a key modeling parameter that has been little studied. We con- 

ducted a sensitivity analysis to find the optimal size that balances 

numerical accuracy and computational efficiency. Fig. 3 shows the 

cumulative oil production as a function of elapsed time for different 

combinations of cell areal sizes. The cell thickness was not changed 

(around ~2 ft) when varying the areal sizes. After 10 years, the oil 

production for the coarsest grid (largest cell size) is about 20% 

higher than that for the finer grids. When the cell areal dimensions 

are 100 100 ft, the changes in predicted oil volumes from the 

simulations are minimal. There is a reasonable trade-off between 

apparent accuracy and computational time. Thus, we will use this 

cell size in the following. 

 
3.2. Effect of domain lateral boundary conditions 

 
This study set out to explore the relationship between choosing 

different boundary conditions and the results from the associated 

simulations. Fig. 4 shows the effect of varying the lateral boundary 

conditions imposed on the modeled domain on the metrics for oil 

production and associated CO2 storage. The retention fraction is 

sensitive to the nature of boundary conditions (Fig. 4a). The buff- 

ered boundary conditions yield a higher retention fraction than 

those for the closed boundary conditions. Application of these two 

types of boundary conditions result in similar gross CO2 utilization 

ratios. For the buffered boundaries, the number of rimming layers 

affect the evaluation of retention fractions. The retention fractions 

for the three types of buffered boundaries (namely, one, two, and 

three rimming layers) in one set of simulations showed a difference 

of 18%. This large difference arises from the different levels of 

heterogeneity for the rimming patterns. Such a large difference 

 
 

 
Fig. 3. Cumulative oil production vs. time for the different areal cell sizes. 

 

 
 

Fig. 4. Effect of domain lateral boundary conditions on CO2 retention fractions (a) and 

gross CO2 utilization ratios (b). 

 
 

indicates the magnitude of uncertainty involved in the evaluation 

of retention fractions for realistic reservoir models. For simplicity, 

buffered boundaries with one rimming layer will be used in the rest 

of the simulations. 

 
3.3. Effect of well conditions (perforation and injection/production 

pressure) 

 
Two different scenarios for the perforation of injection wells are 

considered: (1) complete perforation of the depth range of the ROZ 

reservoir; and (2) the perforation of the lower quarter. The com- 

plete perforation case is equivalent to the open-hole injection of 

CO2, which was a common practice when many of the San Andres 

reservoirs were first produced. The results of our simulations (first 

two rows in Table 3) show that CO2 retention fractions are largely 

insensitive to perforation intervals (0.698 versus 0.696). In the 

same simulation, the two perforation strategies have a significant 

influence on the oil production rates (4.9 vs. 12.8 Stbd/well). The 

complete perforations result in an increased sweep efficiency 

compared with the lower-quarter perforations. This higher sweep 

efficiency reflects the layered nature of the reservoir, with high 

permeability “flow units” interlayered with low permeability 

(<0.01mD) flow barriers and baffles (discontinuous flow barriers). 

These largely constrain CO2 to laterally push oil towards producers. 

Two CO2 injection strategies were considered: constant pres- 

sure and constant rate. Simulation results (1st and 3rd row in 

 
 



× 
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Table 3 

CO2 rention and oil production for differently combined well conditions during continuous CO2 injection. 
 

Well conditionsb CO2 retention fraction Stbda/Well 
 

Inj_rate ¼ 3 MM Scf/d; Pro_bhp ¼ 2020 psi; Complete perforation in injectors (base case settings) 0.696 12.8 

Inj_rate ¼ 3 MM Scf/d; Pro_bhp ¼ 2020 psi; Lower-quarter perforation in injectors 0.698 4.9 

Inj_rate ¼ 6 MM Scf/d; Pro_bhp ¼ 2020 psi; Complete perforation in injectors 0.629 19.6 

Inj_bhp ¼ 2600 psi; Pro_bhp ¼ 2020 psi (bubble point) Complete perforation in injectors 0.696 4.3 

Inj_bhp ¼ 2600 psi; Pro_bhp ¼ 1400 psi (MMP) Complete perforation in injectors 0.647 9.6 

a Stbd, standard tank barrel per day. 
b 

Inj ¼ injectors, Pro ¼ producers, bhp ¼ bottom hole pressure. 

 

Table 3) show that, when imposing a constant rate on injectors, 

large CO2 injection rates typically enhance oil production (12.8 

stbd/well for base case vs. 19.6 stbd/well). For these two cases the 

time-averaged CO2 retention fraction decreased from 0.696 to 

0.629. The injection rate can have a significant effect on CO2 

retention. Injection/production pressure shows the similar effect on 

the retention fraction as injection rates (the last two row in Table 3). 

When the production bottom hole pressure decreased from 2020 

psi (bubble point pressure) to 1400 psi (MMP), the retention frac- 

tion shows a significant decrease (from 0.696 to 0.647), and oil 

production rate for the well doubled (from 4.3 to 9.6 Stbd/well). 

 
3.4. Effect of half-cycle size and WAG ratio 

 
Two important parameters involved in WAG injection are WAG 

ratios and CO2 half-cycle sizes (measured in terms of the %HCPV. 

 
 

Fig. 5. Effect of WAG ratio and CO2 half-cycle size on CO2 retention (a) and oil pro- 

duction (b) for the Sub-Volume model #1. The used geologic models are without 

incorporating the whole-core permeability-porosity correlation. 

The impact of these two parameters on CO2 retention and oil pro- 

duction are shown in Fig. 5a and b. For a given CO2 half-cycle size, 

the CO2 retention fraction first decreases with the increasing WAG 

ratio, followed by a steady increase (Fig. 5a). Note that continuous 

CO2 injection (at zero WAG ratio) enhances sequestration as the 

CO2 retention fraction can be as high as 0.69. 

If the oil production is the priority, the WAG ratios corre- 

sponding to the smallest retention fractions should be considered 

as these ratios result in the highest oil production (Fig. 5b). Based 

on these simulations, the retention fraction does not decrease 

significantly (from 0.69 to only 0.67) when changing from contin- 

uous CO2 injection (WAG ratio ¼ 0) to optimized WAG injection for 

oil production (WAG ratio ¼ 0.25) (Fig. 5a vs. Fig. 5b). 

 
3.5. Effect of permeability anisotropy 

 
To examine the CO2 retention sensitivity to the anisotropy of 

permeability, the ratio of the vertical to horizontal permeability (kz/ 

kx) was varied from 0.1 to 10 while keeping kz unchanged. Aniso- 

tropic permeabilities on the order of 10 kx can be caused by ver- 

tical natural-fractures. As the permeability anisotropy increases, 

the CO2 retention fraction decreases (Fig. 6). With increasing WAG 

ratio, the effect of permeability anisotropies on the CO2 retention 

fraction becomes more pronounced. At a small WAG ratio, the 

permeability anisotropy has a weak effect on CO2 retention. How- 

ever, as the WAG ratio increases, the retention enhancement caused 

by decreasing vertical permeability becomes large (Fig. 6). 

 
3.6. Effect of injection techniques and reservoir heterogeneity 

 
The retention fractions for the two different CO2 injection 

techniques (i.e., continuous CO2 injection and WAG injection) are 

compared in Fig. 7. The retention fraction changes marginally 

 
 

Fig. 6. Effect of permeability anisotropy on CO2 retention for the Sub-Volume mode #1. 

The whole-core permeability-porosity correlation was incorporated into the reservoir 

model. 
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Fig. 7. CO2 retention for different Sub-Volumes under both continuous CO2 injection 

and WAG injection. The CO2 retention fractions for the WAG injection correspond to 

the optimal WAG ratio (i.e., the WAG ratio that gives the largest oil production). 

Fig. 9. Evolution of CO2 retention fractions for the nine (from #1 to #9 in Table 1) Sub- 

Volumes with 5-spot well patterns. Dashed lines correspond to the Sub-Volumes 

across the strike direction. 

 

 

 
 

Fig. 8. Cross plot of CO2 retention fractions versus the permeability standard de- 

viations for the nine Sub-Volumes (from #1 to #9 in Table 1) undergoing continuous 

CO2 injection. The retention fractions for WAG injection were not shown here as they 

are close to those for continuous CO2 injection (Fig. 7). These simulations are based on 

the whole-core permeability-porosity correlation. 

 

 
(around ± 0.04) between these two injection strategies. 

The range of CO2 retention fractions for the 9 Sub-Volumes from 

0.36 to 0.70, appears to be correlated with reservoir heterogeneity 

(Fig. 8) as measured by the standard deviation of permeabilities 

within each Sub-Volume. Generally, the retention fraction increase 

with decreasing heterogeneity (i.e., decreasing permeability stan- 

dard deviation). Homogeneity enhances CO2 sweep efficiency and a 

larger percentage of the CO2 injected occupies the pore spaces 

where the in-situ oil or water has been displaced. 

All the above CO2 storage efficiencies are time-averaged over 

25 yrs. Fig. 9 shows the evolution of retention fractions for the nine 

Sub-Volumes during continuous CO2 injection. The evolution of CO2 

retention reflects the varying production rates of CO2. For example, 

consider the results for the Sub-Volume #7 (the lowest red dashed 

curve in Fig. 9) the CO2 retention fraction decreases rapidly, i.e., 

most of the injected CO2 is produced rapidly. This appears to be due 

to the large heterogeneity in permeability (refer to Table 1) in this 

Sub-Volume, resulting in early CO2 breakthrough. WAG injection 

into this Sub-Volume will increase the volume of CO2 retained in 

the reservoir. In contrast, Sub-Volume #1 has the largest retention 

fraction, and the standard deviation of the permeability in this 

reservoir volume is estimated to be the smallest among the nine 

Sub-Volumes (refer to Table 1). 

 
3.7. Effect of well patterns and pattern volume 

 
Overall, the CO2 retention fractions for the 80-acre inverted 9- 

 
 

Fig. 10. Effect of WAG ratios on CO2 retention (a) and oil production (b). The inverted 

5-spot results are for the Sub-Volume #1, which partially overlaps the 9-spot Sub- 

Volume #10 in space. The assessment employed the reservoir model that incorpo- 

rated the whole-core permeability-porosity correlation. 
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spot pattern are less than those for the 40-acre inverted 5-spot 

pattern (Fig. 10 a). This may be because of the high producer/ 

injector ratio (more production wells) involved in the inverted 9- 

spot pattern. It also may be related to the larger areal extent (80- 

acre) of the 9-spot patterns compared with the 40-acre, 5-spot 

patterns. The difference in retention fractions between the two 

patterns becomes smaller as the WAG ratio increases. For the 9-spot 

pattern, the smaller CO2 retention can be compensated by using a 

large WAG ratio (Fig. 10 a). 

If oil production is the priority, employing a large (>1) WAG 

ratio is a poor choice (Fig. 10 b). For 9-spot well patterns, the 

averaged oil production rate rapidly decreases with the increase in 

the WAG ratio (less CO2 cumulatively injected), whereas the 

retention fraction shows the opposite trend. At the point of the 

maximum oil production rate, only 45% of injected CO2 is stored for 

the 80-acre, 9-spot pattern. However, for the 40-acre, 5-spot 

pattern, the WAG ratio, at which the maximum oil production is 

achieved, yields the high retention fraction of 70%. 

 

4. Discussion and conclusions 

 
4.1. Impact of model cell size, boundary conditions and operational 

parameters on simulation results 

 
The first step taken in this study, was to evaluate the impact of 

increasing the resolution of the static reservoir model on the re- 

sults from simulations of WAG injection of CO2. This study showed 

that simulation of a coarser geocellular grid (200 200 2 ft) 

results in oil production ~20% higher than for grids with the cells 

size 100 × 100 × 2 ft and smaller. As the majority of published 
studies of CO2 injection did not conduct grid size sensitivity study 

(for example [17,36]), our result is sobering. It is likely that the cell 

size dependency on these metrics is a function of the heteroge- 

neity modeled by the geocellular model. This is worthy of further 

study. 

The second step in our study, was examining the impact of the 

choice of boundary conditions on simulation results. Again, the 

impact of boundary conditions imposed on modeling of WAG in- 

jection appear to have been largely, if not entirely ignored by pre- 

vious published studies. Many studies do not document the 

boundary conditions used, but those who do largely use no flow 

boundary conditions. The simulations performed in the current 

study resulted in values for CO2 retention for closed boundary 

conditions lower by as much as 35% compared with what is referred 

to in this paper as “buffered boundary conditions”. The buffering 

used in this study was created by cutting a volume one, two, or 

three patterns wide from the whole reservoir static reservoir model 

of Ren and Duncan [4]. As the buffer zone is populated by real 

reservoir data these are arguably significantly more realistic than 

closed boundaries. Previous studies that assume no flow between 

adjacent patterns may give inaccurate estimates of the amount of 

CO2 retained in ROZs. Of course, model simulations that do not 

include reservoir heterogeneity will not be impacted by choice of 

boundary conditions. Unfortunately, such simulations are highly 

unlikely to produce realistic results. 

Although our study has shown that increasing the CO2 injection 

rate from 3 to 6 MM Scf/d resulted in an increase in oil production 

from 12.8 to 19.6 Stbd/well and a decrease in the time-averaged CO2 

retention fraction from 0.696 to 0.629. However, in the field oper- 

ation of reservoirs injection rate is not an independent variable but 

rather is controlled by the imposed injection pressures. Injection 

pressures are constrained by factors such as the delivery pressure of 

CO2 pipelines or the sizing of CO2 recycle compressors, together 

with the depth of the fluid column in injection wells. 

 
4.2. Analysis of the impact of the nature of WAG injection 

 
A systematic numerical assessment has been conducted on CO2 

storage associated with EOR utilizing WAG injection into ROZ res- 

ervoirs. The simulations are based on vertical injectors that have 

been adopted by the great majority of field operators implementing 

CO2 EOR projects. In addition, the numerical assessment employs 

WAG injection and continuous CO2 injection, which have been 

widely employed in oilfields [37]. A set of 3-D Sub-Volumes cut 

from the detailed static reservoir model was utilized in the current 

study. Each was centered on an inverted 40-acre, 5-spot or 80-acre, 

9-spot injection pattern. These volumes were selected to enable 

modeling of a range of reservoir heterogeneity as measured by the 

standard deviation of permeability. The aim was to understand how 

reservoir heterogeneity in ROZ reservoirs influences CO2 storage 

incidental to CO2-EOR. Multi-phase flow simulations were con- 

ducted on these volumes. 

The results of these numerical experiments is consistent with 

the conclusion that maximum CO2 retention in ROZs can be ach- 

ieved by a combination of large WAG ratios (around 1e3), and the 

implementation of inverted 5-spot well patterns. Reservoirs with 

homogeneous permeability fields and small permeability anisot- 

ropies will have larger retention of CO2. In contrast, for 5-spot well 

patterns, a combination of complete perforation, high CO2 injection 

rates, small WAG ratios (around 0.1 to 0.6) increase oil production. 

Both oil production and CO2 retention fractions in ROZs can be 

simultaneously high when using a combination of 5-spot well 

patterns and continuous CO2 injection. If maximizing oil produc- 

tion is the priority, a combination of 9-spot well patterns and WAG 

injection appears to be a superior strategy. The optimal WAG ratio 

for achieving the maximum oil production differs for the reservoir 

subareas in our study that have different levels of heterogeneity. 

This appears to be because heterogeneity influences the effective- 

ness and necessity of injecting water during WAG. 

 
4.3. The role of the heterogeneity of the reservoir on CO2 storage 

 
The current study appears to be the first published attempt to 

systematically understand the role of reservoir heterogeneity on 

metrics such as CO2 retention. This study has shown that the more 

homogeneous the permeability field (and presumably the greater 

the sweep efficiency), the higher the retention fraction. This is 

consistent with our traditional understanding that reservoir ho- 

mogeneity is also favorable to enhancing oil recovery [29]. In 

contrast, reservoir heterogeneity tends to cause early CO2 break- 

through and poor CO2 retention (Fig. 9 and Table 1). 

The simulations in this study are consistent with the retention 

fraction for CO2 varying by a factor of two, from 0.36 to 0.70 for Sub- 

Volumes modeled within the ROZ reservoir. This range difference 

appears to be attributable, at least in part, to reservoir heteroge- 

neity. The data presented in the current study is consistent with the 

retention fraction increasing with decreasing heterogeneity (i.e., 

decreasing permeability standard deviation). Homogeneity en- 

hances CO2 sweep efficiency and a larger percentage of the CO2 

injected occupies the pore spaces where the in-situ oil or water has 

been displaced. In evaluating the CO2 storage associated with the 

future carbon capture and storage (CCS) projects in ROZ reservoirs a 

range of this magnitude is very significant. 

The WAG simulations presented in this study were designed to 

understand the impact of reservoir heterogeneity. The approach 

was motivated in part by the whole-core versus core plug-based 

permeability-porosity correlation presented by Honarpour et al. 

[26]. The differences in permeability between traditional core plug 

data versus the whole-core measurement reveal significant het- 

erogeneities in permeability at a scale of inches. In studies of ROZ 
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reservoirs, the heterogeneity associated with natural fractures 

should be carefully characterized as they can have a significant 

effect on CO2 retention. The design of WAG injections should 

consider the intensities of natural fractures in different Sub- 

Volumes of a given reservoir model. The use of a single WAG ra- 

tio for the whole field might not be the best strategy. 

 
4.4. Implications to the future projects of carbon sequestration 

associated with EOR in ROZs 

 
The overall assessment shows that CO2 storage in ROZs is 

impacted by both injection strategies and reservoir heterogeneity. 

For vertical CO2 injectors, larger WAG ratios always result in higher 

retention fractions, however the cumulative volume of CO2 injected 

is also decreased. 

If maximizing oil production is the priority, CO2 injection 

alternating with relatively small slugs of water (i.e., small WAG 

ratio, around 0.25) is a good choice. This injection is different from 

the WAG in traditional (originally oil saturated) reservoirs. For such 

reservoirs, published optimized WAG ratios have been reported in 

the range of 0.9e3 [38], which is much higher than the optimized 

WAG ratios derived from this current study. The reasons for this 

difference are not clear and are worthy of further study. As noted by 

Ren and Duncan [4], the oil saturation in ROZs is different from that 

in originally oil saturated reservoirs. In these reservoirs, much of 

the remaining oil after man-made water flooding (and before CO2 

injection) resides in reservoir regions not swept during water 

flooding. In ROZs the oil saturation is apparently developed through 

relatively slow regional water flushing. In virgin ROZ reservoirs, oil 

saturation tends to be relatively uniform, except where some low 

porosity/permeability patches have retained relatively high oil 

saturation [4]. 

 
4.5. Final thoughts 

 
It is important to accurately estimate the magnitude of CO2 

storage affected by WAG based EOR into ROZs with a range of in- 

jection strategies. The current study has shown that such accurate 

estimates require careful consideration of: (1) the nature of 

imposed boundary conditions; (2) the impact of the size of the cells 

in the simulations grid; (3) the nature of reservoir heterogeneity; 

and (4) the nature of WAG protocols. Most previously-published 

simulation studies fail to take into account most or all of these 

critical issues. 

In the simulation results presented in the current study, CO2 

retention is found to be strongly influenced by the heterogeneity 

and anisotropy of the permeability field. Portions of the reservoir 

with both less permeability heterogeneity and anisotropies (ratio 

between vertical and horizontal permeability) have higher CO2 

retention fractions. 

The results of this study, based on real static reservoir models, 

for the first time, provide a robust understanding of the factors 

controlling CO2 storage associated with WAG CO2 injection to 

improve oil production in ROZ reservoirs. Simulation of WAG in- 

jection strategies into model reservoirs that do not account for 

observed heterogeneity in parameters such as porosity and 

permeability, are unlikely to yield realistic oil production and CO2 

storage performance. 

The results of this study provide key insights into how future 

CO2 storage projects associated with EOR in ROZs within carbonate 

sequences may be evaluated and then implemented. 
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BHP Bottom hole pressure 

CCS Carbon capture and storage 

CO2-EOR CO2 enhanced oil recovery 

HCPV Hydrocarbon pore volume 

MPZs Main pay zones 

PV Pore volume 

ROZs Residual oil zones 

Stbd Standard tank barrel per day 

WAG Water alternating gas 
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A  B  S  T  R  A  C  T  
 

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such 

reservoirs cannot be produced by conventional techniques; rather some forms of enhanced oil recovery 

(EOR), such as CO2 injection is required. As a result, these zones have a potential for CO2 storage asso- 

ciated with EOR activities. In West Texas, the oil production potential of these zones, associated with the 

San Andres Formation alone, has been estimated as on the order of tens of billions of barrels. A series of 

numerical simulations of CO2 miscible flooding were conducted on 11 Sub-Volumes cut from a larger 

static reservoir that represents the range of heterogeneity in permeability and porosity found in San 

Andres ROZs. This work set out to evaluate the effects of injection strategies and reservoir heteroge- 

neities on the performance of CO2 sequestration. The injection techniques investigated were: continuous 

CO2 injection and water alternating gas (WAG). Multiple factors were examined, including domain 

boundary conditions, well patterns, injection rates, permeability anisotropies, and natural fractures. It 

was found that ROZs could have higher retention fractions (i.e., volume fraction of injected CO2 retained 

in ROZs) for a combination of inverted five-spot well patterns and large WAG ratios. Based on the results 

of these numerical simulations, the long-term potential for CO2 storage associated with CO2-EOR of ROZs 

can be assessed. Our results provide key insights into how future CO2 storage projects associated with 

EOR in ROZs within carbonate sequences may be implemented. 

© 2018 Elsevier Ltd. All rights reserved. 

 
 

 

 

1. Introduction 

 
Residual oil zones (ROZs) are reservoirs in which oil is largely at 

levels near those for residual saturation [1]. The oil in ROZ reser- 

voirs cannot be produced by conventional techniques, but rather 

requires either CO2 enhanced oil recovery (CO2-EOR) or uncon- 

ventional strategies, such as horizontal drilling and intense 

depressurization by dewatering (see Ref. [2]). ROZs are widely 

distributed in the Permian Basin of West Texas. The volume of oil 

recoverable from ROZs in both the San Andres and Canyon Reef 

formations of Permian Basin, have been estimated by Koperna et al. 

[3] as 12 billion barrels, with unpublished estimates an order of 

magnitude or more. Thus, the potential for large scale CO2 
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sequestration associated with future CO2-EOR projects is very sig- 

nificant. Such projects are already underway with commercial scale 

WAG injections into ROZs currently taking place in eight San 

Andres oil fields in the Permian Basin utilizing WAG (water alter- 

nating gas) injection of CO2 [4]. 

This study presents a series of simulations of the outcomes of 

WAG injections designed to give insights into oil production and 

CO2 storage associated with EOR projects in the ROZs of the San 

Andres Formation. Apart from a limited, preliminary simulation 

study by Jamali and Ettehadtavakkol [5] there have been no pub- 

lished full-physics studies of WAG injections into ROZ reservoirs. 

Given that the use of depleted oil reservoirs for CO2 sequestra- 

tion was suggested at least 25 years ago [6,7], surprisingly few 

detailed studies were based on both full-physics simulation and 

real heterogeneous reservoir data, designed to elucidate the nature 

of incidental storage associated with EOR. The comprehensive re- 

view of CO2-EOR by WAG injection by Afzali et al. [8] did not 

reference any publications on this topic, equivalent in scope and 
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detail to the current study. Numerous core flooding and rock-water- 

CO2 interaction studies have been made on CO2 injections (for 

example [9e12]). Such experiments are useful to understand the 

processes involved in WAG flooding. However, they provide only 

limited insights into the field scale response of real reservoirs, 

which have multiple spatial scales of heterogeneity. 

Many studies that have used multi-phase fluid flow simulations 

to evaluate CO2 injection strategies, at the level of individual 5-spot 

(or similar patterns). Of these, only a few have attempted to un- 

derstand the factors impacting both CO2 storage and oil recovery in 

the saturated zones of oil reservoirs (see for example [13e17]). The 

applicability of most of these studies to field-based EOR operations 

is limited, in that they: have not utilized fact-based, high-resolu- 

tion, three-dimensional static models; do not include realistic 

representations of the natural heterogeneity found in real reser- 

voirs; fail to evaluate the validity of the no-flow conditions they 

assume at the boundaries of the “5-spot” or other injection patterns 

being studied; do not compute metrics such a CO2 utilization and 

CO2 retention that can be compared to those in characterizing 

actual oilfields; make no evaluation of the impact of reservoir 

model cell size on the simulation results; and often use injection 

conditions that are incompatible with the operational re- 

quirements of CO2-EOR projects. The current study makes a unique 

contribution in that it addresses these issues. The study by Ette- 

hadtavakkol et al. [18] was based on synthetic reservoirs with 

simulated heterogeneous properties. Their analysis included a 

study of the impact of varying the WAG ratio (the volume ratio 

between a water slug and a CO2 slug at the reservoir condition) on 

CO2 utilization and oil production. Compared with [18], the current 

study is more comprehensive, evaluates the role of boundary 

conditions, cell size, and variations in reservoir heterogeneity in 

permeability. In addition, the current study extends their study to 

ROZ reservoirs. 

It has been suggested [19] that, oil recovery from WAG injection 

of CO2 is more sensitive to heterogeneity than is water flooding. No 

studies designed to understand the effects of the heterogeneity of 

ROZ reservoirs on their oil production and CO2 storage response 

appear to have been published. Simulation of WAG injection stra- 

tegies into model reservoirs that do not account for observed het- 

erogeneity in parameters such as porosity and permeability, are 

unlikely to yield realistic oil production and CO2 storage 

performance. 

The capacity of ROZs to sequester CO2 through EOR is not well 

understood as commercial scale ROZ floods have only been 

implemented in the last decade. Although Bachu et al. [20] asserted 

that ROZs are regarded by the oil industry as superior targets for 

geological CO2 sequestration, there is little published supporting 

information or analysis. 

The objective of the current work is to understand the factors 

controlling the performance of CO2 injection for EOR and the vol- 

ume of associated CO2 storage in ROZs. Initially this study examined 

the impact of varying the: (1) the size of the cells in the simulated 

model; (2) the nature of domain boundary conditions; (3) the na- 

ture of well conditions (perforation length, injection rate, and 

bottom hole pressure); and (4) injection strategies (such as 

continuous CO2 injection and WAG). As noted above the impact of 

these factors on the results of simulations of WAG injections have 

largely been ignored in previous work. The current study demon- 

strates that these issues can have a significant effect on the esti- 

mates of the efficiency of CO2 storage associated with EOR and has 

broad applicability to simulations of EOR in general. This study set 

out to evaluate the influence on CO2 storage and EOR performance 

of: varying WAG injection strategies; well configurations (by 

comparing 40-acre, 5-spot injection patterns with 80-acre, 9-spot 

patterns); and simulating reservoir volumes with the range of 

heterogeneous reservoir properties found in a real San Andreas ROZ 

reservoir. The work presented here would help us to better un- 

derstand the future of ROZ reservoirs as targets for both CO2 storage 

and EOR. 

 
2. Theory and approach 

 
The simulator used in the study, Eclipse-300 [21], is an efficient, 

multidimensional, equation-of-state based, compositional simu- 

lator. The software uses robust equation solvers and algorithms that 

enable efficient numerical solutions to solve mass and energy 

balance (continuum equations) describing the multi-phase flow of 

CO2, water, and oil in a heterogeneous porous media. The flow 

governing equations used in this work are the same as those 

described in Zuloaga et al. [22]. The dispersion of CO2 in oil reser- 

voirs is not considered in simulations. 

We employ a single rather than a dual permeability model for 

the carbonate reservoir. In this reservoir fractures are limited in 

occurrence and frequently filled by anhydrite cements (Duncan, 

unpublished data based on extensive core and thin section obser- 

vations). To understand the sensitivity of flow to the limited open 

fractures observed, we employ matrix permeability multipliers to 

approximate their effect. 

 
2.1. Description of geology of selected study-areas 

 
A carbonate ramp is the consensus depositional model used by 

geologists in interpreting the depositional environment of the 

carbonate hosted oil reservoirs in the San Andres Formation 

[23e25]. This ramp sloped seaward at less than 2◦ and was char- 

acterized by sedimentary facies belts, roughly parallel to the shelf 

margin. San Andres oil reservoirs are typically found in the ramp 

crest facies where wave energy belt is sufficient to produce “grain- 

dominated rock-fabric facies” [23]. We utilized the three- 

dimensional static reservoir model for a ROZ reservoir built by 

Ren and Duncan [4] constructed to represent a typical San Andres 

ROZ reservoir in carbonate ramp environment on the margin of the 

Central Basin Platform. The ROZ reservoir consists largely of a facies 

association of wackestones, packstones and rare grainstones that 

formed on the seaward, deeper-water side of the ramp crest. The 

overlying facies belts that formed the main reservoir prograded 

over these rocks (Duncan, unpublished data). The reservoirs have 

been pervasively dolomitized. The interaction of this event with the 

original rock fabrics, together with later stage dolomite and anhy- 

drite cementing of pores spaces, created the heterogeneity in 

permeability and porosity observed today. From this model, we cut 

out three dimensional reservoir volumes representing eleven Sub- 

Volumes. These were selected to represent the likely range in 

variability of the petrophysical properties (Table 1). Sub-Volumes 

 

Table 1 

Statistics of permeability fields for the study area before and after incorporating the 

whole-core permeability-porosity correlation. 
 

Study area model mk_before, mD sk_before, mD mk_after, mD sk_after, mD 

#1 5.3 22.7 6.1 22.3 

#2 21.0 44.0 21.3 43.7 

#3 22.3 54.6 22.7 54.3 

#4 27.7 69.4 28.2 69.1 

#5 11.5 59.8 11.6 59.2 

#6 14.4 38.8 14.8 38.3 

#7 17.4 54.6 18.0 54.3 

#8 18.9 46.7 19.3 46.3 

#9 15.2 73.3 15.2 72.8 

#10 22.0 62.1 22.5 61.8 

#11 21.1 56.4 21.4 56.1 



× × 

× × × × 
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#1, 2, 3, 4, 5, 10, 11 represent the variability of the ROZ reservoir 

along the long axis of the reservoir paralleling to the coastal margin 

(along the strike). Sub-Volumes #7, 2, 6 and #9, 3, 8 represent two 

parallel transects orthogonal to the long axis of the reservoir 

(across the strike or along the dip, with #7 and 9 being close to the 

shelf margin and #6 and 8 being on the interior side of the Central 

Basin platform). These selected Sub-Volumes represent the range of 

reservoir facies associated the San Andres ROZ. Computing the 

arithmetic mean and standard deviation of the permeability's in 

each Sub-Volume is used to represent the reservoir heterogeneity 

in each. 

The Sub-Volumes #1 through #9 (Table 1) were created with 

inverted 5-spot (40-acre) well patterns where the model di- 

mensions  (number  of  cells  in  each  direction)  are 

41 41 398 cells, with a cell size of 100 ft 100 ft ~2 ft. The cell 

size in the vertical direction varies in different layers with the 

average 2 ft. For Sub-Volumes #10 and #11 (Table 1), 9-spot (80- 

acre) well patterns were used with the model dimensions of the 

modeled volume being 80 80 398 cells, with the same cell sizes 

as for the 5-spot (40-acre) patterns. The initial pressure is assumed 

to be hydrostatic, and the reservoir temperature is set to be 105 ◦F. 

The average and standard deviations of permeability and 

porosity computed for these nine Sub-Volumes were listed in 

Table 1. To incorporate the effects of core-scale heterogeneity on 

permeability, we utilized the permeability data published by 

Honarpour et al. [26]. These data sets include the measurements 

from core plugs and whole cores (Fig. 1b). Whole-core measure- 

ments reveal the effects of core-scale heterogeneity and natural 

fractures on a larger spatial scale than core plugs. The arithmetic 

mean and standard deviation of the permeability in Table 1 are both 

before and after incorporating the effects of large-scale heteroge- 

neity represented in the whole-core measurements. The perme- 

ability fields before incorporation were generated through using 

the rock type model (Fig. 1a) that were developed by Lucia [27]. 

Some adjustments were made in order to properly incorporate 

the whole-core permeability-porosity correlation into the reservoir 

model. As shown in Fig. 1b, the permeability measured on the 

wholes cores can be orders of magnitudes larger than the perme- 

ability of the core plugs when porosity is less than 15%. Considering 

this, for cells with porosity larger than 15%, the permeability- 

porosity transformation derived from the whole cores is used to 

populate permeability in these cells in the geocellular model. 

Permeability in the other cells is the same as before when using the 

 
rock type method. After using the correlation, the mean of 

permeability increases and the standard deviation decreases 

(Table 1). The fields with a large fraction of low porosity should 

have a large increase in permeability. 

The ROZ oil properties used in this study are those reported by 

Honarpour et al. [26]. At the reservoir conditions, the minimum 

miscibility pressure for the CO2/oil mixture is approximately 

1300e1450 psi [26]. Miscible flooding is easily achieved, and the 

following flow simulation is based on this flood mode. 

The relative permeability and capillary pressure curves were 

adapted from Refs. [26,28]. Both the drainage and imbibition modes 

were considered, and the settings in the relative permeability 

curves were consistent with those in the capillary pressure curves. 

 
2.2. Injection/production simulation schemes 

 
The overall injection and production scheme designs were 

based on the typical field operation in San Andres and similar 

reservoirs in the Permian Basin. In the field, WAG injections are run 

with injection pressures controlled by the depth of the reservoir, 

together with the pipeline/recycle pressure and production pres- 

sures. Our simulation designs were intended to be general and thus 

cover different types of operational scenarios, including injection 

strategies, well patterns, and pressures. Only vertical injectors are 

considered in this work as the current practice of operators is to 

deepen the current vertical wells into the ROZs. 

For the lateral boundary conditions of the domain (Fig. 2), two 

different types were investigated: closed and ‘buffered’ boundaries. 

Closed boundaries are almost universally implemented in the 

simulation of hydrocarbon production [29,30]. The buffered 

boundaries introduced in this study are an attempt to create a more 

realistic evaluation of the results of storage operations. For the 

buffered boundaries, the pattern volume of interest, is surrounded 

by the same well patterns by cutting a larger sub-volume from the 

geocellular model. The outer boundaries of these rimming patterns 

were closed. For example, in Fig. 2, eight well patterns were 

employed to surround the middle one, and we called this buffered 

boundary as “one rimming layer”. Similarly, two and three rimming 

layers were also tested through cutting larger models. All the 

quantitative evaluations were made only on the middle well 

pattern. 

For the domain upper boundary, it was assumed to be closed or 

no-flow since our study is focused on ROZs. Some ROZs in the San 

 
 

 
 

Fig. 1. (a) Rock type model used in building the permeability field, and the model is adapted from Lucia [27]; (b) the blue curve was the permeability-porosity correlation built on 

the whole-core data. The green curve was built on the permeability-porosity data measured on core-plugs. These two curves were adapted from the publication by Honarpour et al. 

[26]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. Different lateral boundary conditions tested in this study. For the buffered boundaries, the middle well pattern was rimmed by eight of the same well patterns to 

approximate realistic flow conditions. The evaluation was made only on the middle pattern. 

 

Andres Formation underlie the main pay zones (MPZs). In this case, 

some portion of the CO2 injected through ROZs would be likely to 

move upward into the MPZs. For the domain lower boundary, it was 

connected to an underlying aquifer with different body size tested 

in the study. The nature of this underlying aquifer was modeled by 

using the Carter-Tracy analytical aquifer [21]. 

Table 2 summarized the nature of the cases studied. Note that 

the variable parameters are divided into three groups: domain 

boundaries and sizes; injection parameters; and static reservoir 

parameters. The first group consists of closed boundaries, buffered 

boundaries, different sizes of underlying aquifers, and different cell 

areal sizes (Lx and Ly in Table 2). The second group is comprised of: 

injection rates; the depth of well perforations, the magnitude of 

injected pore volumes (or PV), WAG ratios, CO2 half-cycle sizes, well 

patterns (inverted 5-spot or 9-spot), and pattern coverage areas. 

The third group of parameters are permeability anisotropies, het- 

erogeneity differences between the dip and strike directions, nat- 

ural fractures, and the thickness of the underlying aquifer. All the 

simulations were run for 25 years, which is a typical duration for a 

pattern in a commercial CO2 EOR operation. 

 
2.3. Metrics for CO2 EOR and storage performance 

 
The use of metrics to evaluate the behavior of CO2 floods dates 

back at least to the work of Hadlow [6] who plotted the “cumulative 

CO2 retention versus cumulative CO2 injection” for five major CO2 

EOR projects in the Permian Basin. Hadlow also used a metric he 

termed overall or gross CO2 utilization, defined as the volume of 

CO2 injected per incremental barrel of oil produced. 

Azzolina et al. [31] have presented a more comprehensive set of 

metrics. Following Melzer's definition [32], we defined CO2 reten- 

tion by the relation: 

 

CO2 retention fraction = (total CO2 injected — CO2 produced) / total 
CO2 injected 

 

Where: CO2 retention = percent of injected CO2 retained in the 

reservoir (%); total CO2 injected = total injected volumes of CO2 
[purchased plus recycled CO2] (% of the total hydrocarbon pore 

volume (HCPV)); and CO2 produced = total produced volumes of 
CO2 [recycled CO2] (%HCPV). 

 
3. Results 

 
In the following, we examined the results of simulations in the 

context of systematically varying the nature of the models, the 

boundary conditions, and the nature of the reservoir Sub-Volumes 

selected. The relevant physics were added into the flow simulations 
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Table 2 

Summary of conditions for simulations. 
 

Lx, 

ft 

Ly,  Domain lateral 

ft boundary conditions 

Sub- 

Volume 

model 

label 

Well 

pattern, 

size 

CO2 

injection 

rate, MScf/ 

d 

CO2 

injector 

perforation 

Underlying 

aquifer 

thickness, ft 

WAG 

ratio 

CO2 half- 

cycle size, 

HPCV 

Incorporating the 

hole-core perm- 

porosity correlation 

kv/ 

kh 

Mainly tested parameters 

100 100 Closed, Buffered: #1 Inverted 3000 Complete 0 0 NA No 0.1 Boundary conditions 
 one layer, two-layer,  5-spot,         

 three-layer  40-acre         

20 20  Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1 Cell areal sizes 
   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1  

   5-spot,         

   40-acre         

200 200 Buffered: one layer #1 Inverted 3000 Complete 0 0 NA No 0.1  

   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Lower 0 0 NA No 0.1 Perforation lengths 
   5-spot,  quarter       

   40-acre         

100 100 Buffered: one layer #1 Inverted 6000 Complete 0 0 NA No 0.1 Injection rates 
   5-spot,         

   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25, 2.5% No 0.1 WAG ratios 
   5-spot,    0.5, 1,     

   40-acre    2     

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0.25 1.0%, 2.5%, No, Yes 0.1 CO2 half-cycle sizes, natural 
   5-spot,     5.0%   fractures 
   40-acre         

100 100 Buffered: one layer #1 Inverted 3000 Complete 0 0, 2.5% Yes 0.1, Permeability anisotropies, 
   5-spot,    0.25,   1, WAG ratios 
   40-acre    0.5, 1,   10  

       2     

100 100 Buffered: one layer #1 Inverted 3000 Complete 125, 250, 0.25 2.5% Yes 0.1 Underlying aquifer thickness 
   5-spot,   500, 1000      

   40-acre         

100 100 Buffered: one layer #2 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1 Different sub-volume models, 

   5-spot, 

40-acre 

   0.25 5.0%   Continuous CO2 injection vs. 

WAG injection 

100 100 Buffered: one layer #3 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #4 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #5 Inverted 3000 Complete 0 0, 2.5% Yes 0.1,  

   5-spot,    0.25,   1,  

   40-acre    0.5, 1,   10  

       2     

100 100 Buffered: one layer #6 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #7 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #8 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #9 Inverted 3000 Complete 0 0, 1.0%, 2.5%, No, Yes 0.1  

   5-spot,    0.25 5.0%    

   40-acre         

100 100 Buffered: one layer #10 Inverted 3000 Complete 0 0, 2.5% Yes 0.1 Well patterns, Different sub- 
   9-spot,    0.25,    volume models 
   80-acre    0.5, 1,     

100 100 Buffered: one layer #11 Inverted 3000 Complete 0 0, 2.5% Yes 0.1  

   9-spot,    0.25,     

   80-acre    0.5, 1,     
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in steps to explore their specific contribution to CO2 retention. 

Varying the parameters in Table 2 affect both CO2 retention and 

oil production. The impact on associated storage can be quantified 

in two ways: the time-averaged retention fractions (averaged over 

the whole injection period) and the instantaneous retention frac- 

tion. These metrics can be computed by using both numerical re- 

sults and field data. These metrics do not measure the relative 

importance of CO2 storage modes such as the free state and capil- 

lary trapped CO2 [33,34]. As oil reservoirs appear to have a very low 

leakage risk during CO2 storage [35], our work focused on CO2 

retention, rather than the detailed quantification of storage modes. 

 
3.1. Effect of cell size 

 
The size of cells in the geocellular model used for simulations is 

a key modeling parameter that has been little studied. We con- 

ducted a sensitivity analysis to find the optimal size that balances 

numerical accuracy and computational efficiency. Fig. 3 shows the 

cumulative oil production as a function of elapsed time for different 

combinations of cell areal sizes. The cell thickness was not changed 

(around ~2 ft) when varying the areal sizes. After 10 years, the oil 

production for the coarsest grid (largest cell size) is about 20% 

higher than that for the finer grids. When the cell areal dimensions 

are 100 100 ft, the changes in predicted oil volumes from the 

simulations are minimal. There is a reasonable trade-off between 

apparent accuracy and computational time. Thus, we will use this 

cell size in the following. 

 
3.2. Effect of domain lateral boundary conditions 

 
This study set out to explore the relationship between choosing 

different boundary conditions and the results from the associated 

simulations. Fig. 4 shows the effect of varying the lateral boundary 

conditions imposed on the modeled domain on the metrics for oil 

production and associated CO2 storage. The retention fraction is 

sensitive to the nature of boundary conditions (Fig. 4a). The buff- 

ered boundary conditions yield a higher retention fraction than 

those for the closed boundary conditions. Application of these two 

types of boundary conditions result in similar gross CO2 utilization 

ratios. For the buffered boundaries, the number of rimming layers 

affect the evaluation of retention fractions. The retention fractions 

for the three types of buffered boundaries (namely, one, two, and 

three rimming layers) in one set of simulations showed a difference 

of 18%. This large difference arises from the different levels of 

heterogeneity for the rimming patterns. Such a large difference 

 
 

 
Fig. 3. Cumulative oil production vs. time for the different areal cell sizes. 

 

 
 

Fig. 4. Effect of domain lateral boundary conditions on CO2 retention fractions (a) and 

gross CO2 utilization ratios (b). 

 
 

indicates the magnitude of uncertainty involved in the evaluation 

of retention fractions for realistic reservoir models. For simplicity, 

buffered boundaries with one rimming layer will be used in the rest 

of the simulations. 

 
3.3. Effect of well conditions (perforation and injection/production 

pressure) 

 
Two different scenarios for the perforation of injection wells are 

considered: (1) complete perforation of the depth range of the ROZ 

reservoir; and (2) the perforation of the lower quarter. The com- 

plete perforation case is equivalent to the open-hole injection of 

CO2, which was a common practice when many of the San Andres 

reservoirs were first produced. The results of our simulations (first 

two rows in Table 3) show that CO2 retention fractions are largely 

insensitive to perforation intervals (0.698 versus 0.696). In the 

same simulation, the two perforation strategies have a significant 

influence on the oil production rates (4.9 vs. 12.8 Stbd/well). The 

complete perforations result in an increased sweep efficiency 

compared with the lower-quarter perforations. This higher sweep 

efficiency reflects the layered nature of the reservoir, with high 

permeability “flow units” interlayered with low permeability 

(<0.01mD) flow barriers and baffles (discontinuous flow barriers). 

These largely constrain CO2 to laterally push oil towards producers. 

Two CO2 injection strategies were considered: constant pres- 

sure and constant rate. Simulation results (1st and 3rd row in 
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Table 3 

CO2 rention and oil production for differently combined well conditions during continuous CO2 injection. 
 

Well conditionsb CO2 retention fraction Stbda/Well 
 

Inj_rate ¼ 3 MM Scf/d; Pro_bhp ¼ 2020 psi; Complete perforation in injectors (base case settings) 0.696 12.8 

Inj_rate ¼ 3 MM Scf/d; Pro_bhp ¼ 2020 psi; Lower-quarter perforation in injectors 0.698 4.9 

Inj_rate ¼ 6 MM Scf/d; Pro_bhp ¼ 2020 psi; Complete perforation in injectors 0.629 19.6 

Inj_bhp ¼ 2600 psi; Pro_bhp ¼ 2020 psi (bubble point) Complete perforation in injectors 0.696 4.3 

Inj_bhp ¼ 2600 psi; Pro_bhp ¼ 1400 psi (MMP) Complete perforation in injectors 0.647 9.6 

a Stbd, standard tank barrel per day. 
b 

Inj ¼ injectors, Pro ¼ producers, bhp ¼ bottom hole pressure. 

 

Table 3) show that, when imposing a constant rate on injectors, 

large CO2 injection rates typically enhance oil production (12.8 

stbd/well for base case vs. 19.6 stbd/well). For these two cases the 

time-averaged CO2 retention fraction decreased from 0.696 to 

0.629. The injection rate can have a significant effect on CO2 

retention. Injection/production pressure shows the similar effect on 

the retention fraction as injection rates (the last two row in Table 3). 

When the production bottom hole pressure decreased from 2020 

psi (bubble point pressure) to 1400 psi (MMP), the retention frac- 

tion shows a significant decrease (from 0.696 to 0.647), and oil 

production rate for the well doubled (from 4.3 to 9.6 Stbd/well). 

 
3.4. Effect of half-cycle size and WAG ratio 

 
Two important parameters involved in WAG injection are WAG 

ratios and CO2 half-cycle sizes (measured in terms of the %HCPV. 

 
 

Fig. 5. Effect of WAG ratio and CO2 half-cycle size on CO2 retention (a) and oil pro- 

duction (b) for the Sub-Volume model #1. The used geologic models are without 

incorporating the whole-core permeability-porosity correlation. 

The impact of these two parameters on CO2 retention and oil pro- 

duction are shown in Fig. 5a and b. For a given CO2 half-cycle size, 

the CO2 retention fraction first decreases with the increasing WAG 

ratio, followed by a steady increase (Fig. 5a). Note that continuous 

CO2 injection (at zero WAG ratio) enhances sequestration as the 

CO2 retention fraction can be as high as 0.69. 

If the oil production is the priority, the WAG ratios corre- 

sponding to the smallest retention fractions should be considered 

as these ratios result in the highest oil production (Fig. 5b). Based 

on these simulations, the retention fraction does not decrease 

significantly (from 0.69 to only 0.67) when changing from contin- 

uous CO2 injection (WAG ratio ¼ 0) to optimized WAG injection for 

oil production (WAG ratio ¼ 0.25) (Fig. 5a vs. Fig. 5b). 

 
3.5. Effect of permeability anisotropy 

 
To examine the CO2 retention sensitivity to the anisotropy of 

permeability, the ratio of the vertical to horizontal permeability (kz/ 

kx) was varied from 0.1 to 10 while keeping kz unchanged. Aniso- 

tropic permeabilities on the order of 10 kx can be caused by ver- 

tical natural-fractures. As the permeability anisotropy increases, 

the CO2 retention fraction decreases (Fig. 6). With increasing WAG 

ratio, the effect of permeability anisotropies on the CO2 retention 

fraction becomes more pronounced. At a small WAG ratio, the 

permeability anisotropy has a weak effect on CO2 retention. How- 

ever, as the WAG ratio increases, the retention enhancement caused 

by decreasing vertical permeability becomes large (Fig. 6). 

 
3.6. Effect of injection techniques and reservoir heterogeneity 

 
The retention fractions for the two different CO2 injection 

techniques (i.e., continuous CO2 injection and WAG injection) are 

compared in Fig. 7. The retention fraction changes marginally 

 
 

Fig. 6. Effect of permeability anisotropy on CO2 retention for the Sub-Volume mode #1. 

The whole-core permeability-porosity correlation was incorporated into the reservoir 

model. 
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Fig. 7. CO2 retention for different Sub-Volumes under both continuous CO2 injection 

and WAG injection. The CO2 retention fractions for the WAG injection correspond to 

the optimal WAG ratio (i.e., the WAG ratio that gives the largest oil production). 

Fig. 9. Evolution of CO2 retention fractions for the nine (from #1 to #9 in Table 1) Sub- 

Volumes with 5-spot well patterns. Dashed lines correspond to the Sub-Volumes 

across the strike direction. 

 

 

 
 

Fig. 8. Cross plot of CO2 retention fractions versus the permeability standard de- 

viations for the nine Sub-Volumes (from #1 to #9 in Table 1) undergoing continuous 

CO2 injection. The retention fractions for WAG injection were not shown here as they 

are close to those for continuous CO2 injection (Fig. 7). These simulations are based on 

the whole-core permeability-porosity correlation. 

 

 
(around ± 0.04) between these two injection strategies. 

The range of CO2 retention fractions for the 9 Sub-Volumes from 

0.36 to 0.70, appears to be correlated with reservoir heterogeneity 

(Fig. 8) as measured by the standard deviation of permeabilities 

within each Sub-Volume. Generally, the retention fraction increase 

with decreasing heterogeneity (i.e., decreasing permeability stan- 

dard deviation). Homogeneity enhances CO2 sweep efficiency and a 

larger percentage of the CO2 injected occupies the pore spaces 

where the in-situ oil or water has been displaced. 

All the above CO2 storage efficiencies are time-averaged over 

25 yrs. Fig. 9 shows the evolution of retention fractions for the nine 

Sub-Volumes during continuous CO2 injection. The evolution of CO2 

retention reflects the varying production rates of CO2. For example, 

consider the results for the Sub-Volume #7 (the lowest red dashed 

curve in Fig. 9) the CO2 retention fraction decreases rapidly, i.e., 

most of the injected CO2 is produced rapidly. This appears to be due 

to the large heterogeneity in permeability (refer to Table 1) in this 

Sub-Volume, resulting in early CO2 breakthrough. WAG injection 

into this Sub-Volume will increase the volume of CO2 retained in 

the reservoir. In contrast, Sub-Volume #1 has the largest retention 

fraction, and the standard deviation of the permeability in this 

reservoir volume is estimated to be the smallest among the nine 

Sub-Volumes (refer to Table 1). 

 
3.7. Effect of well patterns and pattern volume 

 
Overall, the CO2 retention fractions for the 80-acre inverted 9- 

 
 

Fig. 10. Effect of WAG ratios on CO2 retention (a) and oil production (b). The inverted 

5-spot results are for the Sub-Volume #1, which partially overlaps the 9-spot Sub- 

Volume #10 in space. The assessment employed the reservoir model that incorpo- 

rated the whole-core permeability-porosity correlation. 
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spot pattern are less than those for the 40-acre inverted 5-spot 

pattern (Fig. 10 a). This may be because of the high producer/ 

injector ratio (more production wells) involved in the inverted 9- 

spot pattern. It also may be related to the larger areal extent (80- 

acre) of the 9-spot patterns compared with the 40-acre, 5-spot 

patterns. The difference in retention fractions between the two 

patterns becomes smaller as the WAG ratio increases. For the 9-spot 

pattern, the smaller CO2 retention can be compensated by using a 

large WAG ratio (Fig. 10 a). 

If oil production is the priority, employing a large (>1) WAG 

ratio is a poor choice (Fig. 10 b). For 9-spot well patterns, the 

averaged oil production rate rapidly decreases with the increase in 

the WAG ratio (less CO2 cumulatively injected), whereas the 

retention fraction shows the opposite trend. At the point of the 

maximum oil production rate, only 45% of injected CO2 is stored for 

the 80-acre, 9-spot pattern. However, for the 40-acre, 5-spot 

pattern, the WAG ratio, at which the maximum oil production is 

achieved, yields the high retention fraction of 70%. 

 

4. Discussion and conclusions 

 
4.1. Impact of model cell size, boundary conditions and operational 

parameters on simulation results 

 
The first step taken in this study, was to evaluate the impact of 

increasing the resolution of the static reservoir model on the re- 

sults from simulations of WAG injection of CO2. This study showed 

that simulation of a coarser geocellular grid (200 200 2 ft) 

results in oil production ~20% higher than for grids with the cells 

size 100 × 100 × 2 ft and smaller. As the majority of published 
studies of CO2 injection did not conduct grid size sensitivity study 

(for example [17,36]), our result is sobering. It is likely that the cell 

size dependency on these metrics is a function of the heteroge- 

neity modeled by the geocellular model. This is worthy of further 

study. 

The second step in our study, was examining the impact of the 

choice of boundary conditions on simulation results. Again, the 

impact of boundary conditions imposed on modeling of WAG in- 

jection appear to have been largely, if not entirely ignored by pre- 

vious published studies. Many studies do not document the 

boundary conditions used, but those who do largely use no flow 

boundary conditions. The simulations performed in the current 

study resulted in values for CO2 retention for closed boundary 

conditions lower by as much as 35% compared with what is referred 

to in this paper as “buffered boundary conditions”. The buffering 

used in this study was created by cutting a volume one, two, or 

three patterns wide from the whole reservoir static reservoir model 

of Ren and Duncan [4]. As the buffer zone is populated by real 

reservoir data these are arguably significantly more realistic than 

closed boundaries. Previous studies that assume no flow between 

adjacent patterns may give inaccurate estimates of the amount of 

CO2 retained in ROZs. Of course, model simulations that do not 

include reservoir heterogeneity will not be impacted by choice of 

boundary conditions. Unfortunately, such simulations are highly 

unlikely to produce realistic results. 

Although our study has shown that increasing the CO2 injection 

rate from 3 to 6 MM Scf/d resulted in an increase in oil production 

from 12.8 to 19.6 Stbd/well and a decrease in the time-averaged CO2 

retention fraction from 0.696 to 0.629. However, in the field oper- 

ation of reservoirs injection rate is not an independent variable but 

rather is controlled by the imposed injection pressures. Injection 

pressures are constrained by factors such as the delivery pressure of 

CO2 pipelines or the sizing of CO2 recycle compressors, together 

with the depth of the fluid column in injection wells. 

 
4.2. Analysis of the impact of the nature of WAG injection 

 
A systematic numerical assessment has been conducted on CO2 

storage associated with EOR utilizing WAG injection into ROZ res- 

ervoirs. The simulations are based on vertical injectors that have 

been adopted by the great majority of field operators implementing 

CO2 EOR projects. In addition, the numerical assessment employs 

WAG injection and continuous CO2 injection, which have been 

widely employed in oilfields [37]. A set of 3-D Sub-Volumes cut 

from the detailed static reservoir model was utilized in the current 

study. Each was centered on an inverted 40-acre, 5-spot or 80-acre, 

9-spot injection pattern. These volumes were selected to enable 

modeling of a range of reservoir heterogeneity as measured by the 

standard deviation of permeability. The aim was to understand how 

reservoir heterogeneity in ROZ reservoirs influences CO2 storage 

incidental to CO2-EOR. Multi-phase flow simulations were con- 

ducted on these volumes. 

The results of these numerical experiments is consistent with 

the conclusion that maximum CO2 retention in ROZs can be ach- 

ieved by a combination of large WAG ratios (around 1e3), and the 

implementation of inverted 5-spot well patterns. Reservoirs with 

homogeneous permeability fields and small permeability anisot- 

ropies will have larger retention of CO2. In contrast, for 5-spot well 

patterns, a combination of complete perforation, high CO2 injection 

rates, small WAG ratios (around 0.1 to 0.6) increase oil production. 

Both oil production and CO2 retention fractions in ROZs can be 

simultaneously high when using a combination of 5-spot well 

patterns and continuous CO2 injection. If maximizing oil produc- 

tion is the priority, a combination of 9-spot well patterns and WAG 

injection appears to be a superior strategy. The optimal WAG ratio 

for achieving the maximum oil production differs for the reservoir 

subareas in our study that have different levels of heterogeneity. 

This appears to be because heterogeneity influences the effective- 

ness and necessity of injecting water during WAG. 

 
4.3. The role of the heterogeneity of the reservoir on CO2 storage 

 
The current study appears to be the first published attempt to 

systematically understand the role of reservoir heterogeneity on 

metrics such as CO2 retention. This study has shown that the more 

homogeneous the permeability field (and presumably the greater 

the sweep efficiency), the higher the retention fraction. This is 

consistent with our traditional understanding that reservoir ho- 

mogeneity is also favorable to enhancing oil recovery [29]. In 

contrast, reservoir heterogeneity tends to cause early CO2 break- 

through and poor CO2 retention (Fig. 9 and Table 1). 

The simulations in this study are consistent with the retention 

fraction for CO2 varying by a factor of two, from 0.36 to 0.70 for Sub- 

Volumes modeled within the ROZ reservoir. This range difference 

appears to be attributable, at least in part, to reservoir heteroge- 

neity. The data presented in the current study is consistent with the 

retention fraction increasing with decreasing heterogeneity (i.e., 

decreasing permeability standard deviation). Homogeneity en- 

hances CO2 sweep efficiency and a larger percentage of the CO2 

injected occupies the pore spaces where the in-situ oil or water has 

been displaced. In evaluating the CO2 storage associated with the 

future carbon capture and storage (CCS) projects in ROZ reservoirs a 

range of this magnitude is very significant. 

The WAG simulations presented in this study were designed to 

understand the impact of reservoir heterogeneity. The approach 

was motivated in part by the whole-core versus core plug-based 

permeability-porosity correlation presented by Honarpour et al. 

[26]. The differences in permeability between traditional core plug 

data versus the whole-core measurement reveal significant het- 

erogeneities in permeability at a scale of inches. In studies of ROZ 
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reservoirs, the heterogeneity associated with natural fractures 

should be carefully characterized as they can have a significant 

effect on CO2 retention. The design of WAG injections should 

consider the intensities of natural fractures in different Sub- 

Volumes of a given reservoir model. The use of a single WAG ra- 

tio for the whole field might not be the best strategy. 

 
4.4. Implications to the future projects of carbon sequestration 

associated with EOR in ROZs 

 
The overall assessment shows that CO2 storage in ROZs is 

impacted by both injection strategies and reservoir heterogeneity. 

For vertical CO2 injectors, larger WAG ratios always result in higher 

retention fractions, however the cumulative volume of CO2 injected 

is also decreased. 

If maximizing oil production is the priority, CO2 injection 

alternating with relatively small slugs of water (i.e., small WAG 

ratio, around 0.25) is a good choice. This injection is different from 

the WAG in traditional (originally oil saturated) reservoirs. For such 

reservoirs, published optimized WAG ratios have been reported in 

the range of 0.9e3 [38], which is much higher than the optimized 

WAG ratios derived from this current study. The reasons for this 

difference are not clear and are worthy of further study. As noted by 

Ren and Duncan [4], the oil saturation in ROZs is different from that 

in originally oil saturated reservoirs. In these reservoirs, much of 

the remaining oil after man-made water flooding (and before CO2 

injection) resides in reservoir regions not swept during water 

flooding. In ROZs the oil saturation is apparently developed through 

relatively slow regional water flushing. In virgin ROZ reservoirs, oil 

saturation tends to be relatively uniform, except where some low 

porosity/permeability patches have retained relatively high oil 

saturation [4]. 

 
4.5. Final thoughts 

 
It is important to accurately estimate the magnitude of CO2 

storage affected by WAG based EOR into ROZs with a range of in- 

jection strategies. The current study has shown that such accurate 

estimates require careful consideration of: (1) the nature of 

imposed boundary conditions; (2) the impact of the size of the cells 

in the simulations grid; (3) the nature of reservoir heterogeneity; 

and (4) the nature of WAG protocols. Most previously-published 

simulation studies fail to take into account most or all of these 

critical issues. 

In the simulation results presented in the current study, CO2 

retention is found to be strongly influenced by the heterogeneity 

and anisotropy of the permeability field. Portions of the reservoir 

with both less permeability heterogeneity and anisotropies (ratio 

between vertical and horizontal permeability) have higher CO2 

retention fractions. 

The results of this study, based on real static reservoir models, 

for the first time, provide a robust understanding of the factors 

controlling CO2 storage associated with WAG CO2 injection to 

improve oil production in ROZ reservoirs. Simulation of WAG in- 

jection strategies into model reservoirs that do not account for 

observed heterogeneity in parameters such as porosity and 

permeability, are unlikely to yield realistic oil production and CO2 

storage performance. 

The results of this study provide key insights into how future 

CO2 storage projects associated with EOR in ROZs within carbonate 

sequences may be evaluated and then implemented. 
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Abbreviations 

 
BHP Bottom hole pressure 

CCS Carbon capture and storage 

CO2-EOR CO2 enhanced oil recovery 

HCPV Hydrocarbon pore volume 

MPZs Main pay zones 

PV Pore volume 

ROZs Residual oil zones 

Stbd Standard tank barrel per day 

WAG Water alternating gas 
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Residual oil zones (ROZs) are extensively developed in carbonate formations in the Permian Basin, West Texas. 

These ROZs have the potential both for economically-viable CO2 enhanced oil recovery (CO2-EOR) and for 

significant volumes of associated CO2 sequestration. The accepted model for ROZ formation is based on the 

hydrodynamic effects of tectonically-controlled increased water flow in aquifers at the base of oil fields. The 

nature of this process is modelled using a commercial reservoir simulator in this work. These simulations explore 

the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil 

saturations in ROZs. A special emphasis was on understanding the impact of heterogeneity of capillary pressures 

in ROZ reservoirs. These factors determine the thickness of ROZs, the magnitude of oil saturation, and the slope 

of water-oil contacts. Understanding the magnitude of oil saturation and how it varies within ROZs is important 

in determining reserves, and evaluating both EOR and sequestration potential. The geometry of ROZs are es- 

tablished slowly, especially for small regional water fluxes, however oil saturations achieve almost steady states 

in relatively short time scales. The simulated oil saturation profiles found in this study are in reasonable 

agreement with the measured profile published for the San Andres Seminole Unit's ROZ. The results support the 

plausibility of the hydrodynamic model, but do not rule out other models for the origin of ROZs. 

 
 

 
 

1. Introduction 

 
Residual oil zones (ROZs) can be defined as an oil reservoir or 

portion of a reservoir in which the oil is at, or is close to, residual oil 

saturation (Melzer et al., 2006). ROZs have the apparent characteristics 

of a reservoir after the completion of a waterflood. ROZs in carbonate 

reservoirs in the Permian Basin of Texas were initially interpreted from 

wireline logs as being productive oil zones. However, if these zones 

were completed for production, they produced water, only occasionally 

with traces of oil. Thus, ROZs can be produced by neither conventional 

pumping nor water flooding. Rather, producing from these zones re- 

quires some form of enhanced oil recovery such as CO2-EOR. This also 

provides incidental sequestration of CO2. Bachu et al. (2013) noted that 

ROZs are “regarded in the industry as the most optimum part of oil 

reservoirs to store CO2”. They based this on: the typically large volume 

of ROZs; their high water saturation; and “hydrocarbon availability”. 

Many similar studies (e.g., Koperna et al., 2006; Godec et al., 2013; 

Kuuskraa et al., 2013; Melzer, 2013; Trentham and Melzer, 2015; 

Kuuskraa et al., 2017; Stewart et al., 2018) have been conducted to 

assess the feasibility and potential of CO2 EOR and storage in ROZs. 

ROZs have different types in terms of their origin and evolution. 

 
Harouaka et al. (2013) classified these occurrences of ROZs into two 

types: (i) Brownfield ROZs, that are located below the water-oil contact 

of oil reservoirs; and (ii) Greenfield ROZs, that are not associated with 

normal oil reservoirs or main pay zones (MPZ). Melzer (2013) divided 

ROZs into three types, resulting from the following different scenarios 

for their origin: (i) an oil accumulation is subject to a tilt (from dif- 

ferential subsidence or tectonic movements), resulting in re-equilibra- 

tion of water-oil contacts and the formation of ROZs; (ii) the original oil 

accumulation leaks through seal (perhaps temporally), again leading to 

ROZ formation; (iii) a change in the hydrodynamics of an underlying 

aquifer. The water flow scenarios sweep the lower portion of oil col- 

umns, resulting in the development of ROZs (Fig. 1). The consensus of 

opinions is that the ROZs in the Permian Basin represent the third of 

these categories and the simulations made in the current study are 

based on this scenario. 

Unfortunately, almost all the research on ROZ formation and 

characteristics has not been published in refereed journals but rather is 

available in contract reports, presentations, and conference proceed- 

ings. Dennis et al. (2000, 2005) studied the tilted oil-water contacts in 

the North Sea through numerical simulation and laboratory experi- 

ments. They focused on the response of fluid contacts to aquifer 
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Fig. 1. A schematic diagram showing the formation of hydrodynamic ROZ. Before the increase in regional water flow rates, the spill point (labelled by the red arrow) 

controls an original oil water contact at the base of the MPZ. After increasing water flow rates, part of the oil at the bottom of the original MPZ is flooded to be as a 

ROZ (Adapted from Melzer, 2013). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

 

heterogeneity and flow rates, without detailed investigation of oil sa- 

turation characteristics in ROZs. Trentham and his coworkers 

(Trentham, 2011; Trentham et al., 2012) assumed that, high aquifer 

flow rates would have been initially established across the San Andres 

formation due to the uplift of the Guadalupe Mountains (along the 

western margin of the Permian Basin). This uplift apparently peaked 

around 20 Ma (Horak, 1985), and, subsequent erosion of these moun- 

tains would have reduced hydraulic heads in the regional aquifer thus 

lowering flow rates. Harouaka et al. (2013) suggested that the hydro- 

dynamic impact continued unabated, “albeit at a very slow pace like 

one foot/1000 years”, an assertion they based on “analytical modeling” 

using the analysis of Hubbert (1953). In this view, the slope of ROZ- 

MPZ contacts would reflect the most recent aquifer flow regime. Only 

limited basin scale hydrological data and modeling have been published 

for regions within the Permian Basin (McNeal, 1965; Bein and Dutton, 

1993; Lee and Williams, 2000). A recent study by Trentham and Melzer 

(2015) attempted to model the probable flow pathways, of what they 

termed “hydrodynamic fairways”. However, absent a creation of a set of 

robust regional groundwater flow models extending back to the re- 

gional uplift event in the Permian Basin, the groundwater flow direc- 

tions cannot be well constrained. Jamali and Ettehadtavakkol (2017) 

modelled the ROZ formation process through mimicking the natural 

waterflooding process; however, their specific simulation was based on 

a simplified static reservoir model and physics. 

This paper is the first attempt to use multiphase and full-physics 

flow simulations to make a comprehensive study of the hydrodynamic 

model for the development of ROZs in the San Andres Formation. In the 

following, we describe our modeling approach and analyze several 

factors that are potentially significant in the evolution of ROZs. Finally, 

we analyzed the implications of these results to both oil production and 

CO2 sequestration in future CO2-EOR projects in these zones. 

 
2. Theory and approach 

 
This project sets out to study the formation of ROZs in the San 

Andres Formation. We mimick the “natural waterflood” scenario using 

flow simulation. These simulations aim to explore the nature and spa- 

tial patterns of oil saturation in ROZs in response to the variations in the 

flow of regional aquifers. The flow simulator used is Eclipse-E100 

(2016), an efficient and multidimensional black-oil simulator. 

 
2.1. Reservoir properties 

reservoir property data. Lucia (2007) and Wang et al. (1998) have 

published extensive porosity and permeability data from Seminole 

cores. The data presented in Honarpour et al. (2010) include porosity 

versus permeability plots, and vertical as well as horizontal perme- 

ability measurements. These are particularly important as all from the 

ROZ. These authors also supply data from sponge cores on residual-oil- 

saturation versus depth in the ROZ and versus permeability. The model 

is populated using data from these published sources and from petro- 

physical measurements made on cores in the Bureau of Economic 

Geology (BEG) core warehouse, and interpretation of wireline logs from 

the BEG log library. 

Two 2-D section geologic models were cut from the 3-D whole re- 

servoir model: one is along the E-W (X-Z slice, the approximate dip 

direction), and the other is along the N-S (Y-Z slice, the approximate 

strike direction). The purpose of selecting these two sections is to ex- 

amine how flow direction affects oil saturation evolution in the ROZ. 

The two 2D vertical sections cross along a vertical line. This line 

overlaps a drilled vertical well with detailed well properties published 

by Honarpour et al. (2010). Specifically, this well has the oil saturation 

profile that is based on measurements made prior to CO2 injection into 

the ROZ. This data provides an important way for us to validate the 

reasonableness of our simulations. Additionally, a small 3D sector 

model is also cut with the above well in the middle. So these two 2-D 

slices and one 3D sector model are used to simulate the natural water 

flooding process in forming ROZs. 

The corner point grid system is used. The dimensions of each 2D 
model is 63 × 398 with the horizontal cell size of 100 ft, and the ver- 

tical cell size varies in different layers with the average ∼2 ft. The 3D 
sector model has the dimensions of 20 × 20 × 398 with the cell size of 

100 ft × 100 ft × ∼2 ft. These sector models have similar means and 
standard deviation for the porosity and permeability (Table 1). The 
porosity and permeability fields for the E-W model are shown in Fig. 2. 
Published permeability measurements by Honarpour et al. (2010) show 
that the horizontal and vertical permeability's are largely similar. 
However, these authors note that the presence of low permeability 
layers of fine-grained, anhydrite-rich facies, creates strongly anisotropic 

 
Table 1 

Statistics of petrophysical properties for the 2D and 3D sector models. 
 

 

Measures 2D 3D 
 

W-E slice N-S slice 

 
 

model this field specifically. A three-dimensional (3D) static reservoir 

model, representative of the geology and petrophysical variation of the 

ROZ underlying the Seminole Field, built in part from the published 
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Permeability standard deviation, mD 80.9 44.8 53.9 

Capillary entry pressure arithmetic mean, psi 0.44 0.43 0.43 

Capillary entry pressure standard deviation, psi 1.08 1.06 1.07 
 

 
 

 
Porosity arithmetic mean, [] 0.11 0.11 0.11 

Our modeling is based on the reservoir characteristics of the re- Porosity standard deviation, [] 0.042 0.044 0.044 

sidual oil zone associated with the Seminole Field, however, we do not Permeability arithmetic mean, mD 17.2 15.9 16 
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Fig. 2. (a) The horizontal permeability field along the W-E direction; (b) the 

corresponding porosity field; (c) the capillary entry pressure field corre- 

sponding to the above permeability and porosity fields. The dip angle (w.r.t to 

the horizontal direction) of the top boundary of the domain is around 2°. 

 

permeability. They suggested the resultant vertical component is ap- 

proximately one tenth of the horizontal component, so we use this ratio 

in our study. Initially, hydrostatic pressure is set for the reservoir with 

the middle depth pressure at 2119.9 psi, and the reservoir temperature 

is 104 °F. The oil saturation is initialized using the gravity-capillary 

equilibrium method. 

A capillary entry pressure field (Fig. 2c) is generated using the Le- 

verett j-function (Leverett, 1941) that links permeability, porosity, and 

capillary pressure. A general Leverett j-function has been proposed by 

Mirzaei-Paiaman et al. (2018), which incorporated two more rock mi- 

crostructure-related parameters into the function (i.e., tortuosity and 

shape factor). For our current study, we used the traditional Leverett j- 

function (Eq. (1)) for simplicity: 

J (Sw) = 
  pc (Sw)  

 

 

 

 

 

 

 

Fig. 3. (a) Drainage relative permeability curves; (b) the reference drainage 

capillary pressure curve. This curve is measured on a 16-mD core sample; (c) 

the fractional flow curve for water. 

 
calculated by the following Eq. (2). 

σo/w cos θ (1) pc,nonref = pc,ref 
 

(2) 
where pc is capillary pressure, σ is the interfacial tension between oil 

and brine water, θ is contact angle, k is permeability, ϕ is porosity, Sw is 

water saturation. The base or reference capillary pressure curve 

(Fig. 3b) is assigned to the cells with the permeability of 16 mD as this 

reference curve is measured on the core with this permeability. These 

cells are considered as reference cells. The other cells in the model are 

assigned with different capillary pressure curves by scaling the capillary 

pressure of each cell with its permeability and porosity. The interfacial 

tension for each cell is assumed to be the same, and contact angle has 

the same assumption. Then, the capillary pressure for other cells can be 
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pc,nonref is the capillary pressure for other cells (nonreference cells), pc,ref 

is the capillary pressure for the reference cells, kref and knonref is the 

permeability for the reference cells, and the other cells, respectively 

Porosity naming follows the same rules as permeability. Through using 

Eq. (2), each cell is assigned with a capillary pressure curve that is 

consistent with its upscaled permeability and porosity while omitting 

interfacial tension and contact angle. The detailed procedure of scaling 

the reference capillary pressure curve for each cell has been elaborated 

by Saadatpoor (2012) and Ren (2017). Fig. 2c shows the generated 

 
 

k 

ϕ 
kref ϕnonref 

knonref ϕref 
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Table 2 

Injection simulation schemes in the 2D models. 

Water flux entering formation from wellbore, ft/ 

yr 

 
 

Injection rate, rb/db  Injection duration, yrs  Totally injected water, PV  Ngr along the wellbore, (Eq. (3))  Dominant force 

 

5.0 183.4 50 k 268 4.7E+3 Gravity 

0.5a 18.3a 50 ka 26.8a 4.7E+4a Gravity 

0.05 1.83 50 k 2.7 4.7E+5 Gravity 

a Means base case settings. 
b rb means reservoir barrel. 

 

capillary entry pressure field for the E-W model. The statistics for all the 

capillary entry pressure fields are listed in Table 1. 

The importance of considering capillary pressure heterogeneity is 

driven by the impact of the small regional water flux during ROZ for- 

mation. It has been suggested that regional water flux in the Permian 

Basin that drove the formation of the ROZ in the San Andres Formation 

was on the order of 10–25 cm/yr (Trentham et al., 2012). Such small 

water fluxes would be associated with a minimal viscous force, com- 

parable to the magnitude of water-oil capillary pressures. 

 
2.2. Petrophysical and fluid properties 

 
Relative permeability and capillary pressure curves are shown in 

Fig. 3a and b, respectively. The relative permeability curves are adapted 

from published data (Honarpour et al., 2010). The capillary pressure 

curve are based on the fitting to the lab measurement using the cen- 

trifuge technique (Chen and Ruth, 1995). These curves describe the 

dynamic flow properties during the drainage process, which applies to 

the regional water infiltration since the reservoir tends to be oil-wet 

(Honarpour et al., 2010). Using these relative permeability curves, we 

plot the fractional flow curve for water (Fig. 3c). When water satura- 

tions are greater than 0.4, the fractional flow of oil is reduced to be 

negligible (< 0.04). This means that the remaining oil is effectively 

immobile, and oil production will be minimal with further water flow, 

even at a long time scale. 

 
2.3. Flow simulation schemes 

 
The flow simulations are designed to model the key relevant physics 

for understanding the formation of ROZs associated with the San 

Andres Formation in the Permian Basin. To understand the relevant 

physics, we first introduce a gravity number (Ngr), and this number 

describes the influence of competitive gravity versus viscous forces on 

water flooding. Ngr is a dimensionless ratio of the gravitational force 

acting on the fluids to the viscous force that drives water migration. 

Several definitions of gravity number are possible. Here, we use the 

ratio of a nominal speed of vertical flow uv to a nominal speed of 

horizontal flow uh, combined with the ratio of reservoir horizontal 

length L, thickness H, and formation dip angle α. We write the gravity 

number based on the definition of Shook et al. (1992): 

Eclipse model by setting the water injection rate for an injector well 
(described below). Thus, Ngr is essentially a dimensionless regional 
water flux or water injection rate (a reciprocal injection rate). Large 

values of Ngr (∼103) correspond to small water flux and the water 

movement is dictated by gravity. Table 1 shows the examined water 
flux magnitude, gravity number and the corresponding dominant force 
for flow simulations. For the base case water flux, the corresponding 
pressure gradient across the simulation domain (from the injector side 

to produce side) is 1.4 × 10−3 psi/ft. For all the cases simulated, the 
gravity number Ngr is much larger than 1. Thus, the regional water flow 
should be dominated by gravity. 

In the 2D models, the volume of water injected is approximately 27 

pore volumes (PV) for the base case (corresponding to the regional 

water flux of 0.5 ft/yr and injection duration of 50 k years, Table 2). 

This PV is consistent with the suggestions of Trentham et al. (2012) 

about the time scale and flux of regional natural waterflood impacting 

the ROZs within the Permian Basin. The sensitivity of the magnitude of 

oil saturation in the ROZs to varying the magnitude and duration of 

regional hydraulic head, is also investigated (Table 2). The regional 

hydraulic head was varied over three orders of magnitude (reflected in 

the water flux settings in Table 2). Additionally, changes in the nature 

of ROZs (e.g., oil saturation and geometry) in response to the lowering 

of hydraulic head are examined. This lowering decreases regional water 

flow rate, and this study is designed to approximate the decreasing rate 

of flow through three sequential simulation processes with the water 

fluxes decreasing from 5 ft/yr, 0.5 ft/yr to 0.05 ft/yr, with each mod- 

elled for 50,000 years (refer to case #12 in Table 3). More importantly, 

both single and heterogeneous capillary pressures functions are con- 

sidered in these simulations. A single capillary pressure function means 

that the capillary pressure curve (shown in Fig. 3b) is used for all the 

cells in the domain, whereas, heterogeneous capillary pressure func- 

tions are based on scaled capillary pressure curves. 

For boundary and well settings, Fig. 4 shows a schematic illustration 

of well locations and perforations for the 2D W-E slice model. A vertical 

injector and a producer are used to mimic regional water filtration in 

 
Table 3 

Summary of conditions for simulations. 

Ngr = 
Δρgkv H cos α 

uhμL 

 
(3) 

In the above, Δρ is the density difference between water and oil. g is 

the gravitational acceleration. kv is the arithmetic mean of vertical 

permeability. H is the vertical dimension of the portion of a aquifer 

impacting the base of an oil reservoir (equivalent to the length char- 

acterized by a pressure boundary condition). α is formation dip angle 

with respect to the horizontal direction, μ is water viscosity at the re- 

servoir condition. L is reservoir horizontal length. The nominal hor- 

izontal flux (uh) is the regional water flux as mentioned above. Under 

the reservoir condition (2119.9 psi and 104 °F), water density is 

1060.4 kg/m3, oil density is 832.9 kg/m3, and water viscosity is 0.7 cp. 

All terms, except for uh, in Eq. (3) are fixed for a given residual oil 

zone. The horizontal water flux boundary condition is imposed in the 

 
Case # Water 

flux, ft/ 

yr 

Totally- 

injected PV 

Injection 

duration, yr 

Flow 

direction 

Capillary pressure 

1 0.5 26.8 50 k W-E w/o 

2 0.5 32.1 60 k W-E w/o 

3 0.5 26.8 50 k W-E Single 

4 0.5 26.8, 268, 50 k, 0.5 Ma, W-E Heterogeneous 
  536 1 Ma   

5 5.0 268 0.5 Ma W-E Single 

6 5.0 268 60 k W-E Heterogeneous 

7 0.05 2.7 50 k W-E Single 

8 0.05 2.7, 27, 54 50 k, 0.5 Ma, W-E Heterogeneous 
   1 Ma   

9 0.5 26.8 50 k N-S Single 

10 0.5 26.8 50 k N-S Heterogeneous 

11 5, 0.5, 297.5 0.15 Ma W-E Heterogeneous 
 0.05     

12 0.5 (3D) 26.8 50 k W-E Heterogeneous 
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Fig. 4. A schematic illustration of the water injector and the producer used to 

mimic the regional water flush in the ROZ for the 2D W-E slice model. The 

perforation intervals in both wells are along the producing ROZ and the water 

leg. The lateral extension of the domain is 6300 ft with the thickness around 

1113 ft. 

 

the ROZ, and the two wells are placed on the left and right boundary 

cells, respectively. Both wells are perforated along the intervals of both 

the producing ROZ and the water leg, for which, their heights are ap- 

proximated through the field tests and measurements (Honarpour et al., 

2010). Constant water rate is imposed on the injector with the values 

shown in Table 2, and the same rate of liquid production is imposed on 

the right producer. Boundary settings in the N-S slice are the same. For 

the 3D sector model, each slice along the X-direction in 3D are assigned 

with the same boundaries as does for 2D. Through doing this, the re- 

gional water flow should be properly mimicked. The condition settings 

for all the simulated cases are summarized in Table 3. Most of the si- 

mulation cases are designed on the 2D slices considering both the 

computational efficiency and easy settings when examining different 

factors. The last simulation case is on the 3D sector model in order to 

study possible differences. 

 
3. Results 

 
Most of the following analyses is restricted on the 2D slice models. 

Difference between 3D and 2D are highlighted. We firstly describe the 

evolution of oil saturation fields during the ROZ formation process. 

Particularly, we emphasize the effect of the interplay between water 

flux magnitude and capillary pressure on the remaining oil saturation in 

ROZs. Next, we compare our simulation results to the field measure- 

ment. 

 
3.1. Effect of the duration of regional aquifer flow on oil saturation in ROZs 

 
To evaluate the effect of the duration of regional aquifer flow on the 

nature of ROZ formation, we start with the case that considers no ca- 

pillary pressure (#1 in Table 3). This case shows a similar oil saturation 

field as another case that considers single capillary pressure (#3 in 

Table 3). Fig. 5 shows the evolution of oil saturation fields for the case 

#3. In the uppermost oil saturation field (T = 0 yrs), the red area is the 

original “oil saturated zone” or the MPZ, and the blue area is the water 

leg. For the MPZ, the oil saturation is initialized using the gravity-ca- 

pillary equilibrium, and the initial oil saturation is high and around 0.8. 

The capillary transition zone in these simulations is very small and 

almost not observable as shown around the interface between the 

yellow and blue areas. As water influx proceeds (T = 10,000 to 

50,000 yrs), the vertical extent of the ROZ increases. At a timescale of 

50,000 years, further changes in the magnitude and spatial distribution 

of oil saturation values are negligible. 
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Fig. 5. The evolution of oil saturation fields considering single capillary pres- 

sure. The water inlet flux is 0.5 ft/yr. The overall tilt of the producing water-oil 

contact in the bottom field is around 100 ft per mile, downward to the east. 

 
The variation of oil saturation with depth is perhaps the most im- 

portant feature of ROZs. To quantify oil saturation vertical profiles, we 

plot the change of oil saturation along depth at different times (Fig. 6). 

Overall, the oil saturation profiles attained an approximate or pseudo- 

steady state after approximately 50,000 years. The intervals with high 

saturation represent the low permeability/low porosity (< 0.05) areas, 

and this oil cannot be efficiently displaced by water. The attainment of 

pseudo-steady-state oil saturation is further illustrated in Fig. 7 that 

shows the evolution of cell oil saturations in several selected depths. It 

appears that, in this simulation, the upper part of the ROZ requires a 

much longer time to reach the pseudo-steady state (note the light blue 

line in Fig. 7). 

 
3.2. Effect of the interplay between inlet flux magnitude and capillary 

pressure 

 
We first analyze the effect of water flux magnitude (aquifer flow- 

rate) on ROZs when considering single capillary pressure (left column 

in Fig. 8). ROZ thickness is sensitive to the magnitude of the upstream 

water flux in the aquifer. This is because of the competition between the 

viscous and gravitational forces (the ratio is gravity number Ngr, Eq. 

(3)): large viscous force (large water flux) suppresses the effect of water 

gravity on the displacement profile, and a thick ROZ is created. Ad- 

ditionally, the contact between the MPZ (yellow in Fig. 8) and the ROZ 

(light blue) becomes less inclined as water flux decreases; this is ob- 

viously because decreasing water flux tends to create hydrostatic 
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Fig. 6. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well with measured oil 

saturation in the ROZ) of the oil saturation fields in Fig. 5. 

 

distribution of oil/water. 

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the 

middle row in Fig. 8) and analyze the effect of capillary pressure het- 

erogeneity on the development of ROZs in response to this water flow. 

When capillary pressure heterogeneity is taken into account, the pro- 

ducing water-oil contact is enlarged (relative to single capillary pres- 

sure). In addition, the transition zone (black circled area in the middle 

row) between the ROZ and the MPZ is distinct, with a thickness of 

10–15 ft. The oil saturation in this transition zone varies significantly, 

from around 0.30 in light green spots to 0.80 in the light yellow pat- 

ches. However, for the case considering single capillary pressure, the 

transition zone is thin and poorly defined (refer to the middle left oil 

saturation field in Fig. 8). 

More importantly, the interplay between capillary pressure het- 

erogeneity and upstream water flux largely influences the thickness of 

the upper transition zone (the dashed circle area). Through comparing 

the middle saturation field to the lower one in the right column in 

Fig. 8, it can be seen that the upper transition zone becomes thick as the 

upstream water flux decreases. Again, this is because of the lower vis- 

cous force, which in turn enhances the effect of capillary dispersion on 

oil saturation. 

The above analyses concentrate on the evolution of oil saturation in 
ROZs. The time scale of achieving quasi steady-state oil saturation in a 

ROZ is much less than the geologic time of mountain uplift and erosion 

(∼Ma). Generally, the evolution of oil saturation in a given cell is 

mainly controlled by both relative permeability curves and imposed 
pressure gradient (equivalent to inlet water flux). Thus, any changes in 
both of them would cause different time consumed to achieve steady 

states. 

 

 

Fig. 7. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the ROZ top, the two 

depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom. 
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Fig. 8. Oil saturation fields at 50000 yrs of flow si- 

mulation. Each row represents different regional 

water fluxes. The left column considers single capil- 

lary pressure, whereas, the right column considers 

heterogeneous capillary pressure. The dashed lines 

represent the approximated transition areas between 

the top of the producing ROZs and the base of pro- 

ducing MPZs. As water flux decreases, the overall tilt 

of the producing water-oil contact decreases from 

about 100 ft per mile (upper) to 30 ft per mile 

(lower). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3. Effect of the duration of regional aquifer flow on the thickness of ROZ 

 
ROZ thickness takes a longer time to establish itself than oil sa- 

turation does (Fig. 9). After 50 k yrs, the thickness of the ROZ continues 

growing for the small regional water flux of 0.05 ft/yr, and it becomes 

asymptotic as flow simulation proceeds to 1 MM yrs. For the large flux 

of 0.5 ft/yr, however, it takes a short time in establishing the ROZ 

geometry, and the ROZ has already been fully fledged around 

0.5 MM yrs. So the thickness of ROZs are impacted by flush duration 

and water flux magnitudes. 

 

 

Fig. 9. The evolution of ROZ thickness for the two regional water fluxes (0.05 vs. 0.5 ft/yr). Capillary pressure heterogeneity is considered. The overall tilt of the 

producing water-oil contact is the left lower field is approximately 20 ft per mile, and it is 100 ft per mile in the right lower field. 
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Fig. 10. Impact of flow direction on oil saturation 

fields in the ROZ. The oil saturation is at the 

50,000 yrs of flow simulation with capillary pressure 

heterogeneity considered. The black dashed lines 

circle the oil stripes with large oil saturation in the 

ROZ, and the blue dashed lines approximate the in- 

clined producing water-oil contacts. The imposed 

water flux for both oil saturation fields is 0.5 ft/yr. 

The tilt of producing water-oil contacts is stronger in 

the W-E slice than that in the N-S slice, 100 ft per 

mile vs. 55 ft per mile. (For interpretation of the re- 

ferences to colour in this figure legend, the reader is 

referred to the Web version of this article.) 

 
 

3.4. Effect of direction of regional water flow 

 
The direction of regional water flow is not well constrained by 

available data. However, this direction influences the pattern of oil 

saturation in the ROZ (Fig. 10). This pattern is significantly different 

between the two orthogonal directions. For the W-E section (orthogonal 

to the edge of the Central Basin Platform), the streaks with high oil 

saturation are of limited lateral extent compared to than those in the N- 

S section (approximately parallel to the shelf edge of the platform). 

These differences in the spatial variation of oil saturation reflect the 

significant variation in the heterogeneity of capillary pressures. The 

origin of this heterogeneity is rooted in the changes of depositional 

environments from the inner-mid ramp to the outer ramp from west to 

east. However, for the section parallel to the shelf edge, the sedimen- 

tary facies reflect a more limited range of sedimentary environments 

with more limited heterogeneity in capillary pressures. This gives rise 

to a very large laterally-extended strip of higher oil saturations in the 

ROZ. This important observation is useful in guiding the configurations 

of injectors and producers during CO2-EOR operations. 

Another noteworthy issue is the nature of water-oil contacts (dashed 

blue lines in Fig. 10) for the two different regional water flow direc- 

tions. The inclination of the contact along the strike direction is smaller 

than that along the dip direction. This observation is consistent with 

greater lateral sedimentary continuity along the strike. 

 
3.5. Effect of the change of regional water flux 

 
A key question is the extent to which the nature and geometry of 

ROZs are impacted by low flow rates following after a period of high 

flow rates, a scenario expected based on the tectonic history of the 

Basin. The overall shape of the ROZ undergoes negligible modification 

when the regional water rate is reduced by an order of magnitude for 

50,000 years (Fig. 11a), i.e., the ROZ interval thickness has not altered 

during the sequential change of regional water rate. However, oil sa- 

turation is impacted by the sequential change of water flux. Specifi- 

cally, the oil saturation in the downstream of regional water flow in- 

creases as regional water flux decreases (Fig. 11b). This reflects the 

displacement of oil downstream. Additionally, the ROZ in the upstream 

is thicker than that in the downstream (comparing the ROZ depth in- 

terval between Fig. 11a and b). This is consistent with the above ob- 

servation of ROZ geometries (in both Figs. 5 and 8). 

 
3.6. Differences between 2D and 3D 

 
The resultant oil saturation magnitude and pattern in 3D are found 

to be very similar to the results of 2-D simulations with marginally 

higher oil saturation in 3-D than in 2-D along some depth intervals 

(Fig. 12). This might be counterintuitive since the added one dimension 

in 3D normally enhances lateral flow and causes an overall large oil 

saturation compared to 2D. However, such lateral flow is restrained by 

the specific boundary settings in this study; each X-Z slice in the 3D 

model has close pressure gradient from the injection side to the 
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production one, so most of the flow are along the X-Z direction. This is 

similar to what happens in the 2D X-Z slice model. In other words, the 

water/oil flow dynamics is marginally altered by the added one di- 

mension in 3D. This analysis also supports our observation that the 

time-scale of attaining quasi steady-state oil saturation in 3D is close to 

that in 2D. 

 
3.7. Comparison with field measurements in the Seminole ROZ 

 
Our study has compared the vertical variation in oil saturation in 

our ROZ simulations carried out at different water fluxes with down the 

well measurements for the ROZ in the San Andres Seminole Unit, 

published by Honarpour et al. (2010). The vertical pattern of variation 

in oil saturation most closely resembles the pattern produced by si- 

mulations using a water flux of 0.5 ft/yr. Fig. 13 shows the predicted oil 

saturation profile at this water flux. The simulated oil saturation profile 

in the N-S slice (red line in Fig. 13) shows a better agreement with the 

measured oil saturation in the main interval of the ROZ than that in the 

E-W slice. Meanwhile, it is worthwhile to notice the fluctuation of 

measured oil saturations. The controls of these fluctuation are under the 

investigation now. 

 
4. Discussion 

 
This study has not attempted to specifically model the Seminole 

Field. Rather, we have modelled the formation of a generic ROZ by 

starting with an oil-saturated reservoir. Its thickness is equivalent to the 

sum of the current SSAU ROZ and producing MPZ. Our simulations 

reproduce many of the features reported from the San Andres ROZ. The 

simulation results are consistent with an effectively steady state being 

reached (at least with respect to oil saturation) on a time scale of 50 

thousand years. It is significant that, even after 1 MM yrs of regional 

water flush, the oil saturation in several patches remains similar to the 

initialized values (0.7–0.8). These patches are local areas of lower 

porosity and permeability. This observation is consistent with the ob- 

served presence of oil stains in the less permeable patches of San Andres 

core samples. 

 
4.1. The tilt and measurability of ROZ boundaries 

 
The estimated tilt of the top boundary of the ROZ has been regarded 

as the key evidence for the validity of the hydrodynamic model. The 

tilts vary significantly (3–200 m/km, 15.8–1056 ft/mile) for different 

oilfields worldwide (Dennis et al., 2000; Connor and Swarbrick, 2008). 

The estimates for the dip in our simulations is small (in our base-case 

simulations approximately 100 ft per mile, Fig. 5). This is comparable 

to the earlier suggestions by Melzer et al. (2006), and it is also con- 

sistent with other reduced-physics modeling results (e.g., Koperna 

et al., 2006; Jamali and Ettehadtavakkol, 2017). However, the accuracy 

limitations of wireline log measurements of oil saturation are sig- 

nificant (Pathak et al., 2012) and the dip estimates available for real 

San Andres ROZs in unpublished reports and presentation do not 
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Fig. 11. The selected two oil saturation profiles and their changes in response to the lowering water flux. The regional water flow is from west to east. The profile#1 

is on the upstream of water flow, whereas, the profile#2 is on the downstream. The exact locations of these two columns are along I = 22 and I = 43, respectively. I is 

the numbering of cells from west to east in the horizontal direction. This figure is corresponding to the case#11 in Table 3. 

 

appear to be robust. Another complication is that, as demonstrated in 

our simulations and by the data presented by Honarpour et al. (2010), 

the variability in oil saturations is related to local heterogeneity in re- 

servoir properties, particularly capillary pressure heterogeneity. This 

heterogeneity significantly blurs the transitions between MPZs and 

ROZs, as well as the ROZ-water contacts (see Fig. 8, for example). 

 

4.2. Influence of heterogeneous capillary pressure 

 
The results of our simulations show the significant influence of ca- 

pillary pressure heterogeneity on the flow paths of water/oil and thus 

on the characteristics, including the producing water-oil contact, as 

well as the pattern, and magnitude of oil saturation in ROZs. To our best 
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knowledge, this is first time that such a physic is incorporated in flow 

simulations of ROZ formation processes. Heterogeneous capillary 

pressures have also been found to be important in other slow subsurface 

dynamics processes, e.g., buoyant flow of CO2 during geological carbon 

sequestration (Saadatpoor et al., 2009; Trevisan et al., 2017) and sec- 

ondary hydrocarbon migration/accumulation (Carruthers, 1998). Even 

for conventional water flooding with the water speed three orders of 

magnitudes larger than that associated with the hydraulic head gra- 

dient and consequent subsurface regional aquifer flow rates preferred in 

this study, capillary pressure heterogeneity apparently significantly 

affects oil saturation under some conditions (Chang and Yortsos, 1992; 

Lasseter et al., 1986). 
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Fig. 12. Comparison of oil saturation profiles between the 2D W-E slice model and the 3D sector model. The profile are along the well with measured oil saturation as 

mentioned above. Capillary pressure heterogeneity is considered in these simulations. 

 

4.3. Limitations of this study 

 
This study is subject to several limitations. First, the predictions of 

average oil saturation in the ROZs from our simulations are marginally 

larger than those measured by Honarpour et al. (2010). One possibility 

is that, in some cells, the 50,000 years of the flow simulations presented 

is insufficient to achieve a steady state. This is the consequence of the 

fractional flow curve for water (Fig. 3c). The fractional flow of oil is 

reduced to a very small value (< 0.008) when water saturation in- 

creases to 0.5. Another complication is the impact of our limited ability 

to accurately model the heterogeneous nature of the reservoir. The si- 

mulations in this study utilized a cell size of 100 ft × ∼2 ft (in 2D 

models). However, the estimates of porosity and permeability were 

based on measurements of core plugs with the size of 1–2 inches. Up- 

scaling these detailed measurements to the scale of the simulation grids 

inevitably averages out the true heterogeneous nature of the reservoir. 

Additionally, the study employs injectors to represent regional water 
influx. Whether such a representation is proper in creating hydro- 
dynamically-representative tilts, need to be further validated by more 

field/well data. 

 

4.4. Implications to future CO2-EOR and associated sequestration in ROZs 

 
The current study provides useful insights into how these residual 

oil reservoirs can best be exploited to maximize both oil production and 

CO2 storage. For example, heterogeneities in permeability, porosity, 

and capillary pressures are highly likely to result in three-dimensional 

spatial heterogeneities in oil saturation. Such patches and layers of high 

saturation could be exploited by using multiple horizontal wells. The 

volume and saturation of water in ROZs should impact the selection and 

optimization of CO2 injection strategies. The nature of water occurrence 

in ROZs differs from that of MPZs subsequent to man-made water 

flooding. In these circumstances, the water saturations in MPZs typi- 

cally will be locally high around the water streamlines connecting in- 

jectors and producers. This difference would result in differing optimal 

parameters for WAG injection such as water cycle size and WAG ratio 

(see for example Ren and Duncan, 2019) as well as the CO2/water/rock 

interaction (Luhmann et al., 2017; Cui et al., 2017) for the geochemical 

Fig. 13. Comparison of ROZ oil saturation profiles 

between reservoir simulations and field measure- 

ments. The oil saturation (black square dots) is ori- 

ginally measured in sponge cores and then corrected 

for reservoir conditions (Honarpour et al., 2010). The 

black squares are the corrected oil saturations. The 

comparison employs the simulated oil saturation 

with the water inlet flux 0.5 ft/yr. The selected time 

for the simulation result is at 50 k yrs. 
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sequestration purpose. Additionally, tilted contacts have been demon- 

strated to be important in affecting CO2 storage capacities and security. 

Numerical simulations by Heinemann et al. (2016) show that CO2 

storage in hydrodynamic aquifers can be enhanced through accelerated 

CO2 dissolution compared with static aquifers. 

 
5. Conclusions and recommendations 

 
Characterizing the variation of oil saturation in residual oil zones 

(ROZs) is essential to assess reserves, design CO2-EOR projects, and 

estimate sequestration capacities. The simulations reported in this study 

have shown that the characteristics of ROZs can be reproduced using a 

commercial, full-physics, multi-phase flow simulator. The simulated oil 

saturation profiles are in reasonable agreement with the measured 

profile published for the San Andres Seminole Unit's ROZ. The results 

support the plausibility of the hydrodynamic model suggested by earlier 

researchers, but do not rule out other models for the origin of ROZs. 

The interplay between the magnitudes of water flux (aquifer flow 

rate) and capillary pressure influences the variation of oil saturations 

(both spatially and temporally) and geometry of ROZs. Larger water 

fluxes result in thicker ROZs, and heterogeneity of capillary pressures 

results in diffuse water-oil contacts. 

During the formation of ROZs, the evolution of oil saturations is 

essentially controlled by relative permeability curves, and in our spe- 

cific study, oil saturation can achieve almost steady states in a time 

scale that is relatively short compared to the time over which increased 

aquifer flow rates are likely. However, the geometry of ROZs are slow to 

be established, especially for small regional water fluxes. 

A considerable amount of oil resides in ROZ reservoirs. Thus, they 

should be considered as the attractive exploration targets for CO2 EOR 

and storage. Additionally, the spatial distribution of oil in ROZs are 

different from that in MPZs undergoing water flooding. This difference 

should be emphasized in the optimization of injection strategies during 

CO2 EOR and storage in ROZs. 
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A B S T R A C T  
 

Prediction of permeability is one of the most difficult aspects of reservoir characterization because permeability 

cannot be directly measured by current well logging technology. This is particularly challenging for carbonate 

rocks. Machine learning (ML) and robust multivariate methods have been developed that have been used in 

many fields of study to make accurate estimators for variables of interest from both large and small datasets. ML  

has been criticized for utilizing approaches that are typically not interpretable. That is, it is not clear how the 

answers are arrived at and what aspects of input data may be resulting in inaccurate results. The current study  

uses a number of the mathematical algorithms that operate inside ML modules. It applies them to developing  

porosity-permeability transforms, with or without rock types, to two well-characterized data sets for carbonate 

reservoirs. One data set is from Jerry Lucia’s 1995 study of carbonate rock types, and the other is from a study of 

the Seminole, West Texas, San Andres Unit. This study of statistical analysis of porosity-permeability transforms 

includes: transforming the data to normal distributions; performing cross-validation blind testing; and detecting 

heteroscedasticity by creating plots of residuals. Heteroscedastic data (populations with variable variance) may 

have an adverse impact on ML algorithms such as Random Forests (RF). We find that including lithofacies in- 

formation does not greatly improve porosity-permeability transforms. We also propose a number of strategies to 

make ML analyses of reservoir (and other geosciences) data sets more robust and accurate.  
 

 

 

1. Introduction 

Predicting permeability from porosity measurements of heteroge- 

neous carbonate reservoir facies is of considerable importance in 

reservoir characterization. A model developed a few decades ago by 

Jerry Lucia, 1995, 2007 was widely regarded as a major step forward in 

developing porosity-permeability transforms for such reservoirs. The 

Lucia (1995) model related rock fabric to the formulation of 

porosity-permeability transforms for carbonate lithologies. In recent 

years, Machine Learning (ML) models have been proposed as a different 

approach for classifying rock fabrics and predicting permeability. 

Machine Learning is fast becoming a popular tool for attempting to 

solve a wide variety of problems in the earth sciences (Cranganu et al., 

2015; Lary et al., 2016; C a t�e  et al., 2017). ML uses algorithms such 

as Gradient Boosting Regressors, Random Forests, Support Vector 

Ma- chines, and Neural Networks (Mishra and Datta-Gupta, 2017). It 

also utilizes improved versions of conventional algorithms, such as 

ordinary least squares (OLS). Recently developed variants of OLS 

provide more 

robust solutions to accomplish regression of complex data sets (James 

et al., 2013). These algorithms can process large amounts of data to 

facilitate rapid pattern recognition for large multi-variable data sets, 

make predictive inferences, estimate the relative importance of 

contributing factors in determining a specific outcome, and “to make 

and improve predictions of behaviors based on data” (Molnar, 2019). 

Unfortunately, ML models for are viewed by some practitioners (and 

many end users) as “Black Boxes.” A black box model is either “too 

complicated for any human to comprehend,” or a model that is pro- 

prietary (Rudin, 2019). Even if these models can be used to make ac- 

curate predictions, if the nature of the underling mathematical and/or 

statistical basis for these predictions is not clear, then such a charac- 

terization is justified. The forecasts from ML models cannot typically be 

explained in a way that can readily understood by the researcher or the 

end-user of the research. 

Interpretable Machine Learning, the focus of Molnar (2019), at- 

tempts to make Black Box Models explainable. Molnar (2019) asserted 

that there is “no real consensus about what interpretability is.” Others 
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Table 1 

Lithological classifications for the SSAU, giving the group, rock name, and 

approximate depostional environment for each lithological group.  
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petrophysical properties are particularly important for reservoir char- 

acterization: porosity and permeability. Both can be measured in core 

samples, however only porosity can be directly estimated from wireline 

Lithological 

group 

Rock name Depositional 

environment 

well logs. In clastic reservoirs, typically a tight correlation can be found 

between porosity and permeability. However, in carbonate reservoirs it 
 

1 Mudstone Outer ramp below storm 

wave base 

2 Bioclastic wackestone Outer ramp to mid ramp 

is common to find 3 orders of magnitude variation in permeability for 

rocks of a specific porosity. Development of useful porosity-permeability 
transforms from core data proved elusive for many years. 

3 Bioclastic packstone, grainstone, Mid ramp to shoal There have been repeated attempts at relating porosity to perme- 
and rudstone 

4 Ooid-peloid grainstone Shoal 

5 

ability through the rock fabric of carbonate lithologies, starting with Gus 

Archie. Archie (1952) proposed a carbonate classification system that 
Peloidal wackestone, laminated 
mudstone, and anhydrite 

Back shoal, tidal flat, and 
sabhka considered the pore-size distribution. 

In the mid-1990s, Lucia proposed a new approach (Lucia, 1995). He 

have suggested that interpretability is the capability to determine how 

an ML model arrives at its answers to the posed question. Interpretability 

requires understanding the effects that changes in the input data have on 

results (Gilpin et al., 2018; Murdoch et al., 2019). Interpretability is 

important in avoiding embedded bias as well as aiding researchers un- 

derstanding the impact on the solution of trade-offs in their models. 

Attempting to explain Black Box models may elucidate some issues. 

However, as Rudin (2019) noted, “creating models that are interpretable 

in the first place” may be the preferred approach. Interpretable models 

include linear regression, logistic regression, other linear regression 

extensions, and decision trees (Molnar, 2019). 

A particular ML research focus, of interest to geologists, has been 

classifying rock facies and predicting permeability from wireline log 

data (Hall, 2016; Al-Mudhafar, 2017; Ahmadi and Chen, 2018; Sudakov 

et al., 2019). Over the last decade, a variety of artificial intelligence and 

ML approaches have been brought to bear on the problem of estimating 

the permeability of carbonate reservoir rocks (see for example El-Se- 

bakhy et al., 2012; Al-Mudhafar, 2015; Elkatatny et al., 2018). 

In the current study, we examine the results from some specific ML 

models for predicting permeability. In addition, we utilize some of the 

key algorithms that are utilized in some ML models to test the validity 

(predictability) of permeability estimates made using regression-based 

transforms. The data comes from the seminal study of porosity- 

permeability relationships in carbonate reservoirs published by Lucia 

(1995) and from an ongoing study of the Seminole San Andres Unit 

(SSAU) reservoir by Baqu�es and Duncan. 

Lucia’s methodology has been widely applied in rock typing and 

reservoir characterization studies. However, the Lucia transforms have 

not been subjected to a robust statistical analysis. In this paper, we study 

the uses and limitations of ML, using carbonate porosity-permeability 

measurements as an example. With machine learning approaches, we 

addressed the question, “Can rock typing techniques improve prediction 

of permeability from porosity?” 

In order to address whether rock typing techniques assist in building 

porosity-permeability transforms, we used a number of approaches. 

First, we analyzed input data to establish its fitness for the application of 

ML algorithms. Then we made predictions of permeability based on 

models of differing degrees of complexity. The models included ordinary 

least squares (OLS) and regularized, Elastic-Net regressors. Finally, we 

analyzed the residuals from those predictions to determine how pre- 

dictive the models are and whether their assumptions appear to be 

violated. 

2. Materials and methods 

2.1. Lucia’s model for porosity, permeability, and rock fabric 

An important part of reservoir characterization is finding the spatial 

distribution of petrophysical properties for rocks. This is typically ach- 

ieved through taking high confidence results from core and outcrop 

studies, generalizing them, and then applying these generalizations to 

lower confidence data set, such as well log interpretations. Two 

split carbonate rocks into three classes, based on a modified Dunham 

texture nomenclature (Dunham, 1962) and on the average grain size. He 

also developed a set of transforms to predict permeability for a specific 

porosity and rock type. The Lucia rock type approach provided a 

framework to estimate the petrophysical parameters of carbonates. 

(Gro€tsch and Mercadier, 1999; Lucia, 2007; Wang et al., 1998). 

2.2. Porosity/permeability data from the Seminole San Andres Unit, 

Permian Basin, Texas 

In order to compare the rock typing approach to one utilizing lith- 

ological information, we built two complementary datasets. Cores from 

legacy wells in the Seminole San Andres Unit (SSAU) were put through 

routine core analysis, scanned using off-the-shelf desktop scanners, and 

logged to determine the lithofacies. The approach is documented in 

Baqu�es and Duncan (in prep.). Lucia rock types were based on a data 

set that spans many fields in the Permian Basin and Persian Gulf; it 

includes several SSAU wells. 

The SSAU is a dolomitized carbonate ramp reservoir that has pro- 

duced more than 700 million bbl of oil to date. It is located on the 

eastern shelf of the Central Basin Platform of the Permian Basin, West 

Texas, USA. There have been several reservoir characterization studies 

of the SSAU, including Wang et al. (1998), Sonnenfeld et al. (2003), 

Kerans et al. (1994), Honarpour et al. (2010), and Ren and Duncan 

(2019). The Seminole field was among those analyzed by Lucia (1995) 

during the development of his rock typing approach. 

The lithological analysis dataset from the SSAU that we utilized in- 

cludes 2803 porosity and permeability measurements. Lithological in- 

terpretations were placed into five facies groups (from deep to shallow 

deposition): 1) open marine mudstone, 2) bioclastic wackestone, 3) 

bioclastic grainstone-packstone-rudstone, 4) ooid-peloid grainstone, 

and 5) laminated mudstone, anhydrite and peloidal wackestone. These 

are shown in Table 1. 

Another dataset comes from Lucia (1995). The Lucia rock types are 1, 

2, and 3, which roughly correspond to grain-dominated grainstones, 

grain-dominated packstones, and mud-dominated fabrics (Lucia, 1995, 

Figure 16). These are derived from thin section analysis to determine the 

Lucia rock class and to estimate the interparticle porosity. This data is 

then merged with core measurements of the Klinkenberg-corrected 

permeability to air. The result is an approximately 400 sample dataset 

exactly corresponding to Lucia (1995) Figure 12. 

2.3. Data exploration 

Upon collecting the data, porosity and permeability univariate and 

bivariate distributions were plotted for each rock type. This included Q- 

Q plots, histograms and cross-plots. Q-Q plots are useful for identifying 

outliers, testing skewness of the data, testing the normality of the dis- 

tribution, and determining the degree of difference between groups. 

This data exploration provided the opportunity to consider how 

complex the model can be, for the available data. A highly unbalanced 

distribution of facies (if, for instance, one facies made up over 80% of the 

data) would indicate that facies splits could tell us little about the 
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porosity-permeability relationships. If the histogram shows two distinct 

sub-distributions within one of the facies, that could indicate a natural 

division for an overbroad facies definition. 

Cross-plots between porosity and permeability by facies give an idea 

of the likely effectiveness of a linear model. Clearly linear trends lead to 

good accuracy of the model, and plots without clear trends generally 

lead to ineffective models. 

 
2.4. Preprocessing 

In order to select a model that is likely to perform effectively on blind 

tests, we must measure and minimize over-fitting. When a model over- 

fits, its predictions are being influenced by noise in the data rather 

than true effects. Over-fitting is tested for by creating a hold-out dataset 

(the testing set), fitting models on the training set, then testing their 

performance on the excluded data. 

After the data is split into testing and training datasets, preprocessing 

is applied to the testing dataset. Permeability is log-transformed to 

simplify comparison between this work and others, and to make its 

distribution more nearly Gaussian. The porosity data set is transformed, 

using the Box-Cox method (Box and Cox, 1964). This method transforms 

non-normal variables to approximate a normal distribution. Normality is 

a necessary assumption for a number of statistical techniques, including 

linear regression. After the porosity dataset is transformed, it is centered 

to a mean of zero and scaled to a standard deviation of 1. 

After variable transformation, regressions follow equations of the 

form 

logek 
φλ 

= A 
λ 

+ B; 

 

 

 

 

 

Fig. 1. Histograms of interparticle porosity (a) and permeability (b) distribu- 

tions for each Lucia rock type in the Lucia (1995) dataset. Porosity for rock class 

three is bi-modal. Permeability values for each class do not follow a normal 

distribution. 

where λ is the Box-Cox exponent used to transform porosity to approx- 

imate normality, φ is porosity reported as a volume fraction, and A and B 

are fitting parameters. The Box-Cox exponent is estimated through 

optimization of a partial log-likelihood function (R Core Team, 2017, 

step_BoxCox documentation). 

 
2.5. Building regression models 

Regression models (also called regressors) are statistical techniques 

that approximate the relations between a dependent (response) and one 

or more independent (explanatory) variables. The OLS method has poor 

performance (in terms of bias and variance/uncertainty issues) for many 

data sets. The bias is the difference between the true value of a 

 

 

Fig. 2. a) Cross-plot of porosity and permeability for each Lucia rock class (modified from Lucia, 1995). Both the x- and y-axes are logarithmic. Color indicates the 

rock class. b) Residuals plot for a regression of log-porosity against log-permeability by rock class. A black line shows zero residual. The color of the points indicates  

the Lucia rock type. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 3. a) Histograms for porosity for each lithology in the SSAU dataset. B) 

Histograms for log-permeability for each lithology in the SSAU dataset. While, 

for most lithologies, the property distributions are unimodal, the porosity and 

permeability distributions for lithology 4 are multimodal. Lithologies are listed 

in Table 1. 

 
population parameter and the expected value from the model. It mea- 
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(RF). Random forest regression aggregates an ensemble of decision trees 

in order to arrive at a result. The decision trees are generated in parallel, 

and each split is made from random subsets of the dependent variables. 

Breiman (2001) discovered that decision trees generated through taking 

random columns from the dependent variables are less prone to over- 

fitting. This technique allows random forests to be more robust than 

decision trees. We use random forests built with the Ranger library on 

the SSAU dataset. 

After data exploration, preprocessing, and regressor selection comes 

regression model building. In selecting the regression to be used, several 

factors must be taken into account. First, the objective of the regression: 

to predict permeability from porosity and facies (a different regression 

would be built to predict porosity from permeability and facies, for 

instance). Aiding this objective would be measures of which facies are 

most important for the porosity to permeability transformation. With 

this information, models can be simplified and designed to rely on the 

most robust predictors and on fewer assumptions. Simple, robust models 

are preferred because they are 1) easier to implement and interpret and 
2) more likely to perform well on blind tests. 

 
2.6. Testing regression models 

Testing models includes considering the questions of predictability 

on the training set and of generalizability to the testing set. Generaliz- 

ability can be assessed by finding how reliable the process is on new 

wells that do not have permeability measurements. The methods for 

testing generalizability include assessing model accuracy for training, 

cross-validated, and testing (holdout) data (Kearns, 1996). 

During cross-validation, the training data is split into several groups. 

Each group is excluded from the training data as the model is built, then 

predicted (Kohavi, 1995). The regression is tuned during 

cross-validation to optimize the regression. In order to achieve the best 

cross-validation scores, regularization is imposed on the model to 

minimize over-fitting. 

There are three common metrics used for assessing the accuracy of a 

regression: explained variance (R2), square root of the mean squared 

error (RMSE), and mean absolute error (MAE). Explained variance can 

be reported using the Pearson R, which assumes the target variable (log- 

transformed permeability) is normally distributed with no outliers and 

constant variance across predicted values. Q-Q plots of the inputs and 

residuals can be generated to test these assumptions. The equations for 

MAE, RMSE, and Pearson R are given by: 

sures the accuracy (or deviation from truth) of the estimates. The vari- 

ance is a measure of the uncertainty in these estimates. The best model 

minimizes both the bias and the variance. Statistical analysis has shown 

RMSE 
�Xn  �

y 
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n
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that the OLS linear regression model is often plagued by significant bias MAE 
X 

y y ’ 
. 

n 

(Agterberg, 1974; Seber, 1977; Mann, 1987). For example, there are 

cases in which the predictor variables are cross-correlated with each 
other and with the response variable. When this cross-correlation exists, 
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OLS regressions report high accuracy, but do not make accurate pre- r = 
 1  X yi — y yi — y’ 

 
 

Alternatives to OLS regression include regularized linear regression 

approaches such as LASSO regression, Ridge regression, Elastic Net 

regression (that combines LASSO and Ridge regression), and non- 

parametric regressors, usually based on decision trees. Al-Mudhafar 

(2019) has applied LASSO regression to modeling the permeability of 

sandstone reservoirs. In contrast to the LASSO algorithm, the Elastic Net 

regression modifies the objective function to minimize a combination of 

the prediction error and the L1-norm and L2-norms of the coefficients 

(Zou and Hastie, 2005). Consequently, coefficients are shrunk (as hap- 

pens in ridge regression) and specific coefficients may be zeroed out (as 

happens in LASSO regression). Elastic Net regression is generally 

considered to be the most robust linear regressor (Zou and Hastie, 2005) 

and is used in this study. 

A common non-parametric regression approach is random forests 

where n is the sample size i represents the sample number, y is the actual 

value, y’ is the predicted value, a bar over a quantity is the mean of that 

quantity, and σ is the standard deviation of a quantity. 

RMSE is the metric most commonly used for measuring the accuracy 

of regression models. This metric is better than MAE when the objective 

of the model is to reduce the magnitude of the largest errors. The MAE is 

less sensitive to outliers than MSE, and thus is preferable when large 

errors are not a concern. In the case of carbonate permeability predic- 

tion, outliers are common and RMSE is a superior metric. 

However, MAE is easier to understand than RMSE, because its value 

is the expected value of the error of the regression. Therefore, for 

instance, an MAE of 5% on a prediction of 100 mD permeability would 

suggest that the average absolute error on that measurement is 5 mD. In 

this work, models are trained to minimize RMSE of log-permeability 
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Fig. 4. Hexbin cross-plot of permeability versus porosity for each lithology in the SSAU dataset. Permeability and porosity axes are both log -transformed. The box at 

the top of each plot gives the lithology (listed in Table 1). Color indicates the number of points in the hexbin, from 1 (dark blue) to 40 (bright yellow). (For  

interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

Table 2 

Measures of model accuracy for the predictions proposed by Lucia (1995) 

transforming interparticle porosity (φip) to permeability to air (k). Values are 

reported in the natural logarithm of permeability in mD. RMSE Root-mean 

squared error, and MAE mean absolute error. The bias is the approximate 

amount the given equation will underestimate the permeability.  

 
log-transformed permeability after randomly shuffling the values (see 

Molnar, 2019, Section 5.5). Random shuffling has the effect of removing 

the predictive ability of a predictor variable without otherwise affecting 

the model. For an important feature, random shuffling would increase 

the RMSE. Conversely, randomly shuffling an unimportant features 

would have limited to no effect on the RMSE of the model. 

Rock 

Type 

Equation (mD) R2 RMSE 

(log-e mD) 

MAE 

(log-e 

mD) 

Approximate 

Bias (%) 
3. Results 

1 k = (45.35 × 

108 )φ8.537 

2 k = (1.595 × 

105 )φ5.184 

2a k = (2.040 × 

106 )φ6.380 

3 k = (2.884 × 

103 )φ4.275 

0.55 2.00 1.64 740% 

 
0.69 1.20 0.99 200% 

 
0.69 1.31 1.05 230% 

 
0.66 1.04 0.82 170% 

3.1. Exploratory analysis of data 

First, we created histograms for the porosity and permeability dis- 

tributions of each facies from the Lucia dataset (Fig. 1). Class 3 has a 

bimodal porosity distribution, which can be treated by splitting the class 

at a cutoff of 20% porosity (Fig. 1a). A Shapiro-Wilk test (1965) confirms 

that porosity of rock type 3 does not follow a normal distribution with a 

p-value of less than 0.05. The permeability values are not log-normally 

distributed, nor unimodal for classes 1 and 2, according to both visual 
 

a Lucia offers two transforms for rock type 2. 

 
(such that the units of RMSE are log-mD), but both RMSE (in log-mD) 

and MAE (in log-mD) are reported. 

Reporting performance is done on three subsets of data: the cross- 

validation dataset, the entire training dataset, and testing data that is 

held out until after the models have been completed. The first step in 

model building is separating the data into training and testing data. 

When it is possible, it is best to split the data in a way that reflects the 

data collection process. For core data, the most natural split is by well; 

after all, a petrophysical model is often only useful when it can predict 

the properties of a new well. This is not possible when re-analyzing the 

Lucia (1995) data, and therefore we perform random K-fold 

cross-validation on his data. 

 
2.7. Interpreting regression models 

After regularization, some facies might be found to have little or no 

effect on the porosity-permeability transform. This can be useful when 

deciding which facies to focus on during core logging. 

Feature importance is also assessed on each input to the regression. 

This is done through evaluating the RMSE of the model predictions of 

inspection (Fig. 1b) and a Shapiro-Wilk normality test. 

Next, we recreated Lucia’s porosity-permeability cross-plot, with 

regression lines and uncertainty bands (Fig. 2a), also providing a plot of 

the residuals for his transformation (Fig. 2b). The residuals plot shows 

that the errors are heteroscedastic, that is to say, they do not hold a 

constant variance as porosity and permeability increase. Performing a 

Box-Cox transformation of permeability before regressing does not 

remove the heteroscedasticity from the residuals. 

For the SSAU dataset we also created histograms of the porosity and 

permeability distributions for each lithology (Fig. 3). From this analysis, 

we identified several cores that had been fractured in the core extraction 

process and screened those sections from further analysis. The average 

porosity is highest for grainstone and packstone lithologies (3 and 4) and 

lowest for mudstone and anhydrite lithologies (5). Porosity for lithology 

4 (ooid-peloid grainstone) is multi-modal, suggesting that this lithology 

could be further subdivided. 

Cross-plots for permeability and porosity are shown in Fig. 4. Li- 

thologies 2 and 3 are the most abundant, and also have the highest 

porosity and permeability values. A linear trend between porosity and 

permeability can be detected, albeit with significant scatter. The 

multimodal porosity distribution for lithology 4 does not affect the 

porosity-permeability trend (This might be due to the small number of 

samples.). 
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Table 3 
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Accuracy and residual metrics for several porosity-permeability transforms. The models presented are 1) Lucia (1995) regression, 2) a new regression on the data from 

Lucia (1995), after careful preprocessing and regression regularization, 3) a lithofacies and porosity model trained on SSAU data, 4) a random forest model trained on 

SSAU lithofacies data and 5) a model only using porosity, trained on SSAU data. Models 2–4 were trained through cross-validation, then model accuracy was calculated 

on the training data, cross-validation, and testing data. 

Model Sample source Data extent R2 RMSE (log-mD) MAE (log-mD) 

1. Lucia (1995)a Lucia Full 0.65 1.40 1.09 

2. Lucia rock type, 

Elastic net 

3.Lithofacies, 

Elastic net 

4.Lithofacies, 

Random forest 

Lucia Training 0.69 1.21 0.96 

CV 0.69 1.22 0.98 

Testing 0.59 1.29 1.04 

SSAU Training 0.60 1.19 0.88 

CV 0.59 1.17 0.88 

Testing 0.70 1.20 0.94 

SSAU Training 0.66 1.11 0.83 

CV 0.59 1.17 0.88 

Testing 0.68 1.22 0.97 

5.Porosity (no rock type) SSAU Training 0.58 1.21 0.90 

CV 0.59 1.17 0.88 

Testing 0.72 1.18 0.92 

a See Table 2 for equations. Metrics are aggregated from all three Lucia rock types. 

 
 

 

 

Fig. 5. Feature importance plot for Lucia rock typing on the Lucia data set. 

Points indicate average importance after 40 shuffling repetitions, while bars 

indicate 95% confidence intervals. A feature with no importance would have a 

95% confidence interval that drops below an importance of 1. All features show 

importance for this regression. The intercept of each class is the permeability 

where transformed porosity is zero. The porosity times class X is the slope of 

log-permeability versus transformed porosity for class X. 

 
3.2. Results of the Lucia model 

In his paper, Lucia (1995) provided best fit lines for each of his 

petrophysical classes. The results of applying Lucia’s proposed perme- 

ability transforms (Lucia, 1995, his Figure 12) using his dataset are 

shown in Table 2. Lucia’s transformations do not account for bias from 

performing the fit in logarithmic space (see Jensen et al., 2000, Chapter 

10). Bias is calculated using the relation Bias  eRMSE2 /2 . 

We also ran an elastic net regression on the data from Lucia’s 

Figure 12 with three-repeat ten-fold cross-validation, after randomly 

selecting 20% of the data to hold out for testing. Porosity was trans- 

formed on the training data (the other 80% of the data-set) using Box- 

Cox, then centering, then scaling to unit standard deviation. In- 

teractions were built between porosity and Lucia Rock Type, and elastic 

net regression was run. The results of this analysis are shown in Table 3. 

The most accurate elastic net regression had no regularization, 

resulting in OLS regression (much like Fig. 2). The model accuracy for 

this regression on the three data extents (testing, cross-validation and 

testing) are provided in Table 3. Each class has a statistically significant 

difference in its porosity-permeability transformation, as evidenced by 

the feature importance plot (Fig. 5). 

It is desirable to develop a relationship between total porosity and 

permeability, rather than interparticle porosity, because total porosity is 

easier to measure from log and core data than interparticle porosity. 

Jerry Lucia has graciously provided us with total porosity and inter- 

particle porosity measurements. The comparison is plotted in Fig. 6. 

From this figure, it is clear that there is a strong, unit slope correlation 

between total and interparticle porosity. The R2 exceeds 0.9 for each 
rock type. 

For all classes, φip > φtotal. The regression line for class 1 is lnφip = 

1.13 ln φ — 0.63, for class 2, it is lnφip = 1.07 ln φ — 0.28, and for class 3, 

 
 
 
 

 
Fig. 6. Comparison of total porosity versus Lucia’s calculated interparticle 

porosity from point counting. Points indicate individual observations, lines the  

OLS regression between points of the same rock class, and shading the confi- 

dence intervals for those regressions. Color and shape vary with Lucia rock 

class. Both the x- and y-axes are logarithmic. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the Web version of 

this article.) 

it is lnφip = 1.06 ln φ — 0.31, where porosity is measured in p.u. Thus, in 

these samples, total porosity overestimates interparticle porosity by less 

than 15%. We therefore expect total porosity to perform about as well as 

interparticle porosity in developing permeability predictors for non- 

vuggy carbonates. 

Frequently, Lucia rock types are not determined from measuring the 

particle size. Instead, core is visually inspected and assigned Dunham 

rock fabric categories. In theory, grainstone should correspond to Lucia 

rock type 1, packstone to rock type 2, etc. Therefore, lithofacies inter- 

pretation is often an input for determining permeability from porosity 

data. With the SSAU data, we have the opportunity to compare porosity- 

permeability transforms arising from lithofacies. 
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Fig. 7. Residuals plot for Elastic-net regressions using the SSAU data. The boxes at the top of each facet provide the lithology, while the y-axis gives the residual (in 

log-transformed permeability) and the x-axis gives the porosity. An orange line indicates zero residual. Colors for each hexagonal bin give the number of points  

within, with 1 dark blue, and 18 bright yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 

this article.) 

 
3.3. Results of lithofacies model 

Creating a testing-training split for the SSAU data was accomplished 

 
logek = 13.9 

 

φ0.640 

0.640  
+ 17.9 

by holding out the data from the well SSAU #5505R, representing 8.2% 

of the data, for testing. During preprocessing, porosity was transformed 

using the same method as above, and interactions were built between 

porosity and lithofacies. The Box-Cox transformation exponent used to 

maximize normality of the distribution was 0.640. 

Elastic net regression returns an R2  0.60, RMSE  1.21, and MAE 

0.90 on cross validation. Residuals for the training dataset are shown 

in Fig. 7. The residuals are slightly heteroscedastic, which disappears if 

the permeability is transformed using Box-Cox before fitting (unlike in 

Lucia’s dataset). 

The best fit elastic net model has a mixing fraction of 0.66 and a 

regularization parameter of 0.002. The regressor assigns weights to the 

porosity and the slopes for each lithology. A plot of predicted and 

observed permeability against depth is given in Fig. 8. Shuffling features 

indicates that the statistically significant variables are transformed 

porosity and lithologies 2 and 3 (Fig. 9). Model statistics are reported in 

Table 3. 

Random forest regression yielded the best cross-validated results 

with 500 trees, 3 randomly selected predictors, a variance split rule, and 

a minimum node size of 40 points. The features with larger-than-zero 

importance were porosity, presence of lithology 5, presence of lithol- 

ogy 3, and presence of lithology 2. Shuffling features indicated that both 

porosity and lithology were important. A plot of residuals is given in 

Fig. 10, and the permutation importances in Fig. 11. The model statistics 

are available in Table 3. The random forest slightly underperforms the 

linear model on cross validation and the testing data. 

A reduced model that does not use lithofacies, but instead only uses 

porosity to predict permeability, has an R2 0.59, RMSE 1.18, and 
MAE  0.90 on the training data (Table 3, last row). This MAE corre- 

sponds to e0.90 2.5 times the predicted value. For example, if the 

porosity-only model has φ 0.067, it predicts k 1 mD, and the MAE 

range is from 0.4 to 2.5 mD. For comparison, the model including lith- 

ofacies, with a porosity of 0.067 and lithofacies 3, would predict a 

permeability of 1.09 mD, with an MAE range of 1.5–2.7 mD. 

With the porosity-only model, the regression equation is 

where porosity is reported as a volume fraction and permeability is re- 

ported in milliDarcy. The accuracy of this regression is shown in Table 2. 

Table 3 shows model performance for the Lucia rock type-based 

model, full core/full lithofacies model, and baseline porosity- 

permeability model. Each measure is calculated to compare the natu- 

ral log transformed permeability to its predicted value. The data extents 

include Full (all data from that sample source), Training (all of the data 

used in training the final model) CV (cross-validation data, where each 

fold of the training data is held out of the fitting, then tested), and 

Testing (data that is never used for building the model, but is blind 

tested afterwards). The accuracy on each rock type and lithofacies are 
aggregated to provide the mean accuracy for the data extent. 

Using R2 values, the elastic net regression performs better on the 

SSAU testing data than on the SSAU training data. This is because the 

accuracy of the model on individual wells varies from an MAE of 0.7–1.3 

log-mD, and through chance, one of the better-behaved wells comprised 

the training data. 

4. Discussion 

 
4.1. Data preprocessing and residuals analysis 

This study has set out to inform approaches to ML analyzes and 

related next generation statistical analyses to ensure that they are 

interpretable (in the sense of Molnar, 2019). In the first step, the raw 

data sets were analyzed to establish that they were appropriate for the 

application of ML algorithms. In his paper on facies classification using 

machine learning, Hall (2016) noted that “many machine-learning al- 

gorithms assume the feature data are normally distributed” (i.e., 

Gaussian with zero mean and unit variance). Hall suggested that data 

should be conditioned such that they meet this criterion using includes a 

Standard Scalar class. This methodology is inadequate for the task. As 

written in the Sci-kit Learn (2019) manual, the preprocessor used by 

Hall “ignores the shape of the distribution” and transforms the data “to 

center it by removing the mean value of each feature”, and scaling it “by 

dividing non-constant features by their standard deviation.” This 
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Fig. 8. Plot of permeability versus depth for the testing well in the SSAU data. 

Measured permeability is the black line, while predicted permeability from the 

model including porosity and lithology (orange) and using only porosity (blue) 

are shown as points. The point shape is used to show the interpreted lithology.  

(For interpretation of the references to color in this figure legend, the reader is  

referred to the Web version of this article.) 

 
 

Fig. 9. Importance plot for elastic-net regression of permeability for the SSAU 

data. Dots show the average effect on the RMS error after shuffling each feature. 

Porosity and lithologies 2 and 3 have a persistent effect on the RMSE 

after shuffling. 
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approach does not assure Gaussian distributions for the transformed 

feature; for instance, it does not remove skew. A superior approach (as 

noted above), is to first apply a test for normalcy such as the 

Shapiro-Wilk, followed if needed by a Box-Cox transform. Jensen and 

Lake (1985) showed that using a Box-Cox transform to provide sym- 

metry is sufficient to improve predictor performance in geostatistical 

workflows. 

In the case of the Lucia (1995) data, a Shapiro-Wilk test confirmed 

that permeability for rock type 3 is not log-normally distributed, and 

visual inspection of the distributions show it is not unimodal for classes 1 

and 2. Further data analysis revealed that the data Lucia used to build 

his model is polymodal, and that regressions of such data are hetero- 

scedastic. Heteroscedasticity is characterized by a systematic variation 

in the spread of the residuals from a regression analysis. Frequently it 

results from the effects of outliers in the data set or the population being 

multimodal. Note that ordinary least squares (OLS) regression is based 

on an assumption that residuals are drawn from a population with 

constant variance. Heteroscedasticity can result in p-values that are 

unrealistically small. Bartlett’s test for homogeneity of variances (Par- 

ra-Frutos, 2013) is one of several tests that can be used to identify het- 

eroscedasticity in data sets. 

Utilizing the results of regressions with strongly heteroscedastic re- 
siduals will be prone to performing poorly on test data. This can be seen 

by the large decrease in R2 for the test data using Lucia’s rock types. 

Heteroscedastic residuals that decrease as the prediction increases are 

indicative of non-Gaussian variables. The heteroscedasticity of Lucia’s 

data cannot be eliminated, even after careful transformation, due to the 

multi-modal nature of the permeability distribution. If these kinds of 

tests and data conditioning are not accomplished prior to running ML 

algorithms, the resultant solutions may not be robust or accurate. 

We find that the residuals from the random forest model are heter- 

oscedastic. Not surprisingly, a study by Gelfand (2015) found that het- 

eroscedastic data may have an adverse impact on ML algorithms such as 

Random Forests (RF) and Gradient Boosting Regressors (GBR). How- 

ever, Gelfand does note that GBR “may perform better than random 

forests”. Similarly, Henry (2016) concluded that RF algorithms “are 

inefficient at estimating means when the data are heteroscedastic”. He 

suggested that the effectiveness of RF could be improved by utilizing a 

“likelihood-based regression trees as a base learner”. In general, testing 

for heteroscedasticity should be a standard procedure in application of 

ML models to geoscience data sets, particularly if the RF algorithm is to 

be deployed. 

In ML based projects to analyze data sets from reservoirs including 

rock typing, porosity, permeability and perhaps wireline log data, 

Elastic Net regression will likely be preferred (in preference to ridge and 

LASSO regression). If the data is characterized by highly correlated 

explanatory variables this will be the case. O’Brien (2007) discusses the 

uses (and abuses) of the Variance Inflation Factor as a measure of the 

extent of “multi-collinearity of the ith independent variable with the 

other independent variables in regression models.” 

The elastic net regression run on Lucia’s data performed best without 

regularization. This is because regularization is less likely to be appli- 

cable when the number of variables being tested is small. Sufficiently 

simple models with smaller numbers of variables are already inter- 

pretable and explainable in the sense of Molnar (2019), and might not 

require regularization. Similarly, the data sets that we have analyzed are 

not sufficiently complex to evaluate the advantages of the Elastic Net 

regression over less robust alternatives such as the LASSO algorithm. 

LASSO was used by Al-Mudhafar (2019) to model permeabilities in 

sandstone reservoirs. He asserted that this approach had resulted in 

“significant progress in the application of statistical learning models to 

petrophysical modeling” and had improved reservoir characterization. 

It would seem that further exploration of Elastic Net Regression as a tool 

for ML approaches to reservoir characterization could be fruitful. 
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Fig. 10. Plot of residuals for the random forest model 

trained on lithofacies and porosity for the SSAU data. 

Each pane represents the lithofacies numbered at the 

top. An orange line indicates zero residual (a perfect 

fit). Hexbins are colored from blue (one data point) to 

yellow (18 data points) based on how many samples 

had a residual and porosity corresponding to that 

location. There are only slight differences in the re- 

siduals between this model and the residuals of the 

linear model. (For interpretation of the references to 

color in this figure legend, the reader is referred to the 

Web version of this article.) 

 
 
 
 
 
 
 
 
 
 

 

 

Fig. 11. Feature importances for the random forest model. The dot provides the 

average importance on the residuals, with the bar representing 95% confidence 

intervals. Porosity strongly influences the residuals of the model, but lithology 

is weakly important. 

 
4.2. Factors influencing permeability 

Another set of important issues arise when it comes to taking the 

output from ML algorithms and applying them to making predictions of 

parameters such as permeability. If permeability is predicted from 

porosity alone, and then compared to permeability predicted from 

porosity and lithofacies information, for the SSAU data we find that 

there is very little improvement of the prediction. The elastic net 

regression utilizing lithology shows a significant contribution from 

lithofacies 2 and 3 to the permeability. However, this contribution im- 

proves the error metrics in the regression by less than 1% (Table 3, 

bottom two regressions). The contrasting results (whether lithofacies do 

or do not improve permeability predictions) show the value of building 

simple models for benchmarking. 

In the SSAU data, we have identified a contribution from lithofacies 2 

and 3, but this effect is either too small to impact the regression, or it is 

not present in the testing data. This indicates that even after regulari- 

zation, un-useful parameters remain in the elastic net regression of the 

SSAU data. Therefore, application of the elastic net algorithm has over- 

fit on the training data. These kind of phenomena are likely to occur in 

more complex ML models, but may go unnoticed unless carefully 

searched for. 

The limited effectiveness of lithofacies information in determining 

the porosity-permeability transform does not necessarily hold for other 

types of reservoir. In clastic (Al-Mudhafar (2017)) and mixed 

clastic-carbonate (Wood, 2019) reservoirs, a much stronger influence of 

 
lithofacies on permeability is observed. Also, carbonate reservoirs that 

have undergone less pervasive dolomitization might have a stronger 

correlation between lithology and permeability. 

On the topic of interparticle porosity versus total porosity, we per- 

formed a regression between the two (Fig. 6). These measures of 

porosity are nearly identical, except in cases where there are significant 

vugs creating porosity. Vuggy porosity can be disconnected from the 

flow paths, and therefore should be removed from the porosity when 

large, disconnected vugs are identified. This result is in keeping with 

Lucia (1995) conclusions. However, when significant vuggy porosity is 

not present, total porosity is an accurate measure of the interparticle 

porosity. The analysis of SSAU data shows that similar model accuracy 

to the interparticle porosity can be achieved using total porosity. 

Finally, we note that despite repeated warnings about de- 

transforming log-transformed predictions (e.g. Jensen and Lake, 1985; 

Delfiner, 2007), analysts continue to ignore the bias these transforms 

introduce into the predictions. Given the weak porosity-permeability 

relationships typical of carbonate rocks, the relationships can 

under-predict by a factor of 3 or more when bias is ignored. Using the 

Box-Cox transformation with λ 0 helps, because the bias correction 

term is additive rather than multiplicative to the prediction (Jensen 

et al., 1987). 

 
4.3. Guidelines for future research 

There is a dearth of published data in dolomitized carbonates where 

the accuracy of porosity-permeability transforms has been systemati- 

cally measured. For instance, Haro (2004) suggests several permeability 

models, but does not provide R2, MAE, or RMSE errors for those models. 

Al-Ajmi and Holditch (2000) offer R2, but neither MAE nor RMSE. (They 
also build rock groups from the porosity-permeability transforms, rather 

than the other way around.) Lønøy (2006) and Lucia (1995) provide R2, 

but neither MAE nor RMSE. None of these papers perform 

cross-validation, and they do not perform blind well tests of their final 

models. 

In future reservoir studies where core is available, a critical evalua- 

tion of lithofacies should be performed with robust statistical checks. 

This is necessary to verify that differences between porosity- 

permeability transforms of different lithofacies are significant. When 

possible, cross-validation should be performed between wells, in an 

approach similar to the industry-standard blind well test. To compare 

results with literature, it is valuable to report the R2, mean absolute 
error, and root-mean squared error. 
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To build generalizable machine learning models for geoscientific 

datasets, the statistical character of the data should be carefully exam- 

 

manuscript. 
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ined as part of the exploratory analysis. A testing data set that does not 

bleed into the model-building data should be selected. The machine 

learning model needs to have regularization parameters to prevent over- 

fitting, and these parameters need to be tuned with cross-validation. 

Finally, after model building, the residuals of the model predictions 

need to be analyzed for the squared error, absolute error, and hetero- 

scedasticity. These are all necessary parts of the geoscience machine 

learning workflow. 

There are other approaches for permeability prediction that have not 

been analyzed in this study. These include neural networks and gradient 

boosting regressors, as applied to a clastic reservoir (Al-Mudhafar, 

2017), and a nonparametric model applied to a mixed carbonate-clastic 

reservoir (Wood, 2019). These methods could be applied to carbonate 

reservoirs such as the Seminole in future studies. 

5. Conclusions 

This study has developed a set of strategies that will support ML 

studies of reservoir facies and associated petrophysical properties 

(particularly permeability) being more transparent and/or more robust. 

The first step involves characterizing the data set to understand key 

aspects of its statistical distribution. In this study, we generated histo- 

gram plots to examine the univariate statistics of porosity and perme- 

ability in these rocks. As many ML algorithms require data have 

approximately normal distributions, tactics such as applying the Box- 

Cox transform should be utilized. 

Following transformation of the data sets, we performed a regular- 

ized linear regression on the porosity-permeability. We validated the 

regression results through cross-validation and test-training splits. 

Finally, we discussed the fraction of explained variance and expected 

error for these porosity-permeability transforms. 

Polymodal, heteroscedastic, data sets are common in petrophysical 

studies such as Lucia (1995). In this data set heteroscedasticity was 

identified from the observed variation in the spread of the residuals from 

the regression. 

In view of the broad interest in the use of porosity-permeability 

transforms for characterizing carbonate reservoirs, an analysis of Lucia 

(1995) model (utilizing newly available statistical tools), seems timely. 

In this paper, we took Lucia’s data and another dataset from the Semi- 

nole San Andres Unit and performed a robust statistical analysis of his 

findings. Lucia’s results rely upon poorly conditioned data, impacting 

the generalizability of his work to new datasets. Permeability does not 

follow a unimodal, log-normal distribution, leading to hetero- 

scedasticity in permeability prediction. Lithofacies interpretations do 

not lead to permeability predictions that outperform simple 

porosity-only relations. It was also found that statistically significant 

effects do not necessarily lead to better performance on holdout data. 

This study has used a variety of state of the art Machine Learning 
tools to analyze the generation of porosity-permeability transforms from 

core data. Our conclusion has been that the complexity of the data is 

such that knowledge of the rock type or facies does not result in a 

significantly improved prediction of permeability, given a porosity 

measurement. The overarching conclusion of this study is that using 

Machine Language packages to investigate complex petrophysical and 

geologic data is likely to be fraught with significant problems if the 

approach lacks interpretability. If the nature of the data being processed 

(such as normality and heteroscedasticity) is not understood and 

accounted for, then model predictions may be erroneous. 

Author contributions 

F.M. designed the study. I.J.D. supervised the research and was in 

charge of overall direction and planning. F.M. performed the data 

analysis. I.J.D. aided in interpreting the results. F.M. and I.J.D. wrote the 

Declaration of interest statement 

The authors declare that there is no conflict of interest. 

Acknowledgements 

We are grateful to F. Jerry Lucia for providing the raw data, thin 

sections and image analyses that he used in his 1995 paper. Vinyet 

Baqu�es generously provided porosity, permeability, and facies data from 

the SSAU reservoir as well as providing useful discussion. Statistical 

analysis was performed in the R language (R Core Team, 2014). Plots 

were generated using the GGPlot2 package (Wickham, 2009). This study 

was funded by the US Department of Energy (DOE) grant FE0024375 

(PI: Duncan). The authors are in debt to Drs. Jerry Jensen, Larry Lake, 

Carlos Torres-Verdín, and Bo Ren for valuable conversations and 

feedback. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.petrol.2019.106825. 

References 

Agterberg, F.P., 1974. Geomathematics. Elsevier, Amsterdam. 

Ahmadi, M.A., Chen, Z., 2018. Comparison of Machine Learning Methods for Estimating 

Permeability and Porosity of Oil Reservoirs via Petro-Physical Logs. Petroleum. 

Al-Ajmi, F.A., Holditch, S.A., 2000. Permeability estimation using hydraulic flow units in 

a central Arabia reservoir. In: SPE Annual Technical Conference and Exhibition. 

Society of Petroleum Engineers. 

Al-Mudhafar, W.J., 2015. Integrating component analysis & classification techniques for 

comparative prediction of continuous & discrete lithofacies distributions. In: 

Offshore Technology Conference. Offshore Technology Conference. 

Al-Mudhafar, W.J., 2017. Integrating well log interpretations for lithofacies classification 

and permeability modeling through advanced machine learning algorithms. 

J. Petrol. Explor. Product. Technol. 7 (4), 1023–1033. 

Al-Mudhafar, W.J., 2019. Bayesian and LASSO regressions for comparative permeability 

modeling of sandstone reservoirs. Nat. Resour. Res. 28 (1), 47–62. 

Archie, G.E., 1952. Classification of carbonate reservoir rocks and petrophysical 

considerations. AAPG (Am. Assoc. Pet. Geol.) Bull. 36 (2), 278–298. 

Box, G.E., Cox, D.R., 1964. An analysis of transformations. J. R. Stat. Soc. Ser. B 26 (2), 

211–243. 

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. 

Cat�e , A., Perozzi, L., Gloaguen, E., Blouin, M., 2017. Machine learning as a tool 

for geologists. Lead. Edge 36 (3), 215–219. 

Cranganu, C., Luchian, H., Breaban, M.E. (Eds.), 2015. Artificial Intelligent Approaches 

in Petroleum Geosciences. Springer, Berlin. 

Delfiner, P., 2007. Three statistical pitfalls of phi-k transforms. SPE Reserv. Eval. Eng. 10 

(6), 609–617. 

Dunham, R.J., 1962. Classification of Carbonate Rocks According to Depositional 

Textures, A038. AAPG Memoir, pp. 108–121. 

El-Sebakhy, E.A., Asparouhov, O., Abdulraheem, A.A., Al-Majed, A.A., Wu, D., 

Latinski, K., Raharja, I., 2012. Functional networks as a new data mining predictive 

paradigm to predict permeability in a carbonate reservoir. Expert Syst. Appl. 39 (12), 

10359–10375. 

Elkatatny, S., Mahmoud, M., Tariq, Z., Abdulraheem, A., 2018. New insights into the 

prediction of heterogeneous carbonate reservoir permeability from well logs using 

artificial intelligence network. Neural Comput. Appl. 30 (9), 2673–2683. 

Gelfand, S., 2015. Understanding the Impact of Heteroscedasticity on the Predictive 

Ability of Modern Regression Methods. MSc Thesis. Simon Fraser University. 

Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L., 2018. October. 

Explaining explanations: an overview of interpretability of machine learning. In: 

2018 IEEE 5th International Conference on Data Science and Advanced Analytics  

(DSAA). IEEE, pp. 80–89. 

Gro€tsch, J., Mercadier, C., 1999. Integrated 3-D reservoir modeling based on 3-D seismic: 

the Tertiary Malampaya and Camago buildups, offshore Palawan, Philippines. AAPG 

Bull. 83 (11), 1703–1728. 

Hall, B., 2016. Facies classification using machine learning. Lead. Edge 35 (10), 906–

909. 

Haro, C.F., 2004. The perfect permeability transform using logs and cores. In: SPE 

Annual Technical Conference and Exhibition. Society of Petroleum Engineers. 

Henry, A.J.D., 2016. Statistical Learning Tools for Heteroskedastic Data. Simon Fraser 

University. PhD dissertation. 

Honarpour, M.M., Nagarajan, N.R., Grijalba Cuenca, A., Valle, M., Adesoye, K., 2010. 

Rock-fluid characterization for miscible CO2 injection: residual oil zone, Seminole 

 

 
10 

https://doi.org/10.1016/j.petrol.2019.106825
https://doi.org/10.1016/j.petrol.2019.106825
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref1
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref2
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref2
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref3
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref3
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref3
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref4
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref4
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref4
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref5
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref5
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref5
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref6
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref6
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref7
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref7
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref8
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref8
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref9
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref10
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref10
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref10
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref11
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref11
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref12
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref12
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref13
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref13
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref14
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref14
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref14
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref14
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref15
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref15
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref15
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref16
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref16
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref17
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref17
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref17
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref17
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref17
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref18
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref18
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref18
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref19
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref19
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref19
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref20
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref20
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref21
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref21
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref23
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref23


F. Male and I.J. Duncan 

 
field, Permian Basin. In: SPE Annual Technical Conference and Exhibition. Society of  

Petroleum Engineers. 

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An Introduction to Statistical 

Learning, vol. 112. Springer, New York, p. 18. 

Jensen, J.L., Lake, L.W., 1985. Optimization of regression-based porosity-permeability 

predictions. In: Transactions of the 10th Formation Evaluation Symposium. Calgary. 

Jensen, J.L., Lake, L.W., Hinkley, D.V., 1987. A Statistical Study of Reservoir 

Permeability: Distributions, Correlations, and Averages, vol. 2. SPE Formation 

Evaluation, pp. 461–468. 

Jensen, J., Lake, L.W., Corbett, P.W., Goggin, D., 2000. Statistics for Petroleum Engineers 

and Geoscientists, vol. 2. Gulf Professional Publishing. 

Kearns, M.J., 1996. A bound on the error of cross validation using the approximation and 

estimation rates, with consequences for the training-test split. In: Advances in Neural 

Information Processing Systems, pp. 183–189. 

Kerans, C., Lucia, F.J., Senger, R.K., 1994. Integrated characterization of carbonate ramp 

reservoirs using Permian San Andres Formation outcrop analogs. AAPG (Am. Assoc.  

Pet. Geol.) Bull. 78 (2), 181–216. 

Kohavi, R., 1995. August. A study of cross-validation and bootstrap for accuracy  

estimation and model selection. In: Ijcai, Vol. 14, pp. 1137–1145, 2. 

Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L., 2016. Machine learning in 

geosciences and remote sensing. Geosci. Front. 7 (1), 3–10. 

Lønøy, A., 2006. Making sense of carbonate pore systems. AAPG Bull. 90 (9), 1381–1405. 

Lucia, F.J., 1995. Rock-fabric/petrophysical classification of carbonate pore space for 

reservoir characterization. AAPG (Am. Assoc. Pet. Geol.) Bull. 79 (9), 1275–1300. 

Lucia, F.J., 2007. Carbonate Reservoir Characterization: an Integrated Approach. 

Springer Science & Business Media. 

Mann, C.J., 1987. Misuses of linear regression in earth sciences. In: B Size, W. (Ed.), Use 

and Abuse of Statistical Methods in the Earth Sciences. OUP, Oxford, pp. 74–106. 

Mishra, S., Datta-Gupta, A., 2017. Applied Statistical Modeling and Data Analytics: A 

Practical Guide for the Petroleum Geosciences. Elsevier. 

Molnar, C., 2019. Interpretable Machine Learning: a Guide for Making Black Box Models 

Explainable, ISBN 9780244768522. 

Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B., 2019. Interpretable 

Machine Learning: Definitions, Methods, and Applications arXiv preprint arXiv: 

1901.04592. 

Journal of Petroleum Science and Engineering 187 (2020) 106825 

 
O’Brien, R.M., 2007. A caution regarding rules of thumb for variance inflation factors. 

Qual. Quantity 41 (5), 673–690. 

Parra-Frutos, I., 2013. Testing homogeneity of variances with unequal sample sizes. 

Comput. Stat. 28 (3), 1269–1297. 

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL. http://www.R-project. 

org/. 

Ren, B., Duncan, I., 2019. Modeling oil saturation evolution in residual oil zones: 

implications for CO2 EOR and sequestration. J. Pet. Sci. Eng. 177, 528–539. 

Rudin, C., 2019. Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead. Nat. Mach. Intell. 1 (5), 206. 

Sci-kit Learn, 2019. Standardization, or Mean Removal and Variance Scaling. In: http 

s://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler. 

(Accessed 29 September 2019). 

Seber, G.A.F., 1977. Linear Regression Analysis. J. Wiley, New York. 

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete 

samples). Biometrika 52 (3/4), 591–611. 

Sonnenfeld, M.D., Canter, L., Meng, H.Z., Wingate, T.P., Zahm, L.C., 2003. Operational 

sequence stratigraphy for 3-D reservoir modeling of Seminole Andres unit (SSAU), 

Permian Basin, west Texas. In: Annual AAPG-SEPM Meeting, vol. 5, pp. 11–14. Salt 

Lake City, UT. 

Sudakov, O., Burnaev, E., Koroteev, D., 2019. Driving digital rock towards machine 

learning: predicting permeability with gradient boosting and deep neural networks. 

Comput. Geosci. 127, 91–98. 

Wang, F.P., Lucia, F.J., Kerans, C., 1998. Integrated reservoir characterization study of a 

carbonate ramp reservoir: Seminole san Andres unit, Gaines County, Texas. SPE 

Reserv. Eval. Eng. 1 (2), 105–113. 

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York. 

Wood, D.A., 2019. Predicting porosity, permeability and water saturation applying an 

optimized nearest-neighbour, machine-learning and data-mining network of well-log 

data. J. Pet. Sci. Eng. 106587. 

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. 

Stat. Soc. Ser. B 67 (2), 301–320. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
11 

http://refhub.elsevier.com/S0920-4105(19)31244-6/sref23
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref23
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref23
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref24
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref24
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref25
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref25
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref26
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref26
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref26
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref27
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref27
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref28
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref28
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref28
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref29
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref29
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref29
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref29
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref30
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref30
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref30
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref31
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref31
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref33
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref34
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref34
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref35
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref35
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref36
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref36
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref37
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref37
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref38
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref38
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref39
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref39
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref39
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref40
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref40
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref41
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref41
http://www.r-project.org/
http://www.r-project.org/
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref43
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref43
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref44
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref44
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref46
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref47
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref47
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref48
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref48
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref48
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref48
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref49
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref49
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref49
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref50
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref50
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref50
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref51
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref52
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref52
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref52
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref53
http://refhub.elsevier.com/S0920-4105(19)31244-6/sref53


~ 

7 Diagenesis of the San Andres 
Formation in the Seminole unit 
in Central Basin platform, 
western Texas 
Lei Jiang 

 
 

ABSTRACT 

The San Andres Formation, characterized by massive sulfate 

cementation (with 10%–30% of rock volume), is one of the 

most productive units in the Permian Basin. However, little 

attention has been paid to anhydrites, which affected the San 

Andres reservoir quality. Coupling petrography with geochemi- 

cal analysis, this study aims at providing a holistic diagenetic 

framework in the Seminole San Andres Formation. Advanced 

evaporation of seawater has resulted in abundant bedded and 

nodular anhydrite precipitation along with reflux dolomitiza- 

tion. An early stage of bacterial sulfate reduction may have 

occurred and resulted in pyrite replaced anhydrite nodules. A 

small downward decreasing of d13C in carbonates may be caused 

by either the secular carbon isotopic change of seawater or the 

consequence of bacterial sulfate reduction. Fluid inclusion data 

obtained from anhydrite cements suggest that (1) anhydrite 

cementation continued to the maximum burial temperature of 

~75◦C and (2) a regional hydrothermal fluid activity with tem- 

peratures between 100◦C and 128◦C has occurred. Neogene 

meteoric water from the western uplifted mountain region may 

have promoted a late-stage bacterial sulfate reduction that 

caused anhydrite and dolomite dissolution and increased 

present-day reservoir quality in the residual oil zones. This study 

emphasizes the dynamics of anhydrite subjected to diagenesis 
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that could result in an improved reservoir quality with greater 

heterogeneity in a mixed carbonate and evaporite system. 

 

INTRODUCTION 
 

The Permian Basin of western Texas and southeastern New Mex- 

ico has produced oil for more than 90 yr and represents the largest 

oil resource in the United States (Gaswirth et al., 2016). Carbon- 

ate reservoirs account for 75% of the total oil production in the 

Permian Basin, among which the middle Permian San Andres 

Formation has been the most productive one. The cumulative 

production of carbonate plays from the San Andres Formation is 

approximately 10 billion BOE as of 2000 (Dutton et al., 2005), 

and it is one of the leaders in the Permian Basin for CO2 produc- 

tion above original oil-water contact. Moreover, the San Andres 

Formation is also one of the biggest producers of oil through 

CO2-based enhanced oil recovery (CO2-EOR). More than 

13,000 BOPD are being produced from residual oil zones 

(ROZs), with 6500 bbl/day being produced from the ROZs in 

the Seminole unit alone (Melzer, 2012). The estimated recover- 

able oil from ROZs in the San Andres Formation and Canyon 

Reef formation in Permian Basin is 12 billion bbl (Koperna et al., 

2006). 

The majority of the studies on San Andres carbonate reser- 

voirs were conducted during the 1980s to 1990s. These studies 

predominantly focused on the reservoir’s stratigraphy, deposi- 

tional models, and reservoir properties (Cowan and Harris, 1986; 

Sarg and Lehmann, 1986; Kerans and Fitchen, 1995; Lucia et al., 

1995). Some workers have modeled reservoir heterogeneity 

based on outcrop analogues and subsurface rock physical data 

(Eisenberg et al., 1994; Wang et al., 1998; Dou et al., 2011). Dia- 

genesis studies of the San Andres carbonates in the Permian Basin 

have been limited in scope and mostly focused on dolomites 

(Ruppel and Cander, 1988; Saller and Henderson, 1998). Altered 

rock properties and occasional free sulfur in ROZs formed by 

anaerobic bacteria in the San Andres Formation has been 

reported (Melzer, 2012). Recently, Trentham et al. (2015) 

emphasized the critical role of bacterial sulfate reduction (BSR) 

in the biodegradation of hydrocarbons as well as the formation of 

“black sulfur water,” H2S, elemental sulfur, and calcite in ROZs. 

However, the nature of the diagenetic sequence and its impact on 

reservoir quality have not been documented in detail, neither for 

the main pay zone nor for the ROZ of the San Andres carbonate 

reservoirs. This lack of detail hampers understanding mineral pre- 

cipitation patterns during water injection and CO2 floods, which 

can cause significant problems for water and oil flow during CO2- 

EOR (Saller and Stueber, 2018). Further, a better understanding 

of diagenesis of anhydrite in the San Andres Formation can help 
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constrain the diagenetic effect on reservoir quality. 

The outcomes from this study can apply to reservoir 

characterization and CO2-EOR of the ROZs in sev- 

eral other mixed carbonates and evaporite systems in 

the Permian Basin (Ruppel and Cander, 1988; Lucia 

and Ruppel, 1996; Saller and Henderson, 1998), as 

well as many global analogies (e.g., Smackover For- 

mation in the Gulf of Mexico Basin [Heydari, 2000], 

Feixianguan Formation in the Sichuan Basin [Jiang 

et al., 2018c], and Khuff Formation in the Arabian 

Basin [Worden et al., 1995]). 

This paper predominantly focuses on the diagen- 

esis of anhydrite and its impacts on reservoir quality 

in the subsurface San Andres Formation in the Semi- 

nole field of the northern Central Basin platform. To 

characterize the nature and origin of diagenetic anhy- 

drite and carbonate minerals in the Seminole San 

Andres carbonate reservoir, conventional description 

techniques of core and thin sections, cathodolumi- 

nescence (CL) analysis, scanning electron microscope 

(SEM) petrography, pore and mineral surface area 

measurement, fluid-inclusion analysis, and carbon 

and oxygen isotopic data were used. Combining 

image-based quantitative data for porosity and differ- 

ent diagenetic products, this paper attempts to 

address the following questions: 

 

1. What are the characteristics of various types of 

diagenetic minerals (e.g., dolomite, calcite, and 

especially anhydrite) within the Seminole San 

Andres reservoirs? 

2. What is the burial-diagenesis model of the 

Seminole San Andres Formation and how does 

diagenesis affect reservoir quality? 

 

GEOLOGICAL SETTING 
 

The Seminole San Andres unit (SSAU) is located 

on the northeast margin of the Central Basin 

platform immediately south of the San Simon channel 

(Figure 1A). The reservoir’s surface footprint extends 

over 60 km2 with approximately 850 wells. A carbon- 

ate ramp depositional system (Figure 1B) with the 

identification of high-frequency stratigraphic cycles 

provides a detailed framework for reservoir characteri- 

zation for the San Andres Formation (Eisenberg et al., 

1994; Grant et al., 1994; Kerans and Fitchen, 1995; 

Lucia et al., 1995; Wang et al., 1998; Phelps et al., 

2008). The oil field in the SSAU (discovered in 1936) 

is a solution-gas drive reservoir with a small initial gas 

cap. The Seminole field is one of several isolated plat- 

forms built during early Guadalupian when the lower 

San Andres composite sequence became linked with 

the rest of the San Andres platform during the progra- 

dation of the upper San Andres sequence (Figure 2) 

(Lucia et al., 1995). 

The lower San Andres is characterized by skel- 

etal (e.g., fusulinid) grainstone, packstone, wacke- 

stone, and an open-marine fauna, which was 

deposited in upward-shallowing, peloidal, shallow 

subtidal to peritidal cycles (Kerans et al., 1994; 

Lucia et al., 1995). In contrast, the upper San 

Andres at the SSAU is largely composed of anhy- 

dritic peritidal deposits (Figure 2) (Lucia et al., 

1995). Dolomites and anhydrite are major diage- 

netic minerals in the San Andres Formation, along 

with other trace amounts of minerals such as 

quartz, kaolinite, and fluorite (Leary and Vogt, 

1987). Generally, the reservoir quality is closely 

tied to lithotypes and facies, for example, grain- 

stone from ramp crest and grain-dominated pack- 

stone and wackestone from the middle to outer 

ramp have much higher porosity and permeability 

than mud-dominated fine crystalline dolostones 

from ramp interior and upper distal outer ramp 

(Kerans et al., 1994; Lucia et al., 1995; Wang et al., 

1998). 

 

METHODS 
 

New samples for this study were collected from wells 

SSAU 2309 (n = 29), SSAU 2310 (n = 56), and SSAU 

2504 (n = 28) (Figure 1A) in the SSAU. Selected sam- 

ples were prepared for thin sections (30 mm thick) for 

optical microscopic studies. Selected polished thin 

sections were impregnated with blue dye to highlight 

megapores (greater than 10 mm) and with blue- 

fluorescent dye to highlight micropores (less than 

10 mm) and for SEM-CL and fluid inclusion studies. 

Additionally, several hundreds of thin sections from 

wells SSAU 2505 (n = 364) and SSAU 5309 (n = 209) 

were kindly provided by Jerry Lucia at the Bureau of 

Economic Geology of The University of Texas at 

Austin for the petrological study. 
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Figure 1. (A) Map of key Permian Basin features and some key fields for enhanced oil recovery and residual oil zones discussions, mod- 

ified from (Honarpour et al., 2010). Inset shows location of studied wells in the Seminole San Andres unit in Central Basin platform. (B) A 
generalized depositional model and facies-tract distributions of distally steepened ramp clinothems during the middle Permian for Permian 

Basin, modified from Phelps and Kerans (2007). GDP 5 grain-dominated packstone; HFC 5 high-frequency cycle. 

 

 

Petrography 
 

Selected thin sections, mainly from SSAU 2310 

(n = 24), were examined by transmitted-light micros- 

copy and SEM-CL along with elemental analysis 

by energy-dispersive x-ray spectroscopy. The CL 

images were obtained using a Zeiss Sigma High Vac- 

uum Field Emission SEM equipped with an Oxford 

X-Max 50-mm2 silicon drift detector for low-energy 

detectability, a pole piece-mounted backscattered 

electron detector, and a Gatan MonoCL4 system 

 
operated at 5 kV and large sample currents. The CL 

images were obtained from grayscale images col- 

lected using blue filters. 

 
Quantitative Assessment of Mineralogy 
and Porosity 

 

Minerals and pore spaces were identified under a 

petrographic microscope by using plane cross- 

polarized light. High-resolution thin-section photomi- 

crographs were taken at various scales for quantitative 
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Figure 2. Lithology, cycles, anhydrite content, and porosity correlation of the San Andres Formation from well SSAU 2505 in the Semi - 
nole San Andres unit, modified from Lucia et al. (1995). The facies classification follows Kerans et al. (1994). 

 

image analysis using the JMicrovision v1.27 software. 

Thereafter, image analysis is performed by using the 

pixel color and intensity from the photomicrograph 

to differentiate between various minerals and pores. 

Submicron to millimeter scale pores and minerals 

could be extracted along with their geometry parame- 

ters. The color deconvolution algorithm was used in 

image analysis to better differentiate the pores from 

rock components (minerals). We performed quantita- 

tive assessment only on the thin sections from well 

SSAU 2505 because detailed rock fabric facies, 

porosity, and permeability data are available in Lucia 

et al. (1995). 

 
Fluid Inclusion Microthermometry 

 

Homogenization temperatures (Th) were measured 

from fluid inclusion assemblages (FIAs) containing 

two-phase aqueous inclusions in five out of nine 

doubly polished (50 to 60-mm-thick) wafers from 

well SSAU 2310. The use of FIAs to determine tem- 

peratures of mineral growth, as opposed to lone 
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inclusions, gives confidence that the Th data are credi- 

ble and minimizes the effects of artifacts, such as 

thermal reequilibration (Goldstein and Reynolds, 

1994; Goldstein, 2012). Fluid inclusion microther- 

mometry was conducted using a Fluid, Inc. (adapted, 

US Geological Survey) type, gas-flow heating- 

freezing stage mounted on an Olympus BX51 micro- 

scope equipped with 40· objective (numerical 

aperture = 0.55) and 15· ocular lenses. 

 
Carbon and Oxygen Isotopes 

 

Sixty powder samples ( 30–50 mg per single sam- 

ple) of carbonate rocks and cements, from well 

SSAU 2310, were microdrilled for carbon and oxy- 

gen isotope study. The powered samples were heated 

to remove organic materials and then reacted with 

anhydrous phosphoric acid, under vacuum, to release 

CO2 at 25◦C for 24 hr. The CO2 was then analyzed 

for carbon and oxygen isotopes on a Finnigan 

MAT251 mass spectrometer standardized with NBS- 

18. All carbon and oxygen data are reported in per 

mille (‰) units relative to the Vienna Peedee belem- 

nite standard. The precision for both d13C and d18O 

measurements is better than –0.1‰. 

 
 

RESULTS 

 
Diagenetic Products 

Dolomite 

In the San Andres Formation, dolomite occurs 

as very fine crystals (~5–15 mm) (D1), fine 

crystals (~20–50 mm) (D2), and medium crystals 

(50–100 mm) (D3). The D1 is commonly present in 

dolomudstones and wackestones (Figure 3A) and 

consists of fusulinids in grainstones and packstones 

(Figure 3C). The D1 dolomite that commonly occurs 

as planar-e to planar-s crystals is dark brown to black 

and is homogeneously gray under SEM-CL (Figure 

3D). The D2 dolomite is widely present in pack- 

stones and grainstones, and it occurs as planar-s to 

nonplanar-a dolomite rhombs (Figure 3B) and dis- 

plays white or gray under SEM-CL (Figure 3E). The 

D3 dolomite is commonly present in grain-rich 

facies, and it occurs as medium-crystalline, nonpla- 

nar-a dolomite rhombs (spherical) (Figure 3C), and 

displays relatively light (white) color under SEM-CL 

(Figure 3F). 

 

Anhydrite 

Anhydrite has many occurrences (e.g., beds, nodules, 

or cement) in the San Andres Formation. Bedded 

anhydrite (Figure 4A) consists mainly of fine anhy- 

drite crystals ranging from tens to <50 mm in diame- 

ter. It occurs predominantly in ramp interior facies 

with a total thickness of 110–190 ft in upper San 

Andres section, and locally in ramp crest and middle 

to outer ramp facies with a thickness of 1–2 ft in the 

lower San Andres section. Nodular anhydrite occurs 

as coalescing or isolated nodules with sizes ranging 

from tens to hundreds of micrometers in diameter. 

Coalescing anhydrite nodules (Figure 4B) commonly 

occur as burrow fillings in the upper San Andres sec- 

tion, whereas isolated anhydrite nodules are wide- 

spread in occurrence in the lower San Andres section. 

Nodular anhydrite displays irregular crystal shapes 

and crystal lengths ranging from less than 50 mm and 

up to several hundreds of micrometers (Figure 4C, 

D), or regular, tube-like shapes with coarse anhydrite 

crystals up to several centimeters across (Figure 4E). 

These anhydrites have either homogeneous color 

(e.g., gray, white, black) or zonation under SEM-CL 

(Figures 3E, 4I). Anhydrite cements commonly fill in 

the pore spaces (Figures 3A, E; 4F, G), with single- 

crystal sizes mostly ranging from 0.2 to 5 mm across, 

and display homogeneous, or zoned, or nonlumi- 

nous, under SEM-CL (Figures 3E, F; 4H, I). 

Other Diagenetic Products 

Although in a relatively small volume (<0.2% of the 

total rocks), pyrite is commonly observed in the 

San Andres Formation. It occurs predominantly as 

partial replacement of nodular anhydrite, or less 

commonly as replacing dolomites. Pyrite displays 

euhedral or irregular and disseminated shapes with 

sizes ranging from several micrometers to hundreds 

of micrometers in diameter (Figures 3A; 4G; 5A–C). 

Calcite is rarely present in the San Andres Formation; 

it is only observed replacing a few anhydrite 

nodules in the ROZs of reservoirs (Figures 4B, 5D). 

Calcite displays either nonluminous or a very dull 

gray color under SEM-CL (Figure 3E). Stylolites 

are well developed in mudstone- and wackestone- 

dominated intervals (Figure 5E), but almost 

missing in grainstone- and packstone-dominated 
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Figure 3. Photomicrographs and scanning electron microscopy–cathodoluminescence (SEM-CL) images showing various types of diage- 

netic minerals observed in the Seminole San Andres unit well SSAU 2310. (A) D1 consists of wackestone-mudstone, anhydrite (An; white) 

filling mold with some replacive pyrite (Py; red arrow), depth 5179.5 ft. (B) D2 consists of wackestone with abundant intercrystalline pores 

(BC) (blue), depth 5195.3 ft. (C) D1 consists of the fusulinid grainstone associated with abundant intraparticle pores (IP) (blue) and D3, 

depth 5261.2 ft. (D) The SEM-CL image of D1 consists of fusulinid grains displaying relatively homogeneous CL color and interparticle 

porosity (IP), depth 5264.4 ft. (E) The SEM-CL image showing two different gray-scale levels of CL (gray and white) in D2, and relative 

dark SEM-CL color in An replacive calcite (Ca), depth 5335.4 ft. (F) The SEM-CL image showing lighter (white) CL color in D3, whereas 

gray CL color in An cement, moldic porosity (Mo) locally present, depth 5200.5 ft. D 5 dolomite. 
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Figure 4. Core photographs, thin-section photomicrographs, and scanning electron microscopy–cathodoluminescence (SEM-CL) images 

showing various types of anhydrite (An) in the San Andres Formation. (A) Bedded An and D1 in the upper part of the San Andres Forma- 

tion, well Seminole San Andres unit (SSAU) 2310, depth 5201 ft. (B) Nodular An locally replaced by calcite (Ca), well SSAU 2310, depth 

5335.4 ft. (C) Nodular An displaying irregular and fine crystals, cross-polarized light, well SSAU 2310, depth 5103.3 ft. (D) Nodular An 

showing irregular medium crystals, cross-polarized light, well SSAU 2310, depth 5200.5 ft. (E) Isolated An nodule showing tube-like, and 

relatively coarse crystalline, cross-polarized light, well SSAU 2310, depth 5133.8 ft. (F) Various types of An including nodular, cement, 

fracture-filling showing relatively coarse crystalline, cross-polarized light, well SSAU 5309, depth 5002 ft. (G) Moldic pore filled by a single 

crystal An cement locally replaced by pyrite (Py; white arrow) at the edge, well SSAU 2310, depth 5200.5 ft. (H) Nonluminescent An 

cement under SEM-CL, well SSAU 2310, depth 5212.8 ft. (I) Various types of SEM-CL color and local zonation (white arrow) present in An 

cements, well SSAU 2310, depth 5264.4 ft. D 5 dolomite. 

 
 

intervals. In ooid-rich grainstones where grain-to- 

grain contacts are present, some grains display a 

deformed elliptical shape. 

 
Pore Systems 

 

Classification of the pore space types follows 

the methods of Choquette and Pray (1970) for 

macropores and the methods of Loucks et al. 

(2013) and Lucia and Loucks (2013) for micro- 

pores. In the studied San Andres Formation, 

seven pore types were recognized and listed in 

the order of relative abundance as follows: vug, 

intraparticle pores, intercrystalline pores, interpar- 

ticle pores, moldic pores, micropores, and fractures 

(Figures 3, 6). 
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Figure 5. Photomicrographs showing other diagenetic products in the San Andres Formation. (A) and (B) Pyrite (Py) replacing anhydrite 

(An) nodule, well Seminole San Andres unit (SSAU) 2310, depth 5107.6 ft for (A); and well SSAU 5309, depth 5084 ft for (B). (C) Py locally 

replacing bulk dolomite, An cement filling with the pore spaces, well SSAU 2310, depth 5264.4 ft. (D) Calcite (Ca; red) locally replacing An 

(white) nodule in residual oil zones of well SSAU 2310, depth 5335.4 ft. (E) Stylolites (black; white arrows) commonly present typical ser- 

rated shape, well SSAU 5309, depth 5094 ft. D 5 dolomite. 
 

Vuggy porosity is the volumetric dominant 

(>50%) pore space type. It most commonly occurs as 

partial or complete dissolution of rock components, 

including matrix, grains (e.g., fusulinids), and anhy- 

drite cements with sizes ranging between hundreds of 

micrometers and up to several millimeters in diameter 

(Figure 6B, C). Interparticle pores occur mostly in 

fusulinid grain-rich facies, with pore sizes mainly 

between 50 and 300 mm (Figures 3C, D; 6A, F). Inter- 

crystalline pores and interparticle pores are commonly 

observed in mudstone and wackestone (Figure 3B) 

and grainstone and packstone, respectively (Figure 6A, 

D). Few moldic pores are observed in grainstone 

include dissolved crinoids or bivalves, with pore sizes 

commonly less than 100 mm (Figures 3F). Micropores 

occur predominantly as dolomite dissolution pores in 

the middle of microdolomite crystals with sizes rang- 

ing from 2 to 10 mm (Figure 6G). They can be 

observed under blue ultraviolet light (Figure 6H, I) 

and SEM (Figure 6F, G). Fracture porosity crosscuts 

all diagenetic minerals and fabrics, commonly in the 

width of <50 mm and length of up to several centi- 

meters (Figure 6E). 

Quantitative Assessment of Mineralogy 
and Porosity 

 

Quantitative assessments were performed on poros- 

ity occluding minerals, including anhydrite (most 

commonly) and dolomite in 261 thin sections, which 

were collected from the reservoir part of well SSAU 

2505 at a depth of 5058–5300 ft. Results show that 

anhydrite content ranges from 0% to >80% of the 

total rock volume. The average content for anhydrite 

and dolomite cement is 15% and 5.7% for grainstone, 

16.1% and 10.5% for packstone, 10.7% and 14.7% 

for porous wackestone, 13.3% and 7.3% for nonpo- 

rous wackestone, and 28.1% and 9.1% for mudstone 

(Figure 7). 

 
Geochemical Data 

 
Stable Carbon and Oxygen Isotopic Analyses 

The results of stable isotope (O and C) analyses 

for 56 bulk dolomite samples (D1 and D2) and 

four anhydrite-replacive calcites are presented in 

Figure 8, Figure 9A, and Table 1. Generally, d13C 
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Figure 6. Photomicrographs showing various pore types in the San Andres Formation. (A) Abundant pore spaces consist mainly of 

interparticle pores (BP) and intraparticle pores (IP) in grain-dominated dolostone, well Seminole San Andres unit (SSAU) 5309, depth 

5162 ft. (B) Vug with sizes up to several millimeters across in very finely crystalline dolomite (gray) with abundant anhydrite (An) cement, 

well SSAU 2310, depth 5295.5 ft. (C) Vugs with sizes up to several hundred micrometers are present in An cement filling with moldic pore, 

well SSAU 2310, depth 5145.1 ft. (D) Abundant interparticle pore (BP) and dolomite moldic pores (Mo; white arrow) are commonly 

observed in grainstone and packstone, well SSAU 2310, depth 5324.4 ft. (E) Fracture pores (F) are locally present (blue), mostly filled by 

An (white) cements, well SSAU 2310, depth 5145.1 ft. (F) Abundant micropores (Mi) are present in fusulinid walls composed by D1, which 

displays abundant IP, well SSAU 2310, depth 5264.4 ft. (G) Micropores (Mi) occur as dissolution of cores in D1, which consists of fusulinid 

grains, well SSAU 2310, depth 5264.4 ft. (H) Fusulinid packstone displays abundant IP and D3, well SSAU 2310, depth 5261.3 ft. (I) Photo- 

micrograph taken with blue ultraviolet light from (H) results in areas (fusulinid walls) of micropores to luminesce blue. D 5 dolomite. 
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Figure 7. Box-plot image showing quantitative assessment of mineralogy and porosity results of (A) anhydrite content, and (B) dolomite 
cement, in different rock types, data were derived from well SSAU 2505 in the Seminole San Andres unit. 

 

 

decreases downward in the carbonate host rock, 
but there are no obvious stratigraphic changes in 
d18O values (Figure 8). Bulk dolomites display a 

relatively narrow isotopic range for both d13C val- 

ues (between 3.84‰ and 6.69‰, average at 
5.18‰) and d18O values (between 0.18‰ and 

3.2‰, average at 1.79‰) (Figure 9A). In contrast, 
anhydrite-replacive calcites show markedly negative 
values of d13C (—13.90‰ to —8.01‰, average 

at—10.93‰) and d18O (—10.16‰ to —9.30‰, 

average at —9.67‰) (Figure 9A). 

Fluid Inclusion Microthermometry 

Two-phase aqueous inclusions are present only in 
few anhydrite cements, whereas single-phase fluid 

inclusions were observed in a small part of replacive 

poikilotopic anhydrite and fine crystalline dolomite. 

Two groups of primary two-phase aqueous inclusions 

were obtained from anhydrite cements. One group 

yielded a relatively low and narrow Th ranging from 

55◦C to 75◦C (Figure 10; Table 2) with a variation of 

mostly <10◦C within a single FIA. By contrast, the 

other group yielded much higher Th ranging from 
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Figure 8. Lithology, textures, facies, and d13C and d18O isotopic compositions of bulk dolomite (dol) in the San Andres Formation in 
well SSAU 2310 in the Seminole San Andres unit (SSAU). The facies and texture classi fication after Lucia et al. (1995) and Kerans et al. 

(1994). MPZ 5 main pay zone; ROZ 5 residual oil zone. 

 

80◦C to 128◦C (Figure 10; Table 2), with variations 

from <10◦C to ~20◦C within a single FIA. 

 
DISCUSSION 

 
Origin of Dolomite 

 

Dolomites in the SSAU display d13C and d18O values 

similar to several other Permian dolostone intervals in 

the Permian Basin (Figure 9), which are proven to have 

formed predominantly during reflux dolomitization 

(Lloyd, 1966; Ruppel and Cander, 1988; Lucia et al., 

1995; Saller and Henderson, 1998; Ruppel and Jones, 

2006). Stable isotopes of d13C and d18O for dolomites 

have been widely used to constrain the fluid tempera- 

ture and source, diagenetic environment, and thus the 

correlated dolomitization model (Saller and Dickson, 

2011; Jiang et al., 2016). The markedly positive swing 

of d18O (mostly from 0‰ to 3.2‰) in these dolomites 

was most plausibly attributable to seawater evapora- 

tion, which would lead to increased d18Oseawater values 

(Jiang et al., 2016). The wide occurrence of anhydrites 

in many Permian intervals suggests a persistent arid cli- 

mate and strong evaporation in the Permian Basin dur- 

ing the middle to late Permian (Lloyd, 1966; Ruppel 

and Cander, 1988; Lucia et al., 1995; Saller and Hen- 

derson, 1998; Ruppel and Jones, 2006). Therefore, 

large swings in d18O values among these dolomites 

may be linked to varying degrees of brine evaporation 

for reflux dolomitization (Saller and Henderson, 1998; 

Ruppel and Jones, 2006; Jiang et al., 2016), dolomite 

recrystallization at various burial depths (Land, 

1980; Ruppel and Cander, 1988), or a combination of 

these factors. Neither evaporation nor recrystallization 

would change the d13C in precursor dolomites; the 
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Figure 9. Carbon (carb) and oxygen isotopic compositions of bulk dolomite and diagenetic calcite cement from the Permian units in the Perm- 
ian Basin. (A) Data measured from the San Andres Formation at the Central Basin platform in this study. (B) The sketch displays the isotopic 
range of seawater, dolomite, and burial calcite in the Seminole San Andres unit (SSAU), arrows show the trajectory of dolomite in equilibrium 

with seawater as it evaporates, and the trajectory of calcite produced by bacterial sulfate reduction. VPDB 5 Vienna Peedee belemnite. 

small stratigraphic downward decrease in d13C, 

therefore, may imply a secular change of d13C in sea- 

water or diagenetic alterations. The latter is evident 

in many sedimentary basins worldwide through the 

incorporation of 12C-rich carbon from oxidation of 

organic matter to CO2 (e.g., through BSR [Machel, 

2001; Saller et al., 2014; Jiang et al., 2019] or mete- 

oric diagenesis [Melim et al., 2001]). 

The presence of single-phase fluid inclusion indi- 

cates low precipitation temperatures (e.g., <50◦C) 

for D1 dolomite formation (Goldstein and Reynolds, 

1994). During San Andres carbonate deposition, the 

surface temperature may have been higher than that 

of the present-day (e.g., the average annual tempera- 

ture of 18.6◦C for Midland, Texas). A temperature 

range of 25◦C to 40◦C (average at 32.5◦C) is invoked 
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Table 1. Carbon and Oxygen Isotopic Compositions of Bulk 

Dolomite and Late Diagenetic Calcites in Well SSAU 2310 in 

the Central Basin Platform 
 

Sample Number Depth, ft Mineral d18OVPDB  d13CVPDB 

SSAU-01 5008 Dolomite 1.47 6.23 

SSAU-02 5013 Dolomite —0.18 5.62 

SSAU-03 5019 Dolomite 0.96 6.18 

SSAU-04 5019 Dolomite 0.97 6.17 

SSAU-05 5024 Dolomite 0.28 6.25 

SSAU-06 5035.5 Dolomite 1.81 6.16 

SSAU-07 5045.9 Dolomite 0.58 6.23 

SSAU-08 5055 Dolomite 2.57 5.79 

SSAU-09 5059 Dolomite 1.73 5.47 

SSAU-10 5079 Dolomite 2.26 4.21 

SSAU-11 5088 Dolomite 2.01 6.69 

SSAU-12 5099 Dolomite 1.47 6.26 

SSAU-13 5102 Dolomite 2.35 6.32 

SSAU-14 5103.2 Dolomite 2.08 4.03 

SSAU-15 5106 Dolomite 2.06 6.30 

SSAU-16 5108 Dolomite 1.52 6.37 

SSAU-17 5111 Dolomite 1.64 5.87 

SSAU-18 5118 Dolomite 3.03 6.63 

SSAU-19 5133 Dolomite 1.65 6.07 

SSAU-20 5137 Dolomite 2.11 6.29 

SSAU-21 5145 Dolomite 2.00 6.10 

SSAU-22 5146.4 Dolomite 2.65 5.83 

SSAU-23 5160 Dolomite 2.40 6.11 

SSAU-24 5165 Dolomite 2.12 5.94 

SSAU-25 5172.2 Dolomite 2.46 5.73 

SSAU-26 5175 Dolomite 3.20 5.53 

SSAU-27 5179.5 Dolomite 1.91 5.74 

SSAU-28 5190 Dolomite 1.22 5.29 

SSAU-29 5201 Dolomite 2.72 5.13 

SSAU-30 5203.5 Dolomite 2.62 4.98 

SSAU-31 5208 Dolomite 2.43 5.23 

SSAU-32 5208.5 Dolomite 1.84 5.29 

SSAU-33 5210 Dolomite 1.41 4.72 

SSAU-34 5215 Dolomite 1.78 4.69 

SSAU-35 5220 Dolomite 0.73 4.57 

SSAU-36 5227 Dolomite 1.38 4.77 

SSAU-37 5230 Dolomite 2.22 4.85 

SSAU-38 5252 Dolomite 2.13 4.57 

SSAU-39 5261 Dolomite 1.51 4.25 

SSAU-40 5264 Dolomite 2.04 4.21 

SSAU-41 5267.5 Dolomite 1.32 4.46 

SSAU-42 5269.7 Dolomite 1.02 4.40 

SSAU-43 5277 Dolomite 2.29 4.29 

SSAU-44 5284.5 Dolomite 1.99 4.43 

SSAU-45 5288.4 Dolomite 1.40 4.55 

SSAU-46 5293 Dolomite 1.78 4.56 

SSAU-47 5299 Dolomite 1.81 4.21 

SSAU-48 5302 Dolomite 0.86 4.07 

(continued) 

Table 1. Continued 
 

Sample Number Depth, ft Mineral d18OVPDB  d13CVPDB 

 

 

 

 

 

 

 
—12.51 —9.71 

SSAU-59 5334.9 Calcite —8.01 —9.45 

SSAU-60 5335 Calcite —9.30 —9.37 
 

 

Standard deviations for d13C and d18O are 0.01 and 0.04, respectively. 
Abbreviations: SSAU = Seminole San Andres unit; VPDB = Vienna Peedee 

belemnite. 

 
 

for tropics or subtropics surface temperatures during 

the middle Permian, as revealed by carbonate 

clumped isotope from fossil brachiopods (Henkes 

et al., 2018). Assuming a depositional surface tem- 

perature of 32.5◦C, a geothermal gradient of 20◦C/ 

km (Mazzullo and Harris, 1991), this dolomitization 

event occurred at burial depths ranging from 0 to 

2460 ft to generate temperatures between 32.5◦C 

and 50◦C. However, the geothermal gradient was 

probably higher in the past because of meteoric 

waters circulation that may have cooled most of the 

current San Andres subsurface (Saller and Stueber, 

2018). Hence, the depth of 2460 ft is an estim- 

ation of the maximum depth for dolomitization. 

Diagenesis, including recrystallization, dissolution, 

and reprecipitation, may have occurred during 

 
 

Figure 10. Box-plot image showing homogenization tempera- 

tures of two groups of primary inclusions in individual FIA in dia- 

genetic anhydrite cement in the San Andres Formation. 
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SSAU-49 5307.5 Dolomite 1.95 4.00 

SSAU-50 5312 Dolomite 2.35 3.84 

SSAU-51 5314 Dolomite 1.50 3.96 

SSAU-52 5315 Dolomite 1.34 4.11 

SSAU-53 5324.2 Dolomite 2.05 4.24 

SSAU-54 5332.5 Dolomite 1.79 4.26 

SSAU-55 5333.5 Dolomite 1.45 3.88 

SSAU-56 5334.9 Dolomite 2.28 4.22 

SSAU-57 
SSAU-58 

5328 
5333 

Calcite 
Calcite 

—13.90 —10.16 
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Table 2. Fluid Inclusion Homogenization Temperatures Data 

of Diagenetic Anhydrites in Well SSAU 2310 in the Central 

Basin Platform 
 

FIA 

Number 

 
Type 

Th 

Range, ◦C 

 
Number 

Average 

Th, 
◦C 

 
SD 

1 Group I 55.9–75.3 15 65.9 6.3 

2 Group I 64.3–77.5 9 70.8 3.2 

3 Group II 111.2–128.2 8 122.0 6.1 

4 Group II 85.6–119.6 13 100.7 12.5 

5 Group II 76.5–98.2 7 85.1 7.6 

6 Group II 79.5–107.7 19 88.2 7.5 

7 Group II 79.2–103.5 11 92.1 6.8 

8 Group II 85.5–106.5 9 95.8 7.1 

9 Group II 78.6–105.4 9 91.2 10.4 

Abbreviations: SD = standard deviation; SSAU = Seminole San Andres unit; 

Th = homogenization temperature. 

 
burial and resulted in varying gray-tones SEM-CL 

color in the growth zones of D1 dolomites (Figures 

3D). In contrast, D2 dolomite displays mixed gray 

and white (Figure 4H, I), whereas D3 dolomite dis- 

plays homogeneous gray or white under SEM-CL 

(Figure 3F), suggesting that they were precipitated 

from fluids with distinctive chemical compositions 

at different burial-diagenesis conditions (Leary and 

Vogt, 1987; Ruppel and Cander, 1988; Major and 

Holtz, 1990; Saller and Henderson, 1998). 

 

Origin of Anhydrites 
 

Bedded anhydrite in the San Andres Formation was 

most likely precipitated in restricted, saline brine 

bodies (e.g., lagoons) because of strong evaporation 

under an arid climate condition (Lucia and Ruppel, 

1996), whereas anhydrite nodules, especially the coa- 

lescing nodules filling burrows, were formed during 

early diagenesis and probably in parallel with reflux 

dolomitization (Ruppel and Cander, 1988; Lucia and 

Ruppel, 1996; Saller and Henderson, 1998). The 

presence of single-phase fluid inclusions suggests low 

precipitation temperatures (<50◦C) for these early 

anhydrites (Goldstein and Reynolds, 1994). By con- 

trast, late anhydrite cements, occupying various types 

of pore spaces, were formed during burial diagenesis 

and likely emplaced after reflux dolomitization (Fig- 

ure 11). Based on the primary fluid inclusion data, 

we conclude that anhydrite cementation continued 

to burial temperatures ranging from <55◦C to 75◦C 

(Figure 10), corresponding to burial depths lying 

between 3355 and 6635 ft, which approached the 

maximum burial depth for the Seminole San Andres 

reservoir (Mazzullo and Harris, 1991). Note that the 

present-day depths for reservoirs in the San Andres 

Formation are predominantly between 4900 and 

5600 ft (Lucia et al., 1995), with temperatures 

between ~39.1◦C and 59.1◦C. This is consistent 

with a measured reservoir temperature of 42◦C for 

the Seminole field (Galloway et al., 1983). 

By contrast, some anhydrite cements were pre- 

cipitated at remarkably high temperatures of 90◦C to 

128◦C, which is much higher than the maximum 

burial temperatures (60◦C–92.6◦C) of the Permian 

strata in the Permian Basin (Mazzullo and Harris, 

1991). This suggests the presence of a regional hydro- 

thermal event in the Seminole San Andres carbo- 

nates (Warren, 2000; Davies and Smith, 2006; 

Smith, 2006). The recent discovery of hydrothermal 

dolomites in several Permian intervals in the Permian 

Basin (e.g., the Grayburg Formation in the Delaware 

Basin) (Th ranging from 113◦C to 224◦C), the Cen- 

tral Basin platform (Th ranging from 137◦C to 

205◦C) (Lindsay, 2018), and the Pennsylvanian and 

lowest Permian carbonates from the Reinecke field in 

western Texas (Th ranging from 92◦C to 118◦C) (Sal- 

ler and Dickson, 2011), supporting the occurrence of 

regional hydrotromal event in the Permian units of 

the Permian Basin. The hydrothermal waters were 

linked to heating of the Neogene meteoric water 

sourced from the western uplifted mountain region 

(Saller and Stueber, 2018) by localized intrusive plu- 

tons (Eaton, 2008), before they fluxed into the sub- 

surface area of the Permian strata in the basin. The 

hydrothermal fluid was likely in equilibrium with 

dolomite and anhydrite by dissolution of carbonate 

and evaporite during its pathways (Mazzullo and 

Harris, 1991) and precipitated hydrothermal miner- 

als in the subsurface reservoirs in Permian strata. 

 

Bacterial Sulfate Reduction 
 

The BSR, a redox reaction between sulfate and 

organic matter (including oil) and mediated by 

sulfate-reducing bacteria, was widespread in ancient 

rocks during shallow burial at temperatures less than 

80◦C (Machel, 2001). The observation of small vol- 

umes (average < 0.1%) of diagenetic pyrite replacing 
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Figure 11. Burial depth-temperature curve and paragenetic sequence in the Seminole San Andres unit of the Central Basin platform. 

Temperature on the basis of geothermal gradient of 20◦C/km (5 1.2◦F/100 ft). Onset of organic matter maturation and oil charging was 
modified from Mazzullo and Harris (1991). Paragenetic sequence was established on the basis of petrological evidence combined with 

homogenization temperatures measured from fluid inclusions. BSR 5 bacterial sulfate reduction. 

 

anhydrite (Figures 3A; 4G; 5A, B) and dolomite (Fig- 

ure 5C) indicates the occurrence of BSR (Machel, 

2001). A small downward decreasing of d13C in 

dolomites with sedimentary facies changing from 

ramp interior to outer ramp (Figure 8) could be the 

consequence of enhanced BSR from shallow to deep- 

water sediments (Machel, 2001; Saller et al., 2014; 

Jiang et al., 2019). Therefore, syndepositional dia- 

genesis in different sedimentary facies is able to alter 

primary geochemical signals in carbonates (e.g., C, 

O, U isotopes) (Jiang et al., 2019). Caution should 

be paid when applying the geochemistry proxies in 

marine carbonates for paleoclimate reconstruction. 

In this study, anhydrite-replacive calcites, with 

markedly negative d13C values ranging from approxi- 

mately 30‰ to 10‰ (Figure 9), were observed 

in the ROZs of the San Andres Formation in well 

SSAU 2310. This type of calcite has also been docu- 

mented in several other Permian intervals in the 

Permian Basin (Leary and Vogt, 1987; Saller and 

Henderson, 1998; Ruppel and Jones, 2006; Saller 

and Stueber, 2018). Markedly negative d13C values 

in calcite indicate that a significant contribution of 

carbon was sourced from the oxidation of hydrocar- 

bons (Wiggins et al., 1993). Diagenetic carbonate 

cements, with d13C values of greater than 10‰, 

are commonly linked to BSR at burial temperatures 

of < 80◦C (Machel, 2001; Londry and Des Marais, 

2003; Saller et al., 2014), or to thermochemical sul- 

fate reduction (TSR) at higher burial temperatures of 

>100◦C (Machel et al., 1995; Worden et al., 1995; 

Vandeginste et al., 2009; Jiang et al., 2015). The rela- 

tive low burial temperatures (<75◦C; Figure 11) for 

the studied San Andres Formation appear to support 

the BSR model. Furthermore, it is evident that a late- 

stage BSR is likely an ongoing event in the ROZs of 

the Permian strata in Permian Basin (Leary and Vogt, 

1987; Wiggins et al., 1993; Lindsay, 2018; Saller and 

Stueber, 2018). However, we could not completely 

rule out the possibility of the TSR model, which may 

have also promoted calcite precipitation with 

depleted d13C values during the local hydrothermal 

activities. 

 
Burial-Diagenesis Model 

 

This study, to my knowledge, is the first holistic dia- 

genesis study that places an emphasis on diagenetic 

anhydrite and its effects on the Permian carbonate 

reservoir quality of the San Andres Formation (Figure 

11). Mazzullo and Harris (1991) discussed burial- 

diagenesis models for several Permian intervals in the 

Permian Basin, which are so far the most detailed 

documented burial models in the Permian strata. 
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None of their diagenesis models, however, docu- 

mented in detail the diagenesis of widespread anhy- 

drites within these carbonate reservoirs (Ruppel and 

Cander, 1988; Lucia et al., 1995; Saller and Hender- 

son, 1998). 

The San Andres carbonates were initially depos- 

ited as limestone in a marine ramp system at ambient 

temperature conditions (Kerans and Fitchen, 1995). 

As the basin became restricted, intense evaporation 

elevated seawater salinities under an arid climate con- 

dition, resulting in evaporite deposition and early 

reflux dolomitization (Ruppel and Cander, 1988; 

Lucia et al., 1995; Saller and Henderson, 1998; Saller 

et al., 2014). Reflux dolomitization was responsible 

for the generation of intercrystalline pores and micro- 

pores (Figures 3B; 6G, I). Anhydrite deposition, 

cementation, and replacement may have occurred in 

parallel with reflux dolomitization (Ruppel and Can- 

der, 1988; Saller et al., 2014; Jiang et al., 2016). The 

widespread occurrence of the early stage of BSR may 

have resulted in anhydrite nodules replaced by pyrite 

(Figure 5A, B), and partial or complete dissolution of 

dolomites (Figure 6B). The following diagenesis was 

dominated by anhydrite cementation and recrystalli- 

zation, dissolution and reprecipitation, mechanical 

and chemical compaction (Figure 5E), and fracturing 

(Figure 6E), with diagenetic fluids dominated by 

evaporative brines. Finally, Neogene tectonism 

enabled meteoric water from western mountain areas 

fluxed into the San Andres Formation in Central 

Basin platform, associated with a late-stage localized 

hydrothermal event and a late-stage BSR, which 

resulted in dolomite and anhydrite dissolution and 

reprecipitation, and growth of calcite in the ROZs 

(Figure 11). 

 

Diagenesis Effects on Reservoir Quality 
 

Combining the quantitative assessment of mineral 

and porosity data with detailed petrology study and a 

well-established diagenesis frame enables us to evalu- 

ate the impact of diagenesis on reservoir quality in 

facies-dependent rock types of the San Andres For- 

mation (Figure 1B). Generally, reservoir quality for 

grainstones and packstones is superior to wackestone 

and mudstone (Figure 12). Porosity data in grain- 

stones and packstones are quite similar, whereas 

permeability data in grainstones are markedly higher 

than packstones (Figure 12). The different reservoir 

quality and heterogeneous in each reservoir type 

in the San Andres carbonates have been linked to dif- 

ferent sedimentary facies and dolomite crystal sizes 

(Lucia, 1995; Lucia and Ruppel, 1996). However, 

the origin of porous and finely crystalline wacke- 

stones in this study, displaying great reservoir poten- 

tial (Figure 12), deserves a further explanation. Cru- 

cially, the effects of anhydrite cements, which 

comprise approximately 20%–30% of the total rock 

volume in the San Andres Formation and many other 

Permian intervals in Permian Basin, on reservoir 

development is not well understood (Leary 

and Vogt, 1987; Ruppel and Cander, 1988; Major 

and Holtz, 1990; Lucia and Ruppel, 1996; Saller and 

Henderson, 1998; Ruppel and Jones, 2006). 

Anhydrite cements are commonly present in 

interparticle pore spaces, whereas they are almost 

absent in areas where grain-to-grain compaction is 

present, suggesting that early emplacement of anhy- 

drite may have prevented compaction and pressure- 

dissolution during burial and reserved the original 

rock structures. This is similar to the appearance and 

effect of calcite cementation on grain-dominated car- 

bonate reservoirs (Heydari, 2000; Jiang et al., 

2018b). However, calcite is relatively stable and pre- 

cludes most further diagenetic alterations. Once pre- 

cipitated, it commonly occludes pore spaces and 

decreases carbonate reservoir quality (Jiang et al., 

2018b). By contrast, anhydrite is a more soluble min- 

eral, and it would more easily be removed by normal 

diagenetic fluids (e.g., meteoric water, seawater, 

burial and hydrothermal fluids) (Hill, 1990; Jiang 

et al., 2018a; Saller and Stueber, 2018). Hence, 

“early-stage” anhydrite cementation may have pre- 

served the primary rock textures, whereas “late- 

stage” anhydrite dissolution would lead to an 

enhanced reservoir quality. This dynamic nature of 

anhydrite subjected to diagenesis may have been 

underestimated in the reservoir development in the 

San Andres carbonates (Lucia et al., 1995; Jiang et al., 

2018b). The discovery of porous wackestones associ- 

ated with markedly high porosity and the lowest 

anhydrite cement volume (Figure 7) from this study 

is likely attributed to the dynamics of anhydrite dur- 

ing diagenesis. The great heterogeneity and complex 
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Figure 12. Box-plot image showing the distribution ranges of porosity (A) and permeability (B) in each rock type in the San Andres For- 

mation at well SSAU 2505 in the Seminole San Andres unit (SSAU). Petrophysical data were derived from Lucia et al. (1995) and  Wang 

et al. (1998). Average porosity and permeability for grainstones, packstones, porous wackestones, nonporous wackestone, and mudstone 

is 10.8%, 10.1%, 13.8%, 8.8%, and 8.3%, and 23.6 md, 5.8 md, 19.8 md, 1.8 md, and 2.4 md, respectively. 

 
 

pore systems in the present-day San Andres reser- 

voirs are most plausibly linked to a varying degree of 

diagenesis (e.g., dolomitization and recrystallization) 

(Lucia and Ruppel, 1996), especially anhydrite 

cementation and dissolution due to localized hydro- 

thermal fluid or BSR (Figure 11) (Cowan and Harris, 

1986; Lucia et al., 1995; Lucia and Ruppel, 1996; 

Saller and Henderson, 1998; Ehrenberg, 2019). This 

study may have implications on CO2 EOR of ROZs 

in the Permian Basin because BSR is likely an ongoing 

diagenetic event in the present-day reservoirs of the 

Permian carbonates (Trentham et al., 2015) and on 

many other mixed carbonate and evaporite systems 

worldwide (e.g., Sichuan, Tarim, and Ordos Basins 

in China; Gulf of Mexico Basin; and Arabian Basin). 

 
 

CONCLUSIONS 
 

Carbonate reservoir quality in the SSAU along 

the Central Basin platform is predominantly con- 

trolled by diagenesis including dolomitization, 
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anhydrite and dolomite cementation and dissolu- 

tion, BSR, and hydrothermal alteration. A new 

holistic burial-diagenesis model, including anhy- 

drite diagenesis, is provided by this study. 

Reflux dolomitization began syndepositionally 

and proceeded to a burial depth of up to 2460 ft 

(875 m). The dolomitizing fluid was evaporated 

seawater with salinities that vary from normal 

seawater to brine close to gypsum saturation. 

Recrystallization, dissolution, and precipitation 

of dolomite resulted from carbonate compaction 

and pressure solution, and an early-stage BSR. 

Bedded anhydrites and most nodular anhydrites 

are syndepositional, whereas isolated nodular 

anhydrite was likely formed in parallel with 

reflux dolomitization. Anhydrite cementation 

may have started along with reflux dolomitiza- 

tion and continued to the maximum burial 

depth of approximately 6637 ft (~2023 m) and 

temperature of ~75◦C. A hydrothermal event, 

with temperatures up to 128◦C, may have 

occurred in SSAU by influx of meteoric water 

during the western Neogene uplifting event. 

An early-stage, syndepositional BSR may have 

occurred and resulted in pyrite replacing anhy- 

drite nodules or cements, coupled with a small 

downward decreasing of d13C in carbonate host 

rocks. The occurrence of a late-stage BSR in the 

ROZs of the San Andres Formation was tied to 

the Neogene meteoric water recharging event. 

Although sulfate cementation has occupied 

most of the primary pore spaces, it may have 

preserved the primary textures and the rest of 

the pore spaces from carbonate cementation by 

pressure solution and compaction. Furthermore, 

dissolution of anhydrite by later diagenesis (e.g., 

meteoric, hydrothermal, and BSR) may have 

enhanced present-day reservoir quality along 

with a greater heterogeneity. Hence, this study 

offers an ideal example for understanding the 

dynamics of anhydrite subjected to diagenesis in 

a mixed carbonate and evaporite system. 
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Abstract 

The objectives of this work are to understand the characteristics of oil saturation in residual oil zones (ROZs) 

and to optimize water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and 

elsewhere, and operators are using CO2 injection for enhanced oil recovery (EOR) in these zones. ROZs 

are thought to be formed by the flushing effect of regional aquifer flow acting over geological time. Both 

the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones 

(MPZs). 

We conducted flow simulations of CO2 injection into both synthetic and realistic geologic reservoirs to 

find the optimal injection strategies for several scenarios. These simulations of CO2 injection follow either 

man-made waterflooding or long-term natural waterflooding. We examined the effects of CO2 injection 

rates, well patterns, reservoir heterogeneity, and permeability anisotropy on optimal WAG ratios. Optimal 

is defined as being at minimal net CO2 utilization ratios or maximal oil production rates). 

Simulations of CO2 EOR show that the optimal WAG ratio for the ROZs is less than 1 (ratio of 

injected water and CO2 in reservoir volumes), and it depends, but in qualitatively different ways, upon 

the well pattern and reservoir heterogeneity. The optimal WAG ratio tends to increase with changing from 

inverted 9-spot (80-acres) to inverted 5-spot (40-acre) or increasing reservoir heterogeneity. The ratios for 

ROZs are consistently less than those observed in the same geologic models experiencing CO2 injection 

after traditional (man-made) waterflooding. This is because the water saturation caused by slow regional 

aquifer flow (~1ft/yr) differs from that created by traditional waterflooding. In ROZs, water prevails almost 

everywhere and thus it is less needed to ease CO2 channeling as compared to MPZs. 

This work demonstrates that optimal WAG ratios for oil production in ROZs are different from those in 

traditional MPZs because of oil saturation differences. Thus, commingled CO2 injection into both zones or 

directly copying WAG injection designs from MPZs to ROZs might not optimize production. 
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Introduction 

A residual oil zone (ROZ) is an oil zone whose oil saturation is at close to residual oil saturation to 

waterflooding (Melzer, 2013; Koperna et al., 2006). It has been proposed that ROZs are formed from an 

original main pay zone (MPZ) that has been flushed by regional aquifers (“natural waterflooding” (NWF)) 

over geological time scales. This type of oil zone is widely distributed in the Permian basin, West Texas, 

USA (Koperna et al., 2006). ROZs have different types in terms of their origin and evolution. Harouaka et 

al. (2013) have classified ROZ occurrences into two types: (1) Brownfield ROZs that are located below the 

oil/water contact of MPZ reservoirs; (2) Greenfield ROZ that are not associated with MPZs. Melzer (2013) 

divided ROZ into three types (Type I, II and III) resulting from different mechanisms. This work is based 

on Type III, which is caused by the change in the hydrodynamic of the underlying aquifer. This results in 

regional groundwater flow and sweeps the lower portion of the oil column in main pay zones (Fig. 1). 

 

Figure 1—A schematic illustration of the evolution of the Type III ROZ reservoir. As time proceeds from 

(1) to (3), the bottom part of the original MPZ reservoir is flushed by natural aquifer water, and becomes 

a ROZ. The upper part of the reservoir is currently under production, so it is called ‘producing MPZ’. 

 

Oil from ROZs can be produced from through CO2 injection, but not from primary production or 

conventional, man-made waterflooding (MMWF). ROZs in carbonate reservoirs in the Permian Basin 

of West Texas were initially interpreted from wireline logs as being productive oil zones. However, if 

these zones were completed for production, they produced water, occasionally with minor oil production. 

Nevertheless, CO2 injection can make these zones economic to produce, as demonstrated over the last decade 

in the Permian Basin (Rassenfoss, 2017). For example, Melzer (2013) reported that, by 2012, 13,000 barrels 

of oil per day were being produced from ROZ, with 6,500 barrels per day being produced from the ROZ in 

the Seminole San Andres Unit alone. The estimated recoverable oil from the ROZ in both the San Andres 

and Canyon Reef formations of Permian Basin are estimated by Koperna et al. (2016) to be 12 billion barrels. 

By implementing CO2 injection in brownfield ROZs, oil field operators can achieve three goals: extend 

the life of old oilfields, access extra oil cheaply through repurposing old infrastructures, and storing CO2 in 

oil reservoirs for climate consideration. As a result, ROZs in the Permian basin and elsewhere have become 

attractive targets for CO2-EOR and storage. 

The mechanisms behind CO2 EOR are well-understood (Lake et al. 2014). They mainly include oil 

swelling (causing viscosity reduction), CO2/oil interfacial tension reduction, and development of miscibility. 

Although CO2 EOR has been applied in the oil industry for over 50 years, this technique has targeted 

main pay zone reservoirs (as secondary or, more commonly, tertiary recovery methods). In this context, 

many studies have been conducted to understand the effect of heterogeneity and injection strategies on the 

performance of CO2 EOR (e.g. Ambrose et al., 2007; Bermudez et al., 2007; Bunge and Radke, 1982; Chang 

et al. 1994; Kulkarni and Rao, 2005; Malik and Islam 2000; Song et al., 2014; Zuo et al., 2014) and to 

optimize CO2 WAG injection (e.g., Chen et al., 2010; Chen and Reynolds, 2016; Ettehadtavakko et al. 2014; 
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Nwachukwu et al. 2018; Shehata et al. 2012). One of the main focus of these WAG injection studies is to 

find optimal WAG ratios (maximal oil production). 

The WAG ratio is an important parameter for WAG injection. The WAG ratio is defined as the cumulative 

volume of water injected divided by the gas injected into reservoirs. High WAG ratios causes the effect 

of water film blocking (Stalkup, 1970). This leads to oil trapping, and WAG injection performs like 

waterflooding. Whereas, for small WAG ratios, injected CO2 tends to easily breakthrough or channel, 

hence compromising oil production rates. Thus, an optimal WAG ratio exists that yields the maximum oil 

production rates or recovery factors (Afzali et al., 2018; Wu et al. 2004; Rogers and Grigg 2001; Stalkup, 

1970). 

All the above studies are focused on CO2 injection into MPZs, rather than ROZs. While the controlling 

physics of CO2-EOR should be the same, the specific characteristics of ROZs will influence the effectiveness 

of CO2 WAG injection, given the oil saturation difference between ROZs and MPZs after MMWF. This 

difference would influence the interaction of CO2 and in-situ fluids, which impacts overall sweep and 

displacement efficiencies. Thus, to maximize the effectiveness of CO2 WAG injection, different strategies 

should be used. 

The main objective of this study is to understand how the optimal CO2 WAG injection scheme is affected 

by the differences in oil saturation between a ROZ and a MPZ (after MMWF). This understanding will help 

answer questions like: are the optimal WAG ratios for MPZs still applicable for ROZs? Or, can WAG be used 

on both the ROZ and MPZ of a pattern at the same time? To accomplish the objective, we conduct systematic 

flow simulation of the processes of NWF (to generate ROZs), MMWF, and CO2 WAG injection. These 

simulations were run on both synthetic and realistic geological models. The synthetic models were realized 

with controlled heterogeneity and well patterns; this enabled us to clearly see how both heterogeneity and 

pattern geometries impact oil saturation distributions (after NWF and MMWF) and thus CO2 WAG ratios. 

The overall work provides a general approach for studying ROZs and MPZs when CO2 EOR is considered 

for both zones. 

 

Theory and Approach 

The work flow chart is in Fig. 2. All simulated cases started from geological models. We built both synthetic 

and realistic geological models in these simulations. After this step, we conducted flow simulation of both 

NWF and MMWF. Subsequently, CO2 injection was started at the end of NWF or MMWF to evaluate CO2- 

EOR performance and find optimal WAG ratios. The Eclipse reservoir flow simulator (Eclipse, 2016) is 

used in this study. The details of each step are given below. 
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Figure 2—Work flow chart of each simulated case. 

 
Generation of Geological Models 

Synthetic Geological Models. We generated a series of statistical realizations of permeability fields using 

sequential gaussion simulation (Remy et al., 2009). The properties of these fields were listed in Table 1. Both 

inverted 5- and 9-spot well patterns were considered. The permeability fields have different horizontal auto- 

correlation lengths (λx), and we made the length dimensionless following the work of Li and Lake (1995). 

Dimensionless horizontal autocorrelation length (λDx) is defined as the ratio of λx over the domain width 

in the corresponding directions. λx indicates how close or how far the permeability is spatially correlated, 

which is mainly controlled by sedimentary environments and processes. The typical value of λDx is 2. Three 

realizations of the permeability field (λDx =2, inverted 5-spot) are generated to test the effect on simulation 

results. Layered geological models are also considered through generating the realization of permeability 

fields with λDx equal to 100. The permeability anisotropy (kv/kh) is varied through decreasing kv while keeping 

kh unchanged: 0.001, 0.01, and 0.1. The horizontal permeability (kh) field were statistically realized with 

different log standard deviations: 0, 1, 2. The corresponding values of the Dykstra-Parsons coefficient are 

0, 0.62, 0.85 (with increasing heterogeneity). 

 
Table 1—Properties of synthesized permeability fields. 

 

Well pattern Inverted 5-spot Inverted 9-spot 

Patter size, acre 40 80 

Synthetic domain sizes, ft 1320×1320×96 1860×1860×96 

Model cell sizes, ft 30×30×3 30×30×3 

Model dimensions 44×44×32 62×62×32 

Permeability horizontal dimensionless 

auto-correlation length, λDx 
0, 2*, 100 

Horizontal permeability log mean, μlnk 5* 

Horizontal permeability 

log standard deviation, σlnk 
0, 1*, 2 

Horizontal permeability Dykstra- 

Parsons coefficient, VDP 
0, 0.62*, 0.85 

*means base case settings 
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Then, using the Holtz's (2002) porosity-permeability correlation (refer to Eq. 1), we calculated the 

porosity fields corresponding to the generated permeability fields. In Eq. 1, the units of permeability is mD. 

The Holtz correlation might be applicable for rock types between the lithofacies packstone and mudstone. 

As one realizes that the Holtz's correlation does not consider the facies-dependent permeability-porosity 

characteristic in geological modeling, we considered this in the following realistic geological models. 

  (1) 

Realistic Geological Models. A realistic geologic model, representing the San Andres residual oil zone, has 

been built by Ren and Duncan (2019a). The ROZ reservoir is deposited in a carbonate ramp environment on 

the margin of the Central Basin platform. It consists of carbonates with some evaporite intercalations that 

developed carbonate-ramp reservoirs during the lower San Andres Formation (early Guadalupian, Middle 

Permian). Based on the integration of core- and wireline-log data coupled with petrographic analyses, 

five major depositional environments (lithofacies) with eight carbonate microfacies are identified. The 

enviroment ranges from intertidale to open marine, with the principle lithofacies including dolowackstone, 

dolopackstone, and dolograinstone (Sonnenfeld et al., 2003). Common diagenetic effects include dolomite 

and anhydrite replacement and cementation, silica and pyrite mineralization, and dissolution. The most 

common pore types include interparticle, moldic, and connected vugs. 

All these sedimentary events and lithofacies characteristics created the heterogeneity in permeability 

and porosity observed today. The porosity field is generated through sequential Gaussian simulation, and 

then the permeability field is calculated using Lucia's rock typing method (Lucia 2007). The effect of 

natural fractures on permeability is considered through incorporating the whole-core permeability- porosity 

correlation. The detailed incorporation procedures are elaborated in the publication by Ren and Duncan 

(2019a). 

From the full-field geologic model, we cut out two sector models: sector #1 represents an inverted 5- 

spot 40-acre pattern, and sector #2 is an inverted 9-spot 80-acre pattern. The areal sizes of the cells in these 

models are 100×100 ft with a cell thickness of around 2ft. The petrophysical properties of the two sector 

models are listed in Table 2. Fig. 3 shows the permeability field for the sector #1. 

 

Figure 3—High-resolution horizontal permeability field for the sector #1 inverted 5-spot well pattern. 

 
Table 2—Statistics of petrophysical properties of the two sector models. 

 

Petrophysical property Sector #1, inverted 5-spot Sector #2, inverted 9-spot 

Permeability log mean, μlnk 1.17 1.87 

Permeability log standard deviation, σlnk 1.05 1.48 

Permeability anisotropy (kv/kh) 0.1 0.1 

Porosity arithmetic mean, μϕ 0.10 0.12 

Porosity standard deviation, σϕ 0.03 0.04 
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After generating permeability and porosity fields, the corresponding capillary entry pressure fields were 

calculated using the Leverett j-function (Leverett, 1941), through following the procedures detailed by 

Ren (2017). The reason for considering capillary entry pressure heterogeneity in simulations is the small 

regional aquifer flux during ROZ formation. The typical size of aquifer flux during NWF within the Permian 

Basin is around 10-15 cm/yr (0.33-0.83 ft/d, Trentham (2012)), which is much less than that (1ft/day) of 

MMWF. Such small flux pronounces the effect of capillary pressure heterogeneity on fluid migration and 

oil saturations at the end of NWF, as demonstrated in the work by Ren and Duncan (2019b). Thus, capillary 

pressure heterogeneity was considered in this work, and the implementation procedures are given in the 

following Section of Rock/Fluid Interaction Models. 
 

Flow Simulation of NWF and MMWF 

Rock/Fluid Interaction Models. We assume the oil phase properties for the ROZ and MPZ are the same, so 

we use one set of PVT equations for both. The oil properties are adopted from the publication of Honarpour 

et al. (2010), whose analysis is based on the Seminole San Andres ROZ oil samples. A black oil model is 

built for the flow modeling of both NWF and MMWF. At the reservoir condition (2119.9 psi and 104 °F), 

the oil density is 657.71 kg/m3, and the oil viscosity is 1.21 cp. The gas oil ratio (GOR) is 688.15 scf/bbl. 

When simulating CO2 WAG injection, we employ a compositional model with the oil compositions shown 

in Table 3. The Peng Robinson equation of state (PR EOS) is used with the parameter settings in Table 3. 

The binary interaction coefficients are listed in Table 4. The minimum miscibility pressure for the CO2/oil 

mixture is around 1400 psi (Honarpour et al. 2010), and the CO2 flooding is set be miscible in simulations. 

 
Table 3—Crude oil compositions representative of the Seminole San Andres ROZ and the parameter 

settings for PR EOS (modified from Honarpour et al. (2010) and Jamali and Ettehadtavakkol (2017)). 
 

Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+ 

Mole 

fraction, % 
0.02 20.14 15.9 8.99 17.29 18.42 19.24 

Critical 

temperature (R) 
547.56 339.21 619.38 835.43 1117.84 1344.62 1686.57 

Critical 

pressure (psi) 
1071.34 666.77 722.56 491.3 389.65 277.42 159.29 

Critical volume 

(ft3/lb-mole) 
1.51 1.56 2.71 5.02 7.73 12.13 22.15 

Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195 

Molecular 

weights (g/mol) 
44.01 16.29 36.19 70.06 114.17 180.94 358.25 

Acentric Factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054 

Coefficient Ωa 0.45724 0.45724 0.45724 0.45724 0.45724 0.45724 0.45724 

Coefficient Ωb 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 0.0778 

 
 

Table 4—Settings of binary interaction coefficients. 
 

Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+ 

CO2 0       

C1N2 0.0976 0      

C2C3H2S 0.1289 0.0103 0     

C4-C6 0.1271 0.0019 0.0063 0    
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Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+ 

C7-C10 0.1105 0.0241 0.0196 0.003 0   

C11-C16 0.0943 0.0494 0.0333 0.0061 0 0  

C17+ 0.0997 0.1365 0.0588 0.012 0 0 0 

 
We assume the relative permeability and capillary pressure curves (shown in Figs. 4a and 4b) are the 

same for the two processes of NWF and MMWF for simplicity. Only drainage curves are considered in 

the flow simulations. As mentioned above, the effect of capillary pressure heterogeneity on water/oil flow 

was considered in the simulation of NWF. To capture this effect, the capillary pressure curve in Fig. 4b 

was assigned to the cells with the arithmetic mean of the permeability of a given field, the corresponding 

capillary pressure curves for other cells were scaled using the Leverett j-function (Ren and Duncan 2019b). 

For the flow simulation of CO2 WAG injection, the relative permeability curves of gas/oil (Figs. 4a and 

4c) are used. The Stone I model (Stone, 1970) is adopted to describe the oil relative permeability during 3- 

phase flow. The hysteresis in both the relative permeability and capillary pressure curves are omitted for 

computational efficiency. Both hysteresis and relative permeability has been experimentally shown to be 

cycle-dependent (Egermann et al., 2000; Element et al., 2003; Skauge and Sorbie, 2014). We believe that 

considering these cycle-depdent properties will not alter the observations of optimal WAG ratio positions, 

although they have been shown to cause the difference in oil production rate prediction (Spiteri and Juanes, 

2006; Zuo et al., 2014). 

 

Figure 4—(a) Water/oil relative permeability curves (b) capillary 

pressure curve for water/oil (c) gas/oil relative permeability curves. 

 

Injection/Production Schemes. To simulate the NWF process, a line drive geometry was used (Fig. 5a): 

water injectors are put into every left boundary cell, and producers are put into every right boundary cell. 
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This uniformly-distributed inlet and outlet conditions are to mimic regional aquifer flow, which has been 

demonstrated to be physically-applicable in reproducing ROZs (Ren and Duncan 2019b). The inlet water 

flux is set to be 0.5 ft/yr (15.24 cm/yr). With the inlet flux, the water injection rate is calculated to be 0.0368 

rb/day (reservoir bbl/day). 

 

Figure 5—Illustration of NWF, MMWF, and CO2 WAG simulation setup. The embedded tables on 

the right column show the corresponding simulation settings for each flow simulation process. 

 

For MMWF, both the inverted 5-spot 40-acre pattern (Fig. 5b) and inverted 9-spot 80-acre pattern are 

considered. The middle table in the figure shows the simulation parameter settings for both types of patterns. 

For CO2 WAG injection (Fig. 5c), the flow simulation parameters are listed in the lower table of the Fig. 

5. The CO2 injection rate is set to be constant at 3000 Mscf/day; varing rates has no effect on optimal WAG 

ratios although it changes oil production rates (Ren and Duncan, 2019a). The CO2 half-cycle size is 2.5% 

hydrocarbon pore volume (HCPV), based on the balance of good oil production and the operationability 

of WAG cycle switches (Ettehadtavakko, 2013; Ren and Duncan, 2019a). The HCPV is calculated at the 

end of NWF or MMWF. WAG ratio is varied from 0 to 5, through changing water injection duration while 

keeping CO2 injection duration unchanged in each WAG cycle (see Appendix A for detailed illustration). 

The other parameters of the flow simulation of NWF, MMWF and CO2 WAG are all included in Fig. 5. 

The boundaries of all simulation domains are closed (no flow). All the injectors and producers involved in 

simulations are vertical, and their perforation is complete (along the depth range of the simulation model). 

Additionally, to specifically examine the effect of oil saturation magnitudes on WAG ratios, we manually 

assign uniform oil saturation (Sor) to geological models at the beginning of WAG injection. We consider 

several magnitudes of Sor: 0.3, 0.35, 0.4, and 0.5. They cover the range of oil saturation magnitudes observed 

for the virgin ROZ in the Permian Basin (Harouaka et al., 2013; Ren and Duncan, 2019b). 
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Metrics of CO2 EOR Performance. We report how varying WAG ratios influences the following CO2 

EOR performance metrics: net CO2 utilization ratio, averaged oil production rate, and oil recovery factor. 

Their definitions are: 

Net CO2 utilization ratio = (Total CO2 injected-Total CO2 produced) / total oil produced. 

Averaged oil production rate = Total oil produced / injection duration/number of oil producers. 

Oil recovery factor = cumulative oil produced during CO2 injection / oil in place at the end of MMWF 

and NWF. 

The metric of net CO2 utilization ratio indicates the net use of CO2 to produce 1 bbl of oil. It measures 

the cost-effectiveness of CO2 injection for enhanced oil recovery (the biggest cost of implementing WAG 

floods is getting CO2). 

 

Results 

Results from Synthetic Geological Models 

Oil Saturation Magnitudes and Patterns after MMWF vs. after NWF. After 30 years of MMWF, water 

has swept most of the oil in the bottom part of the reservoir, and the remaining oil is mainly in the upper 

portion (Figs. 6a and 6c). Correspondingly, the arithmetic mean of remaining oil saturation is around 0.5. 

However, after 106 years of NWF, the oil saturations for most of the cells of the reservoir have almost reached 

the end point of relative permeability, and the saturation magnitudes are around 0.35 (Figs. 6e–6h); small 

rates (large capillary pressure) tend to cancel the effect of reservoir heterogeneity in sweep. For NWF, the 

distribution of remaining oil saturation is much narrower than that for MMWF. Additionally, heterogeneity 

always causes much more oil unrecovered than homogeneity does, irrespective of NWF or MMWF. 

 

Figure 6—Oil saturation fields and oil saturation histograms at the end of MMWF (a-d) and at the end of NWF 

(e-h). For the heterogeneous geological model used, VDP = 0.62, λDx = 2. Inverted 5-spot patterns were used. 

 
Cumulative Oil Recovery Factors during WAG after NWF vs. after MMWF. Generally, the recovery 

factors are larger for the WAG after MMWF than for the WAG after NWF (Fig. 7a vs. 7b). This is because 

the oil left in the upper part of the reservoir after MMWF (refer to Figs. 6a and 6c) is effectively swept by the 

less dense CO2 (compared to oil and water). This gives rise to the better oil recovery factors. Additionally, 

heterogeneity decreases the ultimate oil recovery efficiencies, but it yields a rapid increase of oil recovery 

at the beginning of WAG injection. 
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Well patterns influence oil recovery efficiencies in the studied ranges of PV (Fig. 7). The inverted 9- spot 

pattern yields a larger recovery factor than the inverted 5-spot does at small pore volume (PV) of injected 

CO2. This would be due to the larger producer-injector ratio for the former pattern. 

 

Figure 7—Cumulative oil recovery factor during CO2 WAG injection after MMWF vs. after NWF. For the heterogeneous 

geological model used, VDP = 0.62, λDx = 2. The ultimately-injected CO2 PV for the inverted 9-spot is about half of 

that for the inverted 5-spot, due to both the pattern coverage area difference and the same WAG injection duration. 

 
CO2 Net Utilization Ratios. The CO2 net utilization ratios for the WAG after NWF are much larger than 

those for the WAG after MMWF (Fig. 8a vs. 8b). The latter ratios are in the range of 2-10 MScf/Stb, and 

the former can be as high as 35 MScf/Stb. Such large differences are mainly due to the magnitudes of initial 

oil saturation at the beginning of WAG injection. 
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Figure 8—CO2 net utilization ratios, averaged oil production rates, and oil recovery factors for the inverted 5-spot (40 acre) 

and inverted 9-spot (80 acre) well patterns. CO2 WAG injection is simulated following the processes of NWF or MMWF. 

For the heterogeneous geological model used, VDP = 0.62, λDx = 2. A WAG ratio of 0 means continuous CO2 injection. 

 

The utilization ratios for both types of WAG (after NWF versus after MMWF) are dependent of the 

injected WAG ratios, reservoir heterogeneity, and well patterns, but with different trends and extents (Figs. 

8a and 8b). For the WAG after NWF, there is an optimal WAG ratio that yields the lowest net utilization 

ratios, irrespective of the well pattern. The optimal ratio is around 1. However, for WAG after MMWF, the 

net utilization ratio monotonically decreases with the WAG ratio. The different trend is noteworthy, and we 
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specifically analyze the reason in the following section of “Effect of oil saturation magnitudes on optimal 

WAG ratios”. 

Reservoir heterogeneity does not alter these trends, but it leads to different net utilization ratios (Figs. 8a 

and 8b). Heterogeneity acts on net utilization ratios in different ways for the WAG after NWF versus the 

WAG after MMWF: heterogeneity leads to larger utilization ratios than homogeneity does for the WAG after 

NWF, but this is not the case for WAG after MMWF. WAG ratio is a complicated metric that includes both 

the net amount of CO2 left in reservoirs and the amount of oil produced. Simulated production data indicates 

that heterogeneity for the WAG after NWF causes the CO2 production increasing effect to be less than the oil 

production decreasing effect. This gives rise to the higher net utilization ratio for the heterogeneous model 

than for the homogeneous model. 

Well patterns do not alter the above qualitative observations, except that the net utilization ratios for the 

inverted 9-spot pattern are overall larger than those for the inverted 5-spot. Therefore, using inverted 5-spot 

patterns can improve the effectiveness of WAG injection to enhance oil recovery. Similar observations of 

the effect of well patterns on these metrics are made in the layered geological models (see Appendix B). 

Averaged Oil Production Rates and Oil Recovery Factors. The averaged oil production rates for the WAG 

after MMWF are always better than those for the WAG after NWF (about one time higher) (Fig. 8c vs. 

8d). The average rates are always negatively impacted by increasing WAG ratios for the CO2 after NWF, 

whereas, for the WAG after MMWF, heterogeneity necessitates a small WAG ratio (0.25-0.5) to achieve 

the optimal oil production rates. 

The optimal WAG ratios (at maximal oil production rates) are less for virgin ROZs than for the MPZs 

after MMWF when considering heterogeneous models (Fig. 8c vs. 8d). This is because the CO2 WAG into 

virgin ROZs starts with high water saturation. Most of the injected CO2 displaces water rather than oil. Thus, 

water injection during WAG has little effect. However, for the MPZ after MMWF, the zone is relatively rich 

in oil. Most of the injected CO2 displaces oil, and CO2 tends to break through early because of the mobility 

ratio contrast between CO2 and oil. Under this condition, the injected water during WAG cycles can divert 

CO2 and thus improve sweep efficiency. The high water saturation in virgin ROZs attenuates the need for 

water injection during WAG. 

The oil production rate (Stbd/Well) tends to be more heavily impacted by WAG injection for the 

homogeneous models than for the heterogeneous ones (Fig. 8c vs. 8d). The average oil production rate for 

the two models crosses at a WAG ratio around 0.5. WAG injection is much more effective for heterogeneous 

models than for homogenous ones to improve oil production rates. 

As the pattern changes from inverted 5-spot to inverted 9-spot, the average oil production rate decreases, 

as does the oil recovery factor. The oil recovery factor trend versus WAG ratio is very similar to the above 

trend for the oil production rate versus WAG ratio (Figs. 8e and 8f). This makes sense because the amount 

of oil in place after NWF and MMWF is similar. 

Effect of Oil Saturation Magnitudes (Sor) on Optimal WAG Ratios. As shown in Figs. 6e–6h, the 

spatial distribution of remaining oil saturation after NWF is almost uniform. This suggests an easy way of 

generating ROZs: directly assigning a uniform initial oil saturation (Sor) to create virgin ROZs. Fig. 9 shows 

the metrics of net utilization ratios and averaged oil production during WAG injection with the different Sor 

for both inverted 5-spot and inverted 9-spot well patterns. 
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Figure 9—CO2 net utilization ratios and averaged oil production rates for the inverted 5-spot 

pattern (a and b) and for the inverted 9- spot pattern (c and d). The initial oil saturation (Sor) at the 

beginning of CO2 WAG injection is manually set to be constant. For the heterogeneous geological 

model used, VDP = 0.85, λDx = 2. The stars indicate the inflection or optimal points in the curves. 

 

Initial oil saturations control the curve trend of the net utilization ratio versus the WAG ratio (Fig. 9a 

and Fig. 9c). At a low Sor, there is an optimal WAG ratio (minimal net utilization ratio). However, when Sor 

increases to 0.5, the net utilization ratio becomes almost flat as the WAG ratio increases. The approximate 

inflection point (labelled by a star) moves to the right as the Sor increases. This means small Sor yields small 

optimal WAG ratios. This supports our previous analysis that small oil saturation in virgin ROZs decreases 

the use of water during WAG cycles (i.e., decreasing WAG ratio). 

For averaged oil production rates (Fig. 9b and Fig. 9d), the point of optimal return tends to move to 

a higher WAG ratio as Sor increases. In other words, larger Sor necessities larger WAG ratios to achieve 

the best oil production performance. This observation is consistent with that how net utilization ratios are 

impacted by Sor. 

Well patterns slightly influence optimal WAG ratios (Fig. 9a vs. Fig. 9c and Fig. 9b vs. Fig. 9d). As 

the well pattern changes from inverted 5-spot to inverted 9-spot, the optimal WAG ratio (either at minimal 

net utilization ratio or at maximal oil production rates) decreases marginally. The average large injector- 

producer distance for the inverted 9-spot pattern might need less water to ease CO2 breakthrough. This gives 

rise to the small optimal WAG ratios. 

Effect of Permeability Anisotropies (kv/kh) on Optimal WAG Ratios for ROZs. Increasing permeability 

anisotropy (the ratio of kv/kh) improves CO2 net utilization efficiency (Fig. 10a) for ROZs. The net utilization 

ratio is dropped from about 20 to 10 Mscf/stb when kv/kh increases from 0.01 to 1, given a WAG ratio of 

1. Large kv favors CO2 production more than oil production. That is the reason that the CO2 net utilization 
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ratios for the case of kv/kh =1 are the smallest, even though the corresponding oil production rate rapidly 

decreases with the increase in the WAG ratio. Adjusting kv/kh has a similar effect on oil production rates (Fig. 

10b) as adjusting reservoir heterogeneity (Figs. 8c–8f): oil production decreases as WAG ratio increase. 

 

Figure 10—CO2 net utilization ratios and averaged oil production rates for the synthetic geological model with different 

permeability anisotropies. Inverted 5-spot patterns are used. The initial oil saturation (Sor) at the beginning of CO2 WAG 

injection is manually set to be constant (0.35). For the heterogeneous geological model used, VDP = 0.62, and λDx = 2. 

 

Also, the ratio of kv/kh increases the optimal WAG ratio (at the minimal net utilization ratio) (Fig. 10a). 

Large kv necessities more water injection to divert injected CO2, and thus CO2 can better sweep the reservoir. 

This large kv, within the context of structural geology, might be due to vertical fractures. Some vertical 

fractures have been observed in the cores of the Seminole San Andres ROZ (Duncan, unpublished data). In 

this sense, the heterogeneity associated vertical natural fractures should be carefully characterized as they 

have a significant effect on CO2 net utilization ratios. 

Results from Realistic Geological Models 

Results (Fig. 11) from the realistic geological models are consistent with the results from synthetic models. 

The general observations of both the net utilization ratio and oil recovery factor versus the WAG ratio are 

similar. For instance, the optimal WAG ratios (maximum oil recovery factor, labelled by stars in Fig. 11) 

are larger for WAG after MMWF than after NWF. This strengthens our key finding that the injected water 

during WAG cycles for ROZs should be minimized for the EOR purpose. 
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Figure 11—CO2 net utilization ratios, averaged oil production rates, and oil recovery factors 

based on the realistic geological models. Both the inverted 5-spot and inverted 9-spot patterns 

are considered. CO2 WAG injection is simulated following the processes of NWF or MMWF. 

 

Discussion 

One of the key findings from the flow simulations is that the optimal WAG ratios for the WAG after NWF is 

smaller than those for the WAG after MMWF. This has implications in the design of CO2 injection projects. 

When an operator prepares to target Greenfield ROZs for CO2 flooding, they might benefit from starting 

the ROZ flood with a very small WAG ratio, less than the typical WAG ratio (=1) used in most of current 

oilfields (Christensen et al., 2001). For Brownfields, ROZs are hydraulically associated with MPZs. Since 

optimal WAG ratios for the two different zones are different, additional characterization and simulations 

need to be conducted to choose the WAG ratio when considering WAG injection into the ROZ. One should 

not simply deepen wells targeting the MPZ and continue injecting at the same WAG ratio. Instead, WAG 

injection might be started in the MPZ followed by the ROZ with the optimal WAG ratio specific to each zone. 

When switching to the ROZ, the commingled production of both zones can be adopted because the injected 

CO2 into the ROZ might move into the MPZ and help produce oil. Determining the optimal switching time 

merits further study. 

These flow simulations consider the geological heterogeneity variations that essentially control the sweep 

efficiency of CO2 during WAG injection. In this sense, the optimal WAG ratios should lead to the maximum 

sweep efficiencies. To examine this point, the analysis method proposed by Walsh and Lake (1989), based 

on the fractional flow theory, can be adopted to find the optimal WAG ratios in terms of maximizing CO2 

displacement efficiency. 
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The results from flow simulations contain several simplifications. First, inclined producing oil/water 

contacts, as observed in fields (Honarpour et al., 2010), are not considered in the study. This contact is the 

oil saturation transition from a MPZ to a ROZ. Considering this contact might have some effects on optimal 

WAG ratios since such a contact is an oil saturation change. Second, this study assumes the same oil phase 

properties for both ROZs and MPZs. The experimental characterization of oil samples by Aleidan et al. 

(2017) demonstrates that the global compositions and overall quality for the both zones are very similar. 

But, Honarpour et al. (2010) showed that the oil API gravity is different from each other. Further studies 

are needed to investigate how significant phase property differences would influence the optimal WAG 

ratios. Third, the optimal WAG ratios are determined based on the CO2 utilization ratios or oil production 

rates averaged over 20 year of WAG injection (refer to Fig. 5). Since the oil production response varies 

significantly with time, changing the WAG duration would give different optimal WAG ratios. However, 

the relative magnitudes of the optimal WAG ratios for ROZs vs. MPZs will not be altered. 

Discrepancy of CO2 EOR metrics between realistic and synthetic geological models occur. The 

magnitudes of net utilization ratios and oil recover factors are different from those for the synthetic models 

(Fig. 11 vs. Fig. 8), which should be caused by the different petrophysical properties and model thickness 

of the two types of geological models (Table 1 vs. Table 2). Also, the heterogeneity of the real geological 

model for the inverted 5-spot is different from that for the inverted 9-spot (refer to Table 2), the effect of 

well patterns on net utilization ratios and oil recovery factors becomes complicated, so we omit the relevant 

analysis. 

 

Conclusions 

Understanding the characteristics of oil saturation in residual oil zones (ROZs) and its difference from the 

remaining oil saturation in main pay zones (MPZs) after man-made waterflooding (MMWF) is essential 

in both evaluating oil potentials and designing injection strategies of CO2 water alternating gas (WAG) 

in stacked MPZ and ROZ reservoirs. This work investigated the effect of oil saturation on both CO2 net 

utilization ratios and oil recovery performance for both synthetic and realistic geological models. Several 

conclusions can be drawn based on this work: 

• After long-term natural waterflooding, the oil saturations in most of the simulation cells are reduced 
to or close to residual levels. 

• Optimal WAG ratios (either at the minimal net utilization ratios or at the maximal averaged oil 
production rates) for virgin ROZs are consistently smaller than those for MPZs after MMWF. This 

is essentially because of the prevalent high water saturation (and low oil saturation) in the ROZs. 

• The optimal WAG ratio (at the minimal net utilization ratio) increases when i) increasing initial oil 
saturation (before WAG) ii) the reservoir permeability anisotropy decreases (i.e., the ratio of kv/kh 

increases) iii) the well pattern changes from inverted 9-spot to inverted 5-spot. 

• The CO2 net utilization ratios during CO2 WAG injection for virgin ROZs are about 2-3 times larger 
than those for MPZs after MMWF. The ratios depend on well patterns, reservoir heterogeneity, 

and WAG ratios. 

• Both averaged oil production rates and oil recovery factors for the WAG in virgin ROZs are around 
¼-¾ of those for the WAG in the MPZs after MMWF. 
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Nomenclature 

Roman Symbols 
k Permeability, mD 

kh Horiozontal permeability, mD 

kv Vertical permeability, mD 

Sor Initial oil saturation before WAG injection 

VDP Dykstra-Parson coefficient 

 

Greek Symbols 
λx Horizontal autocorrelation length, ft 

λDx Dimensionless horizontal autocorrelation length 

lnk Horizontal permeability log mean, mD 

σlnk Horizontal permeability log standard deviation, mD 

ϕ Porosity, fraction 
 

Acronyms 
EOR Enhanced Oil Rcovery 

HCPV Hydrocarbon Pore Volume 

PR EOS Peng Robinson Equation of State 

GOR Gas Oil Ratio 

MPZ Main Pay Zone 

MMWF Man-made Waterflooding 

NWF Natural Waterflooding 

ROZ Residual Oil Zone 

WAG Water Alternating Gas 
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Appendix A 

WAG Ratio Illustration 

This appendix illustrates the design of CO2 WAG injection for different WAG ratios. The ratio is defined 

as the reservoir volume ratio between injected water and injected CO2 in each WAG cycle. It is increased 

through increasing water injection duration in each cycle while keeping CO2 injection duration unchanged 

(Fig. A-1). Thus, when the WAG ratio increases, the amount of cumulatively-injected CO2 is decreased 

with total water amount increased. 

 

Figure A-1—Schematic illustration of WAG injection schemes for different WAG ratios. 
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Appendix B 

Net Utilization Ratios and Oil Production 

Performance for Layered Geological Models 

This appendix shows the effect of the WAG ratio and well patterns on the CO2 net utilization ration, average 

oil production rates, and oil recovery factor during WAG injection in layered synthetic geological models. 

 

Figure B-1—CO2 net utilization ratios, averaged oil production rates, and oil recovery factors for 

the inverted 5-spot and inverted 9-spot well patterns. CO2 WAG injection is simulated following 

the processes of NWF or MMWF. The layered geological model is used with VDP = 0.62, λDx = 100. 
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Abstract 

Brownfield residual oil zones (ROZ) may benefit from specific strategies to maximize production. We 

evaluated several strategies for producing from the Seminole ROZ. This ROZ lies below the main pay zone 

(MPZ) of the field. Such brownfield ROZs occur in the Permian Basin and elsewhere, formed by the action 

of regional aquifers over geologic time. CO2 can be injected into these zones to enhance oil recovery and 

carbon storage. Since brownfield ROZs are hydraulically connected to the MPZs, development sequences 

and schemes should influence oil production, CO2 storage, and net present value (NPV). 

We conducted economic assessments of various CO2 injection/production schemes in the Seminole 

stacked ROZ-MPZ reservoir based on flow simulations. First, we constructed a high-resolution geocellular 

model from a seismic survey, wireline logs and core data. To calibrate the geological model and constrain 

the interface between the ROZ and the MPZ, we performed a comprehensive production-pressure history 

matching of primary depletion and secondary waterflooding. After this, we conducted flow simulations of 

water alternating gas (WAG) injection into the reservoir while considering several injection/productions 

schemes (e.g., switching injection from the MPZ to the ROZ, commingled production). For each scheme, 

various WAG ratios (i.e., reservoir volume ratio between injected water and CO2) were tested to find the 

maximum oil production and maximum CO2 storage. We assessed the economic results for each WAG ratio 

case on NPV. 

The results from simulating various injection/production schemes showed that simultaneous CO2 

injection into the MPZ and ROZ favors oil production. If instead, CO2 is injected into the MPZ and ROZ, 

then into the ROZ alone, this leads to increased CO2 storage. Storage performance is influenced by the 

interplay between the crossflow from the MPZ to ROZ and WAG ratios. As the WAG ratio increases, the 

amount of CO2 stored decreases more for commingled injection cases than for separated ROZ injection 

cases. Also, the WAG ratio leading to maximum oil production does not necessarily yield the largest NPV, 

because of the complicated interactions among CO2 consumption, reservoir heterogeneity, and oil recovery. 

Brownfield ROZs are common below San Andres reservoirs in the Permian Basin, and they can be 

exploited to increase oilfields’ NPV and carbon storage potential. Our case study on the Seminole MPZ- 

ROZ is an analog for other similar reservoirs. We demonstrate that development sequences and WAG ratios 
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influence the performance of CO2 EOR and storage. Thus, this work provides valuable insights into the 

further optimization of brownfield ROZ development and helps operators to plan flexible storage goals for 

stacked ROZ-MPZ reservoirs. 

 

Introduction 

Brownfield ROZs are hydraulically connected to previously-exploited oil reservoirs (Harouaka et al., 2016; 

Melzer, 2017). Many brownfield ROZs have been found in Permian Basin (Melzer, 2017) and other places 

around the world (Webb, 2019). These ROZs have been flooded by regional aquifers over a geological time, 

and the remaining oil saturation ranges from 10-40% (Harouaka et al., 2016; Ren et al., 2019; Roueche and 

Karacan, 2018; Webb, 2019). These huge reservoir potentials can be unlocked by improved oil recovery 

techniques. One such technique of CO2 injection has been demonstrated to be effective in producing oil 

from these ROZs (Melzer, 2017). One challenge of developing brownfield ROZs when using CO2 injection 

is balancing the economics and carbon storage potentials between the ROZ and MPZ. Since these ROZs 

are linked to MPZs, the interaction between the two zones should influence production performance and 

development strategies. Some possible strategies include MPZ/ROZ commingled injection, switching from 

MPZ to ROZ or MPZ/ROZ at a certain time (e.g., when the produced gas-oil-ratio is larger than a given value 

in the MPZs), separate injection of CO2 into MPZ and ROZ but commingled production, and partial or full 

ROZ completion when developing ROZs. Selection of these strategies should be based on: i) understanding 

the reservoir/geological characteristics; ii) estimating CO2 EOR and storage potentials in the reservoirs; 

and iii) strategic goals for oil production and carbon storage. Several reservoir flow simulations have been 

conducted to evaluate the influence of some of the above strategies on metrics (e.g., oil production) of CO2 

EOR and storage. For example, Koperna et al. (2006), studying the Seminole San Andres unit, concluded 

that "simultaneously implementing the flood in both the ROZ and MPZ" is a superior approach to "separately 

completing either the MPZ or the ROZ" in term of cumulative oil production. Jamali and Ettehadtavakkol 

(2017) showed that early expansion into brownfield ROZs compromises project economics. Webb (2019) 

studied the Nobel field (brownfield) in the Illinois basin and found that complete perforation in both MPZ 

and ROZ may not substantially increase oil production compared to the perforation in MPZ alone. The 

author found that for comingled injection, the perforation interval in the ROZ injectors affects the fluid flow 

interaction between the MPZ and ROZ, and thus significantly influences oil production. 

This paper is focused on development strategies for brownfield ROZs to maximize oil recovery and 

CO2 storage in the Seminole San Andres Unit (SSAU) oilfield. Compared to previous works by Wang et 

al. (1998), Koperna et al. (2006), Jamali and Ettehadtavakkol (2017), and Webb (2019), our contributions 

include: 

i. We built a high-resolution geological model for both the MPZ and ROZ from high quality subsurface 

data, including seismic, well logs, cores, production/injection. This allowed us to decrease the 

uncertainties in both history matching and predicting CO2 EOR and storage potentials compared 

to similar papers. 

ii. We conducted an extensive investigation of how various development scenarios designed in the 

work influence the brownfield ROZ project economics, oil production, and carbon storage. For 

the development scenarios, we focused on how to manage the development of brownfield ROZ to 

achieve the best project economics, given proposed carbon credits. 

iii. We found and compared two optimized WAG ratios (one is that which results in the maximum 

NPV, and the other is at the maximum cumulative oil production). The relevant economic influential 

factors were examined through conducting a thorough economic sensitivity analysis, including 

lifting cost and carbon credit. We emphasize the interaction between oil sales and potential carbon 

credits. The influence of this interaction on desired WAG ratio and NPV was specifically examined. 
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The whole work provides a reference to the study of other similar brownfield ROZ reservoirs. 

 

Seminole San Andres Unit (SSAU) 

The SSAU oil field is located in the north-east corner of the terminus of the Central Basin Platform (Fig. 1). 

The field was previously owned by Hess, and it was then acquired by Oxy in 2017. By 2010, the field had 

produced approximately 700 million barrels of oil, dominantly from the MPZs of the Permian carbonate 

San Andres Formation. Fig. 2 shows the brief history of the field. Before waterflooding in the late 1960s, 

cumulative oil production was 200 million, less than 17 percent of the estimated 1.2 to 1.4 billion barrels 

of OOIP (original oil in place). Waterflooding, through to the early 1980s, resulted in the recovery of an 

additional 300 million barrels. CO2 injection into the Seminole MPZ begun in the early 1980s slowed the 

production decline associated with the mature water flood operation. 

For the SSAU ROZ, two phases of CO2 injection pilots were implemented. Phase 1, in July 1996, tested 

the use of line drive patterns. Phase 2, initiated in June 2004, was based on 40-acre inverted 5-spot patterns 

(Honarpour, 2012). Following the two pilot phases, three stages of full-field commercial ROZ development 

began in Oct 2007, May 2011, and July 2013 (Melzer, 2017). 

 

Figure 1—Paleogeographic map of the Permian Basin showing the location of the study 

area (red box) in west Texas. Modified from Ruppel et al. (1995) and Dutton et al. (2005). 

 

Figure 2—A brief production history of the SSAU oilfield. 

 

Methods 

Geological Characterization 

The San Andres Formation is one of the several shallow water platform carbonate and mixed siliciclastic- 

carbonate units that developed on shelves of the Permian basin in west Texas and New Mexico during the 

 
 

 
 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
IO

R
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

0
IO

R
/2

-2
0
IO

R
/D

0
2
1
S

0
2
6

R
0

0
2
/2

3
6
8
0
5
8
/s

p
e
-2

0
0
3
6
3
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

http://onepetro.org/SPEIOR/proceedings-pdf/20IOR/2-20IOR/D021S026R002/2368058/spe-200363-ms.pdf/1


4 SPE-200363-MS 
 

 
Permian (Leonardian-Guadalupian) (Ward et al., 1986). This formation corresponds to the Upper Permian 

(Guadalupian) oil play. From the sequence studies of SSAU sequences by Kerans et al. (1994) and Lucia 

et al. (1995), multiple shallowing-up cycles were interpreted. These cycles consist of basal mudstones 

and wackestones grading upward into grain-dominated packstones and grainstones. True crossbedded ooid 

grainstones are rare, but grain-dominated packstones and grainstones are common. The uppermost part of 

these cycles consists of fenestral peritidal deposits, and in some cases anhydrite was precipitated (caprock). 

Seven carbonate microfacies and one anhydrite dominated microfacies have been described from 10 

continuous cores in the northern and central part of the Seminole Field (Baqués and Duncan in prep). The 

cores exhibit well-developed cyclic depositional sequences, with at least five cycles of sedimentation. The 

identified microfacies includes: i) crinoidal-fusilinid packstones and grainstones and fusilinid mudstones/ 

packstones representing deep-water facies (into the ROZ); ii) bryozoan packstones/wackestones and 

boundstones (bafflestones); iii) peloidal-oolitic packstones/grainstones representing near-shoal and shoal 

deposition; iv) dascyclad-peloidal packstones that are capped by tidal flat deposits with fenestral fabrics; 

v) restricted subtidal peloidal deposits, overlying tidal flat deposits, grade up into well-developed tidal flat 

deposits with pisolites, fenestral fabric, mud clasts, storm layers and anhydrite. In summary, the cores exhibit 

a very thick lower cycle of sedimentation, dominated almost entirely by open-marine facies. Upper cycles 

are thinner and exhibit a greater proportion of shallow restricted subtidal and tidal flat facies. 

All facies in the Seminole San Andres Unit are pervasively dolomitized. Ruppel and Cander (1988) 

observed that porosity preservation that in these reservoirs was a consequence of dolomitization. Fusilinid 

mudstones/packstones exhibit variably-preserved porosities. The crinodal-rich facies, prevalent into the 

ROZ, contains moderate to large amounts (up to greater than 20%) of preserved porosity. Most of 

this porosity is secondary in origin. Intercrystalline porosity is variably occluded by anhydrite cement. 

Bryozoan facies in the lower part of the cores have moderate porosities, generally ranging between 10-15%. 

Pelodial-oolitic shoal deposits have quite variable porosities, ranging from a few percent up to 22%. Most 

of the grainstones have their primary porosity reduced by anhydrite cements. Packstones exhibit high 

intercrystalline and leached dolomite rhomb porosity. 

Reservoir Modeling 

We integrated a 3D seismic, well logs, and core description results into the geological modeling. The cored- 

wells’ logs (including spontaneous potential, gamma, and neutron porosity) were analyzed, and through this 

we assigned facies to non-cored wells. Next, we conducted semi-variogram analysis of each facies group 

in each zone, adopting an exponential variogram model. Then, we employed sequential indictor simulation 

to generate facies for the geomodel. Then, we employed sequential Gaussian simulation to generate 10 

realizations of porosity fields. The corresponding permeability fields are created using Lucia's (1995) rock 

fabric method (with details in Ren and Duncan (2019a and b), Ren et al. (2019)). 

After building a full-field high resolution (cell size 20×20×2 ft) geological model, we generated a coarser, 

upscaled model with the cell size of 100×100×2 ft. Then, we cut a sector model (Fig. 3d), upon which we 

conducted history matching of primary depletion and waterflooding for calibration. The calibrated model 

was then used for the prediction of CO2 EOR and storage potentials. For the simulation input, the rock/fluid 

interaction models (including fluid properties, relative permeability, and capillary pressure curves) refer to 

Ren et al. (2019). 

When predicting the performance of CO2 EOR and storage, water alternating gas (WAG) injection 

was considered. Inverted 9-spot 80-acre patterns were adopted, which are currently being used in the 

development of the MPZ (Honarpour, 2012). The CO2 injection rate is set to 3000 Mscf/day, and water 

injection rate is 1400 rb/day (reservoir barrel/day). The injection target pressure is at the reservoir fracturing 

pressure of 3900 psi (Alcorn et al., 2019). Bottom hole pressure for producers is set to be the minimum 

miscibility pressure, which was measured as 1400 psi (Honarpour et al., 2010). The WAG ratio (i.e., 

reservoir volume ratio between injected water and CO2) was varied from 0 to 4, through changing water 
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injection duration while keeping CO2 injection duration unchanged in each WAG cycle. The WAG ratio 

equal to 1 (base case) corresponds to 90 days of water injection alternating with 70 days of CO2 injection. 

We run WAG injection for 40 years. 

All the injectors and producers involved in simulations are vertical, and perforated according to the 

development scenarios as shown in Table 1. Different switching schedules and injection/production schemes 

were considered. Buffered boundary conditions as described by Ren and Duncan (2019a) were used in all 

flow simulations. 

 
Table 1—Designed development scenarios for the brownfield ROZ 

 

Scenario # Injection Schemes Production Schemes Notes 

1 
MPZ & ROZ 40 yr 

commingled injection 

MPZ & ROZ 40 yr 

comingled production 
Develop MPZ & ROZ at the start 

2 MPZ 40 yr injection MPZ 40 yr production Develop only MPZ 

3 
MPZ 20 yr injection + MPZ 

& ROZ 20 yr injection 
MPZ 20 yr + MPZ & ROZ 20 yr 

Develop MPZ initially and 

then develop MP & ROZ 

4 
MPZ & ROZ 20 yr injection 

+ ROZ 20 yr injection 
MPZ & ROZ 40 yr 

Develop MPZ & ROZ 

and then develop ROZ 

 

Economic Modeling 

We calculated the cumulative net present values (NPV) for all the development scenarios. For these 

scenarios, we assumed CAPEX (mainly drilling costs at the beginning of MPZ development and installation 

of CO2 clean-up/recycle plants) is the same, and thus the difference in calculated NPV will be attributed 

to different injection and production rates and the incurred expense and revenues. We focused on the 

comparison of different scenarios, so the CAPEX is not included in NPV calculation. 

For the purposes of this analysis, the NPV is assumed to consist of four components: oil revenue, carbon 

credit, operational expenses, and cost of well deepening into the ROZ. For simplicity, we treated the carbon 

credit as a revenue stream. The operational expenses include CO2 purchase, CO2 recycle, produced water 

management, and liquid lifting. The formula used to estimate NPV is in equation 1. The following equations 

2–9 show how to calculate all these components. The cost assumptions are listed in Table 2. Sensitivity 

analysis of these parameters was also conducted using the range in Table 2. 

 
Table 2—The settings of economic parameters in NPV calculation. These settings are based 

on the publications by Chen and Reynolds (2016), Godec (2014), Hultzsch et al. (2007). 
 

Component Base Settings Range 

Oil price ($/STB) 60 30-120 

Carbon credit ($/Tonne) 0 0-40 

CO2 purchase price ($/Tonne) Oil price × 0.42* Oil price × (0.33-0.50) 

Gas recycling cost ($/MSCF) Oil price × 1% - 

**Produced water management cost ($/STB) 0.64 - 

Liquid lifting cost ($/STB) 1.0*** 0.40-1.50 

Deepening cost ($/ft) 150 - 

Annual discount rate 0.12 - 

* assuming natural CO2. The price of CO2 sold varies according to oil price, and conversion factor is 0.42 for base settings. 

** produced water management cost consists of water injection, water recycling, and water disposal. 

*** this is the liquid lifting cost for wells perforated in the MPZ only. The cost for other wells perforated in the ROZ or both the MPZ and ROZ is assumed 

to linearly increase with reservoir depth. 
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(1) 

 

(2) 

(3) 

(4) 

(5)  
 

(6)  
 

(7)  
 
 

 
 

In the above equations, 

Oil_ revenuen, revenue from oil production at the nth year, $ 

Carbon_pricen, price of carbon as incentive for carbon storage at the nth year, $ 

Recurrent_costn, recurrent operation cost at the nth year, $ 

Welldeepen_costn, well deepening cost for ROZ development at the nth year, $ 

r, annual discount rate 

n, year numbering since the start of development 

op(n), cumulative oil production till the nth year, STB 

Qop(n-1), cumulative oil production till the (n-1)th year, STB 

Oil_price, the price of oil, $/STB 

Qgi(n), cumulative gas injection till the nth year, MSCF 

Qgi(n-1), cumulative gas injection till the (n-1)th year, MSCF 

Qgp(n), cumulative gas production till the nth year, MSCF 

Qgp(n-1), cumulative gas production till the (n-1)th year, MSCF 

Storagetax, carbon credit for storage, $/Tonne 

Gaspurn, CO2 purchase cost at the nth year, $ 

Gasrecyn, CO2 recycling cost at the nth year, $ 

Water_costn, produced water management cost at the nth year, $ 

Liquid_liftn, produced liquid lifting cost at the nth year, $ 

Gaspur_price, CO2 purchase price, $/Tonne 

Gasrecy_cost, CO2 recycling cost, $/MSCF 

Qwp(n), cumulative water production till the nth year, STB 

wp(n-1), cumulative water production till the (n-1)th year, STB 

Qwi(n), cumulative water injection till the nth year, STB 

Qwi(n-1), cumulative water injection till the (n-1)th year, STB 

Water_cost, cost of produced water management, $/STB 

Lift_cost, cost of liquid lifting, $/STB 

Cost_perft, cost of deepening wells into ROZ, $/ft 

Deepen_length, depth of deepening for wells into ROZ, $ 

(8)  

(9)  
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Metrics Used to Evaluate CO2 EOR and Storage Performance 

In addition to traditional EOR performance metrics (e.g., cumulative oil production), we also calculated 

metrics used to measure the performance of CO2 storage in the brownfield ROZ. 

Stored CO2 amount = injected CO2 amount – produced CO2 amount. 

CO2 retention fraction = stored CO2 amount / injected CO2 amount. 

All these CO2 EOR and storage metrics change with time; the results given here are the values after 40 

years. 

 

Results and Discussion 

Geological Models 

Fig. 3 shows the full-field porosity and permeability, along with permeability for the sector model. This 

porosity/permeability is selected from the batch of realizations that conform to geological characterizations 

and reservoir heterogeneity. The cut sector consists of 25 inverted 9-spot 80-acre patterns, with 25 vertical 

injectors and 94 vertical producers. 

 

Figure 3—(a) The Petrel unit boundary of full-field geological model for Seminole with the dashed square 

in (a) representing the outer boundaries of a cut sector model. (b) Porosity fence diagram. (c) Permeability 

field with the two sectional cut for direct visualization. Four zones (gas cap, MPZ, ROZ, and water leg) are 

differentiated with different colors for easy look. The depth cutoff for the three contacts are 1725 ft (gas-oil- 

contact), 1935 ft (producing water-oil-contact or the contact between the MPZ and ROZ), and 2200 ft (free water 

level). (d) Permeability field of the cut sector with all the vertical well locations shown on the top of model. 

 
 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
IO

R
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

0
IO

R
/2

-2
0
IO

R
/D

0
2
1
S

0
2
6

R
0

0
2
/2

3
6
8
0
5
8
/s

p
e
-2

0
0
3
6
3
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

http://onepetro.org/SPEIOR/proceedings-pdf/20IOR/2-20IOR/D021S026R002/2368058/spe-200363-ms.pdf/1


8 SPE-200363-MS 
 

 
History Matching 

The purpose of history matching was to: i) calibrate petrophysical properties, including permeability, 

porosity, and compressibility; ii) calibrate the depth of the producing water-oil contact (interface between the 

MPZ and ROZ) and gas-oil contact. Fig. 4 shows the achieved good match of oil production rate, water cut, 

and reservoir pressure. The history match of gas-oil-ratio (GOR) is challenging. GOR matching is hindered 

by the lack of both the information about the gas cap size and knowledge of the vertical fracture permeability 

of the reservoir. The GOR curve indicates that gas-solution-drive is the main driving mechanism during 

primary depletion (1936-1969). 

 

Figure 4—History matching of oil production rate (a), water cut (b), gas-oil-ratio (c), and reservoir pressure (d) during 

primary depletion and waterflooding periods. Large dots are field measurements, and lines represent simulation results. 

 

Comparison of Different Development Scenarios 

Fig. 5 compares the CO2 EOR and storage metrics for all the development scenarios. Comingled injection 

and production (scenario #1) yields the largest oil production and NPV, and comingled injection followed 

by ROZ injection only (scenario #4) gives the highest CO2 storage amount and retention fraction. The 

least favorable scenario is #2, MPZ development only. The corresponding EOR and storage metrics are the 

smallest among all scenarios. 

The commingled CO2 injection (scenario #1) increases the contact of CO2 to rocks and thus favors both 

oil production and carbon storage, as compared to MPZ injection only (scenario #2). For the latter scenario 

#2, most of the injected CO2 is very likely to channel into producers and was then recycled (as revealed by 
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Fig. 6). As a comparison, scenario # 4 with the largest CO2 storage only perforated wells in the ROZ interval 

at the late period, which helps decrease CO2 production. This should be because the ROZ has a large initial 

water saturation (~60%), and displacing water is more difficult than displacing oil by CO2 (Ren et al., 2019). 

Here, we purposely compared scenario #1 to #4. Wide variations of both oil production and NPV with 

the WAG ratio are observed for scenario #1, as compared to scenario #4 (Figs. 5a and 5d). Meanwhile, as 

the WAG ratio increases, the amount of CO2 stored decreases more rapidly for scenario #1 than for scenario 

#4 (Fig. 5b). We found similar results in the CO2 retention fraction comparison (Fig. 5c). 

Further comparison between scenario #1 and #4 shows the large difference in oil production (Fig. 5a) 

but with similar CO2 storage amount (Fig. 5b) when adjusting the WAG ratio. This indicates that gravity 

segregation of CO2 might not be significant (i.e., CO2 migration is probably confined into each zone because 

of the interlayered low permeability flow barriers/baffles (refer to Fig. 3c)). Such indication was also 

supported through surveying CO2 saturation fields. 

 

Figure 5—Comparison of CO2 EOR and storage metrics for different development scenarios at the end of WAG 

injection (at 40 years). (a) final oil production; (b) final amount of CO2 stored; (c) final retention fraction of CO2; 

(d) final NPV. The WAG ratio is in the range of 0-4. The final NPV is calculated using the base settings in Table 2. 

 
Fig. 6 shows the cost bar charts for scenarios #1, #2, and #4 after 40 years of development. For scenario 

#4 with the largest CO2 storage, the associated cost fraction of liquid lifting and water management is a 

little larger than those for scenario #1 (commingled injection/production for 40 years, Fig. 6a). Most of the 

costs for both scenarios is from CO2 recycling and purchasing. For MPZ only development (scenario #2, 

Fig. 6c), the fraction of CO2 recycling costs is much higher (75.5% versus 41.4% for comingled injection/ 

production). 
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When moving from the MPZ to ROZ development, it appears that the large water saturation in the ROZ 

does not greatly increase the fractions of the costs associated with liquid lifting and water management. The 

cost fractions are specific to each reservoir and depend on reservoir characteristics and dynamics during 

CO2 injection. 

Comparison between scenario #1 and #4 shows that the cost fraction of CO2 recycling is less for scenario 

#4 (38.7%) than for #1 (41.4%). This should indicate that CO2 tends to be difficult to be produced out when 

switching from the MPZ to ROZ (where water prevails), which is consistent with our above analysis of 

the production metrics. 

 

Figure 6—Bar charts for 40 years of cost for development scenarios #1 (a) and # 4 (b). Both of them 

are associated with ROZ development. For comparison to only MPZ development, the cost pie charts 

for the scenario #2 (c) was also included in the figure. The WAG ratio is 1 (i.e., 70 days of CO2 half- 

cycle alternating with 90 days of water half-cycle). Base settings for economic parameters in Table 2 

were used. The cost of well deepening into the ROZ is minimal, so it was not included in the charts. 

 

Sensitivity Analysis 

Fig. 7 compares two types of WAG ratios: the WAG ratios at the maximum oil production versus the WAG 

ratios at the maximum NPV. We focused on the effects of economic parameters (oil price, carbon credit and 

conversion factor (from oil price to CO2 purchasing price)), rather than geological parameters. The main 

observation from Fig. 7 is that, for most of the cases studied here, the WAG ratios that yield the maximum 

oil production do not necessarily give the maximum NPV. Generally, large oil price increases the optimal 

WAG ratio for NPV, whereas large carbon credit decreases it. Cheap CO2 (small conversion factor from oil 

price to CO2 purchasing price) decreases the optimal WAG ratio. The lifting cost shows no effect on the 

WAG ratio comparison. 
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Figure 7—Comparison between the WAG ratio corresponding to maximum cumulative oil production (at 40 year) and the 

WAG ratio corresponding to maximum cumulative NPV for all the development scenarios. The settings for economical 

parameters are for the base case (refer to Table 2). The effects of changing oil price, carbon credit, and conversion factor 

(from oil price to CO2 purchasing price) on the comparison between the two types of WAG ratios are shown in the figure. 

 
Fig. 8 shows the sensitivity of NPV to several economic parameters (i.e., oil price, carbon credit, lifting 

cost, conversion factor). The WAG ratio, as an example of engineering parameters, was also included to 

show how different considerations of CO2 EOR and storage will influence the NPV. For scenario #1, with the 

largest oil production, the NPV is more sensitive to the WAG ratio than for the scenario #4, with largest CO2 

storage ((Fig. 8a vs. Fig. 8b). This indicates the complexity of the interaction between economic parameters 

and engineering ones. The effect of this interaction on the emphasis of some parameters should be considered 

when switching CO2 injection from MPZs to ROZs. 

 

Figure 8—Tornado plots of final NPV for development scenario #1 (a) and #4 (b). 

 

Summary, Conclusions, and Recommendations 

We built a high-resolution geological model for both the main pay zone (MPZ) and residual oil zone (ROZ) 

of the Seminole San Andres Unit based on integrated geological and reservoir characterization. The model 
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was calibrated with historical primary and secondary production data matches. We used the geological 

model to economically evaluate different development strategies and their associated uncertainties through 

integrated full-physics flow simulation and economic assessment. To better compare these scenarios, we 

defined and calculated a series of metrics for CO2 EOR and storage. Water alternating gas (WAG) ratios were 

tuned to maximize either oil production or net present value (NPV). The influence of economic parameters 

(e.g., oil price and carbon credit) on favorable WAG ratios were examined. We found that: 

i. Simultaneous injection into both the MPZ and ROZ favors oil production, whereas, switching from 

comingled injection to only ROZ injection in the later time period of projects helps CO2 storage. 

The optimal switching time needs further study. 

ii. The WAG ratios at the maximum oil production are not equal to those at the maximum NPV for 

most of the cases due to the uncertainties in economic parameters. 

iii. The sensitivity of NPV to economic and engineering parameters changes when considering the goals 

of increasing oil production versus maximizing CO2 storage. 

The whole work provides a basis for future optimization of CO2 EOR and storage in brownfield ROZs. 
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Abstract 

The objective of this study is to improve understanding of the geostatistics of vertical (bed-normal) 

permeability (kz) and its influence on reservoir performance during CO2 enhanced oil recovery (EOR) and 

storage. kz is scrutinized far less often than horizontal permeability (kx, ky) in most geological and reservoir 

modeling. However, our work indicates that it is equally important to understand kz characteristics to better 

evaluate their influence on CO2 EOR and storage performance prediction. 

We conducted this study on about 9,000 whole-core triaxial permeability (kx, ky, kz) measurements from 

42 wells in a San Andres carbonate reservoir. We analyzed kz data, including heterogeneity, correlation, and 

sample sufficiency measures. We analyzed wells with the largest and smallest fractions of points with kz > 

kmax = max(kx, ky), to explore geological factors that coincided with large kz. We quantified these geological 

effects through conditional probabilities on potential permeability barriers (e.g., stylolites). 

Every well had at least some whole-cores where kz > kmax. This is a statistically justifiable result; only 

where Prob(kz > kmax) is statistically different from 1/3 are core samples non-isotropic. In conventional core 

data interpretation, however, modelers usually assume kz is less than kmax. For the well with the smallest 

fraction (11%) of cores where kz > kmax, the cumulative distribution functions differ and coincides with the 

presence of stylolites. We found that kz is about twice as variable as kx in many wells. This makes kz more 

difficult to interpret because it was (and usually is) heavily undersampled. 

To understand the influence of kz heterogeneity on CO2 flow, we built a series of flow simulation models 

that captured these geostatistical characteristics of permeability, while considering kz realizations, flow 

regimes (e.g., buoyant flow), CO2 injection strategies, and reservoir heterogeneity. CO2 flow simulations 

showed that, for viscous flow, assuming variable kx similar to the reservoir along with a constant kz/kx = 

0.1 yields a close (within 0.5%) cumulative oil production to the simulation case with both kx and kz as 

uncorrelated variables. However, for buoyant flow, oil production differs by 10% (at 2.0 hydrocarbon pore 

volume HCPV of CO2 injected) between the two cases. Such flows could occur for small CO2 injection 

rates and long injection times, in interwell regions, and/or with vertically permeable conduits. 

Our geostatistical characterization demonstrates the controls on kz in a carbonate reservoir and how 

to improve conventional interpretation practices. This study can help CO2 EOR and storage operators 

refine injection development programs, particularly for reservoirs where buoyant flow exists. More broadly, 
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the findings potentially apply to other similar subsurface buoyancy-driven flow displacements, including 

hydrogen storage, geothermal production, and aquifer CO2 sequestration. 

 

Introduction 

Vertical permeability (kz) is important in many subsurface processes where there is a density difference 

between fluids, including gas (e.g., CO2) enhanced oil recovery (EOR) and geologic storage, geothermal 

production, hydrogen storage, compressed air storage, tracer flow, steam injection, and water coning (Bryant 

et al., 2008; Hassanpouryouzband et al., 2021; Hinton and Woods, 2019; Silin et al., 2009; Yang and Butler, 

1992). Specifically, for CO2 EOR and storage in oil reservoirs, kz characterization is important for reservoir 

management and development endeavors, including optimization of injector/producer placement, design of 

completion strategies, and deployment of reservoir monitoring programs during CO2 injection as well as 

post-injection periods. 

Vertical permeability (kz) can be measured at several scales. At core scales (i.e., cm and dm), whole core 

samples are convenient because permeability is measured in three directions on the same sample. Core plugs 

drilled orthogonal to local bedding planes can also be used. At larger scales, formation testers (e.g., Ayan et 

al., 1994; Onur et al., 2011), history-matched reservoir simulation (e.g., Sutton et al., 2013), analytical and 

semi-analytical calculations (e.g., Haldorsen and Lake, 1984; Begg and King, 1985), ocean tide pressure 

variations (e.g., Wannell and Morrison, 1990) may be used to estimate kz. Of all these methods, core-scale 

measurements are perhaps the most common. 

Core-scale kz is often compared with the horizontal permeability (kx) measured at the same or a nearby 

location by calculating the ratio kz/kx. There appear to be two main reasons for using the ratio. First, one 

may expect that kz and kx are positively correlated, so that kz/kx is less variable than either kz or kx. The less 

variable a reservoir characteristic is, the easier it is to predict for areas beyond the wellbore. Second, kx 

measurements are typically more abundant than kz measurements, so that a knowledge of kx and kz/kx will 

provide kz estimates at the same frequency as kx values. Typically, log-log plots of kz versus kx (Fig. 1) offer 

a useful assessment of the kz/kx values present in a reservoir. 

 

Fig. 1—Sherwood Sandstone core plug data from a strongly laminated fluvio-aeolian reservoir with kz/kx lines 

drawn to evaluate core-scale anisotropy. kz/kx varies by approximately four orders of magnitude while either kz or 

kx change by six orders of magnitude. With 232 bi-directional pairs for this figure, Prob (kz/kx > 1) = 63/232 = 0.27 

(probabilities are equivalent to frequencies in this work). Because this probability is much different than ½, it is 

extremely unlikely (probability of approximately 2 × 10−12) to get only 63 out of 232 samples with kz/kx > 1 if the core- 

scale permeability is isotropic for this data. See Morton et al. (2002) for more details on the Sherwood Sandstone. 
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The use of kz/kx ratio is a common way of modeling kz. Then the question to be answered: what are the 

consequences of avoiding kz measurements by using kx measurements instead? Several associated questions 

also arise: i) is kz always dependent on kx or is it independent? ii) Do both permeabilities have the same/ 

similar statistical properties? iii) What are the influential factors of kz /kx ratio? The kz/kx ratio is typically 

assumed to be 0.1. However, several studies on sandstones (Jones et al., 1987; Hanks et al., 2011, Baker 

et al., 2005) and carbonates (Sun et al., 2017; Dernaika et al., 2018; Chandra et al., 2013), including the 

work presented here, showed the occurrences where kz > kx. The underlying geological causes should be 

well understood for reliable geomodels and multiphase flow simulations. 

A considerable number of studies have focused on the influence of kz on flow prediction. Unfortunately, 

most flow simulations that consider kz typically treated the kz/kx ratio as a sensitivity parameter and examined 

its influence on defined metrics (e.g., Abdelaal et al., 2021; Chang et al., 1994; Ren and Duncan, 2021). 

Campero et al. (2014) made an analysis of kz/kx based on the geological datasets collected in a field and 

evaluated the influence of kz/kx ratio on history match and prediction during waterflooding. However, all 

these studies avoided a fundamental question: how good is using a constant kz /kx ratio to populate vertical 

permeability for flow prediction as compared to having variable kz? 

Our objectives here are to: i) deepen our understanding of the statistical properties of kz; ii) examine 

kz's influence on CO2 flow, storage, and production prediction; and iii) specifically compare performance 

prediction between the case of using true kz versus the traditional wisdom of assuming a ratio for kz/kx. 

Our study is based on a San Andres carbonate reservoir. The San Andres Formation is one of the richest 

oil formations in the Permian Basin, and many CO2 EOR projects are active in the formation (Jarrell et al., 

2002; Lake et al., 2018). It could be expected that CO2 storage incidental to EOR will likely be implemented 

into those Permian Basin carbonate formations in near future. In this sense, our case study on the carbonate 

reservoir should provide a good reference for the understanding of kz and its influence on CO2 EOR and 

storage. 

We conducted kz -related exploratory plots, including permeability profiles, histograms, heterogeneity 

measures, and semivariogram analyses. Then, based on the geostatistical analysis, we selected the wells with 

the extreme fractions of kz > kx. We analyzed whole core, thin sections, and core plug datasets of the selected 

wells to explore the geological factors of kz. We also conducted probability analyses conditioned by potential 

permeability barriers to quantify geological parameters. We then built a series of generic flow simulation 

models based on these geostatistical understanding, while considering various injection strategies and flow 

regimes, to quantify the influence of kz realizations on CO2 EOR and storage performance. 

 

San Andres Formation 

The carbonate facies of the San Andres Formation (SAF) developed on the shelves of the Permian Basin 

in west Texas and New Mexico during the Permian (Leonardian-Guadalupian) ages (Ward et al., 1986). 

The SAF is one of several shallow water platform carbonate and mixed siliciclastic-carbonate units. From 

the sequence stratigraphy studies by Kerans et al. (1994), Lucia et al. (1995), and Wang et al. (1998), 

several upward-shallowing cycles were interpreted from their facies description. These cycles consist of 

basal mudstones and wackestones grading upward into grain-dominated packstones and grainstones. A total 

of 5 facies groups were identified from a 4002-feet-thick continuous core from 10 wells with both MPZ 

and ROZ intervals. More complete studies for the MPZ were reported by Kerans et al. (1994) and Lucia 

et al. (1995). 

The most common pore types include interparticle, moldic, and vugs. Dolomitization is a key diagenetic 

process that influences porosity distribution in the reservoir. Stylolites, which are common in the SAF, are 

intergranular pressure solution features usually with wavy surfaces (Heap et al., 2014; Koepnick, 1987). 

Most of the stylolites are sutured with cements, but some have solution seams. The stylolite-bearing horizons 
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could be laterally extensive (100s of meters). They may act as barriers or paths for fluid flow depending 

on both stylolite features and their extents relative to the flow directions. Vertical fractures are common but 

and mostly filled in by anhydrite or dolomite cement. 

 

Datasets 

The kz -related dataset come from a SAF reservoir and include whole-core measurements (by Core Labs), 

core plugs, as well as descriptions of lithology and diagenetic history. For the reservoir we studied, nearly 

9,000 whole-core permeabilities from over 4 wells were available from Core Labs reports. We conducted 

careful quality checks and cleaning of these datasets before exploratory analyses. Data cleaning consisted 

of: i) removing measurement values below the threshold (e.g., < 0.001 md) for some evaluations, such as 

averages, standard deviation, and semivariograms; and ii) removing incomplete measurements. Samples 

where only kx was available without kz, might be from core plugs. For the collected whole cores, over 6000 

samples have core lithology descriptions. Core descriptions in these reservoirs provide sedimentological 

information such as textures, sedimentary structures, and post-depositional features. 

A whole-core has a larger diameter and length than a conventional core plug (Fig. 2), thus the whole- 

core includes more larger-scale geological information. The main advantage of whole cores is that they 

are or approach exhaustive sampling. Whole cores are often used in reservoir characterization to measure 

three-directional permeabilities: kx, ky, kz (Fig. 2). The horizontal (x, y) direction are varying randomly, 

and usually kmax = max(kx, ky) and k90 = min(kx, ky). More details of whole-core-based permeabilities and 

their comparison to core plugs and probe permeameter measurements can be found in Camargo and Jensen 

(2012), Honarpour et al. (2005), and Ringrose et al. (2005). 

 

Fig. 2—Whole cores versus core plugs. Note that the measurements are not exactly on the same scale. 

 

Theory and Approaches 

Statistical Characterization 

Based on the above datasets, it is helpful to begin with comprehensive geostatistical analysis on kz to 

understand its characteristics as compared to kx. This will also guide the synthesis of generic geomodels 

used in the flow simulations to examine the influence of kz realizations on performance prediction during 

CO2 EOR and storage. 

Based on the 42 wells’ whole core measurements, we created a series of kz-related exploratory 

plots, including vertical profiles for the three permeabilities. The histograms, well-based Dykstra-Parson 

coefficient, semivariograms, kz - kx cross plots, and permeability-porosity cross plots, Lorenz plots, and 
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Koval plots (Koval, 1963) were produced. A Koval plot is the plot of (1-F)/F versus (1-C)/C where F is flow 

capacity, and C is storage capacity. The vertical location of the curves on the plot measures the heterogeneity 

that gives clues to vertical sweep efficiency (Salazar, 2018). Detailed explanations of the Koval plot and its 

physical meaning are in Lake et al. (2014) and Salazar and Lake (2020). 

When viewing plots such as Fig. 1 or listings of kz/kx values, it is tempting to assume that kz/kx should 

nearly always be less than one (e.g., Dernaika et al., 2018; Pamungkas et al., 2020), so there must be a 

problem with the measurements if kz/kx > 1 for significant portions of the data set. This assumption may 

be incorrect for reasons listed below and it is therefore useful to keep the questions below in mind when 

assessing kz/kx values. We will use these considerations during analysis of data from the field. 

i. Are the data from one geological unit (e.g., rock type or facies) or do they represent a larger domain? 

A clearer picture of the kz/kx behavior is likely to emerge from unit-based data, so that characteristic 

kz/kx values and how the values change can be identified. 

ii. Is the formation isotropic? If the permeability is isotropic and a deterministic variable, then kx = ky 

= kz. However, if we assume permeability to be isotropic and a random variable, then kx, ky, and kz 

have the same probability distribution but might be unequal for any given sample. In that case, the 

probability of kz/kx > 1 should be 1/3 (written as Prob(kz/kx > 1) = 1/3) for tri-directional samples and 

½ for bi-directional samples. Also, while the formation may not be locally isotropic, it may behave 

at the larger scales as being isotropic because some areas have kz/kx > 1 while other areas have kz/kx < 

1. There may be good geological reasons why some kz/kx data exceed 1. For examplfne, in sandstone 

reservoirs having burrowing or dewatering horizons, kz/kx > 1 (Jones et al., 1987; Hanks et al., 2011). 

Carbonates also may show kz/kx > 1 in dissolution enhanced or stylolite-bearing samples (e.g., Sun 

et al., 2017; Dernaika et al., 2018; Chandra et al., 2013). 

Flow Simulation 

We ran flow simulations (using the Eclipse® simulator), to quantify the influence of kz on CO2 flow/sweep 

and performance prediction during CO2 EOR and storage. First, we synthesized a series of permeability 

fields according to the geostatistical analysis. Second, we conducted flow simulations of CO2 injection 

into these synthetic models while considering the reservoir ROZ rock-fluid properties. Third, we compared 

various kz realizations (including direct kz statistical realizations or true kz versus assuming kz/kx = 0.1) in 

terms of simulation prediction for CO2 EOR and storage. 

Our procedure for generating permeability fields is to: i) employ the Box-Cox method (Box and Cox, 

1964) to transform the reservoir permeability distributions to be more Gaussian; ii) use sequential Gaussian 

simulation to generate permeability fields with a given set of heterogeneity indicators; iii) back-transform 

to get the synthetic permeability field. Appendix A includes more details of the procedure and demonstrates 

that the synthetic fields reproduce the global permeability statistics. 

Table 1 shows the properties of the synthetic permeability fields. Simulation models for inverted 5-spot 

and inverted 9-spot well patterns were created. The corresponding model dimensions and cell sizes are also 

in the table. The porosity was set to be constant at 0.11, the arithmetic average of the reservoir ROZ, since 

porosity is far less variable than permeability. It was known that vertical cell size influences miscible flood 

predictions, especially when gravity is important (Stalkup, 1990). This work adopted a fixed cell size since 

the simulation studies are designed for general sensitivity analysis. 
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Table 1—Properties of synthetic permeability fields 

 

Well pattern Inverted 5-spot Inverted 9-spot 

Pattern size, acre 40 80 

Model domain sizes, ft 1320×1320×96 1860×1860×96 

Model cell sizes, ft 30×30×3 30×30×3 

Model dimensions 44×44×32 62×62×32 

Horizontal dimensionless auto-correlation length 0.2, 2’, 20 

Horizontal permeability log mean 1.5* 

Vertical permeability log standard deviation 1.8* 

Vertical permeability log mean 0.5* 

Vertical permeability log standard deviation 2.3* 

* Based on reservoir permeability geostatistics. 

 

For the reservoir simulation model, the settings for the rock, fluids, and their interactions, including 

oil properties, PVT models, relative permeability and capillary pressure curves, were described in Ren 

and Duncan (2021). Since the whole simulation study is designed to examine the sensitivity of vertical 

permeability on CO2 EOR and storage performance, we used a single set of relative permeability and 

capillary pressure curves. More details are included in Appendix B. 

Initially, the reservoir pressure is 2119.9 psi, and the reservoir temperature is 104 °F. Uniform fluid 

saturations were assigned as per the average saturation magnitudes of the the reservoir ROZ (Ren and 

Duncan, 2019), with an initial oil saturation of 0.4 and the rest of the pore space water. 

We designed injection-production schemes with a focus on the effects of kz on flow. To achieve this, 

we use a buoyancy number Nbu (Shook et al., 1992, Eq. 1) to measure the relative importance of buoyant 

force (kz-related) over viscous force (injection rate-related). The variation of Nbu along the distance from 

an injector is in Fig. 3. CO2 flow is dominated by the buoyant force (Nbu >1) in most of the inter-well 

areas (around 115 to 1300 ft away from the injector). Thus, most of the CO2 flow will tend to be gravity 

segregated. Our study covers a wide Nbu range of 0.0022 to 22 through adjusting either injection rates or 

kz in simulation cases (see Table 2). 

Nbu is defined as 
 

(1) 

where Δρ is the density difference between CO2 and the mixture of brine and oil, g is the gravitational 

constant, kz is vertical permeability, H is the well perforation height, α is the formation dip angle, uh is CO2 

entry velocity at the wellbore (it was calculated using CO2 injection rate in a radial flow geometry), μ is 

the CO2 viscosity at reservoir conditions, and L is the horizontal length of the simulation domain (same as 

the distance from an injector in Fig. 3). 
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Table 2—Values for the cases of CO2 flow simulations. The "truth" cases are for the case 

with both variable kx and variable kz 2 realizations (i.e., case #4, 8, 12, 13, 16, 17, 19, and 23). 
 

Case 

# 
kx mD kz, mD 

Injection 

Rate, MScf/d 

Injector 

BHP, psi 

Buoyancy 

Numbera 

WAG 

ratio 

Autocorrelation 

λDX 

Well Pattern Notes 

1 Constant 
 

3000 NA 2.2E-2 0 2 
lnverted-5 

& 40 acre 

 

 
Base settings: 

Injection rate: 

WAG ratio; 

Horizontal 

dimensionless 

autocorrelation; 

2 Constantd Constantd 3000 NA 1.4E-2 0 2 
inverted-5 

& 40 acre 

3 Variable kx 3000 NA 2.2E-2 0 2b 
inverted-5 

& 40 acre 

4 Variable Variable 3000 NA 1.4E-2 0 2 
inverted-5 

& 40 acre 

1a Variable 10×kxc 3000 NA 2.2E-1 0 2 
inverted-5 

& 40 acre 

 
 
 
 
 
 
 
 

Effect of 

buoyancy 

number 

3a Variable 0.1×kx 3000 NA 2.2E-3 0 2 
inverted-5 

& 40 acre 

3b Variable 0.1 × kx 30 NA 2.2E-1 0 2 
inverted-5 

& 40 acre 

5 Constant kx 30 NA 2.2 0 2 
Inverted-5 

&40 acre 

6 Constant Constant 30 NA 1.4 0 2 
inverted-5 

& 40 acre 

7 Variable Kx 30 NA 2.2 0 2 
inverted-5 

& 40 acre 

8 Variable Variable 30 NA 1.4 0 2 
inverted-5 

& 40 acre 

9 Variable 10×kxc 30 NA 2.2 E+1 0 2 
inverted-5 

& 40 acre 

10 Variable kx 3000 NA 2.2E-2 1 2 
inverted-5 

& 40 acre 

 
 
 
 

Effect of 

WAG ratio 

11 Variable kx 3000 NA 2.2E-2 4 2 
inverted-5 

& 40 acre 

12 Variable Variable 3000 NA 1.4E-2 1 2 
inverted-5 

& 40 acre 

13 Variable Variable 3000 NA 1.4E-2 4 2 
inverted-5 

& 40 acre 

14 Variable kx 3000 NA 2.2E-2 0 0.2 
Inverted-5 

& 40 acre 

 
 

 
Effect of 

horizontal 

autocorrelation 

length 

15 Variable kx 3000 NA 2.2E-2 0 20 
Inverted-5 

& 40 acre 

16 Variable Variable 3000 NA 1.4E-2 0 0.2 
inverted-5 

& 40 acre 

17 Variable Variable 3000 NA 1.4E-2 0 20 
inverted-5 

& 40 acre 

18 Variable kx 3000 NA 2.2E-2 0 2 
inverted-9 

& 80 acre 
 

Effect of 

well pattern 
19 Variable Variable 3000 NA 1.4E-2 0 2 

inverted-9 

& 80 acre 

20 Constant kx NA 2800 NA 0 2 
Inverted-5 

&40 acre 

 

 
Injectivity 

21 Constant Constant NA 2800 NA 0 2 
inverted-5 

& 40 acre 
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Case 

# 
kx mD kz, mD 

Injection 

Rate, MScf/d 

Injector 

BHP, psi 

Buoyancy 

Numbera 

WAG 

ratio 

Autocorrelation 

λDX 

Well Pattern Notes 

22 Variable kx NA 2800 NA 0 2 
inverted-5 

& 40 acre 

 

23 Variable Variable NA 2800 NA 0 2 
inverted-5 

& 40 acre 

22a Variable 0.1×kx NA 2800 NA 0 2 
inverted-5 

& 40 acre 

22b Variable 0.01×kx NA 2800 NA 0 2 
inverted-5 

& 40 acre 

a These values of buoyancy number Nbu are along the wellbore. Note Nbu changes with the distance as shown in Fig. 3. 

b Three realizations of permeability fields were created for the inverted-5 well pattern. 

c With vertical fractures. 

d Constant kx is 17.5 md, and constant kz is 11.1 md as per the reservoir arithmetic averages of permeabilities. 

 
 

Fig. 3—The change of buoyancy number Nbu along the distance from a given CO2 vertical injector. Nbu is larger than 1 when 

the distance is larger than 115 ft. This means that buoyant flow prevails in a large area between an injector to producers 

(the interwell distance is 933 ft for the 40-acre inverted 5-spot and 1319 ft for the 80-acre inverted 9-spot well patterns). 

Under r reservoir conditions, the CO2 density is 768kg/m3, and CO2 viscosity is 0.07 cp. The brine density is 915 kg/ 

m3. The vertical permeability arithmetic average is 11.1 md, and the perforation length is 96 ft (same as the thickness of 

the synthetic model in Table 1). The injection rate used for the calculation is 3000 MScf/d (based on settings in Table 2). 

 

We considered four scenarios, the details of which are listed in Table 2. We provide a brief description 

of the four scenarios below. Simulation predictions based on the settings in Scenario #4 (using true kz) are 

considered to be "truth case" in the result analysis. 

Scenario #1: constant kx and kz = 0.1 kx; 

Scenario #2: constant kx and kz from the reservoir arithmetic mean (i.e., average kx and average kz); 

Scenario # 3: variable kx with the reservoir geostatistics, and kz = 0.1 kx; 

Scenario #4: variable kx and kz with the reservoir geostatistics. 

Several other parameters were also examined, including WAG ratios, horizontal dimensionless auto- 

correlation length (λDx), and injector constraints. The WAG ratio is defined as the ratio of the reservoir 

volumes of injected water to injected CO2 for a cycle; The WAG ratio 0 represents continuous CO2 injection. 

The range of reported WAG ratios is 0 to 5 (Ettehadtavakkol et al., 2014). The ratio in this work was adjusted 

through changing water half-cycle size while keeping CO2 half-cycle size unchanged at 2.5% HCPV. 

Dimensionless horizontal auto-correlation length, λDx, is the horizontal auto-correlation length divided by the 
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domain horizontal length. For the base case, we set λDx = 2 considering the permeability variogram analysis 

for the reservoir wells. We also examined two extreme values of λDx: 0.2 (very weak lateral autocorrelation) 

and 20 (strong layering). The vertical dimensionless auto-correlation length is 0. 

The base case injection schemes are: CO2 injection rate is 3000 MScf/day, water injection rate is 1400 bbl/ 

day, and the total injection duration is 20 years with the WAG ratio 0 (Table 2). The base sets 200% HCPV 

CO2 injected considering carbon sequestration, which is larger than the typical range of 30-80% HCPV for 

CO2 EOR (Merchant, 2010). Such a large HCPV, as demonstrated in our work, tends to interact with kz in 

influencing CO2 EOR and storage performance. The injection duration for other cases proportionally varies 

with injection rates for a given HCPV CO2. Both constant injection rate and constant bottom hole pressure 

for injectors were considered, and producers were assigned a constant bottom hole pressure (minimum CO2- 

oil miscible pressure). Other details for the settings of these parameters are in Table 2. These numerical 

simulations are designed for general purposes, and the understanding from them might could also be 

revealed from scaling groups that were mathematically derived from relatively simplistic models (e.g., 

Shook et al., 1992; Sikandar, 1994). 

The metrics used are typical ones (Lake et al., 2019) to measure the influence of kz realizations on CO2 

flow: the cumulative oil production (for EOR) and cumulative CO2 retention fraction (for storage). The 

retention fraction is (cumulative CO2 injected – cumulative CO2 produced) / cumulative CO2 injected. It 

measures the efficiency of injected CO2 that is stored in an oil reservoir. 

 

Results and Discussion 

Geological and Geostatistical Analysis Results 

Statistical Analysis for An Example Well. A comprehensive geostatistical analysis is essential for 

understanding the properties (e.g., variability, auto-correlation, and anisotropy) of kz as compared to kx. 

In this section, kx and ky corresponds to kmax, and k90, respectively, as termed by Honarpour et al. (2005). 

Fig. 4 shows a set of kz -related exploratory plots for one example well, including permeability profiles, 

histograms, semivariograms, Lorenz plots, Koval plots, and kz - kx cross plots. 

kz tends to be overall less than kx; 74.7% of the whole cores have kz < kx (Fig. 4a). Several cycles of vertical 

permeability variation can be observed from the permeability profiles. Semivariograms (SVs) for log base 

10 permeability (Fig. 4b) showed that kx and ky are virtually the same but kz shows much more variability. 

This observation is consistent with the permeability profiles (Fig. 4a): several spikes of small kz appear 

with small-scale cycles. Log-permeability SVs reveal more small-scale variability than untransformed 

permeability SVs, similar to behaviors observed by Jensen et al. (2000). Untransformed SVs (not shown) 

indicate that kx and kz are virtually the same, which implies that large-scale correlation and variability for 

both permeabilities are similar, a behavior also reported by Lucia et al. (1995). These analyses indicate that 

kz shows both small- and large-scale variability and that it should be more variable than kx spatially. 
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Fig. 4—A series of kz-related exploratory plots for example well A: (a) vertical profiles for three permeabilities (depths 

indicated are not actual values); (b) semi-variograms for log permeability; (c) permeability histograms with Vdp included; 

(d) Lorenz plots; (e) Koval plots; (f) kz-kx cross plot with the 1:1 line included; (g) permeability-porosity cross plots. 

 
This observation is also supported by the plots for global statistics: permeability histograms (Fig. 4c), 

Lorenz plots (Fig. 4d), and Koval plots (Fig. 4e). All permeability histograms are skewed right. This must 
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Fig. 6—CDFs of whole core permeability of wells B (a) and C (b). 

 
Possible reasons for the different kz/kx behaviors of wells B and C were furthers investigated. Core 

descriptions for both wells (by Core Labs) suggest predominant dolomite lithology with varying amounts 

of anhydrite—mostly as nodules-and very fine silts. Stylolites and associated cements are also present. 

For well B, the upper section (025 to 255 feet) has kz/kx values similar to those of C and similar densities 

of stylolites; the upper section having 86% of the core samples with stylolites compared to 95% for well 

5512R. The lower section of B (255 to 600 feet) has 37% of the samples with stylolites present. The Core 

Lab data we had does not specify the number of stylolites in each whole core sample; it simply recorded if 

one or more stylolites was present in the sample. To further test if there is a kz/kx relationship with stylolites, 

we evaluated the conditional probability of kz ≥ kx when stylolites are present, Prob(kz ≥ kx | stylolites). For 

well C, Prob(kz ≥ kx | stylolites) = 0.08 while for well B we obtained 0.26 for the upper section and 0.38 

for the lower section. Thus, the well C values suggest a strong linkage between stylolites and permeability 

anisotropy, while well B shows that there maybe a reduced impact of stylolites on the core-scale anisotropy. 

Statistics of kz versus kx Heterogeneities for All Wells. Fig. 7 shows the comparison of Dykstra-Parsons 

coefficient (Vdp, Fig. 7a) between kz and kx, along with the similar plot for the Lorenz coefficient (Lc, Fig. 

7b). From the scatter point distribution, it appears that both kz and kx have similar heterogeneity levels, i.e., 

both coefficients are mostly in the range of 0.6-0.9. However, kz tends to be a little more heterogeneous than 

kx at the same well. The clustering behavior of points seen in Fig. 7a is a reflection of Vdp to compress large 

variability changes between wells into the small interval of 0.6 to 0.9 (Jensen and Lake, 1988). 

Considering that vertical flow is over a larger area but a with smaller pressure drop than horizontal flow, 

even a very small kz could permit non-negligible vertical flow. Thus, the prediction of flow response to kz 

may have a larger uncertainty than that to kx. Additionally, greater heterogeneity of kz as compared to kx 

cannot be honored when assuming a fixed kz/kx ratio in reservoir simulations. We examined the consequences 

of this in the flow simulation section. 
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Fig. 7—Compilation of Dykstra-Parsons coefficient Vdp (a) and Lorenz coefficient 

Lc (b) for both kz and kx for the 42 wells with whole-core measurements. 

 
Reservoir Flow Simulation Results 

Base Case Results. Fig. 8 shows the influence of various kz field realizations (corresponding to cases #1-4, 

Table 2) on the predicted CO2 EOR and storage results. At small buoyancy number Nbu, assuming kz = kx 

gives comparable oil production (Fig. 8a) to variable kz, but CO2 retention (Fig. 8b) deviates by 6.3%. This 

means that CO2 flow is more sensitive to kz than oil flow, which agrees with our intuition. The differences 

in metrics for homogeneous fields (black lines) are caused by different constants of permeabilities (17.5 

vs. 11.1md, refer to Table 2). 

 

Fig. 8—The variation of cumulative oil production (a) and CO2 retention fraction (b) along with injected CO2 HCPV. The 

buoyant number are very similar for the four cases (Nbu ≈ 2E-2). Refer to the case #1-4 in Table 2 for detailed settings. 

 

Influence of Buoyancy Number on Metrics.  Fig. 9 shows the influence of the buoyancy number Nbu 

on the defined metrics when adjusting only injection rates. Increasing injection rates smears or decreases 

the influence of kz realizations on oil production estimates (Fig. 9a). This is intuitive since the two factors 

(i.e., injection rate and kz) have opposite influences on Nbu (Eq. 1). The influence of kz realizations on CO2 
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retention forecasts (Fig. 9b) is stronger as the injection rate increases. This is because high rates cause large 

CO2 plume volumes, which tends to be more sensitive to kz compared to small plume volumes caused by 

low rates. 

 

Fig. 9—Influence of buoyancy number Nbu on the cumulative oil production (a) and CO2 retention 

fraction (b). The change of Nbu is through adjusting injection rates while keeping kz equal to kx. The 

four runs (in the sequence of legends) correspond to the cases #3-4 and cases #7-8 in Table 2. 

 

Comparing Fig. 8 to Fig. 9 shows that, at large Nbu, assuming kz = kx causes a large deviation (9.9%) in the 

estimated ultimate oil production. However, the different kz field realizations have a negligible influence on 

CO2 retention. This is because buoyant flow (large Nbu) prevails in the CO2 plume, and the accessed volume 

tends be small (reduced sweep). 

Fig. 10 shows the CO2 spatial distribution for Nbu = 2 at 0.5 HCPV CO2 injected. Areally, the patches 

that are swept by CO2 vary significantly for different realizations of kz, particularly in the upper and middle 

layers. Vertically, the CO2 distributions and saturations also show differences, particularly near the wellbore. 

Fig. 11 shows the influence of Nbu on the metrics when adjusting the kz/kx ratio. At large injection rates, kz 

= 0.1 kx yields a close agreement of both oil production (Fig. 11a) and CO2 retention (Fig. 11b) to the truth 

case (variable kz), even though the Nbu for the two cases are almost 10 times different. This implies that using 

the wellbore-based Nbu cannot capture the influence of kz on flow. As Nbu increases because of increasing 

kz, the ultimate oil production increases, as does the ultimate CO2 retention fraction. This is because the 

increase in kz makes the reservoir less anisotropic, and thus the injected CO2 contacts more oil. 
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Fig. 10—CO2 areal distribution (a) in the three selected layers and CO2 vertical distribution (b) along the vertical slice across 

the injector along the I-direction for the four cases (#5-8 in Table 2). The buoyancy number Nbu is around 2.0 for all cases. The 

areal distributions show much difference in both the upper and middle layers because of vertical permeability distribution. 

 

At a small injection rate, using kz = 0.1 kx causes an underestimation of ultimate oil production by 6% (Fig. 

11c). The deviation is larger than that for the large injection rate (Fig. 11c versus 11a). This is consistent 

with the influence of Nbu on production and retention as explained above. Also, at the small injection rate, 

the instantaneous retention fraction differs (e.g., in the interval 0.2-1.0 HCPV) and slightly decrease as Nbu 

increases, however, the ultimate CO2 retention fractions ((Fig. 11d) were very similar regardless of the kz 

realizations. This is because: in the late injection period, CO2 flow paths form mostly in the upper portion 

of the reservoir, and thus Nbu or kz realizations exert a negligible influence on CO2 retention. 
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Fig. 11—Influence of buoyancy number on simulated performance. (a) and (b) are cumulative oil production and CO2 

retention fraction, respectively, when varying buoyancy numbers (through changing kz) at a fixed large injection rate 

of 3000 MScf/d, whereas (c) and (d) are the equivalents at a fixed small injection rate of 30 MScf/d. The scale factors 

seem to work even the permeability field is heterogeneous. The four runs (in the sequence of legends) in the upper 

row correspond to Cases #3a, 3, 1a, and 4 in Table 2, and the runs in the lower row are from the Cases # 3b, and 7-9. 

 

Influence of WAG ratio on Metrics. Figs. 12a and 12b show the influence of WAG ratios on the estimated 

performance. As the WAG ratio increases, the deviation between the case kz = kx and the truth case (variable 

kz) for cumulative oil production estimation increases (Fig. 12a). An opposite influence is observed for 

the CO2 retention fraction estimation (Fig. 12b). At the same WAG ratio, setting kz = kx yields larger oil 

production than variable kz. 
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Fig. 12—The change of simulated cumulative oil production (left) and CO2 retention fraction (right) with the HCPV CO2 

injected through adjusting WAG ratios (a and b), horizontal dimensionless autocorrelation length λDx (c and d), and well 

pattern geometries (e and f). Two main scenarios are compared: kz = kx versus variable kz. Nbu is around 2E-2 for all cases. 

In (a), The WAG ratio at 1 corresponds to 21 days (2.5% HCPV) of CO2 injection alternating with 21 days of water injection. 

 
As the WAG ratio increases, the kz realization shows negligible influence on the ultimate CO2 retention 

fraction (Fig. 12b). This is because a large WAG ratio means more water injected and effective diversion of 

CO2 away from channeled paths and thus better sweep overall. In other words, large WAG ratios decrease 

the sensitivity in kz spatial distributions for CO2 retention efficiencies for small Nbu. 

Influence of Horizontal Auto-correlation Length on Metrics. Figs. 12c and 12d show the influence of 

horizontal auto-correlation length λDx on oil production and CO2 retention. At intermediate λDx (< 2), kz 

exerts a limited influence on these results. At large λDx, however, there is a large effect. As λDx increases, 

both the ultimate oil production and CO2 retention decrease. This is because large autocorrelated regions 
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of permeability give rise to lateral flow channels, which cause early CO2 breakthrough and sub-optimal 

results. The early breakthrough can also be seen from the very starting point of CO2 retention decrease in 

Fig. 12d. In particular, at the early injection period (< 0.8 HCPV), the retention fraction overall decreases 

as λDx increases for the variable kz realization cases. The ultimate retention is less influenced by λDx when it 

is large (>2). This may be because large λDx cases represent moderately- to strongly-layered systems where 

the CO2 flow paths become well-established by late injection. 

Influence of Well Pattern Geometries on Metrics. Figs. 12e and 12f show the influence of well pattern 

geometries on CO2 EOR and storage performance. Assigning kz = kx does not affect oil production for either 

the inverted 5-spot or inverted 9-spot well patterns. However, the configuration affects the CO2 retention 

prediction more for the inverted 5-spot than inverted 9-spot (6.3% vs. 0.1%). 

Influence of kz on CO2 Cumulative Injection. The above results (Figs. 8–12) are based on constant 

injection rates. Fig. 13 shows the influence of kz field realizations on the metrics when constraining the 

injector to have constant bottom hole pressure. Under this constraint, if we assume kz = 0.1 kx, then 

simulations can give good estimates for oil production (Fig. 13a), CO2 retention fraction (Fig. 13b), and 

ultimate CO2 injected volume (Fig. 13c). Among the three kz/kx ratios, the use of kz = 0.01 kx yields the 

largest errors. 

 

Fig. 13—The variation of cumulative oil production (a) and CO2 retention fraction (b) along with the HCPV CO2 injected 

for different kz realizations. (c) is the cumulative volume of CO2 injected versus CO2 injection duration for these 

realizations. Constant bottom hole pressure is imposed for the injector. Refer to Table 2 for the detailed case settings. 
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Comparison to Literature and Discussion 

Anisotropy (kz/kx) and Its Controls. Wang et al. (1998) also studied the kz/kx behavior in the Seminole 

Field, in an area similar in geology to wells B and C. They suggest a core-scale formation average kz/kx = 

0.3 with 0.1 < kz/kx < 1. Examination of their Fig. 12a, however, shows many data with kz/kx > 1, especially 

when kx < 3 md. Of the 144 points shown in their data, about 1/3rd (50 points) have kz/kx ≥ 1, suggesting 

that the formation might be considered as isotropic at the core scale. The lower section of well B, which is 

similar to the area studied by Wang et al. (1998), shows similar behavior to their data (Fig. 14a). However, 

well C exhibits smaller kz/kx values than Wang et al. (1998) reported (Fig. 14b). 
 
 

Fig. 14—Whole core vertical and horizontal permeabilities for wells B (a) and C (b). The kz/kx = 0.02 line is the lower 

value Wang et al. (1998) found appropriate by reservoir simulation. kz< kx for nearly all the points on the right plot. 

 

Koepnick (1987) presents a nice description of stylolite characteristics. Whether stylolites represent flow 

barriers depends on conditions during and after they form, leading to mixed reports of their flow effects. Ahr 

(2011), for example, states that "The literature is replete with references to stylolites … and how they form 

permeability barriers…." but he cautions that "post-stylolite diagenesis can create porosity and permeability 

in previously tight rocks …." Other studies have observed stylolites to form occasional large-scale flow 

barriers (Koepnick, 1987), but the evidence largely suggests they only form local impediments to vertical 

flow (Koepnick, 1987; Heap et al., 2014; Al-Amrie et al., 2012). Data from wells B and C suggest that when 

stylolites are abundant, the core-scale kz/kx values are reduced. This core-scale information will be useful 

for defining the larger-scale kz/kx value. 

Our work through conditional probability analysis, identified the feature of stylolite that may influence 

the core-scale kz/kx ratio for this carbonate reservoir. Comparing this result with the behavior of kz/kx and 

associated factors in sandstone reservoirs can prove instructive. At core scales, sandstone permeability 

anisotropies are caused by small-scale structures, e.g., silt beds and shale patches (Clavaud et al., 2008; 

Dernaika et al., 2018). Campero et al. (2014) noted that the kz /kx ratio is also a function of lithofacies 

(mud fraction) in a sandstone reservoir. Similar observations were made by Armitage et al. (2011) and 

Ringrose et al. (2005). These small-scale structures and lithofacies are difficult to explicitly model in the 

large scale, except for some simple deterministic distributions of shale barriers with regular geometries 

(Sikandar, 1994). Baker et al. (2015) showed that, in a sandstone reservoir, the kz - kx cross plot show only 
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a few points with kz > kx, while their carbonate example shows many more kz >kx values. Their fraction of 

kz > kx is less than that in our carbonate case. 

Scale Dependence of kz/kx. What do the core-based anisotropic values imply for the large-scale kz/kx? 

Lishman (1970) states, "it is not logical to transfer anisotropy measurements made on a core sample … to 

a reservoir" and thus, for this large-scale kz/kx values, geological factors beyond the wellbore must play a 

role. Core-scale kz/kx values are largely controlled by small-scale geological heterogeneities (Lake, 1988; 

Clavaud et al., 2008). At the larger scales, different geological heterogeneities may dominate and thereby 

change the kz/kx values (Dernaika et al., 2018). For example, for large-scale sedimentary environments, 

wave-dominated shoreface deposits tend to have more kz > kx than river-dominated deltaic deposits (Hanks 

et al., 2011). 

Reports on the relationship of core- to large-scale kz/kx values is very limited, but Baker et al. (2015) show 

a decrease of kz/kx by 2 to 3 orders of magnitude from core- to large-scale in three clastic formations. Morton 

et al. (2002) undertook a detailed comparison of core plugs, probe permeameter, and wireline tester kz/kx 

values in one of the formations reported by Baker et al. (2015). Generally, they find agreement between the 

upscaled probe (using arithmetic and harmonic averages) and tester values. They also determined that core 

plugs sampled the heterogeneities insufficiently to give agreement with either the probe or tester values. 

Thus, Morton et al.'s (2002) results suggest extrapolation of core-scale kz/kx ratios depends not only on how 

the local heterogeneities compare with the large-scale heterogeneities, but on having sufficient sampling at 

the core scale to render statistically meaningful values. 

Unlike clastics, carbonates appear to show weaker kz/kx trends with scale, perhaps decreasing by 1 or 2 

orders of magnitude from core- to large-scale (e.g., Chandra et al., 2013; Wang et al., 1994; Pamungkas et al., 

2020). This smaller change than sandstones may be partly due to better core-scale sampling, since carbonates 

tend to be well consolidated, have good core recoveries, and are exhaustively measured (in the vertical 

direction) when using whole core samples. For example, Wang et al. (1998) suggest large-scale simulation- 

based kz/kx values of 0.02 to 0.04 for the area they studied in the Seminole Field. Using harmonic and 

arithmetic averages of data from 3 wells, they predict kz/kx = 0.05 to 0.06 from the whole core permeabilities 

(Wang et al., 1994). The reasonably good agreement between upscaled core and simulation kz/kx values 

suggests the core-based values need only modest "adjustment" to represent larger-scale properties. In 

contrast, the report of Chandra et al. (2013) is a case study where core plug permeabilities were inadequate 

to characterize the kz/kx in their carbonate field. 

All these demonstrate the scale dependence of anisotropies or kz/kx ratios. The core-scale kz/kx ratio thus 

may not be the ratio at other scales (e.g., grid blocks in reservoir simulations), particularly if poor sampling 

is done. The geological controls of kz/kx ratio can be scale-dependent, and a geologically guided procedure 

may be needed to scale up the ratio from cores to grid-blocks. For scales larger than grid cells, the formation 

anisotropy could be evaluated through using interference well tests and possibly seismic (Ayan et al., 1994; 

Onur et al., 2011; Wannell and Morrison, 1990). 

Influence of kz Realizations on CO2 Flow/Injectivity, Retention, and Implications. Our direct comparison 

of heterogeneity between kz and kx based on the whole-core datasets showed that kz tends to be more 

heterogeneous and complicated than kx for this carbonate reservoir. A similar observation was made by 

Ringrose et al. (2005), and they found that traditional estimation functions for kx cannot give a satisfactory 

prediction of kz in a sandstone reservoir. Their sandstone study, along with our carbonate one here, strongly 

indicate that the flow influenced by kz will be more complicated than that by kx, and thus flow prediction 

will be much more difficult. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
A

T
C

E
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

1
A

T
C

E
/1

-2
1
A

T
C

E
/D

0
1
1
S

0
0
9
R

0
0
2
/2

4
9
3
4
0
8
/s

p
e
-2

0
5
9
9
5
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

http://onepetro.org/SPEATCE/proceedings-pdf/21ATCE/1-21ATCE/D011S009R002/2493408/spe-205995-ms.pdf/1


SPE-205995-MS 21 
 

 
Such flow here mostly refers to buoyant flow, and it occurs in subsurface porous media where two 

contrasting-density fluids exist (e.g., aquifer CO2 storage (Bryant et al., 2008; Ren et al., 2018) and 

subsurface hydrogen storage (Hassanpouryouzband et al., 2021; Heinemann et al., 2021)). In this sense, 

the geological characterization of kz for these processes should be even more important than for kx. Since 

permeability is related with capillary pressure, the latter heterogeneity on buoyant flow has received 

considerable attention in the context of aquifer CO2 storage. It has been shown that capillary pressure 

heterogeneity tends to exert much more influence on small-scale upward flow paths and associated trapping 

quantification than permeability does (Krishnamurthy et al., 2019; Saadatpoor et al., 2018; Trevisan et al., 

2017). 

For the influence of kz on CO2 storage, Abdelaal et al. (2021) studied the effect of the kz/kx ratio on 

ultimate CO2 storage capacities in a saline aquifer undergoing CO2 injection. Our result (Fig. 13) showed 

similar findings that, at the initial period of injection, cumulative CO2 injected are almost independent of 

kz/kx ratios. However, at late injection, the cumulatively injected amount becomes different for these ratios. 

We showed that, for the studied carbonate reservoir, using the kz/kx ratio equal to 1 is better than 0.1 in terms 

of CO2 injection estimation (Fig. 13). The effect is however very limited for the time scale we investigated. 

Our work further shows that, as the injection duration increases, its effects on oil production become large 

when varying the kz/kx ratio. This threshold point is around 60-100% HCPV as revealed from Figs. 9–12. 

This is because a long injection duration causes more CO2 to be affected by buoyant flow, and the influence 

of kz on CO2 displacing oil is thereby enhanced. 

Campero et al. (2014) found that using constant kz/kx to populate vertical permeability works in 

homogeneous reservoirs but fails in heterogeneous reservoirs having complex depositional environments 

(related to autocorrelation length). This is consistent with our findings that the oil production and CO2 

retention metrics change as the horizontal autocorrelation length increases. Further, our distinct contribution 

here is that we demonstrated the injection strategies (i.e., injection rates and WAG ratio choices) interact 

with reservoir heterogeneity in influencing both oil production and CO2 retention prediction (Figs. 12 and 

15). This interplay makes the influence of kz/kx on flow complicated. 

Generally, at the same buoyancy number (Nbu ≈ 2E-2), assuming kz = kx overestimates both the cumulative 

oil recovery factor and CO2 retained HCPV compared to the true case (Fig. 15). This assumption, therefore, 

affects the vertical positions of inflection points at which CO2 retained HCPV flattens with the increase 

in CO2 injection (Fig. 15b). The point represents the maximum injection duration for increased storage, 

and, after that point, injected CO2 cannot be further retained. It appears that large WAG ratios and small 

autocorrelation lengths (less heterogeneity) shorten the time duration of reaching the inflection points. These 

points were not extensively observed in the report by Lake et al. (2018) because of the relatively short (1 

HCPV) CO2 injection duration for the reviewed projects. More work is needed to understand the controlling 

factors of the inflection point and possible operational strategies for moving the point toward the left top in 

the figure (i.e., rapid and large CO2 retention) for CCUS storage. The understanding of improving volumetric 

sweep efficiency strategies and their interplay with reservoir heterogeneity should be the key here (Lake 

et al., 2018, 2019). 
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Fig. 15—The change of cumulative oil recovery (HCPV, left column) and cumulative CO2 retention (HCPV, 

right column) change cumulative CO2 injection (HCPV) through adjusting WAG ratios (a and b) and horizontal 

autocorrelation length (c and d). Nbu is around 2E-2 for all cases. The figure is similar to Fig. 12a-d except two 

changes: i) produced oil and retained CO2 was measured by HCPV; ii) the x-axis was extended from 2 to 4 HCPV. 

 
Another noteworthy aspect of Fig. 15d is that, for continuous CO2 injection, the retained CO2 can be 

larger than 1 HCPV as injection proceeds. After 1 HCPV CO2 retention, the subsequently injected CO2 must 

occupy the space that was previously occupied by water (i.e., water displacement must be occurring). The 

combined voidage replacement and dissolution/miscibility analysis, as demonstrated by Lake et al (2018), 

is very helpful to understand CO2 storage mechanisms here. 

More generally, what is the kz/kx value that would be important as a threshold if a formation appears to 

be anisotropic? This value depends on the flow process under consideration. For example, performance 

differences between kz/kx = 1 and kz/kx < 0.7 might be significant for steam-assisted gravity drainage (Azom 

and Srinivasan, 2011) while kz/kx = 0.05 might be the threshold value for gas coning (Addington, 1981). 

For our study on CO2 EOR and storage here, it appears that the threshold kz/kx ratio for flow simulations 

is in the range of 0.1 to 1, which can give a good forecast of both oil production and carbon sequestration 

performance. 
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Summary, Conclusions, and Recommendations 

For CO2 EOR and storage in oil reservoirs, it is important to understand the intrinsic geological controls of 

kz to better evaluate CO2 flow/sweep, oil production, and CO2 storage performance. We conducted analyses 

of the effect of different kz estimates based on a San Andres carbonate reservoir dataset, including whole- 

core measurements, core facies, and thin sections. We also conducted generic flow simulations based on 

the geostatistical understanding of the reservoir and studied the influence of kz on CO2 EOR and storage 

performance prediction. Our conclusions are: 

1. kz tends to be more heterogeneous and complicated than kx, as revealed from heterogeneity 

measurements. This means that assuming a fixed kz/kx ratio is not representative; if kz/kx ratios are 

taken as constants they should have the same variability. 

2. kz > kx is not unusual and, indeed, should be expected for isotropic sediments. For the reservoir studied, 

it appears that stylolites show statistically significant effects on kz for the core-scale anisotropy. 

3. kz versus kx crossplots need care when being evaluated for characteristic kz/kx values, paying particular 

attention to how many samples have kz > kx. The assumption that kz/kx < 1 can bias interpretation of 

these plots and give kz/kx estimates which are too small. 

4. The change of kz/kx with increasing scale depends primarily on two factors: the change(s) of geological 

features controlling fluid flow and on how well the permeability measurements fully represent the 

core-scale heterogeneities. Whole-core measurements of carbonates may better capture the core-scale 

controls and thereby reduce the change in kz/kx as scale increases. 

5. The influence of kz on performance predictions depends on the flow process and regimes. The 

buoyancy number proved to be a useful method to characterize the gravity-viscous competition. 

6. The accuracy of results by assuming a constant kz/kx ratio for flow performance prediction is heavily 

influenced by WAG ratios and autocorrelation lengths, but less by well patterns. 

7. As CO2 injection duration increases, the influence of kz on flow also increases. kz shows limited 

influence on cumulative CO2 injected volumes. 

To evaluate CO2 EOR and storage performance, we recommend a serial of flow numerical tests on kz, as 

shown in this work, before any large or full-field scale flow simulation efforts. 
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Nomenclature 
C Storage capacity 

F Flow capacity 

H Well perforation length 

krg Gas relative permeability 

krw Water relative permeability 

kro Oil relative permeability 
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kx x-direction permeability 

ky y-direction permeability 

kz Vertical permeability 

kmax Maximum horizontal permeability 

k90 Minimum horizontal permeability 

L Lateral length of the simulation domain 

Lc Lorenz coefficient 

Nbu Buoyancy Number 

uh CO2 entry velocity at the wellbore 

Vdp Dykstra-Parsons coefficient 

α Formation dip angle 

λDx Horizontal dimensionless auto-correlation length 

ρ Phase density 

Δ Difference 

μ Phase viscosity 

 

References 
Abdelaal, M., Zeidouni, M. and Duncan, I.J. 2021. Effects of injection well operation conditions on CO2 storage capacity 

in deep saline aquifers. Greenhouse Gases: Science and Technology. 0:1–16. https://doi.org/10.1002/ghg.2076 

Addington, D.V. 1981. An approach to gas-coning correlations for a large grid cell reservoir simulator. Journal of 

Petroleum Technology. 33(11): 2267–2274. https://doi.org/10.2118/8332-PA 

Ahr, W.M., 2011. Geology of Carbonate Reservoirs: the identification, description, and characterization of hydrocarbon 

reservoirs in carbonate rocks. John Wiley & Sons. 

Al-Amrie, O.Y., Ben-Saad, M.A., Al Marzouqi, K.I., Kshirsagar, A.H. and Coskun, S.B. 2012. The use of formation tester 

to characterize the permeability and vertical communication across the stylolite zones in carbonate reservoir. Paper 

presented at the Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, UAE, 11-14 November. 

SPE-160956-MS. https://doi.org/10.2118/160956-MS 

Armitage, P.J., Faulkner, D.R., Worden, R.H., Aplin, A.C., Butcher, A.R. and Iliffe, J., 2011. Experimental measurement 

of, and controls on, permeability and permeability anisotropy of caprocks from the CO2 storage project at the Krechba 

Field, Algeria. Journal of Geophysical Research: Solid Earth. 116(B12). https://doi.org/10.1029/2011JB008385 

Ayan, C., Colley, N., Cowan, G., Ezekwe, E., Goode, P., Halford, F., Joseph, J., Mongini, A., Obondoko, G., Pop, J. 1994. 

Measuring permeability anisotropy: The latest approach. Oilfield Review;(Netherlands), 6(4). 

Azom, P.N., Srinivasan, S. 2011. Modeling the effect of permeability anisotropy on the steam-assisted gravity drainage 

(SAGD) process. Paper presented at the Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 

15-17 November. SPE-149274-MS. https://doi.org/10.2118/149274-MS 

Baker, R.O., Yarranton, H.W., Jensen, J. L. 2015. Practical Reservoir Engineering and Characterization. Gulf 

Professional Publishing. 

Box, G.E. and Cox, D.R. 1964. An analysis of transformations. Journal of the Royal Statistical Society: Series B 

(Methodological). 26(2), 211–243. https://www.jstor.org/stable/2984418 

Bryant, S.L., Lakshminarasimhan, S. and Pope, G.A. 2008. Buoyancy-dominated multiphase flow and its effect on 

geological sequestration of CO2. SPE Journal. 13(04): 447–454. https://doi.org/10.2118/99938-PA 

Camargo, J.E.N. and Jensen, J.L. 2012. Analysis of fault permeability using mapping and flow modeling, 

Hickory Sandstone Aquifer, Central Texas. Natural Resources Research. 21(3): 395–409. https://doi.org/10.1007/ 

s11053-012-9181-5 

Campero, M.F., Nwonodi, C., Onwuchekwa, C., Eke, K., Adenaiye, O., Igogo, A., Adekoya, O. and Anosike, E. 2014. Kv/ 

Kh in heterogeneous reservoirs of a brown field of the Niger delta of Nigeria-valuable uncertain parameter for assisted 

history matching. Paper presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 

5-7 August. SPE-172450-MS. https://doi.org/10.2118/172450-MS 

Chandra, V.S., Geiger, S., Corbett, P., Steele, R., Milroy, P., Barnett, A. and Wright, P.V. 2013. Using near wellbore 

upscaling to improve reservoir characterisation and simulation in highly heterogeneous carbonate reservoirs. Paper 

presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE, 16-18 

September. https://doi.org/10.2118/166033-MS 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
A

T
C

E
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

1
A

T
C

E
/1

-2
1
A

T
C

E
/D

0
1
1
S

0
0
9
R

0
0
2
/2

4
9
3
4
0
8
/s

p
e
-2

0
5
9
9
5
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

https://doi.org/10.1002/ghg.2076
https://doi.org/10.2118/8332-PA
https://doi.org/10.2118/160956-MS
https://doi.org/10.1029/2011JB008385
https://doi.org/10.2118/149274-MS
https://www.jstor.org/stable/2984418
https://doi.org/10.2118/99938-PA
https://doi.org/10.1007/s11053-012-9181-5
https://doi.org/10.1007/s11053-012-9181-5
https://doi.org/10.2118/172450-MS
https://doi.org/10.2118/166033-MS
http://onepetro.org/SPEATCE/proceedings-pdf/21ATCE/1-21ATCE/D011S009R002/2493408/spe-205995-ms.pdf/1


SPE-205995-MS 25 
 

 
Clavaud, J.B., Maineult, A., Zamora, M., Rasolofosaon, P., Schlitter, C. 2008. Permeability anisotropy and its 

relations with porous medium structure. Journal of Geophysical Research: Solid Earth. 113(B1). https:// 

doi.org/10.1029/2007JB005004 

Dernaika, M., Al Mansoori, M., Singh, M., Al Dayyani, T., Kalam, Z., Bhakta, R., Koronfol, S. and Uddin, Y.N. 2018. 

Digital and conventional techniques to study permeability heterogeneity in complex carbonate rocks. Petrophysics. 

59(03): 373–396. https://doi.org/10.30632/PJV59N3-2018a6 

Ettehadtavakkol, A., Lake, L.W. and Bryant, S.L. 2014. CO2-EOR and storage design optimization. International Journal 

of Greenhouse Gas Control. 25: 79–92. https://doi.org/10.1016/j.ijggc.2014.04.006 

Haldorsen, H.H. and Lake, L.W., 1984. A new approach to shale management in field-scale models. SPE Journal. 24(04): 

447–457. https://doi.org/10.2118/10976-PA 

Hanks, C., Shimer, G., Davis, J., Wentz, R., Godabrelidze, V., Shukla, C., Levi-Johnson, O., Huckaby, A., McCarthy, P., 

Mongrain, J. and Dandekar, A. 2011. Production of Light Oil from a Shallow Frozen Reservoir: A Redevelopment 

Case Study of the Umiat Oil Field, Northern Alaska. Paper presented at the OTC Arctic Technology Conference, 

Houston, Texas, USA, 7-9 February. OTC-22064-MS. https://doi.org/10.4043/22064-MS 

Hassanpouryouzband, A., Joonaki, E., Edlmann, K., Haszeldine, R.S. 2021. Offshore geological storage of 

hydrogen: Is this our best option to achieve net-zero? ACS Energy Letters. 6:2181–2186. https://doi.org/10.1021/ 

acsenergylett.1c00845 

Heap, M.J., Baud, P., Reuschlé, T. and Meredith, P.G. 2014. Stylolites in limestones: Barriers to fluid flow? Geology. 

42(1): 51–54. https://doi.org/10.1130/G34900.1 

Heinemann, N., Alcalde, J., Miocic, J.M., Hangx, S.J., Kallmeyer, J., Ostertag-Henning, C., Hassanpouryouzband, A., 

Thaysen, E.M., Strobel, G.J., Schmidt-Hattenberger, C., Edlmann, K. 2021. Enabling large-scale hydrogen storage in 

porous media–the scientific challenges. Energy & Environmental Science. 14(2): 853–864. https://doi.org/10.1039/ 

d0ee03536j 

Hinton, E. M. Woods, A. W. 2019. The effect of vertically varying permeability on tracer dispersion. Journal of Fluid 

Mechanics. 860: 384–407. https://doi.org/10.1017/jfm.2018.891 

Honarpour, M.M., Djabbarah, N.F. and Sampath, K. 2005. Whole core analysis-experience and challenges. SPE Reservoir 

Evaluation & Engineering. 8(06): 460–469. https://doi.org/10.2118/81575-PA 

Jarrell, P.M., Fox, C.E., Stein, M.H. and Webb, S.L., 2002. Practical aspects of CO2 flooding (Vol. 22, p.2002). Richardson, 

TX: Society of Petroleum Engineers. 

Jensen, J.L., Hinkley, D.V. and Lake, L.W. 1987. A statistical study of reservoir permeability: distributions, correlations, 

and averages. SPE Formation Evaluation. 2(04): 461–468. https://doi.org/10.2118/14270-PA 

Jensen, J. L., and Lake, L. W., 1988. The influence of sample size and permeability distribution on heterogeneity measures. 

SPE Reservoir Engineering. 3(02): 629–637. https://doi.org/10.2118/15434-PA 

Jensen, J.L., Glasbey, C.A. Corbett, P.W.M. 1994. On the interaction of geology, measurement, and statistical 

analysis of small‐scale permeability measurements. Terra Nova. 6(4): 397–403. https://doi.org/10.1111/ 

j.1365-3121.1994.tb00513.x 

Jensen, J. L., Lake, L. W., Corbett, P. W. M., Goggin, D. J., 2000, Statistics for Petroleum Engineers and Geoscientists, 

2nd ed., Elsevier. 

Jones, J.R., Scott, A.J. and Lake, L.W. 1987. The geologic aspects of reservoir characterization for numerical simulation: 

Mesaverde meanderbelt sandstone, northwestern Colorado. SPE Formation Evaluation. 2(01): 97–107. https:// 

doi.org/10.2118/13052-PA 

Kerans, C., Lucia, F.J., Senger, R.K. 1994. Integrated characterization of carbonate ramp reservoirs using 

Permian San Andres Formation Outcrop Analogs. AAPG Bulletin. 78 (2): 181–216. https://doi.org/10.1306/ 

BDFF905A-1718-11D7-8645000102C1865D 

Koepnick, R.B. 1987. Distribution and permeability of stylolite-bearing horizons within a Lower Cretaceous carbonate 

reservoir in the Middle East. SPE Formation Evaluation. 2(02): 137–142. https://doi.org/10.2118/14173-PA 

Koval, E. 1963. A method for predicting the performance of unstable miscible displacement in heterogeneous media. SPE 

Journal. 3(02): 145–154. https://doi.org/10.2118/450-PA 

Krishnamurthy, P.G., Meckel, T.A., DiCarlo, D. 2019. Mimicking geologic depositional fabrics for multiphase flow 

experiments. Water Resources Research. 55(11): 9623–9638. https://doi.org/10.1029/2019WR025664 

Lake, L.W. 1988. The origins of anisotropy (includes associated papers 18394 and 18458). Journal of Petroleum 

Technology. 40(04): 395–396. https://doi.org/10.2118/17652-PA 

Lake, L. W., Lotfollahi, M., Bryant, S. L. 2018. Fifty years of field observations: Lessons for CO2 storage from CO2 

enhanced oil recovery. Paper presented at the 14th international conference on greenhouse gas control technologies 

(GHGT-14), Melbourne, Australia, 21-25 October. http://dx.doi.org/10.2139/ssrn.3366254 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
A

T
C

E
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

1
A

T
C

E
/1

-2
1
A

T
C

E
/D

0
1
1
S

0
0
9
R

0
0
2
/2

4
9
3
4
0
8
/s

p
e
-2

0
5
9
9
5
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

https://doi.org/10.1029/2007JB005004
https://doi.org/10.1029/2007JB005004
https://doi.org/10.30632/PJV59N3-2018a6
https://doi.org/10.1016/j.ijggc.2014.04.006
https://doi.org/10.2118/10976-PA
https://doi.org/10.4043/22064-MS
https://doi.org/10.1021/acsenergylett.1c00845
https://doi.org/10.1021/acsenergylett.1c00845
https://doi.org/10.1130/G34900.1
https://doi.org/10.1039/d0ee03536j
https://doi.org/10.1039/d0ee03536j
https://doi.org/10.1017/jfm.2018.891
https://doi.org/10.2118/81575-PA
https://doi.org/10.2118/14270-PA
https://doi.org/10.2118/15434-PA
https://doi.org/10.1111/j.1365-3121.1994.tb00513.x
https://doi.org/10.1111/j.1365-3121.1994.tb00513.x
https://doi.org/10.2118/13052-PA
https://doi.org/10.2118/13052-PA
https://doi.org/10.1306/BDFF905A-1718-11D7-8645000102C1865D
https://doi.org/10.1306/BDFF905A-1718-11D7-8645000102C1865D
https://doi.org/10.2118/14173-PA
https://doi.org/10.2118/450-PA
https://doi.org/10.1029/2019WR025664
https://doi.org/10.2118/17652-PA
http://dx.doi.org/10.2139/ssrn.3366254
http://onepetro.org/SPEATCE/proceedings-pdf/21ATCE/1-21ATCE/D011S009R002/2493408/spe-205995-ms.pdf/1


26 SPE-205995-MS 
 

 
Lake, L.W., Lotfollahi, M., Bryant, S.L. 2019. CO2 enhanced oil recovery experience and its messages for CO2 

storage. In Science of Carbon Storage in Deep Saline Formations (pp. 15–31), Elsevier. https://doi.org/10.1016/ 

B978-0-12-812752-0.00002-2 

Lake, L.W., Johns, R., Rossen, B., Pope, G. 2014. Enhanced Oil Recovery, 2nd edition. Richardson TX: Society of 

Petroleum Engineers. 

Lishman, J.R. 1970. Core permeability anisotropy. Journal of Canadian Petroleum Technology. 9(02): 79–85. https:// 

doi.org/10.2118/70-02-01 

Lucia, F.J. 1995. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG 

Bulletin.79(9): 1275–1300. https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D 

Lucia, F.J., Kerans, C., Wang, F.P. 1995. Fluid-flow characterization of dolomitized carbonate-ramp reservoirs: San 

Andres Formation (Permian) of Reservoir Field and Algerita escarpment, Permian Basin, Texas and New Mexico. 

Hydrocarbon Reservoir Characterization: Geologic Framework and Flow Unit Modeling, E.L. Stoudt and P.M. Harris 

(eds.), SEPM Short Course No. 34 (1995) 129–153 SEPM, SC34, 129-153. https://doi.org/10.2110/scn.95.34.0129 

Merchant, D.H. 2010. Life Beyond 80: A look at conventional WAG recovery beyond 80% HCPV injected in CO2 tertiary 

floods. Paper presented at the SPE International Conference on CO2 Capture, Storage, and Utilization, New Orleans, 

Louisiana, USA, 10-12 November. SPE-139516-MS. https://doi.org/10.2118/139516-MS 

Morton, K., Thomas, S., Corbett, P. W. M., and Davies, D. 2002. Detailed analysis of probe permeameter and interval 

pressure transient test data measurements in a heterogeneous reservoir. Petroleum Geoscience. 8:209–216. https:// 

doi.org/10.1144/petgeo.8.3.209 

Pamungkas, S., Gueye, T., Al Hammadi, F.Y.A. and Al Saadi, H.A. 2020. A novel technique to constrains kv/kh of 

carbonate reservoir, a valuable uncertain parameter for history match process. Paper presented at the Abu Dhabi 

International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 9-12 November. SPE-202832-MS. https:// 

doi.org/10.2118/202832-MS 

Ren, B., Delaney, J.M., Lake, L.W. and Bryant, S.L. 2018. Interplay between permeability retardation and 

capillary trapping of rising carbon dioxide in storage reservoirs. SPE Journal. 23(05): 1866–1879. https:// 

doi.org/10.2118/187356-PA 

Ren, B., Duncan, I. 2019. Modeling oil saturation evolution in residual oil zones: Implications for CO2 EOR 

and sequestration. Journal of Petroleum Science and Engineering. 177: 528–539. https://doi.org/10.1016/ 

j.petrol.2019.02.072 

Ren, B., Duncan, I.J. 2021. Maximizing oil production from water alternating gas (CO2) injection into residual 

oil zones: The impact of oil saturation and heterogeneity. Energy. 222, 119915119915. https://doi.org/10.1016/ 

j.energy.2021.119915 

Ringrose, P., Nordahl, K., Wen, R. 2005. Vertical permeability estimation in heterolithic tidal deltaic sandstones. Petroleum 

Geoscience. 11(1): 29–36. https://doi.org/10.1144/1354-079303-614 

Saadatpoor, E., Bryant, S.L., Sepehrnoori, K. 2010. New trapping mechanism in carbon sequestration. Transport in porous 

media. 82(1): 3–17. https://doi.org/10.1007/s11242-009-9446-6 

Salazar, J.J. 2018. Heterogeneity study of the Little Creek field from petrophysical data. Master Thesis. The University 

of Texas at Austin. 

Salazar, J.J. and Lake, L.W. 2020. The physical meaning of the Koval factor. Mathematical Geosciences. 52(8): 1017–

1033. https://doi.org/10.1007/s11004-020-09883-0 

Shook, M., Li, D. and Lake, L.W. 1992. Scaling immiscible flow through permeable media by inspectional analysis. In 

Situ. 16: 311–311. 

Sikandar, A.S. 1994. A study of barrier efficiency. Master Thesis. The University of Texas at Austin. 

Silin, D., Patzek, T., Benson, S.M. 2009. A model of buoyancy-driven two-phase countercurrent fluid flow. Transport in 

Porous Media, 76(3): 449–469. https://doi.org/10.1007/s11242-008-9257-1 

Stalkup, F. I., Lo. L. L., Dean, R.H. 1990. Sensitivity to gridding of miscible flood predictions made with upstream 

differenced simulators. Paper presented at the SPE/DOE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 22-25 

April. SPE-20178-MS. https://doi.org/10.2118/20178-MS 

Sun, H., Vega, S. and Tao, G. 2017. Analysis of heterogeneity and permeability anisotropy in carbonate rock samples 

using digital rock physics. Journal of petroleum science and engineering.156: 419–429. https://doi.org/10.1016/ 

j.petrol.2017.06.002 

Trevisan, L., Krishnamurthy, P.G., Meckel, T.A. 2017. Impact of 3D capillary heterogeneity and bedform architecture at 

the sub-meter scale on CO2 saturation for buoyant flow in clastic aquifers. International Journal of Greenhouse Gas 

Control. 56: 237–249. https://doi.org/10.1016/j.ijggc.2016.12.001 

Wang, F. P., Lucia, F. J., Kerans, C. 1994. Critical scales, upscaling, and modeling of shallow-water carbonate reservoirs. 

Paper presented at the Permian Basin Oil and Gas Recovery Conference, Midland, Texas, 16-18 March. SPE-27715- 

MS. https://doi.org/10.2118/27715-MS 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
A

T
C

E
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

1
A

T
C

E
/1

-2
1
A

T
C

E
/D

0
1
1
S

0
0
9
R

0
0
2
/2

4
9
3
4
0
8
/s

p
e
-2

0
5
9
9
5
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

https://doi.org/10.1016/B978-0-12-812752-0.00002-2
https://doi.org/10.1016/B978-0-12-812752-0.00002-2
https://doi.org/10.2118/70-02-01
https://doi.org/10.2118/70-02-01
https://doi.org/10.1306/7834D4A4-1721-11D7-8645000102C1865D
https://doi.org/10.2110/scn.95.34.0129
https://doi.org/10.2118/139516-MS
https://doi.org/10.1144/petgeo.8.3.209
https://doi.org/10.1144/petgeo.8.3.209
https://doi.org/10.2118/202832-MS
https://doi.org/10.2118/202832-MS
https://doi.org/10.2118/187356-PA
https://doi.org/10.2118/187356-PA
https://doi.org/10.1016/j.petrol.2019.02.072
https://doi.org/10.1016/j.petrol.2019.02.072
https://doi.org/10.1016/j.energy.2021.119915
https://doi.org/10.1016/j.energy.2021.119915
https://doi.org/10.1144/1354-079303-614
https://doi.org/10.1007/s11242-009-9446-6
https://doi.org/10.1007/s11004-020-09883-0
https://doi.org/10.1007/s11242-008-9257-1
https://doi.org/10.2118/20178-MS
https://doi.org/10.1016/j.petrol.2017.06.002
https://doi.org/10.1016/j.petrol.2017.06.002
https://doi.org/10.1016/j.ijggc.2016.12.001
https://doi.org/10.2118/27715-MS
http://onepetro.org/SPEATCE/proceedings-pdf/21ATCE/1-21ATCE/D011S009R002/2493408/spe-205995-ms.pdf/1


SPE-205995-MS 27 
 

 
Wang, F.P., Lucia, F.J., Kerans, C. 1998. Integrated reservoir characterization study of a carbonate ramp reservoir: 

Reservoir San Andres Unit, Gaines County, Texas. SPE Reservoir Evaluation & Engineering. 1(02): 105–113. https:// 

doi.org/10.2118/36515-PA 

Wannell, M.J. and Morrison, S.J. 1990. Vertical permeability measurement in new reservoirs using tidal pressure changes. 

Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 23-26 September. 

SPE-20532-MS. https://doi.org/10.2118/20532-MS 

Ward, R., Kendall, C. G. St. C., Harris P. M. 1986. Upper Permian (Guadalupian) facies and their 

association with hydrocarbons Permian Basin: West Texas and New Mexico. AAPG. 70: 239–262. https:// 

doi.org/10.1306/9488566F-1704-11D7-8645000102C1865D 

Yang, G., Butler, R.M. 1992. Effects of reservoir heterogeneities on heavy oil recovery by steam-assisted gravity drainage. 

Journal of Canadian Petroleum Technology. 31(08): 37–43. https://doi.org/10.2118/92-08-03 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://o

n
e
p
e
tro

.o
rg

/S
P

E
A

T
C

E
/p

ro
c
e
e
d
in

g
s
-p

d
f/2

1
A

T
C

E
/1

-2
1
A

T
C

E
/D

0
1
1
S

0
0
9
R

0
0
2
/2

4
9
3
4
0
8
/s

p
e
-2

0
5
9
9
5
-m

s
.p

d
f/1

 b
y
 T

h
e
 U

n
iv

e
rs

ity
 o

f T
e
x
a
s
 A

t A
u
s
tin

 u
s
e
r o

n
 3

0
 J

u
n
e
 2

0
2
2
 

https://doi.org/10.2118/36515-PA
https://doi.org/10.2118/36515-PA
https://doi.org/10.2118/20532-MS
https://doi.org/10.1306/9488566F-1704-11D7-8645000102C1865D
https://doi.org/10.1306/9488566F-1704-11D7-8645000102C1865D
https://doi.org/10.2118/92-08-03
http://onepetro.org/SPEATCE/proceedings-pdf/21ATCE/1-21ATCE/D011S009R002/2493408/spe-205995-ms.pdf/1


28 SPE-205995-MS 
 

 

Appendix A 

Reproduction of Reservoir Permeability Geostatistics in Synthetic Models 

This appendix illustrates detailed procedures of using both the Box-Cox method and sequential Gaussian 

simulation to reproduce the permeability statistics in synthetic models. For the Box-Cox method, the 

transformation of Y has the form: Y(λ) = (Yλ–1)/λ, if λ ≠0; Y(λ) = logY, if λ = 0. Based on the reservoir 

whole-core measurements of kmax (see the light blue curve in Fig.A-1(a)), we calculated that the optimal λ 

is 0.081 that results in the best approximation of a normal distribution of kmax. Then, based on the global 

statistics of normal distribution, we generated the corresponding three-dimensional permeability field with 

a set of other constraints (including model dimensions and autocorrelation length) using sequential gaussian 

simulation. After this step, we substituted the generated permeability back into the Box-Cox equation 

and back-calculated Y to get the simulated permeabilities. They are compared to the core permeability in 

Fig. A-1. Both the cumulative distribution function and Q-Q plot demonstrate that the global permeability 

statistics of the reservoir are captured in the synthetic permeability field. 

 

Fig. A-1—Comparative plots used to show the reproduction of the core permeability through using 

the proposed procedures. (a) is the permeability cumulative distribution function for cores versus 

the simulated permeability field with the horizontal dimensionless autocorrelation length 2 for an 

inverted 5-spot well pattern. (b) The Q-Q plot for the two permeability datasets (cores vs. simulated). 
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Appendix B 

Reservoir Simulation Model Inputs 

This appendix lists the main inputs for the reservoir flow simulation model. These inputs include crude oil 

properties, CO2-oil interaction, relative permeability curves. The reservoir oil viscosity is 1.2 cp with the 

density of 657.7 kg/m3 at the reservoir condition. The minimum miscibility pressure for the CO2-oil system 

is around 1400 psi. Peng-Robinson equation of state (EOS) was used to model the PVT behaviors. More 

details are in Ren and Duncan (2021). Table B-1 shows the oil compositions, and Table B-2 are the binary 

interaction coefficients for pseudo components. Fig. B-1 shows the relative permeability curves for the oil- 

water and oil-gas systems. The Stone I model was used to calculate oil relative permeability during 3-phase 

flow. Hysteresis was not considered, and its influence on performance prediction was discussed in Ren and 

Duncan (2021). End-point scaling is used to consider the influence of permeability variations on relative 

permeability curves in flow simulations. 

 
Table B-1—Representative crude oil compositions for the San Andres ROZ. 

 

Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+ 

Mole 

fraction, % 
0.02 20.14 15.9 8.99 17.29 18.42 19.24 

Critical 

temperature 

(R) 

 
547.56 

 
339.21 

 
619.38 

 
835.43 

 
1117.84 

 
1344.62 

 
1686.57 

Critical 

pressure (psi) 
1071.34 666.77 722.56 491.3 389.65 277.42 159.29 

Critical 

volume (ft3/ 

lb-mole) 

 
1.51 

 
1.56 

 
2.71 

 
5.02 

 
7.73 

 
12.13 

 
22.15 

Critical 

Z-factor 
0.275 0.287 0.295 0.275 0.251 0.233 0.195 

Molecular 

weights 

(g/mol) 

 
44.01 

 
16.29 

 
36.19 

 
70.06 

 
114.17 

 
180.94 

 
358.25 

Acentric 

Factor 
0.225 0.0139 0.125 0.245 0.383 0.582 1.0054 

Coefficient 

Ωa 
0.457 0.457 0.457 0.457 0.457 0.457 0.457 

Coefficient 

Ωb 
0.077 0.077 0.077 0.077 0.077 0.077 0.077 

 
 

Table B-2—Binary interaction coefficients for pseudo components. 
 

Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+ 

CO2 0       

C1N2 0.0976 0      

C2C3H2S 0.1289 0.0103 0     

C4-C6 0.1271 0.0019 0.0063 0    

C7-C10 0.1105 0.0241 0.0196 0.003 0   

C11-C16 0.0943 0.0494 0.0333 0.0061 0 0  

C17+ 0.0997 0.1365 0.0588 0.012 0 0 0 
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Fig. B-1—Relative permeability curves for oil-water (a) and oil-gas (b) systems. 
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Appendix C 

Koval Plots and kz–kx Crossplots for Other Wells 

This appendix shows the compilation of Koval plots and kz-kx crossplots for other wells. 

 

Fig. C-1—Koval plots for several selected wells. The curves for kx(kmax) 

and ky(k90) are virtually identical because they are from unoriented cores. 

 

Fig. C-2—Vertical permeability versus maximum horizontal permeability cross plots for 

several selected wells. Both permeability measurements are reported on a log scale. 

A 1:1 line is provided for reference. The probability of kz > kx is included in each plot. 
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Summary 

The objective of this study is to improve understanding of the geostatistics of vertical (bed-normal) permeability (kz) and its influence on 

reservoir performance during CO2 enhanced oil recovery (EOR) and storage. kz is scrutinized far less often than horizontal permeability 

(kx, ky) in most geological and reservoir modeling. However, our work indicates that it is equally important to understand kz characteristics 
to better evaluate their influence on CO2 EOR and storage performance prediction. 

We conducted this study on approximately 9,000 whole-core triaxial permeability (kx, ky, kz) measurements from 42 wells in a San 

Andres carbonate reservoir. We analyzed kz data, including heterogeneity, correlation, and sample sufficiency measures. We analyzed 

wells with the largest and smallest fractions of points with kz > kmax = max(kx, ky) to explore geological factors that coincided with large 

kz. We quantified these geological effects through conditional probabilities on potential permeability barriers (e.g., stylolites). 
Every well had at least some whole cores where kz > kmax. This is a statistically justifiable result; only where Prob(kz > kmax) is statis- 

tically different from 1/3 are core samples nonisotropic. In conventional core data interpretation, however, modelers usually assume kz is 

less than kmax. For the well with the smallest fraction (11%) of cores where kz >kmax, the cumulative distribution functions (CDFs) differ 

and coincide with the presence of stylolites. We found that kz is approximately twice as variable as kx in many wells. This makes kz more 
difficult to interpret because it was (and usually is) heavily undersampled. 

To understand the influence of kz heterogeneity on CO2 flow, we built a series of flow simulation models that captured these geosta- 

tistical characteristics of permeability, while considering kz realizations, flow regimes (e.g., buoyant flow), CO2 injection strategies, and 

reservoir heterogeneity. CO2 flow simulations showed that, for viscous flow, assuming variable kx similar to the reservoir along with 

a constant kz/kx = 0.1 yields a close (within 0.5%) cumulative oil production to the simulation case with both kx and kz as uncorrelated 
variables. However, for buoyant flow, oil production differs by 10% [at 2.0 hydrocarbon pore volume (HCPV) of CO2 injected] between 
the two cases. Such flows could occur for small CO2 injection rates and long injection times, in interwell regions, and/or with vertically 
permeable conduits. 

Our geostatistical characterization demonstrates the controls on kz in a carbonate reservoir and how to improve conventional interpre- 
tation practices. This study can help CO2 EOR and storage operators refine injection development programs, particularly for reservoirs 
where buoyant flow exists. More broadly, the findings potentially apply to other similar subsurface buoyancy-driven flow displacements, 
including hydrogen storage, geothermal production, and aquifer CO2 sequestration. 

 
Introduction 

Vertical permeability is important in many subsurface processes where there is a density difference between fluids, including gas (e.g., 
CO2) EOR and geologic storage, geothermal production, hydrogen storage, compressed air storage, tracer flow, steam injection, and water 
coning (Bryant et al. 2008; Hassanpouryouzband et al. 2021; Hinton and Woods 2018; Yang and Butler 1992; Silin et al. 2008). Specifically, 
for CO2 EOR and storage in oil reservoirs, kz characterization is important for reservoir management and development endeavors, includ- 
ing optimization of injector/producer placement, design of completion strategies, and deployment of reservoir monitoring programs 
during CO2 injection as well as post-injection periods. 

Vertical permeability can be measured at several scales. At core scales (i.e., cm and dm), whole-core samples are convenient because 
permeability is measured in three directions on the same sample. Core plugs drilled orthogonal to local bedding planes can also be used. 
At larger scales, formation testers (e.g., Ayan et al. 1994; Onur et al. 2011), history-matched reservoir simulation (Sutton et al. 2013), 
analytical and semianalytical calculations (e.g., Haldorsen and Lake 1984; Begg and King 1985), and ocean tide pressure variations (e.g., 
Wannell and Morrison 1990) may be used to estimate kz. Of all these methods, core-scale measurements are perhaps the most common. 

Core-scale kz is often compared with the horizontal permeability measured at the same or a nearby location by calculating the ratio kz/ 
kx. There appear to be two main reasons for using the ratio. First, one may expect that kz and kx are positively correlated, so that kz/kx is 

less variable than either kz or kx. The less variable a reservoir characteristic is, the easier it is to predict for areas beyond the wellbore. 

Second, kx measurements are typically more abundant than kz measurements, so that a knowledge of kx and kz/kx will provide kz estimates 

at the same frequency as kx values. Typically, log-log plots of kz vs. kx (Fig. 1) offer a useful assessment of the kz/kx values present in a 
reservoir. 

The use of kz/kx ratio is a common way of modeling kz. Then the question to be answered is: What are the consequences of avoiding kz 

measurements by using kx measurements instead? Several associated questions also arise: (i) Is kz always dependent on kx or is it indepen- 

dent? (ii) Do both permeabilities have the same/similar statistical properties? (iii) What are the influential factors of kz/kx ratio? The kz/kx 
ratio is typically assumed to be 0.1. However, several studies on sandstones (Jones et al. 1987; Hanks et al. 2011; Baker et al. 2015) and 
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Fig. 1—Sherwood Sandstone core plug data from a strongly laminated fluvio-aeolian reservoir with kz/kx lines drawn to evaluate 
core-scale anisotropy. kz/kx varies by approximately four orders of magnitude while either kz or kx change by six orders of 
magnitude. With 232 bidirectional pairs for this figure, Prob(kz/kx > 1) = 63/232 = 0.27 (probabilities are equivalent to frequencies in 
this work). Because this probability is much different from ½, it is extremely unlikely (probability of approximately 2×10−12) to get 
only 63 out of 232 samples with kz/kx > 1 if the core-scale permeability is isotropic for these data. See Morton et al. (2002) for more 
details on the Sherwood Sandstone. 

 

 

carbonates (Chandra et al. 2013; Sun et al. 2017; Dernaika et al. 2018), including the work presented here, showed the occurrences where 

kz > kx. The underlying geological causes should be well understood for reliable geomodels and multiphase flow simulations. 
A considerable number of studies have focused on the influence of kz on flow prediction. Unfortunately, most flow simulations that 

consider kz typically treat the kz/kx ratio as a sensitivity parameter and examine its influence on defined metrics (e.g., Kerans et al. 1994; 

Ren and Duncan 2021; Abdelaal et al. 2021). Campero et al. (2014) went further and analyzed kz/kx based on the geological data sets 

collected in a field and evaluated the influence of kz/kx ratio on history match and prediction during waterflooding. However, all these 

studies avoided a fundamental question: How good is using a constant kz/kx ratio for each facies or reservoir to populate vertical permea- 

bility for flow prediction as compared to having variable kz? 
Our objectives here are to deepen our understanding of the statistical properties of kz, examine kz’s influence on CO2 flow, storage, and 

production prediction, and specifically compare performance prediction between the case of using true kz vs. the traditional approach of 

assuming a ratio for kz/kx. 
Our study is based on a San Andres carbonate reservoir. The San Andres Formation (SAF) is one of the richest oil formations in the 

Permian Basin, and many CO2 EOR projects are active in the formation (Jarrell et al. 2002; Lake et al. 2018). It could be expected that 
CO2 storage incidental to EOR will likely be implemented in those Permian Basin carbonate formations in the near future. In this sense, 
our case study on the carbonate reservoir should provide a good reference for the understanding of kz and its influence on CO2 EOR and 
storage. 

We conducted kz-related exploratory plots, including permeability profiles, histograms, heterogeneity measures, and semivariogram 

(SV) analyses. Then, based on the geostatistical analysis, we selected the wells with the extreme fractions of kz > kx. We analyzed whole 

core, thin sections, and core plug data sets of the selected wells to explore the geological factors of kz. We also conducted probability 

analyses conditioned by potential permeability barriers to quantify geological parameters. We then built a series of generic flow simula- 
tion models based on this geostatistical understanding, while considering various injection strategies and flow regimes, to quantify the 
influence of kz realizations on CO2 EOR and storage performance. 

San Andres Formation 

The carbonate facies of the SAF developed on the shelves of the Permian Basin in west Texas and New Mexico during the Permian 
(Leonardian-Guadalupian) ages (Ward et al. 1986). The SAF is one of several shallow-water platform carbonate and mixed siliciclastic- 
carbonate units. From the sequence stratigraphy studies by Kerans et al. (1994), Lucia et al. (1995), and Wang et al. (1998), several 
upward-shallowing cycles were interpreted from their facies description. These cycles consist of basal mudstones and wackestones grad- 
ing upward into grain-dominated packstones and grainstones. A total of five facies groups were identified from a 4,002-ft-thick continuous 
core from 10 wells with both main pay zone (MPZ) and residual oil zone (ROZ) intervals. More complete studies for the MPZ were 
reported by Kerans et al. (1994) and Lucia et al. (1995). 

The most common pore types include interparticle, moldic, and vugs. Dolomitization is a key diagenetic process that influences poros- 
ity distribution in the reservoir. Stylolites, which are common in the SAF, are intergranular pressure solution features usually with wavy 
surfaces (Koepnick 1987; Heap et al. 2014). Most of the stylolites are sutured with cement, but some have solution seams. The stylolite- 
bearing horizons could be laterally extensive (100s of meters). They may act as barriers or paths for fluid flow depending on both stylolite 
features and their extents relative to the flow directions. Vertical fractures are common and mostly filled in by anhydrite or dolomite 
cement. 
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Data Sets 

The kz-related data set comes from an SAF reservoir and includes whole-core measurements (by Core Laboratories, Houston, Texas, 
USA), core plugs, as well as descriptions of lithology and diagenetic history. For the reservoir we studied, nearly 9,000 whole-core per- 
meabilities from more than four wells were available from Core Laboratories reports. We conducted careful quality checks and cleaning 
of these data sets before exploratory analyses. Data cleaning consisted of (i) removing measurement values below the threshold (e.g., 
<0.001 md) for some evaluations, such as averages, standard deviation, and SVs; and (ii) removing incomplete measurements. Samples 
where only kx was available without kz might be from core plugs. For the collected whole cores, over 6,000 samples have core lithology 
descriptions. Core descriptions in these reservoirs provide sedimentological information, such as textures, sedimentary structures, and 
post-depositional features. 

A whole core has a larger diameter and length than a conventional core plug (Fig. 2), thus the whole-core includes more larger-scale 
geological information. The main advantage of whole cores is that they are or approach exhaustive sampling. Whole cores are often used 
in reservoir characterization to measure three-directional permeabilities: kx, ky, kz (Fig. 2). The horizontal (x, y) direction varies randomly 

and usually kmax = max(kx, ky) and k90 = min(kx, ky). More details of whole-core-based permeabilities and their comparison to core plugs 

and probe permeameter measurements can be found in Honarpour et al. (2005), Nieto Camargo and Jensen (2012), and Ringrose et al. 
(2005). 

 

 
Fig. 2—Whole cores vs. core plugs. Note that the measurements are taken on very different rock volumes. 

 
 

 
Theory and Approaches 

Statistical Characterization. Based on the above data sets, it is helpful to begin with a comprehensive geostatistical analysis on kz to 

understand its characteristics as compared to kx. This will also guide the synthesis of generic geomodels used in the flow simulations to 

examine the influence of kz realizations on performance prediction during CO2 EOR and storage. 
Based on the 42 wells’ whole-core measurements, we created a series of kz-related exploratory plots, including vertical profiles for the 

three permeabilities. The histograms, well-based Dykstra-Parson coefficient, SVs, kz-kx crossplots, and permeability-porosity crossplots, 

Lorenz plots, and Koval plots (Koval 1963) were produced. A Koval plot is the plot of (1 – F)/F vs. (1– C)/C, where F is flow capacity 
and C is storage capacity. The vertical location of the curves on the plot measures the heterogeneity that gives clues to vertical sweep 
efficiency (Salazar 2018). Detailed explanations of the Koval plot and its physical meaning are in Lake et al. (2014) and Salazar and Lake 
(2020). 

When viewing plots, such as Fig. 1, or listings of kz/kx values, it is tempting to assume that kz/kx should nearly always be less than one 

(e.g., Dernaika et al. 2018; Pamungkas et al. 2020), so there must be a problem with the measurements if kz/kx > 1 for significant portions 

of the data set. This assumption may be incorrect for reasons listed below and it is therefore useful to keep the questions below in mind 
when assessing kz/kx values. We will use these considerations during analysis of data from the field. 

1. Are the data from one geological unit (e.g., rock type or facies) or do they represent a larger domain? A clearer picture of the kz/kx 

behavior is likely to emerge from unit-based data so that characteristic kz/kx values and how the values change can be identified. 
2. Is the formation isotropic? If the permeability is isotropic and a deterministic variable, then kx = ky = kz. However, if we assume 

permeability to be isotropic and a random variable, then kx, ky, and kz have the same probability distribution but might be unequal 

for any given sample. In that case, the probability of kz/kx > 1 should be 1/3 [written as Prob(kz/kx > 1) = 1/3] for tri-directional 
samples and ½ for bidirectional samples. Also, while the formation may not be locally isotropic, it may behave at the larger scales 
as being isotropic because some areas have kz/kx > 1 while other areas have kz/kx < 1. There may be good geological reasons why 

some kz/kx data exceed 1. For example, in sandstone reservoirs with burrowing or dewatering horizons, kz/kx > 1 (Jones et al. 1987; 

Hanks et al. 2011). Carbonates also may show kz/kx > 1 in dissolution enhanced or stylolite-bearing samples (e.g., Chandra et al. 
2013; Sun et al. 2017; Dernaika et al. 2018). 
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Flow Simulation. We ran flow simulations (using the Eclipse® simulator) to quantify the influence of kz on CO2 flow/sweep and 

performance prediction during CO2 EOR and storage. First, we synthesized a series of permeability fields according to the geostatistical 
analysis. Second, we conducted flow simulations of CO2 injection into these synthetic models while considering the reservoir ROZ rock- 
fluid properties. Third, we compared various kz realizations (including direct kz statistical realizations or true kz vs. assuming kz/kx = 0.1) 

in terms of simulation prediction for CO2 EOR and storage. 
Our procedure for generating permeability fields is to (i) use the Box-Cox method (Box and Cox 1964) to transform the reservoir 

permeability distributions to be more Gaussian; (ii) use sequential Gaussian simulation to generate permeability fields with a given set of 
heterogeneity indicators; and (iii) back-transform to get the synthetic permeability field. Appendix A includes more details of the proce- 
dure and demonstrates that the synthetic fields reproduce the global permeability statistics. 

Table 1 shows the properties of the synthetic permeability fields. Simulation models for inverted 5-spot and inverted 9-spot well pat- 
terns were created. The corresponding model dimensions and cell sizes are also in Table 1. The porosity was set to be constant at 0.11, 
the arithmetic average of the reservoir ROZ, because porosity is far less variable than permeability. It was known that vertical cell size 
influences miscible flood predictions, especially when gravity is important (Stalkup and Dean 1990). This work adopted a fixed cell size 
because the simulation studies are designed for general sensitivity analysis. 

 
Well Pattern Inverted 5-Spot  Inverted 9-Spot 

Pattern size (acre) 40  80 

Model domain sizes (ft) 1,320×1,320×96  1,860×1,860×96 

Model cell sizes (ft) 30×30×3  30×30×3 

Model dimensions 44×44×32  62×62×32 

Horizontal dimensionless autocorrelation length  0.2, 2*, 20  

Horizontal permeability log mean  1.5*  

Vertical permeability log standard deviation  1.8*  

Vertical permeability log mean  0.5*  

Vertical permeability log standard deviation  2.3*  

*Based on SAF reservoir permeability statistics.    

Table 1—Properties of synthetic permeability fields. 
   

 
For the reservoir simulation model, the settings for the rock, fluids, and their interactions, including oil properties, pressure/volume/ 

temperature models, relative permeability, and capillary pressure curves, were described in Ren and Duncan (2021). Because the whole 
simulation study is designed to examine the sensitivity of vertical permeability on CO2 EOR and storage performance, we used a single 
set of relative permeability and capillary pressure curves. More details are included in Appendix B. 

Initially, the reservoir pressure is 2,119.9 psi, and the reservoir temperature is 104°F. Uniform fluid saturations were assigned the 
average saturation magnitudes of the reservoir ROZ (Ren and Duncan 2019), with an initial oil saturation of 0.4 and the rest of the pore 
space water. 

 

 

 

 

Fig. 3—The change of buoyancy number Nbu along the distance from a given CO2 vertical injector. Nbu is larger than 1 when 
the distance is larger than 115 ft. This means that buoyant flow prevails in a large area between an injector to producers (the 
interwell distance is 933 ft for the 40-acre inverted 5-spot and 1,319 ft for the 80-acre inverted 9-spot well patterns). Under reservoir 
conditions, the CO2 density is 768 kg/m3, and CO2 viscosity is 0.07 cp. The brine density is 915 kg/m3. The vertical permeability 
arithmetic average is 11.1 md, and the perforation length is 96 ft (same as the thickness of the synthetic model in Table 1). The 
injection rate used for the calculation is 3,000 Mscf/D (based on settings in Table 2). 
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x 

x 

We designed injection-production schemes with a focus on the effects of kz on flow. To achieve this, we use a buoyancy number Nbu 

(Shook et al. 1992, Eq. 1) to measure the relative importance of buoyant force (kz-related) over viscous force (injection rate-related). The 
variation of Nbu along the distance from an injector is in Fig. 3. CO2 flow is dominated by the buoyant force (Nbu > 1) in most of the 
interwell areas (around 115 to 1,300 ft away from the injector). Thus, most of the CO2 flow will tend to be gravity segregated. Our study 
covers a wide Nbu range of 0.0022 to 22 through adjusting either injection rates or kz in simulation cases (see Table 2). 

 
 

Case 

No. k
x 

(md) k
z 

(md) 

 

Injection Rate 

(Mscf/D) 

Injector 

Bottomhole 

Pressure (psi) 

 

Buoyancy 

Numbera WAG Ratio Autocorrelation, λ
Dx 

 

Well 

Pattern Notes 

1 Constant k
x 

3,000 NA 2.2 × 10−2 0 2 Inverted-5 and 
40 acre 

2 Constant d Constantd 3,000 NA 1.4 × 10−2 0 2 Inverted-5 and 

40 acre 

3 Variable k
x 

3,000 NA 2.2 × 10−2 0 2b Inverted-5 and 
40 acre 

4 Variable Variable 3,000 NA 1.4 × 10−2 0 2 Inverted-5 and 

40 acre 

1a Variable 10 × k c 3,000 NA 2.2 × 10−1 0 2 Inverted-5 and 

 
 

 
Base settings: injection 

rate; 

WAG ratio; 

autocorrelation; 

40 acre 

3a Variable 0.1 × k
x 

3,000 NA 2.2 × 10−3 0 2 Inverted-5 and 
40 acre 

3b Variable 0.1 × k
x 

30 NA 2.2 × 10−1 0 2 Inverted-5 and 
40 acre 

5 Constant k
x 

30 NA 2.2 0 2 Inverted-5 and 
40 acre 

6 Constant Constant 30 NA 1.4 0 2 Inverted-5 and 

40 acre 

7 Variable k
x 

30 NA 2.2 0 2 Inverted-5 and 
40 acre 

8 Variable Variable 30 NA 1.4 0 2 Inverted-5 and 

40 acre 

9 Variable 10×k c 30 NA 2.2 × 101 0 2 Inverted-5 and 

 
 
 
 
 
 
 

Effect of buoyancy 

number 

40 acre 

10 Variable k
x 

3,000 NA 2.2 × 10−2 1 2 Inverted-5 and 
40 acre 

11 Variable k
x 

3,000 NA 2.2 × 10−2 4 2 Inverted-5 and 
40 acre 

12 Variable Variable 3,000 NA 1.4 × 10−2 1 2 Inverted-5 and 

40 acre 

13 Variable Variable 3,000 NA 1.4 × 10−2 4 2 Inverted-5 and 

40 acre 

14 Variable k
x 

3,000 NA 2.2 × 10−2 0 0.2 Inverted-5 and 
40 acre 

15 Variable k
x 

3,000 NA 2.2 × 10−2 0 20 Inverted-5 and 
40 acre 

16 Variable Variable 3,000 NA 1.4 × 10−2 0 0.2 Inverted-5 and 

40 acre 

17 Variable Variable 3,000 NA 1.4 × 10−2 0 20 Inverted-5 and 

40 acre 

18 Variable k
x 

3,000 NA 2.2 × 10−2 0 2 Inverted-9 and 
80 acre 

 
 
 
 

 
Effect of 

WAG ratio 

 
 
 
 
 
 
 
 

Effect of horizontal 

autocorrelation length 

 
 
 
 
 
 

Effect of well pattern 

 
 
 
 
 
 
 
 
 
 
 

 
a
These values of buoyancy number Nbu are along the wellbore. Note Nbu changes with the distance as shown in Fig. 3. 

bThree realizations of permeability fields were created for this case. 
cWith vertical fractures. 
d
Constant kx is 17.5 md, and constant kz is 11.1 md as per the reservoir arithmetic averages of permeabilities. 

Table 2—Values for the cases of CO2 flow simulations. The “truth” cases are for the case with both variable kx and variable kz realizations 
(i.e., Cases 4, 8, 12, 13, 16, 17, 19, and 23). 
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19 Variable Variable 3,000 NA 1.4 × 10−2 0 2 Inverted-9 and 

80 acre 

 

20 Constant k
x 

NA 2,800 NA 0 2 Inverted-5 and 

40 acre 

 

21 Constant Constant NA 2,800 NA 0 2 Inverted-5 and  

        40 acre  

22 

 

23 

Variable 

 

Variable 

k
x 

 
Variable 

NA 

 

NA 

2,800 

 

2,800 

NA 

 

NA 

0 

 

0 

2 

 

2 

Inverted-5 and 

40 acre 

Inverted-5 and 

 

 
Injection rates 

        40 acre  

22a Variable 0.1×k
x 

NA 2,800 NA 0 2 Inverted-5 and 

40 acre 

 

22b Variable 0.01×k
x 

NA 2,800 NA 0 2 Inverted-5 and 

40 acre 
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uhμL 

Nbu is defined as:  
Nbu = 

∆ρgkzHcosα 
, (1) 

 

where ∆p is the density difference between CO2 and the mixture of brine and oil, g is the gravitational constant, kz is the vertical perme- 

ability, H is the well perforation height, is the formation dip angle, uh is the CO2 entry velocity at the wellbore (it was calculated using 
CO2 injection rate in a radial flow geometry), μ is the CO2 viscosity at reservoir conditions, and L is the horizontal length of the simula- 
tion domain (same as the distance from an injector referred to in Fig. 3). 

We considered four scenarios, the details of which are listed in Table 2. We provide a brief description of the four scenarios below. 

Simulation predictions based on the settings in Scenario 4 (using true kz) are considered to be “truth case” in the results analysis. 
Scenario 1: constant kx and kz = 0.1 kx; 
Scenario 2: constant kx and kz from the reservoir arithmetic averages (i.e., average kx and average kz); 

Scenario 3: variable kx with the reservoir geostatistics, and kz = 0.1 kx; 
Scenario 4: variable kx and kz with the reservoir geostatistics. 
Several other parameters were also examined, including water alternating gas (WAG) ratios, horizontal dimensionless autocorrelation 

length (λDx), and injector constraints. The WAG ratio is defined as the ratio of the reservoir volumes of injected water to injected CO2 for 

a cycle; the WAG ratio 0 represents continuous CO2 injection. The range of reported WAG ratios is 0 to 5 (Ettehadtavakkol et al. 2014). 
The ratio in this work was adjusted through changing water half-cycle size while keeping CO2 half-cycle size unchanged at 2.5% HCPV. 
Dimensionless horizontal autocorrelation length, λDx, is the horizontal autocorrelation length divided by the domain horizontal length. For 

the base case, we set λDx=2 considering the permeability variogram analysis for the reservoir wells. We also examined two extreme values 

of λDx: 0.2 (very weak lateral autocorrelation) and 20 (strong layering). The vertical dimensionless autocorrelation length is 0. 
The base case injection schemes are CO2 injection rate is 3,000 Mscf/D, water injection rate is 1,400 B/D, and the total injection dura- 

tion is 20 years with the WAG ratio 0 (Table 2). The base sets 200% HCPV CO2 injected considering carbon sequestration, which is larger 
than the typical range of 30 to 80% HCPV for CO2 EOR (Merchant 2010). Such a large HCPV, as demonstrated in our work, tends to 
interact with kz in influencing CO2 EOR and storage performance. The injection duration for other cases proportionally varies with injec- 
tion rates for a given HCPV CO2. Both constant injection rate and constant bottomhole pressure for injectors were considered, and pro- 
ducers were assigned a constant bottomhole pressure (minimum CO2-oil miscible pressure). Other details for the settings of these 
parameters are in Table 2. These numerical simulations are designed for general purposes, and the understanding from them might also 
be revealed from scaling groups that were mathematically derived from relatively simplistic models (e.g., Shook et al. 1992; Sikandar 
1994). 

The metrics used are typical ones (Lake et al. 2019) to measure the influence of kz realizations on CO2 flow: the cumulative oil produc- 

tion (for EOR) and cumulative CO2 retention fraction (for storage). The retention fraction is (cumulative CO2 injected − cumulative CO2 
produced)/cumulative CO2 injected. It measures the efficiency of injected CO2 that is stored in an oil reservoir. 

 
Results and Discussion 

Geological and Geostatistical Analysis Results. Statistical Analysis for an Example Well. A comprehensive geostatistical analysis is 
essential for understanding the properties (e.g., variability, autocorrelation, and anisotropy) of kz as compared to kx. In this section, kx and 

ky correspond to kmax and k90, respectively, as termed by Honarpour et al. (2005). Fig. 4 shows a set of kz-related exploratory plots for one 

example well, including permeability profiles, histograms, SVs, Lorenz plots, Koval plots, and kz-kx crossplots. 
kz tends to be overall less than kx; 74.7% of the wholecores have kz < kx (Fig. 4a). Several cycles of vertical permeability variation can 

be observed from the permeability profiles. SVs for log base 10 permeability (Fig. 4b) showed that kx and ky are virtually the same but kz 

shows much more variability. This observation is consistent with the permeability profiles (Fig. 4a): Several spikes of small kz appear with 

small-scale cycles. Log-permeability SVs also indicate more small-scale variability than untransformed permeability SVs, similar to 
behaviors observed by Jensen et al. (2000). Untransformed SVs (not shown) indicate that kx and kz are virtually the same, which implies 
that large-scale correlation for both permeabilities is similar, a behavior also reported by Lucia et al. (1995). These analyses indicate that 

kz shows both small- and large-scale variability and that it should be more variable than kx spatially. 
This observation is also supported by the plots for global statistics: permeability histograms (Fig. 4c), Lorenz plots (Fig. 4d), and 

Koval plots (Fig. 4e). All permeability histograms are skewed right. This must be considered when populating permeability fields or 
estimating other permeability-related parameters (Jensen et al. 1987). Both the Dykstra-Parsons and Lorenz coefficients are statistically 
significantly larger for vertical permeability than for horizontal ones. The well-based Koval plots (Fig. 4e) showed the horizontal perme- 
ability holds a different trend as compared with that of vertical permeability. Similar observations were made in the plots for other wells 
(Appendix C). 

Fig. 4f shows the kz-kx crossplots for the example well. Approximately 25% of the points have kz > kx, where kx is large (>10 md). In 

fact, the anisotropic behavior is observed for more wells (Appendix C). These wells, and indeed all wells analyzed, show the existence of 
points with kz > kx, with the fractions ranging from 11 to 35%. Considering the importance of anisotropy and its implications to both 

geomodeling and flow, we further analyze the anisotropy and its geological controls in the next section. 
The permeability-porosity crossplots (Fig. 4g) show that, at a given porosity, vertical permeability tends to be less than horizontal 

permeabilities (consistent with Fig. 4a). It appears that log kz is better correlated with porosity than the other two permeabilities. 

Anisotropy Analysis for Two Contrasting Wells. We chose two wells for kz/kx analysis to further identify causes for that anisotropy. As 
a first step, depth plots and CDFs show two distinct behaviors (Figs. 5 and 6). Well B shows kz and kx behaving similarly, with kz/kx values 

fluctuating around unity (Fig. 5a). The well’s CDFs (Fig. 6a) show some differences between kz and kx values and, on closer inspection, 

the uppermost 230 ft show decreased kz/kx values compared to the bottom 340 ft (Fig. 5a). This change appears to be primarily a result 

of the number of stylolites; lithology differences are quite small. Well C, on the other hand, has kz a factor of 10 smaller than kx (Figs. 5b 
and 6b) and looks to have similar behavior throughout the cored section. 
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Fig. 4—A series of kz-related exploratory plots for example Well A: (a) vertical profiles for three permeabilities (depths indicated 
are not actual values); (b) SVs for log permeability; (c) permeability histograms with Vdp included; (d) Lorenz plots; (e) Koval plots; 
(f) kz-kx crossplot with the 1:1 line included; (g) permeability-porosity crossplots. 
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Fig. 5—Vertical profiles of kz/kx ratios for Wells B (a) and C (b). Depths shown are not actual values. 

 

 

 

Fig. 6—CDFs of whole-core permeability of Wells B (a) and C (b). 

 

Possible reasons for the different kz/kx behaviors of Wells B and C were further investigated. Core descriptions for both wells (by Core 

Laboratories) suggest predominant dolomite lithology with varying amounts of anhydrite—mostly as nodules—and very fine silts. 
Stylolites and associated cements are also present. For Well B, the upper section (025 to 255 ft) has kz/kx values similar to those of C and 

similar densities of stylolites; the upper section has 86% of the core samples with stylolites compared to 95% for Well C. The lower sec- 
tion of B (255 to 600 ft) has 37% of the samples with stylolites present. The Core Laboratories data we had do not specify the number of 
stylolites in each whole-core sample; they simply recorded if one or more stylolites was present in the sample. To further test if there is a 
kz/kx relationship with stylolites, we evaluated the conditional probability of kz ≥ kx when stylolites are present, Prob(kz ≥ kx | stylolites). 

For Well C, Prob(kz ≥kx | stylolites) = 0.08 while for Well B we obtained 0.26 for the upper section and 0.38 for the lower section. Thus, 

the Well C values suggest a strong linkage between stylolites and permeability anisotropy, while Well B shows that there may be a reduced 
impact of stylolites on the core-scale anisotropy. 

Statistics of kz vs. kx Heterogeneities for All Wells. Fig. 7 shows the comparison of the Dykstra-Parsons coefficient (Vdp, Fig. 7a) 

between kz and kx, along with a similar plot for the Lorenz coefficient (Lc, Fig. 7b). From the scatter point distribution, it appears that 

both kz and kx have similar heterogeneity levels (i.e., both coefficients are mostly in the range of 0.6–0.9). However, kz tends to be more 

heterogeneous than kx at the same well. The clustering behavior of points seen in Fig. 7a is a reflection of Vdp to compress large variability 
changes between wells into the small interval of 0.6 to 0.9 (Jensen and Lake 1988). 

Considering that vertical flow is over a larger area but with a smaller pressure drop than horizontal flow, even a very small kz could 

permit nonnegligible vertical flow. Thus, the prediction of flow response to kz may have a larger uncertainty than that to kx. Additionally, 

greater heterogeneity of kz as compared to kx cannot be honored when assuming a fixed kz/kx ratio in reservoir simulations. We examined 
the consequences of this in the flow simulation section. 

 
Reservoir Flow Simulation Results. Base Case Results. Fig. 8 shows the influence of various kz field realizations (corresponding to 

Cases 1–4, Table 2) on the predicted CO2 EOR and storage results. At small buoyancy number Nbu, assuming kz = kx gives comparable 
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Fig. 7—Compilation of Dykstra-Parsons coefficient Vdp (a) and Lorenz coefficient Lc (b) for both kz and kx for the 42 wells with 
whole-core measurements. 

 
 
 

 

Fig. 8—The variation of cumulative oil production (a) and CO2 retention fraction (b) along with injected CO2 HCPV. The buoyancy 
numbers are very similar for the four cases (Nbu ≈ 2E−2). Refer to Cases 1–4 in Table 2 for detailed settings. 

 
 

oil production (Fig. 8a) to variable kz, but CO2 retention (Fig. 8b) deviates by 6.3%. This means that CO2 flow is more sensitive to kz than 

oil flow, which agrees with our intuition. The differences in metrics for homogeneous fields (black lines) are caused by different constant 
permeability values (17.5 vs. 11.1 md, refer to Table 2). 

Influence of Buoyancy Number on Metrics. Fig. 9 shows the influence of Nbu on the defined metrics when adjusting only injection 
rates. Increasing injection rates smears or decreases the influence of kz realizations on oil production estimates (Fig. 9a). This is as 
expected because the two factors (i.e., injection rate and kz) have opposite influences on Nbu (Eq. 1). The influence of kz realizations on 
CO2 retention forecasts (Fig. 9b) is stronger when the injection rate increases. This is because high rates cause large CO2 plume volumes, 
which tend to be more sensitive to kz compared to small plume volumes caused by low rates. 

Comparing Fig. 8 to Fig. 9 shows that, at large Nbu, assuming kz = kx causes a large deviation (9.9%) in the estimated ultimate oil 

production. However, the different kz field realizations have a negligible influence on CO2 retention. This is because buoyant flow (large 

Nbu) prevails in the CO2 plume, and the accessed volume tends to be small (reduced sweep). 
Fig. 10 shows the CO2 spatial distribution for Nbu = 2 at 0.5 HCPV CO2 injected. Areally, the patches that are swept by CO2 vary 

significantly for different realizations of kz, particularly in the upper and middle layers. Vertically, the CO2 distributions and saturations 
also show differences, particularly near the wellbore. 

Fig. 11 shows the influence of Nbu on the production and retention metrics when adjusting the kz/kx ratio. At large injection rates, kz = 
0.1 kx yields close agreement of both oil production (Fig. 11a) and CO2 retention (Fig. 11b) to the truth case (variable kz), even though 

the Nbu for the two cases are almost 10 times different. This implies that using the wellbore-based Nbu cannot capture the influence of kz 

on flow. As Nbu increases because of increasing kz, the ultimate oil production increases, as does the ultimate CO2 retention fraction. This 

is because the increase in kz makes the reservoir less anisotropic, and thus the injected CO2 contacts more oil. 
At a small injection rate, using kz = 0.1 kx causes an underestimation of ultimate oil production by 6% (Fig. 11c). The deviation is larger 

than that for the large injection rate (Fig. 11c vs. Fig. 11a). This is consistent with the influence of Nbu on production and retention as 

explained above. Also, at the small injection rate, the instantaneous retention fraction differs (e.g., in the interval 0.2–1.0 HCPV) and 
slightly decreases when Nbu increases; however, the ultimate CO2 retention fractions (Fig. 11d) were very similar regardless of the kz 
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Fig. 9—Influence of buoyancy number Nbu on the cumulative oil production (a) and CO2 retention fraction (b). The change of Nbu 

is through adjusting injection rates while keeping kz equal to kx. The four runs (in the sequence of legends) correspond to Cases 
3–4 and Cases 7–8 in Table 2. 

 
 

 

 

Fig. 10—CO2 areal distribution (a) in the three selected layers and CO2 vertical distribution (b) along the vertical slice across the 
injector along the I-direction for the four cases (Cases 5–8 in Table 2). The buoyancy number Nbu is around 2.0 for all cases. The 

areal distributions show large difference in both the upper and middle layers because of vertical permeability distribution. 

 
 
 

realizations. This is because in the late injection period, CO2 flow paths form mostly in the upper portion of the reservoir, and thus Nbu or 
kz realizations exert a negligible influence on CO2 retention. 

Influence of WAG Ratio on Metrics. Figs. 12a and 12b show the influence of WAG ratios on the estimated performance. As the WAG 
ratio increases, the deviation between the case kz = kx and the truth case (variable kz) for cumulative oil production estimation increases 

(Fig. 12a). An opposite influence is observed for the CO2 retention fraction estimation (Fig. 12b). At the same WAG ratio, setting kz = kx 

yields larger oil production than variable kz. 
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Fig. 11—Influence of buoyancy number on simulated performance. (a) and (b) are cumulative oil production and CO2 retention 
fraction, respectively, when varying buoyancy numbers (through changing kz) at a fixed large injection rate of 3,000 Mscf/D, 
whereas (c) and (d) are the equivalents at a fixed small injection rate of 30 Mscf/D. The scale factors seem to work, even the 
permeability field is heterogeneous. The four runs (in the sequence of legends) in the upper row correspond to Cases 3a, 3, 1a, 
and 4 in Table 2, and the runs in the lower row are from Cases 3b and 7–9. 

 

 

As the WAG ratio increases, the kz realization shows its negligible influence on the ultimate CO2 retention fraction (Fig. 12b). This is 

because a large WAG ratio means more water injected and effective diversion of CO2 away from channeled paths and thus better sweep 
overall. In other words, large WAG ratios decrease the sensitivity in kz spatial distributions for CO2 retention efficiencies for small Nbu. 

Influence of Horizontal Autocorrelation Length on Metrics. Figs. 12c and 12d show the influence of horizontal autocorrelation 
length λDx on oil production and CO2 retention. At intermediate λDx (<2), kz exerts a limited influence on these results. At large λDx, how- 

ever, there is a large effect. As λDx increases, both the ultimate oil production and CO2 retention decrease. This is because large autocor- 

related regions of permeability give rise to lateral flow channels, which cause early CO2 breakthrough and suboptimal results. The early 
breakthrough can also be seen from the very starting point of CO2 retention decrease in Fig. 12d. In particular, at the early injection period 
(<0.8 HCPV), the retention fraction overall decreases as λDx increases for the variable kz realization cases. The ultimate retention is less 

influenced by λDx when it is large (>2). This may be because large λDx cases represent moderately to strongly layered systems where the 

CO2 flow paths become well-established by late injection. 
Influence of Well Pattern Geometries on Metrics. Figs. 12e and 12f show the influence of well pattern geometries on CO2 EOR 

and storage performance. Assigning kz = kx does not affect oil production for either the inverted 5-spot or inverted 9-spot well patterns. 
However, the configuration affects the CO2 retention prediction more for the inverted 5-spot than inverted 9-spot (6.3% vs. 0.1%). 

Influence of kz on CO2 Cumulative Injection. The above results (Figs. 8–12) are based on constant injection rates. Fig. 13 shows the 

influence of kz field realizations on the metrics when constraining the injector to have constant bottomhole pressure. Under this constraint, 

if we assume kz = 0.1 kx, then simulations can give good estimates for oil production (Fig. 13a), CO2 retention fraction (Fig. 13b), and 

ultimate CO2 injected volume (Fig. 13c). Among the three kz/kx ratios, the use of kz = 0.01 kx yields the largest errors. 

 
Comparison to Literature and Discussion. Anisotropy (kz/kx) and Its Controls. Wang et al. (1998) also studied the kz/kx behavior in the 

Seminole Field, in an area similar in geology to Wells B and C. They suggest a core-scale formation average kz/kx = 0.3 with 0.1 < kz/kx < 
1. Examination of their figure, however, shows many data with kz/kx > 1, especially when kx < 3 md. Of the 144 points shown in their data, 

approximately 1/3 (50 points) have kz/kx > 1, suggesting that the formation might be considered as isotropic at the core scale. The lower 

section of Well B, which is similar to the area studied by Wang et al. (1998), shows similar behavior to their data (Fig. 14a). However, 
Well C exhibits smaller kz/kx values than Wang et al. (1998) reported (Fig. 14b). 

Koepnick (1987) presents a nice description of stylolite characteristics. Whether stylolites represent flow barriers depends on condi- 
tions during and after they form, leading to mixed reports of their flow effects. Ahr (2011), for example, states that “The literature is 
replete with references to stylolites … and how they form permeability barriers….” but he cautions that “post-stylolite diagenesis can 
create porosity and permeability in previously tight rocks ….”. Other studies have observed stylolites to form occasional large-scale flow 
barriers (Koepnick 1987), but the evidence largely suggests they only form local impediments to vertical flow (Koepnick 1987; Al-Amrie 
et al. 2012; Heap et al. 2014). Data from Wells B and C suggest that when stylolites are abundant, the core-scale kz/kx values are reduced. 
This core-scale information will be useful for defining the larger-scale kz/kx value. 

Using conditional probability analysis, we can assess the influence of stylolites on the core-scale kz/kx ratio for this carbonate reservoir. 

Comparing this result with the behavior of kz/kx and associated factors in sandstone reservoirs can prove instructive. At core scales, sand- 
stone permeability anisotropies are caused by small-scale structures (e.g., silt beds and shale patches) (Clavaud et al. 2008; Dernaika et al. 
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Fig. 12—The change of simulated cumulative oil production (left) and CO2 retention fraction (right) with the HCPV CO2 injected 
through adjusting WAG ratios (a and b), horizontal dimensionless autocorrelation length λDx (c and d), and well pattern geometries 
(e and f). Two main scenarios are compared: kz = kx vs. variable kz. Nbu is around 2E−2 for all cases. In (a), the WAG ratio at 1 
corresponds to 21 days (2.5% HCPV) of CO2 injection alternating with 21 days of water injection. 

 

 

2018). Campero et al. (2014) noted that the kz/kx ratio is also a function of lithofacies (mud fraction) in a sandstone reservoir. Similar 

observations were made by Armitage et al. (2011) and Ringrose et al. (2005). These small-scale structures and lithofacies are difficult to 
explicitly model in the large scale, except for some simple deterministic distributions of shale barriers with regular geometries (Sikandar 
1994). Baker et al. (2015) showed that, in a sandstone reservoir, the kz-kx crossplot show only a few points with kz > kx, while their car- 

bonate example shows many more kz > kx values. Their fraction of kz > kx is less than that in our carbonate case. 
Scale Dependence of kz/kx. What do the core-based anisotropic values imply for the large-scale kz/kx? Lishman (1970) states, “it is not 

logical to transfer anisotropy measurements made on a core sample … to a reservoir” and, thus, for these large-scale kz/kx values, geolog- 

ical factors beyond the wellbore must play a role. Core-scale kz/kx values are largely controlled by small-scale geological heterogeneities 

(Lake 1988; Clavaud et al. 2008). At the larger scales, different geological heterogeneities may dominate and thereby change the kz/kx 
values (Dernaika et al. 2018). For example, for large-scale sedimentary environments, wave-dominated shoreface deposits tend to have 
more kz > kx values than river-dominated deltaic deposits (Hanks et al. 2011). 

Reports on the relationship of core- to large-scale kz/kx values are very limited, but Baker et al. (2015) show a decrease of kz/kx by 2 to 

3 orders of magnitude from the core- to large-scale in three clastic formations. Morton et al. (2002) undertook a detailed comparison of 
core plugs, probe permeameter, and wireline tester kz/kx values in one of the formations reported by Baker et al. (2015). Generally, they 

find agreement between the upscaled probe (using arithmetic and harmonic averages) and tester values. They also determined that core 
plugs sampled the heterogeneities insufficiently to give agreement with either the probe or tester values. Thus, Morton et al.’s (Morton 
et al. 2002) results suggest extrapolation of core-scale kz/kx ratios depends not only on how the local heterogeneities compare with the 

large-scale heterogeneities but on having sufficient sampling at the core scale to render statistically meaningful values. 
Unlike clastics, carbonates appear to show weaker kz/kx trends with scale, perhaps decreasing by 1 or 2 orders of magnitude from the 

core- to large-scale (e.g., Wang et al. 1994; Chandra et al. 2013; Pamungkas et al. 2020). This smaller change than sandstones may be 
partly resulting from better core-scale sampling because carbonates tend to be well consolidated, have good core recoveries, and are 
exhaustively measured (in the vertical direction) when using whole-core samples. For example, Wang et al. (1998) suggest large-scale 
simulation-based kz/kx values of 0.02 to 0.04 for the area they studied in the Seminole Field. Using harmonic and arithmetic averages of 

data from three wells, they predict kz/kx = 0.05 to 0.06 from the whole-core permeabilities (Wang et al. 1994). The reasonably good agree- 

ment between upscaled core and simulation kz/kx values suggests the core-based values need only modest “adjustment” to represent 
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Fig. 13—The variation of cumulative oil production (a) and CO2 retention fraction (b) along with the HCPV CO2 injected for different 
kz realizations. (c) The cumulative volume of CO2 injected vs. CO2 injection duration for these realizations. Constant bottomhole 

pressure is imposed for the injector. Refer to Table 2 for the detailed case settings. 

 
 
 

 

Fig. 14—Whole-core vertical and horizontal permeabilities for Wells B (a) and C (b). The kz/kx = 0.02 line is the lower value Wang 

et al. (1998) found appropriate by reservoir simulation. kz < kx for nearly all the points on the right plot. 

 

 

larger-scale properties. In contrast, the report of Chandra et al. (2013) is a case study where core plug permeabilities were inadequate to 
characterize the kz/kx in their carbonate field. 
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Fig. 15—The change of cumulative oil recovery (HCPV, left column) and cumulative CO2 retention (HCPV, right column) with 
cumulative CO2 injection (HCPV) through adjusting WAG ratios (a and b) and horizontal autocorrelation length (c and d). Nbu 

is around 2E-2 for all cases. The figure is similar to Figs. 12a–12d except two changes: (i) produced oil and retained CO2 was 
measured by HCPV; (ii) the x-axis was extended from 2 to 4 HCPV. 

 
 

All these demonstrate the scale dependence of anisotropies on kz/kx ratios. The core-scale kz/kx ratio thus may not be the ratio at other scales (e.g., 
gridblocks in reservoir simulations), particularly if poor sampling is done. The geological controls of kz/kx ratios can be scale-dependent, and a 

geologically guided procedure may be needed to scale up the ratio from cores to gridblocks. For scales larger than grid cells, the formation anisot- 
ropy could be evaluated through using interference well tests and possibly seismic (Ayan et al. 1994; Onur et al. 2011; Wannell and Morrison 1990). 
Influence of kz Realizations on CO2 Flow/Injectivity, Retention, and Implications. Our direct comparison of kz and kx based on the whole-core 

data sets showed that kz tends to be more heterogeneous and complicated than kx for this carbonate reservoir. A similar observation was made by 
Ringrose et al. (2005), and they found that traditional estimation functions for kx cannot give a satisfactory prediction of kz in a sandstone reservoir. 
Their sandstone study, along with our carbonate one here, strongly indicates that the flow influenced by kz will be more complicated than that by kx, 

and thus flow prediction will be much more difficult. 
Such flow here mostly refers to buoyant flow, and it occurs in subsurface porous media where two contrasting-density fluids exist [e.g., aquifer 

CO2 storage (Bryant et al. 2008; Ren et al. 2018) and subsurface hydrogen storage (Hassanpouryouzband et al. 2021; Heinemann et al. 2021)]. In 
this sense, the geological characterization of kz for these processes should be even more important than for kx. Because permeability is related with 
capillary pressure, the latter heterogeneity on buoyant flow has received considerable attention in the context of aquifer CO2 storage. It has been 
shown that capillary pressure heterogeneity tends to exert much more influence on small-scale upward flow paths and associated trapping quanti- 
fication than permeability does (Krishnamurthy et al. 2019; Saadatpoor et al. 2010; Trevisan et al. 2017). 

For the influence of kz on CO2 storage, Abdelaal et al. (2021) studied the effect of the kz/kx ratio on ultimate CO2 storage capacities in a saline 

aquifer undergoing CO2 injection. Our results (Fig. 13) showed similar findings that, at the initial period of injection, cumulative CO2 injected is 
almost independent of kz/kx ratios. However, at late injection, the cumulatively injected amount becomes different for these ratios. We showed that, 

for the studied carbonate reservoir, using the kz/kx ratio equal to 1 is better than 0.1 in terms of CO2 injection estimation (Fig. 13). The effect is, 

however, very limited for the time scale we investigated. Our work further shows that, as the injection duration increases, its effects on oil produc- 
tion become large when varying the kz/kx ratio. This threshold point is around 60 to 100% HCPV as revealed from Figs. 9–12. This is because as 

injection time lengthens, it causes more CO2 to be affected by buoyant flow, and the influence of kz on CO2 displacing oil is thereby enhanced. 
Campero et al. (2014) found that using constant kz/kx to populate vertical permeability works in homogeneous reservoirs but fails in heteroge- 

neous reservoirs with complex depositional environments (related to autocorrelation length). This is consistent with our findings that the oil produc- 
tion and CO2 retention metrics change as the horizontal autocorrelation length increases. Furthermore, our distinct contribution here is that we 
demonstrated the injection strategies (i.e., injection rates and WAG ratio choices) interact with reservoir heterogeneity in influencing both oil pro- 
duction and CO2 retention prediction (Figs. 12 and 15). This interplay makes the influence of kz/kx on flow complicated. 

Generally, at the same buoyancy number (Nbu ≈ 2E-2), assuming kz = kx overestimates both the cumulative oil recovery factor and CO2 retained 

HCPV compared to the true case (Fig. 15). This assumption, therefore, affects the vertical positions of inflection points at which CO2 retained 
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HCPV flattens with the increase in CO2 injection (Fig. 15b). The point represents the maximum injection duration for increased storage, and, after 
that point, injected CO2 cannot be further retained. It appears that large WAG ratios and small autocorrelation lengths (less heterogeneity) shorten 
the time duration of reaching the inflection points. These points were not extensively observed in the report by Lake et al. (2018) because of the 
relatively short (1 HCPV) CO2 injection duration for the reviewed projects. More work is needed to understand the controlling factors of the inflec- 
tion point and possible operational strategies for moving the point toward the left top in the figure (i.e., rapid and large CO2 retention) for storage. 
The understanding of improving volumetric sweep efficiency strategies and their interplay with reservoir heterogeneity should be the key here 
(Lake et al. 2018, 2019). 

Another noteworthy aspect of Fig. 15d is that, for continuous CO2 injection, the retained CO2 can be larger than 1 HCPV as injection proceeds. 
After 1 HCPV CO2 retention, the subsequently injected CO2 must occupy the space that was previously occupied by water (i.e., water displacement 
must be occurring). The combined voidage replacement and dissolution/miscibility analysis, as demonstrated by Lake et al. (2018), is very helpful 
to understand CO2 storage mechanisms here. 

More generally, what is the kz/kx threshold value if a formation appears to be anisotropic? This value depends on the flow process under consid- 

eration. For example, performance differences between kz/kx = 1 and kz/kx < 0.7 might be significant for steam-assisted gravity drainage (Azom and 

Srinivasan 2011) while kz/kx = 0.05 might be the threshold value for gas coning (Addington 1981). For our study on CO2 EOR and storage here, it 

appears that the threshold kz/kx ratio for flow simulations is in the range of 0.1 to 1, which can give a good forecast of both oil production and carbon 
sequestration performance. 

 

Conclusions and Recommendations 

For CO2 EOR and storage in oil reservoirs, it is important to understand the intrinsic geological controls of kz to better evaluate CO2 flow/sweep, 

oil production, and CO2 storage performance. We conducted analyses of the effect of different kz estimates based on a San Andres carbonate reser- 

voir data set, including whole-core measurements and core facies. We also conducted generic flow simulations based on the geostatistical under- 
standing of the reservoir and studied the influence of kz on CO2 EOR and storage performance prediction. Our conclusions are: 
1. kz tends to be more heterogeneous and complicated than kx, as revealed from heterogeneity measurements. This means that assuming a fixed 

kz/kx ratio is not representative; if kz/kx ratios are taken as constants they should have the same variability. 
a. kz > kx is not unusual and, indeed, should be expected for isotropic sediments. For the reservoir studied, it appears that stylolites 

show statistically significant effects on kz for the core-scale anisotropy. 
2. kz vs. kx crossplots need to be carefully prepared when evaluating for characteristic kz/kx values, paying particular attention to how many samples 

have kz > kx. The assumption that kz/kx < 1 can bias interpretation of these plots and give kz/kx estimates that are too small. 
3. The change of kz/kx with increasing scale depends primarily on two factors: the change(s) of geological features controlling fluid flow and on 

how well the permeability measurements fully represent the core-scale heterogeneities. Whole-core measurements of carbonates may better 

capture the core-scale controls and thereby reduce the change in kz/kx as scale increases. 

4. The influence of kz on performance predictions depends on the flow process and regimes. The buoyancy number proved to be a useful 
method to characterize the gravity-viscous competition. 

5. The accuracy of results by assuming a constant kz/kx ratio for flow performance prediction is heavily influenced by WAG ratios and autocorrela- 
tion lengths but less by well patterns. 

6. As CO2 injection duration increases, the influence of kz on flow also increases. kz shows limited influence on cumulative CO2 injected volumes. 

To evaluate CO2 EOR and storage performance, we recommend a serial of flow numerical tests on kz, as shown in this work, before undertaking 
any large or full-field scale flow simulation efforts. 

 
Nomenclature 

C = storage capacity 
F = flow capacity 
H = well perforation length 

k90 = minimum horizontal permeability 

kmax = maximum horizontal permeability 

krg = gas relative permeability 
kro = oil relative permeability 

krw = water relative permeability 
kx = x-direction permeability 

ky = y-direction permeability 

kz = vertical permeability 
L = lateral length of the simulation domain 

Lc = Lorenz coefficient 

Nbu = buoyancy number 
uh = CO2 entry velocity at the wellbore 

Vdp = Dykstra-Parsons coefficient 
α = formation dip angle 
∆ = difference 
µ = phase viscosity 

λDx = horizontal dimensionless autocorrelation length 
ρ = phase density 
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Appendix A—Reproduction of Reservoir Permeability Geostatistics in Synthetic 
Models 
This appendix illustrates detailed procedures of using both the Box-Cox method and sequential Gaussian simulation to reproduce the permeability 
statistics in synthetic models. For the Box-Cox method, the transformation of a random variable X has the form: Y(X, λ) = (Xλ− 1)/λ, if λ ≠0; Y(X, 
0) = logX. Based on the reservoir whole-core measurements of kmax (see the light blue curve in Fig. A-1a), we calculated that the optimal λ = 0.081 
that results in the best approximation of a normal distribution of kmax. Then, based on the global statistics of normal distribution, we generated the 
corresponding 3D permeability field with a set of other constraints (including model dimensions and autocorrelation length) using sequential 
Gaussian simulation. After this step, we substituted the generated permeability back into the Box-Cox equation and back-calculated Y to get the 
simulated permeabilities. They are compared to the core permeability in Fig. A-1. Both the CDF and Q-Q plots demonstrate that the global perme- 
ability statistics of the reservoir are captured in the synthetic permeability field. 
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Fig. A-1—Comparative plots used to show the reproduction of the core permeability through using the proposed procedures. (a) 
The permeability CDF for cores vs. the simulated permeability field with the horizontal dimensionless autocorrelation length 2 for 
an inverted 5-spot well pattern. (b) The Q-Q plot for the two permeability data sets (cores vs. simulated). 

 
 

Appendix B—Reservoir Simulation Model Inputs 
This appendix lists the main inputs for the reservoir flow simulation model. These inputs include crude oil properties, CO2-oil interaction, 
and relative permeability curves. The reservoir oil viscosity is 1.2 cp with a density of 657.7 kg/m3 at reservoir conditions. The minimum 
miscibility pressure for the CO2-oil system is around 1,400 psi. The Peng-Robinson equation of state was used to model the pressure/ 
volume/temperature behaviors. More details are in Ren and Duncan (2021). Table B-1 shows the oil compositions, and Table B-2 lists 
the binary interaction coefficients for pseudocomponents. Fig. B-1 shows the relative permeability curves for the oil-water and oil-gas 
systems. The Stone I model was used to calculate oil relative permeability during three-phase flow. Hysteresis was not considered, and its 
influence on performance prediction was discussed in Ren and Duncan (2021). Endpoint scaling was used to consider the influence of 
permeability variations on relative permeability curves in flow simulations. 

 
Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 

C11-C16 C17+ 

Mole fraction (%) 0.02 20.14 15.9 8.99 17.29 18.42 19.24 

Critical temperature (°R) 547.56 339.21 619.38 835.43 1,117.84 1,344.62 1,686.57 

Critical pressure (psi) 1,071.34 666.77 722.56 491.3 389.65 277.42 159.29 

Critical volume (ft3/lb-mole) 1.51 1.56 2.71 5.02 7.73 12.13 22.15 

Critical Z-factor 0.275 0.287 0.295 0.275 0.251 0.233 0.195 

Molecular weights (g/mol) 44.01 16.29 36.19 70.06 114.17 180.94 358.25 

Acentric factor 0.225 0.0139 0.125 0.245 0.383 0.582 1.0054 

Coefficient, Ωa 0.457 0.457 0.457 0.457 0.457 0.457 0.457 

Coefficient, Ωb 0.077 0.077 0.077 0.077 0.077 0.077 0.077 

Table. B-1—Representative crude oil compositions for the San Andres ROZ. 

 
 
 

 Component CO2 C1N2 C2C3H2S C4-C6 C7-C10 C11-C16 C17+  

CO2 0     

C1N2 0.0976 0   

C2C3H2S 0.1289 0.0103 0  

C4-C6 0.1271 0.0019 0.0063 0 

C7-C10 0.1105 0.0241 0.0196 0.003 0   

C11-C16 0.0943 0.0494 0.0333 0.0061 0 0  

C17+ 0.0997 0.1365 0.0588 0.012 0 0 0 

Table. B-2—Binary interaction coefficients for pseudo-components. 
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Fig. B-1—Relative permeability curves for oil-water (a) and oil-gas (b) systems. 

 
 

Appendix C—Koval Plots and kz-kx Crossplots for Other Wells 
This appendix shows the compilation of Koval plots and kz-kx crossplots for more wells (Figs. C-1 and C-2). 

 

 
Fig. C-1—Koval plots for several selected wells. The curves for kx(kmax) and ky(k90) are virtually identical because they are from 
unoriented cores. 

 
 
 

 

Fig. C-2—Vertical permeability vs. maximum horizontal permeability crossplots for several selected wells. Both permeability 
measurements are reported on a log scale. A 1:1 line is provided for reference. The probability of kz > kx is included in each plot. 
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Abstract 
 

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such reservoirs cannot be 

produced by conventional production techniques. ROZs in carbonate reservoirs in the Permian Basin of West Texas were initially 

interpreted (from wireline logs), as being productive oil zones. If these zones were completed for production, they produced 

largely water. Over the last decade it has been demonstrated that CO2 injection can make these zones economic to produce. As a 

result, ROZs in the Permian basin and elsewhere have become attractive targets for CO2-EOR (CO2 enhanced oil recovery) and 

have a large potential for CO2 sequestration consequential to the EOR activity. The viability of CO2 EOR in ROZs is currently 

being demonstrated by the results of CO2 injection into the ROZs at the Seminole, Wasson Denver Unit, and Goldsmith oil field. 

The recoverable oil from ROZs in both the San Andres and Canyon Reef formations of Permian Basin, have been estimated as 12 

billion barrels. A key question is the capacity of ROZs to sequester CO2. 

The current project is the first study of ROZs based on extensive studies of cores, wireline logs, and production data from 

several ROZs in the San Andreas Formation. Understanding the magnitude of oil saturation and how it varies within ROZs is 

important to modelling both EOR and sequestration. The commonly accepted model for the formation of ROZ is based on the 

hydrodynamic effects of tectonically-controlled increased water flows in aquifer at the base of oil fields. In this work, the nature 

of this process was modelled using a commercial reservoir simulator. These flow simulations were designed to understand how 

the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil saturations in 

ROZs. A special emphasis was on understanding the impact of reservoir heterogeneity on the variation of capillary pressures 

throughout ROZs. Heterogeneities in capillary pressures appear to dominate the distribution of oil saturation within the ROZ and 

will also strongly influence the performance for both oil production from CO2 injection, as well as associated CO2 storage. 

Finally, we discuss the implications of our results to the understanding of both CO2 EOR and storage in ROZs. 

Keywords: Oil Saturation, Residual Oil Zone, CO2 EOR and Storage, Flow Modeling. 
 

 

1. Introduction 

 
Residual oil zones (ROZs) can be defined as an oil reservoir in which the oil is at, or is close to, residual oil 

saturation. ROZs have the apparent characteristics of a reservoir after the completion of a water flood. ROZs in 

carbonate reservoirs in the Permian Basin of Texas were initially interpreted from wireline logs as being productive 
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oil zones. However, if these zones were completed for production, they produced water only occasionally with 

traces of oil. Thus, ROZs can be produced by neither conventional pumping nor water flooding. Rather, producing 

from these zones requires some form of enhanced oil recovery such as CO2-EOR (providing incidental sequestration 

of CO2). 

ROZs have different types in terms of their origin and evolution [1]: (i) an oil accumulation is subject to a tilt 

(from differential subsidence or tectonic movements), resulting in re-equilibration of water-oil contacts and the 

formation of ROZs; (ii) the original oil accumulation leaks through seal (perhaps temporally), again leading to ROZ 

formation; (iii) a change in the hydrodynamics of the underlying aquifer resulting in regional groundwater flow. 

This flow sweeps the lower portion of oil columns, resulting in the development of ROZs. The consensus of 

opinions is that the ROZs in the Permian Basin represent the third of these categories and the simulations made in 

the current study are based on this scenario. 

As a result of many years of testing and analysis by Permian Basin petroleum engineers and geologists, it has 

been demonstrated that CO2 injection enables economically viable oil production from ROZs [1-4]. The San Andres 

Formation has over 10 Billion bbls of cumulative production. Estimates of the volume remaining from the original 

oil in place (OOIP) vary between 50 to 80%. CO2 EOR in ROZs is currently taking place in eight San Andres oil 

fields in the Permian Basin, including the Seminole San Andres Unit, the East Seminole field, the Goldsmith San 

Andreas Unit, the Wasson Denver Unit, Tall Cotton, Hanford field, Means, and the Vacuum San Andres field. 

Significant volumes of CO2 are being sequestered incidental to these CO2-EOR projects, providing a possible path 

for large scale market-driven carbon capture and storage (CCS). The estimated recoverable oil from ROZs in both 

the San Andres and Canyon Reef formations of Permian Basin, are estimated by Koperna et al. [5] as 12 billion 

barrels. This represents a little over a third of the estimated original oil in place. Bachu et al. [6] noted that ROZs are 

“regarded in the industry as the most optimum part of oil reservoirs to store CO2”. They based this on: the typically 

large volume of ROZs; their high water saturation; and “hydrocarbon availability”. 

Unfortunately, almost all the research on ROZ formation and characteristics has not been published in refereed 

journals but rather is available in contract reports, presentations, and conference proceedings. Trentham and his 

coworkers [7] have assumed that, high aquifer flow rates would have been initially established across the San 

Andreas formation from the uplift of the Guadalupe Mountains along the western margin of the Permian Basin. This 

uplift apparently peaked around 20 Ma associated with the formation of the Rio Grande Rift [8]. Subsequent erosion 

of these mountains would have reduced hydraulic heads in the regional aquifer lowering flow rates. Harouaka et al. 

[9] suggested that the hydrodynamic impact continued unabated, “albeit at a very slow pace like one foot/1000 

years”, an assertion they based on “analytical modeling” using the analysis of Hubbert [10]. A recent study by 

Trentham et al. [7] attempted to model the probable flow pathways, of what they termed “hydrodynamic fairways”. 

However, absent a creation of a set of robust regional groundwater flow models extending back to the regional uplift 

event in the Permian Basin, the groundwater flow directions cannot be well constrained. Jamali and Ettehadtavakkol 

[11] modelled the ROZ formation process through mimicking the natural waterflooding process, however, their 

specific simulation is based on a simplified static reservoir model and physics. 

This paper is the first attempt to use multiphase and full-physics flow simulations to make a comprehensive study 

of the hydrodynamic model for the development of (and the implications of for CO2-EOR) ROZs in the San Andres 

Formation. In the following, we describe our modeling approach and analyze several factors that are potentially 

significant in the evolution of ROZs. Finally, we evaluate the significance of these results to both oil production and 

incidental CO2 sequestration in future CO2-EOR projects in these zones. 

 
2. Methodology 

 
This project set out to study the formation of ROZs in the San Andres Formation, based on creating simulations 

modelling the “natural waterflood” scenario. We create simulations of these reservoirs that aim to explore the nature 

and spatial patterns of oil saturation in ROZs in response to variations in the flow of regional aquifers. The simulator 

used is Eclipse-E100 [12], an efficient and multidimensional black-oil simulator. 

Our modeling is based on the reservoir characteristics of the residual oil zone associated with the Seminole Field, 

however, we do not model this field specifically. A three-dimensional (3D) static reservoir model, representative of 

the geology and petrophysical variation of the ROZ underlying the Seminole Field, was built from the published 
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reservoir property data [13-15]. The model was populated using data from these published sources and from 

petrophysical measurements made on cores, and interpretation of wireline logs from the BEG log library. 

Two 2-D section geologic models were cut from the 3-D reservoir model: one is along the E-W (X-Z slice, the 

approximate dip direction), and the other is along the N-S (Y-Z slice, the approximate strike direction). The purpose 

of selecting these two sections is to examine how flow direction affects evolution the oil saturation in the ROZ. The 

two vertical sections cross along a vertical line. This line overlaps a drilled vertical well with detailed well 

properties published by Honarpour et al. [15]. Specifically, this well has an oil saturation profile, based on 

measurements (made prior to CO2 injection into the ROZ) from sponge cores. This data provides an important way 

for us to validate the reasonableness of our simulations. 

The corner point grid system is used, and the dimensions of each model is 63×100. The cell size in the horizontal 

direction is 100 ft., and the vertical cell size varies in different layers with the average ~2ft. The two 2-D orthogonal 

models have similar means and standard deviation for the porosity and permeability (Table 1). Published 

permeability measurements by Honarpour et al. [15] show that the horizontal and vertical permeability’s are largely 

similar. These authors note that the presence of low permeability layers of fine-grained, anhydrite-rich facies, 

creates a strongly anisotropic permeability. They suggest the resultant vertical component is approximately one 

tenth of the horizontal component. Initially, hydrostatic pressure is set for the reservoir with the middle depth 

pressure at 2119.9 psi, and the reservoir temperature is 104 °F. The oil saturation is initialized using the gravity- 

capillary equilibrium method. 

A capillary entry pressure field is generated using the Leverett j-function [16] that links permeability, porosity, 

and capillary pressure. The reference capillary pressure curve is assigned to the cells with the permeability of 16 mD 

as this reference curve is measured on the core with this permeability. These cells are considered as reference cells. 

The other cells in the model are assigned with different capillary pressure curves by scaling the capillary pressure of 

each cell with the corresponding permeability and porosity. The interfacial tension for each cell is assumed to be the 

same, and contact angle has the same assumption. So each cell can be assigned with a capillary pressure curve that is 

consistent with its upscaled permeability and porosity while omitting interfacial tension and contact angle. 

Flow simulations are designed to model the key relevant physics for understanding the ROZ origin associated 

with the San Andreas Formation in the Permian Basin. To understand the relevant physics, we first introduce a 

gravity number (Ngr), and this number describes the influence of competitive gravity versus viscous forces on water 

flooding. Ngr is a dimensionless ratio of the gravitational force acting on the fluids to the viscous force that drives 

water migration. 

In the 2D models, the volume of water injected is approximately 27 pore volumes (PV) for the base case 

(corresponding to the regional water flux of 0.5 ft./yr.). This PV is consistent with the suggestions of Trentham et 

al., [7] about the time scale and flux of regional natural water flooding impacting the ROZs within the Permian 

Basin. The sensitivity of the magnitude of oil saturation in the ROZs to varying the magnitude and duration of 

regional hydraulic head, is also investigated. The regional hydraulic head was varied over three orders of magnitude. 

Additionally, changes in the nature of ROZs (e.g., oil saturation and geometry) in response to the lowering of 

hydraulic head are examined. This lowering decreases regional water flow rate, so the study is designed to 

approximate the decreasing rate of flow through three sequential simulation processes with the decreasing water 

fluxes from 5ft/yr, 0.5ft/yr to 0.05 ft/yr, with each modeled time period lasting for 50,000 years (refer to case #12 in 

Table 2). More importantly, both single and heterogeneous capillary pressure are purposely considered in these 

simulations. Single capillary pressure means that the capillary pressure curve is used for all the cells in the domain, 

whereas, heterogeneous capillary pressure means that scaled capillary pressure curves are employed. 

 
Table 1 Injection simulation schemes in the 2D models 

Water flux entering formation 

from wellbore, ft./yr. 

Injection rate, 

rb/d** 

Injection duration, 

Year 

Total injected 

water, PV 

Ngr along the 

wellbore 

 
Dominant force 

5.0 183.4 50k 268 4.7E+3 Gravity 

0.5* 18.3* 50k* 26.8* 4.7E+4* Gravity 

0.05 1.83 50k 2.7 4.7E+5 Gravity 

*means base case settings; ** rb means reservoir barrel 
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A vertical injector and a producer are used to mimic regional water filtration in the ROZ, and the two wells are 

placed on the left and right boundary cells, respectively. Both wells are perforated along the intervals of both the 

producing ROZ and the water leg, for which, their heights are approximated through the field tests and 

measurements [15]. Constant water rate is imposed on the injector with the values shown in Table 2, and the same 

rate of liquid production is imposed on the right producer. Boundary settings in the N-S slice are the same. The 

condition settings for all the simulated cases are summarized in Table 2. 

 
Table 2 Summary of conditions for simulations. The time duration in parentheses, correspond to the adjacent PV. 

Case No Water flux, ft/yr Injected PV Flow direction Capillary pressure 

1 0.5 26.8 (50k yrs) W-E w/o 

2 0.5 32.1 (60k yrs) W-E w/o 

3 0.5 26.8 W-E Single 

4 0.5 26.8, 268, 536 (1MM yrs) W-E Heterogeneous 

5 5.0 268 W-E Single 

6 5.0 268 W-E Heterogeneous 

7 0.05 2.7 W-E Single 

8 0.05 2.7, 27, 54 (1MM yrs) W-E Heterogeneous 

10 0.5 26.8 N-S Heterogeneous 

 
3. Results 

 
We firstly describe the evolution of oil saturation fields during the ROZ formation process. Particularly, we 

emphasize the effect of the interplay between water flux magnitude and capillary pressure on the remaining oil 

saturation in the ROZ. Next, we compare our simulation results to the down the well measurements of oil saturation 

in the San Andres Seminole Field. 

 

3.1 Effect of the duration of regional aquifer flow on oil saturation in ROZs 

To evaluate the effect of the duration of regional aquifer flow on the nature of ROZ formation, we started with 

the case that considers no capillary pressure (#1 in Table 2). This case shows a similar oil saturation field as another 

case that considers single capillary pressure (#3 in Table 2). For the MPZ, the oil saturation is initialized using the 

gravity-capillary equilibrium, and the initial oil saturation is high and around 0.8. The capillary transition zone in 

these simulations is very small and almost not observable as shown around the interface between the yellow and 

blue areas. As water influx proceeds (T=10,000 to 50,000 yrs.), the vertical extent of the ROZ increases. At a 

timescale of 50,000 years, further changes in the magnitude and spatial distribution of oil saturation values are 

negligible. 

The variation of oil saturation with depth is perhaps the most important feature of ROZs. The intervals with high 

saturation represent the low permeability/low porosity (<0.05) areas, and this oil cannot be efficiently displaced by 

water as shown in Fig. 1. To quantify oil saturation vertical profiles, we plot the change of oil saturation along depth 

at different times (Fig. 2). Overall, the oil saturation profiles attained an approximate or pseudo-steady state after 

approximately 50,000 years. The attainment of pseudo-steady-state oil saturation is further illustrated in Fig. 3 that 

shows the evolution cell oil saturation in several selected depths. It appears that, in this simulation, the upper part of 

the ROZ requires a much longer time to reach this pseudo-steady state (note the light blue line in Fig.3). 
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Fig. 1. The evolution of oil saturation fields considering single capillary pressure. The water inlet flux is 0.5 ft/yr. X/Z aspect ratio is 5.7. 
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Fig. 2. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well 

with measured oil saturation in the ROZ) of the oil saturation fields in Fig. 6. 

 

Fig. 3. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the 

ROZ top, the two depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom. 

 

3.2 Effect of the interplay between inlet flux magnitude and capillary pressure 

We first analyze the effect of water flux magnitude (aquifer flow-rate) on ROZs when considering single 
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capillary pressure (left column in Fig. 4). ROZ thickness is sensitive to the magnitude of the upstream water flux in 

the aquifer. This is because of the competition between the viscous and gravitational forces (the ratio is gravity 

number Ngr,): large viscous force (large water flux) suppresses the effect of water gravity on the displacement 

profile, and a thick ROZ is created. Additionally, the contact between the MPZ (yellow in Fig. 4) and ROZ (light 

blue) becomes less inclined as water flux decreases; this is obviously because decreasing water flux tends to create 

hydrostatic distribution of oil/water. 

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the middle row in Fig. 4) and analyse the effect 

of capillary pressure heterogeneity on the development of ROZs in response to this water flow. When capillary 

pressure heterogeneity is taken into account, the producing water-oil contact is enlarged (relative to single capillary 

pressure). In addition, the transition zone (black circled area in the middle row) between the ROZ and the MPZ is 

distinct, with a thickness of 10-15 ft. The oil saturation in this transition zone varies significantly, from around 0.30 

in light green spots to 0.80 in the light yellow patches. However, for the case considering single capillary pressure, 

the transition zone is thin and poorly defined (refer to the middle left oil saturation field in Fig. 4). 

 

Fig. 4. Oil saturation fields at 50000 yrs of flow simulation. Each row represents different regional water fluxes. The left column considers single 

capillary pressure, whereas, the right column considers heterogeneous capillary pressure. The dashed lines represent the approximated transition 
areas between the top of producing ROZ and the base of producing MPZs. X/Z aspect ratio is 5.7. 

 

More importantly, the interplay between capillary pressure heterogeneity and upstream water flux largely 

influences the thickness of the upper transition zone (the dashed circle area). Through comparing the middle 
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saturation field to the lower one in the right column in Fig. 4, it can be seen that the upper transition zone becomes 

thick as the upstream water flux decreases. Again, this is because of the lower viscous force, which in turn enhances 

the effect of capillary dispersion on oil saturation. 

The above analyses concentrate on the evolution of oil saturation in ROZs. The time scale of achieving quasi 

steady-state oil saturation in a ROZ is much less than the geologic time of mountain uplift and erosion (~Ma). 

Generally, the evolution of oil saturation in a given cell is mainly controlled by both relative permeability curves 

and imposed pressure gradient (equivalent to inlet water flux). Thus, any changes in both of them would cause 

different time consumed to achieve steady states. 

 

3.3 Effect of regional water flow directions 

The noteworthy issue is the nature of oil-water contacts (dashed blue lines in Fig. 5) for the two different regional 

water flow directions. The inclination of the contact along the strike direction is smaller than in the dip direction. 

This observation is consistent with greater lateral sedimentary continuity along the strike. 

 

 

Fig. 5. Impact of flow direction on oil saturation fields in the ROZ. The oil saturation is at the 50,000 yrs of flow simulation with capillary 
pressure heterogeneity considered. The black dashed lines circle the oil stripes with large oil saturation in the ROZ, and the blue dashed lines 

approximate the inclined producing water-oil contacts. The imposed water flux for both oil saturation fields is 0.5 ft/yr. Left: X/Z aspect ratio is 

5. 7. Right: Y/Z ratio is 7.7. 

 

4. Discussion 

 
This study has not attempted to specifically model the Seminole Field, rather, we have modelled the formation of 

a generic ROZ by starting with an oil-saturated reservoir. Its thickness is equivalent to the sum of current SSAU 

ROZ and producing MPZ. Our simulations reproduce many of the features reported from San Andreas ROZ 

reservoirs. The simulation results are consistent with an effectively steady state being reached (at least with respect 

to oil saturation) on a time scale of 50 thousand years. It is significant that, even after 1MM yrs of regional water 

flush, the oil saturation in several patches remains similar to the initialized values (0.7~0.8). These patches are local 

areas of lower porosity and permeability. This observation is consistent with the observed presence of oil stains in 

the less permeable patches of San Andres core samples. 

The influence of capillary pressure heterogeneity on the flow paths of water/oil and thus on the ROZ 

characteristics, is one of the key discoveries of this study. Heterogeneous capillary pressures are known to be 

significant for a number of subsurface processes that are characterized by slow flow rates, e.g., buoyant flow of CO2 

during geological carbon sequestration [17,18] and secondary hydrocarbon migration/ accumulation [19]. Even for 

conventional water flooding with flow rates three orders of magnitudes larger than that associated with the hydraulic 
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head gradient and consequent subsurface regional aquifer flow rates preferred in this study, capillary pressure 

heterogeneity apparently significantly affects oil saturation under some conditions [20, 21]. 

This study is subject to several limitations. First, the predictions of average oil saturation in the ROZs from our 

simulations are marginally larger than those measured by Honarpour et al. [15]. One possibility is that, in some 

cells, the 50,000 years of the flow simulations presented is insufficient to achieve a steady state. This is the 

consequence of the fractional flow curve for water. The fractional flow of oil is reduced to a very small value 

(<0.008) when water saturation increases to 0.5. Another complication is the impact of our limited ability to 

accurately model the heterogeneous nature of the reservoir. The simulations in this study utilized a cell size of 100 

ft. × ~2 ft. However, the estimates of porosity and permeability were based on measurements of core plugs with the 

size of 1~2 inches. Upscaling these detailed measurements to the scale of the simulation grid inevitably averages out 

the true heterogeneous nature of the reservoir. Additionally, the water-oil-rock interaction might need to be studied 

to examine its effect on oil properties and reservoir petrophysical properties. Such geochemical reactions have been 

demonstrated to be important in other similar subsurface flow dynamics [22, 23]. 

The capacity of ROZs to store CO2 associated with EOR is not well understood. Commercial scale ROZ floods 

have only been implemented in the last decade and no studies of ROZ reservoirs have been published. Bachu et al. 

[6] suggested that the oil industry regard ROZs as a superior target for geological carbon storage. They noted that 

CO2-EOR will provide a mechanism to defray the costs of carbon capture and storage (CCS) projects. The current 

study can be used as the basis for developing strategies to utilize CO2 injection to optimize oil production and 

sequestration. For example, heterogeneities in permeability, porosity, and capillary pressures are highly likely to 

result in three-dimensional spatial heterogeneities in oil saturation. Such patches and layers of higher saturation 

could be exploited by using multiple horizontal wells. Additionally, the extensive distribution of water in ROZs 

should have some effects in selecting and optimizing CO2 injection strategies. This extensive water distribution is 

different from that in MPZ after man-made water flooding since, for MPZ, water saturations are locally high around 

the water streamlines connecting injectors and producers. This difference would bring different optimized schemes 

of WAG injection into ROZ reservoirs, including water cycle size and WAG ratio. 

 
5. Conclusions and Recommendations 

 
The key characteristic of residual oil zones (ROZs) is the spatial and depth dependant variation of oil saturation. 

This information is important essential to assess reserves, design CO2-EOR projects, and estimate the sequestration 

capacity in ROZs. This study has demonstrated that the key features of ROZs can be simulated using a commercial, 

full-physics, multi-phase flow simulator. The results support the plausibility of the hydrodynamic model suggested 

by earlier researchers, but do not rule out other models for the origin of ROZs. 

The magnitudes of water flux (aquifer flow rate) and capillary pressure within the reservoir influences the 

variation of oil saturation (both spatially and temporally) and geometry of ROZs. Larger water fluxes result in 

thicker ROZs, and heterogeneous capillary pressures will lead to development of diffuse water-oil contacts. During 

the formation of ROZ, the evolving oil saturation is controlled by the relative permeability curves. A very large 

amount of oil resides in ROZ reservoirs in the San Andres Formation and these reservoirs are attractive targets for 

CO2 EOR and associated storage. Additionally, the spatial distribution of oil in ROZs are different from that in 

MPZs undergoing water flooding. This difference will be important in the optimization of CO2 EOR and storage in 

ROZs. 
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Abstract 
 

Residual oil zones (ROZs) are reservoirs in which oil is largely at levels of residual saturation. Such reservoirs cannot be 

produced by conventional production techniques. ROZs in carbonate reservoirs in the Permian Basin of West Texas were initially 

interpreted (from wireline logs), as being productive oil zones. If these zones were completed for production, they produced 

largely water. Over the last decade it has been demonstrated that CO2 injection can make these zones economic to produce. As a 

result, ROZs in the Permian basin and elsewhere have become attractive targets for CO2-EOR (CO2 enhanced oil recovery) and 

have a large potential for CO2 sequestration consequential to the EOR activity. The viability of CO2 EOR in ROZs is currently 

being demonstrated by the results of CO2 injection into the ROZs at the Seminole, Wasson Denver Unit, and Goldsmith oil field. 

The recoverable oil from ROZs in both the San Andres and Canyon Reef formations of Permian Basin, have been estimated as 12 

billion barrels. A key question is the capacity of ROZs to sequester CO2. 

The current project is the first study of ROZs based on extensive studies of cores, wireline logs, and production data from 

several ROZs in the San Andreas Formation. Understanding the magnitude of oil saturation and how it varies within ROZs is 

important to modelling both EOR and sequestration. The commonly accepted model for the formation of ROZ is based on the 

hydrodynamic effects of tectonically-controlled increased water flows in aquifer at the base of oil fields. In this work, the nature 

of this process was modelled using a commercial reservoir simulator. These flow simulations were designed to understand how 

the effects of strength of aquifer flow, flow direction, and capillary pressure on the nature and distribution of oil saturations in 

ROZs. A special emphasis was on understanding the impact of reservoir heterogeneity on the variation of capillary pressures 

throughout ROZs. Heterogeneities in capillary pressures appear to dominate the distribution of oil saturation within the ROZ and 

will also strongly influence the performance for both oil production from CO2 injection, as well as associated CO2 storage. 

Finally, we discuss the implications of our results to the understanding of both CO2 EOR and storage in ROZs. 

Keywords: Oil Saturation, Residual Oil Zone, CO2 EOR and Storage, Flow Modeling. 
 

 

1. Introduction 

 
Residual oil zones (ROZs) can be defined as an oil reservoir in which the oil is at, or is close to, residual oil 

saturation. ROZs have the apparent characteristics of a reservoir after the completion of a water flood. ROZs in 

carbonate reservoirs in the Permian Basin of Texas were initially interpreted from wireline logs as being productive 
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oil zones. However, if these zones were completed for production, they produced water only occasionally with 

traces of oil. Thus, ROZs can be produced by neither conventional pumping nor water flooding. Rather, producing 

from these zones requires some form of enhanced oil recovery such as CO2-EOR (providing incidental sequestration 

of CO2). 

ROZs have different types in terms of their origin and evolution [1]: (i) an oil accumulation is subject to a tilt 

(from differential subsidence or tectonic movements), resulting in re-equilibration of water-oil contacts and the 

formation of ROZs; (ii) the original oil accumulation leaks through seal (perhaps temporally), again leading to ROZ 

formation; (iii) a change in the hydrodynamics of the underlying aquifer resulting in regional groundwater flow. 

This flow sweeps the lower portion of oil columns, resulting in the development of ROZs. The consensus of 

opinions is that the ROZs in the Permian Basin represent the third of these categories and the simulations made in 

the current study are based on this scenario. 

As a result of many years of testing and analysis by Permian Basin petroleum engineers and geologists, it has 

been demonstrated that CO2 injection enables economically viable oil production from ROZs [1-4]. The San Andres 

Formation has over 10 Billion bbls of cumulative production. Estimates of the volume remaining from the original 

oil in place (OOIP) vary between 50 to 80%. CO2 EOR in ROZs is currently taking place in eight San Andres oil 

fields in the Permian Basin, including the Seminole San Andres Unit, the East Seminole field, the Goldsmith San 

Andreas Unit, the Wasson Denver Unit, Tall Cotton, Hanford field, Means, and the Vacuum San Andres field. 

Significant volumes of CO2 are being sequestered incidental to these CO2-EOR projects, providing a possible path 

for large scale market-driven carbon capture and storage (CCS). The estimated recoverable oil from ROZs in both 

the San Andres and Canyon Reef formations of Permian Basin, are estimated by Koperna et al. [5] as 12 billion 

barrels. This represents a little over a third of the estimated original oil in place. Bachu et al. [6] noted that ROZs are 

“regarded in the industry as the most optimum part of oil reservoirs to store CO2”. They based this on: the typically 

large volume of ROZs; their high water saturation; and “hydrocarbon availability”. 

Unfortunately, almost all the research on ROZ formation and characteristics has not been published in refereed 

journals but rather is available in contract reports, presentations, and conference proceedings. Trentham and his 

coworkers [7] have assumed that, high aquifer flow rates would have been initially established across the San 

Andreas formation from the uplift of the Guadalupe Mountains along the western margin of the Permian Basin. This 

uplift apparently peaked around 20 Ma associated with the formation of the Rio Grande Rift [8]. Subsequent erosion 

of these mountains would have reduced hydraulic heads in the regional aquifer lowering flow rates. Harouaka et al. 

[9] suggested that the hydrodynamic impact continued unabated, “albeit at a very slow pace like one foot/1000 

years”, an assertion they based on “analytical modeling” using the analysis of Hubbert [10]. A recent study by 

Trentham et al. [7] attempted to model the probable flow pathways, of what they termed “hydrodynamic fairways”. 

However, absent a creation of a set of robust regional groundwater flow models extending back to the regional uplift 

event in the Permian Basin, the groundwater flow directions cannot be well constrained. Jamali and Ettehadtavakkol 

[11] modelled the ROZ formation process through mimicking the natural waterflooding process, however, their 

specific simulation is based on a simplified static reservoir model and physics. 

This paper is the first attempt to use multiphase and full-physics flow simulations to make a comprehensive study 

of the hydrodynamic model for the development of (and the implications of for CO2-EOR) ROZs in the San Andres 

Formation. In the following, we describe our modeling approach and analyze several factors that are potentially 

significant in the evolution of ROZs. Finally, we evaluate the significance of these results to both oil production and 

incidental CO2 sequestration in future CO2-EOR projects in these zones. 

 
2. Methodology 

 
This project set out to study the formation of ROZs in the San Andres Formation, based on creating simulations 

modelling the “natural waterflood” scenario. We create simulations of these reservoirs that aim to explore the nature 

and spatial patterns of oil saturation in ROZs in response to variations in the flow of regional aquifers. The simulator 

used is Eclipse-E100 [12], an efficient and multidimensional black-oil simulator. 

Our modeling is based on the reservoir characteristics of the residual oil zone associated with the Seminole Field, 

however, we do not model this field specifically. A three-dimensional (3D) static reservoir model, representative of 

the geology and petrophysical variation of the ROZ underlying the Seminole Field, was built from the published 
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reservoir property data [13-15]. The model was populated using data from these published sources and from 

petrophysical measurements made on cores, and interpretation of wireline logs from the BEG log library. 

Two 2-D section geologic models were cut from the 3-D reservoir model: one is along the E-W (X-Z slice, the 

approximate dip direction), and the other is along the N-S (Y-Z slice, the approximate strike direction). The purpose 

of selecting these two sections is to examine how flow direction affects evolution the oil saturation in the ROZ. The 

two vertical sections cross along a vertical line. This line overlaps a drilled vertical well with detailed well 

properties published by Honarpour et al. [15]. Specifically, this well has an oil saturation profile, based on 

measurements (made prior to CO2 injection into the ROZ) from sponge cores. This data provides an important way 

for us to validate the reasonableness of our simulations. 

The corner point grid system is used, and the dimensions of each model is 63×100. The cell size in the horizontal 

direction is 100 ft., and the vertical cell size varies in different layers with the average ~2ft. The two 2-D orthogonal 

models have similar means and standard deviation for the porosity and permeability (Table 1). Published 

permeability measurements by Honarpour et al. [15] show that the horizontal and vertical permeability’s are largely 

similar. These authors note that the presence of low permeability layers of fine-grained, anhydrite-rich facies, 

creates a strongly anisotropic permeability. They suggest the resultant vertical component is approximately one 

tenth of the horizontal component. Initially, hydrostatic pressure is set for the reservoir with the middle depth 

pressure at 2119.9 psi, and the reservoir temperature is 104 °F. The oil saturation is initialized using the gravity- 

capillary equilibrium method. 

A capillary entry pressure field is generated using the Leverett j-function [16] that links permeability, porosity, 

and capillary pressure. The reference capillary pressure curve is assigned to the cells with the permeability of 16 mD 

as this reference curve is measured on the core with this permeability. These cells are considered as reference cells. 

The other cells in the model are assigned with different capillary pressure curves by scaling the capillary pressure of 

each cell with the corresponding permeability and porosity. The interfacial tension for each cell is assumed to be the 

same, and contact angle has the same assumption. So each cell can be assigned with a capillary pressure curve that is 

consistent with its upscaled permeability and porosity while omitting interfacial tension and contact angle. 

Flow simulations are designed to model the key relevant physics for understanding the ROZ origin associated 

with the San Andreas Formation in the Permian Basin. To understand the relevant physics, we first introduce a 

gravity number (Ngr), and this number describes the influence of competitive gravity versus viscous forces on water 

flooding. Ngr is a dimensionless ratio of the gravitational force acting on the fluids to the viscous force that drives 

water migration. 

In the 2D models, the volume of water injected is approximately 27 pore volumes (PV) for the base case 

(corresponding to the regional water flux of 0.5 ft./yr.). This PV is consistent with the suggestions of Trentham et 

al., [7] about the time scale and flux of regional natural water flooding impacting the ROZs within the Permian 

Basin. The sensitivity of the magnitude of oil saturation in the ROZs to varying the magnitude and duration of 

regional hydraulic head, is also investigated. The regional hydraulic head was varied over three orders of magnitude. 

Additionally, changes in the nature of ROZs (e.g., oil saturation and geometry) in response to the lowering of 

hydraulic head are examined. This lowering decreases regional water flow rate, so the study is designed to 

approximate the decreasing rate of flow through three sequential simulation processes with the decreasing water 

fluxes from 5ft/yr, 0.5ft/yr to 0.05 ft/yr, with each modeled time period lasting for 50,000 years (refer to case #12 in 

Table 2). More importantly, both single and heterogeneous capillary pressure are purposely considered in these 

simulations. Single capillary pressure means that the capillary pressure curve is used for all the cells in the domain, 

whereas, heterogeneous capillary pressure means that scaled capillary pressure curves are employed. 

 
Table 1 Injection simulation schemes in the 2D models 

Water flux entering formation 

from wellbore, ft./yr. 

Injection rate, 

rb/d** 

Injection duration, 

Year 

Total injected 

water, PV 

Ngr along the 

wellbore 

 
Dominant force 

5.0 183.4 50k 268 4.7E+3 Gravity 

0.5* 18.3* 50k* 26.8* 4.7E+4* Gravity 

0.05 1.83 50k 2.7 4.7E+5 Gravity 

*means base case settings; ** rb means reservoir barrel 
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A vertical injector and a producer are used to mimic regional water filtration in the ROZ, and the two wells are 

placed on the left and right boundary cells, respectively. Both wells are perforated along the intervals of both the 

producing ROZ and the water leg, for which, their heights are approximated through the field tests and 

measurements [15]. Constant water rate is imposed on the injector with the values shown in Table 2, and the same 

rate of liquid production is imposed on the right producer. Boundary settings in the N-S slice are the same. The 

condition settings for all the simulated cases are summarized in Table 2. 

 
Table 2 Summary of conditions for simulations. The time duration in parentheses, correspond to the adjacent PV. 

Case No Water flux, ft/yr Injected PV Flow direction Capillary pressure 

1 0.5 26.8 (50k yrs) W-E w/o 

2 0.5 32.1 (60k yrs) W-E w/o 

3 0.5 26.8 W-E Single 

4 0.5 26.8, 268, 536 (1MM yrs) W-E Heterogeneous 

5 5.0 268 W-E Single 

6 5.0 268 W-E Heterogeneous 

7 0.05 2.7 W-E Single 

8 0.05 2.7, 27, 54 (1MM yrs) W-E Heterogeneous 

10 0.5 26.8 N-S Heterogeneous 

 
3. Results 

 
We firstly describe the evolution of oil saturation fields during the ROZ formation process. Particularly, we 

emphasize the effect of the interplay between water flux magnitude and capillary pressure on the remaining oil 

saturation in the ROZ. Next, we compare our simulation results to the down the well measurements of oil saturation 

in the San Andres Seminole Field. 

 

3.1 Effect of the duration of regional aquifer flow on oil saturation in ROZs 

To evaluate the effect of the duration of regional aquifer flow on the nature of ROZ formation, we started with 

the case that considers no capillary pressure (#1 in Table 2). This case shows a similar oil saturation field as another 

case that considers single capillary pressure (#3 in Table 2). For the MPZ, the oil saturation is initialized using the 

gravity-capillary equilibrium, and the initial oil saturation is high and around 0.8. The capillary transition zone in 

these simulations is very small and almost not observable as shown around the interface between the yellow and 

blue areas. As water influx proceeds (T=10,000 to 50,000 yrs.), the vertical extent of the ROZ increases. At a 

timescale of 50,000 years, further changes in the magnitude and spatial distribution of oil saturation values are 

negligible. 

The variation of oil saturation with depth is perhaps the most important feature of ROZs. The intervals with high 

saturation represent the low permeability/low porosity (<0.05) areas, and this oil cannot be efficiently displaced by 

water as shown in Fig. 1. To quantify oil saturation vertical profiles, we plot the change of oil saturation along depth 

at different times (Fig. 2). Overall, the oil saturation profiles attained an approximate or pseudo-steady state after 

approximately 50,000 years. The attainment of pseudo-steady-state oil saturation is further illustrated in Fig. 3 that 

shows the evolution cell oil saturation in several selected depths. It appears that, in this simulation, the upper part of 

the ROZ requires a much longer time to reach this pseudo-steady state (note the light blue line in Fig.3). 
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Fig. 1. The evolution of oil saturation fields considering single capillary pressure. The water inlet flux is 0.5 ft/yr. X/Z aspect ratio is 5.7. 
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Fig. 2. The change of oil saturation vertical oil saturation profiles with time. These profiles correspond to the middle column cells (along the well 

with measured oil saturation in the ROZ) of the oil saturation fields in Fig. 6. 

 

Fig. 3. The change of cell oil saturation with time at several different selected depth points. These points are all in the ROZ: 5370 ft is around the 

ROZ top, the two depths of 5425 and 5450 ft are in the middle, and 5475 ft is at the bottom. 

 

3.2 Effect of the interplay between inlet flux magnitude and capillary pressure 

We first analyze the effect of water flux magnitude (aquifer flow-rate) on ROZs when considering single 
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capillary pressure (left column in Fig. 4). ROZ thickness is sensitive to the magnitude of the upstream water flux in 

the aquifer. This is because of the competition between the viscous and gravitational forces (the ratio is gravity 

number Ngr,): large viscous force (large water flux) suppresses the effect of water gravity on the displacement 

profile, and a thick ROZ is created. Additionally, the contact between the MPZ (yellow in Fig. 4) and ROZ (light 

blue) becomes less inclined as water flux decreases; this is obviously because decreasing water flux tends to create 

hydrostatic distribution of oil/water. 

Next, we focus on the imposed upstream water flux of 0.5 ft/yr (the middle row in Fig. 4) and analyse the effect 

of capillary pressure heterogeneity on the development of ROZs in response to this water flow. When capillary 

pressure heterogeneity is taken into account, the producing water-oil contact is enlarged (relative to single capillary 

pressure). In addition, the transition zone (black circled area in the middle row) between the ROZ and the MPZ is 

distinct, with a thickness of 10-15 ft. The oil saturation in this transition zone varies significantly, from around 0.30 

in light green spots to 0.80 in the light yellow patches. However, for the case considering single capillary pressure, 

the transition zone is thin and poorly defined (refer to the middle left oil saturation field in Fig. 4). 

 

Fig. 4. Oil saturation fields at 50000 yrs of flow simulation. Each row represents different regional water fluxes. The left column considers single 

capillary pressure, whereas, the right column considers heterogeneous capillary pressure. The dashed lines represent the approximated transition 
areas between the top of producing ROZ and the base of producing MPZs. X/Z aspect ratio is 5.7. 

 

More importantly, the interplay between capillary pressure heterogeneity and upstream water flux largely 

influences the thickness of the upper transition zone (the dashed circle area). Through comparing the middle 
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saturation field to the lower one in the right column in Fig. 4, it can be seen that the upper transition zone becomes 

thick as the upstream water flux decreases. Again, this is because of the lower viscous force, which in turn enhances 

the effect of capillary dispersion on oil saturation. 

The above analyses concentrate on the evolution of oil saturation in ROZs. The time scale of achieving quasi 

steady-state oil saturation in a ROZ is much less than the geologic time of mountain uplift and erosion (~Ma). 

Generally, the evolution of oil saturation in a given cell is mainly controlled by both relative permeability curves 

and imposed pressure gradient (equivalent to inlet water flux). Thus, any changes in both of them would cause 

different time consumed to achieve steady states. 

 

3.3 Effect of regional water flow directions 

The noteworthy issue is the nature of oil-water contacts (dashed blue lines in Fig. 5) for the two different regional 

water flow directions. The inclination of the contact along the strike direction is smaller than in the dip direction. 

This observation is consistent with greater lateral sedimentary continuity along the strike. 

 

 

Fig. 5. Impact of flow direction on oil saturation fields in the ROZ. The oil saturation is at the 50,000 yrs of flow simulation with capillary 
pressure heterogeneity considered. The black dashed lines circle the oil stripes with large oil saturation in the ROZ, and the blue dashed lines 

approximate the inclined producing water-oil contacts. The imposed water flux for both oil saturation fields is 0.5 ft/yr. Left: X/Z aspect ratio is 

5. 7. Right: Y/Z ratio is 7.7. 

 

4. Discussion 

 
This study has not attempted to specifically model the Seminole Field, rather, we have modelled the formation of 

a generic ROZ by starting with an oil-saturated reservoir. Its thickness is equivalent to the sum of current SSAU 

ROZ and producing MPZ. Our simulations reproduce many of the features reported from San Andreas ROZ 

reservoirs. The simulation results are consistent with an effectively steady state being reached (at least with respect 

to oil saturation) on a time scale of 50 thousand years. It is significant that, even after 1MM yrs of regional water 

flush, the oil saturation in several patches remains similar to the initialized values (0.7~0.8). These patches are local 

areas of lower porosity and permeability. This observation is consistent with the observed presence of oil stains in 

the less permeable patches of San Andres core samples. 

The influence of capillary pressure heterogeneity on the flow paths of water/oil and thus on the ROZ 

characteristics, is one of the key discoveries of this study. Heterogeneous capillary pressures are known to be 

significant for a number of subsurface processes that are characterized by slow flow rates, e.g., buoyant flow of CO2 

during geological carbon sequestration [17,18] and secondary hydrocarbon migration/ accumulation [19]. Even for 

conventional water flooding with flow rates three orders of magnitudes larger than that associated with the hydraulic 
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head gradient and consequent subsurface regional aquifer flow rates preferred in this study, capillary pressure 

heterogeneity apparently significantly affects oil saturation under some conditions [20, 21]. 

This study is subject to several limitations. First, the predictions of average oil saturation in the ROZs from our 

simulations are marginally larger than those measured by Honarpour et al. [15]. One possibility is that, in some 

cells, the 50,000 years of the flow simulations presented is insufficient to achieve a steady state. This is the 

consequence of the fractional flow curve for water. The fractional flow of oil is reduced to a very small value 

(<0.008) when water saturation increases to 0.5. Another complication is the impact of our limited ability to 

accurately model the heterogeneous nature of the reservoir. The simulations in this study utilized a cell size of 100 

ft. × ~2 ft. However, the estimates of porosity and permeability were based on measurements of core plugs with the 

size of 1~2 inches. Upscaling these detailed measurements to the scale of the simulation grid inevitably averages out 

the true heterogeneous nature of the reservoir. Additionally, the water-oil-rock interaction might need to be studied 

to examine its effect on oil properties and reservoir petrophysical properties. Such geochemical reactions have been 

demonstrated to be important in other similar subsurface flow dynamics [22, 23]. 

The capacity of ROZs to store CO2 associated with EOR is not well understood. Commercial scale ROZ floods 

have only been implemented in the last decade and no studies of ROZ reservoirs have been published. Bachu et al. 

[6] suggested that the oil industry regard ROZs as a superior target for geological carbon storage. They noted that 

CO2-EOR will provide a mechanism to defray the costs of carbon capture and storage (CCS) projects. The current 

study can be used as the basis for developing strategies to utilize CO2 injection to optimize oil production and 

sequestration. For example, heterogeneities in permeability, porosity, and capillary pressures are highly likely to 

result in three-dimensional spatial heterogeneities in oil saturation. Such patches and layers of higher saturation 

could be exploited by using multiple horizontal wells. Additionally, the extensive distribution of water in ROZs 

should have some effects in selecting and optimizing CO2 injection strategies. This extensive water distribution is 

different from that in MPZ after man-made water flooding since, for MPZ, water saturations are locally high around 

the water streamlines connecting injectors and producers. This difference would bring different optimized schemes 

of WAG injection into ROZ reservoirs, including water cycle size and WAG ratio. 

 
5. Conclusions and Recommendations 

 
The key characteristic of residual oil zones (ROZs) is the spatial and depth dependant variation of oil saturation. 

This information is important essential to assess reserves, design CO2-EOR projects, and estimate the sequestration 

capacity in ROZs. This study has demonstrated that the key features of ROZs can be simulated using a commercial, 

full-physics, multi-phase flow simulator. The results support the plausibility of the hydrodynamic model suggested 

by earlier researchers, but do not rule out other models for the origin of ROZs. 

The magnitudes of water flux (aquifer flow rate) and capillary pressure within the reservoir influences the 

variation of oil saturation (both spatially and temporally) and geometry of ROZs. Larger water fluxes result in 

thicker ROZs, and heterogeneous capillary pressures will lead to development of diffuse water-oil contacts. During 

the formation of ROZ, the evolving oil saturation is controlled by the relative permeability curves. A very large 

amount of oil resides in ROZ reservoirs in the San Andres Formation and these reservoirs are attractive targets for 

CO2 EOR and associated storage. Additionally, the spatial distribution of oil in ROZs are different from that in 

MPZs undergoing water flooding. This difference will be important in the optimization of CO2 EOR and storage in 

ROZs. 
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