

Performance Testing of a Moving-Bed Gasifier Using Coal, Biomass, and Waste Plastic Blends to Generate White Hydrogen

Acknowledgement: This material is based upon work supported by the Department of Energy under Award Number: DE-FE0032044

George Booras
Electric Power Research Institute

Clearwater Clean Energy Conference
Session 7 - Hydrogen Production

Monday, August 1, 2022

Project Objectives

- Qualify coal, biomass, and plastic waste blends based on performance testing of selected pellet recipes in a laboratory-scale updraft moving-bed gasifier
- Testing will provide relevant data to advance the commercial-scale design of the moving-bed gasifier to use these feedstocks to produce hydrogen
- Effects of the waste plastics on feedstock preparation (i.e., blending and pelletizing) and the resulting products (i.e., syngas compositions, organic condensate production, and ash characteristics) will be a focus

Funding: \$625k (\$500k gov't, \$125k cost share)

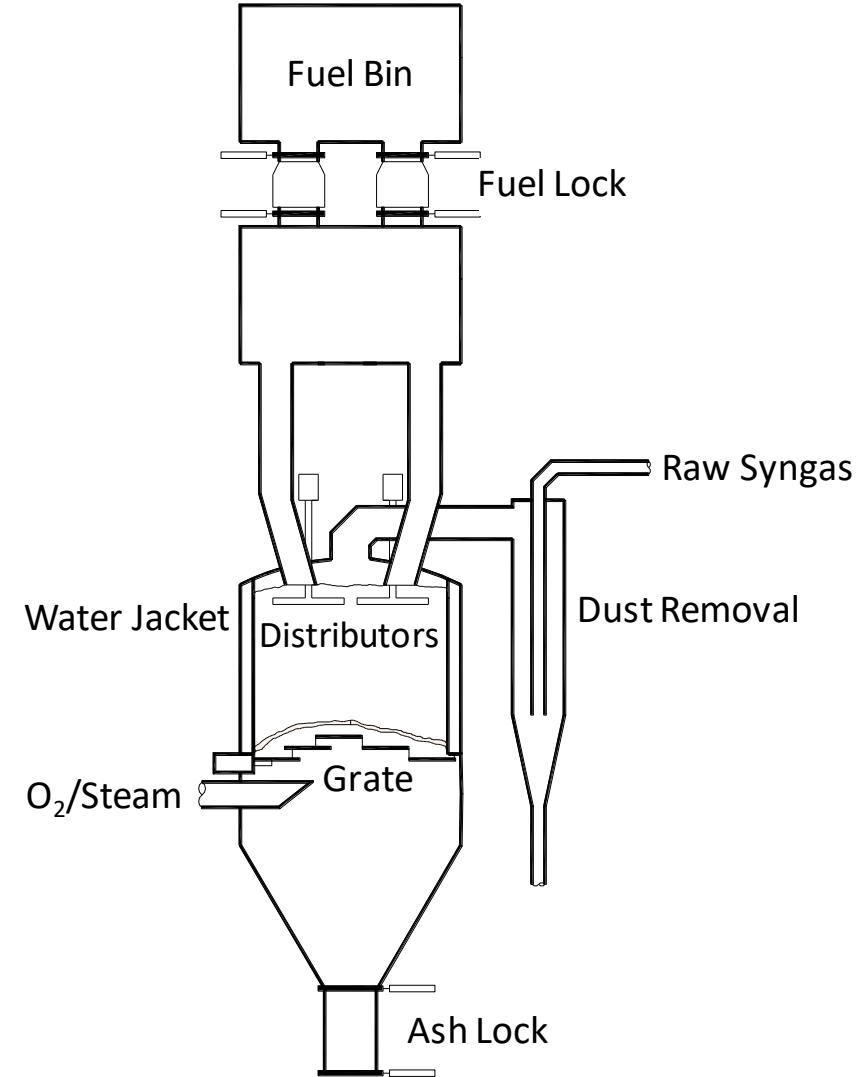
Project Team Organizations

EPRI

- Prime, lead organization, overall project management, and administration (Task 1)
- Leading Test Plan Development (Task 3)
- Key personnel – George Booras, Jose Marasigan, and Horst Hack

Hamilton Maurer International, Inc. (HMI)

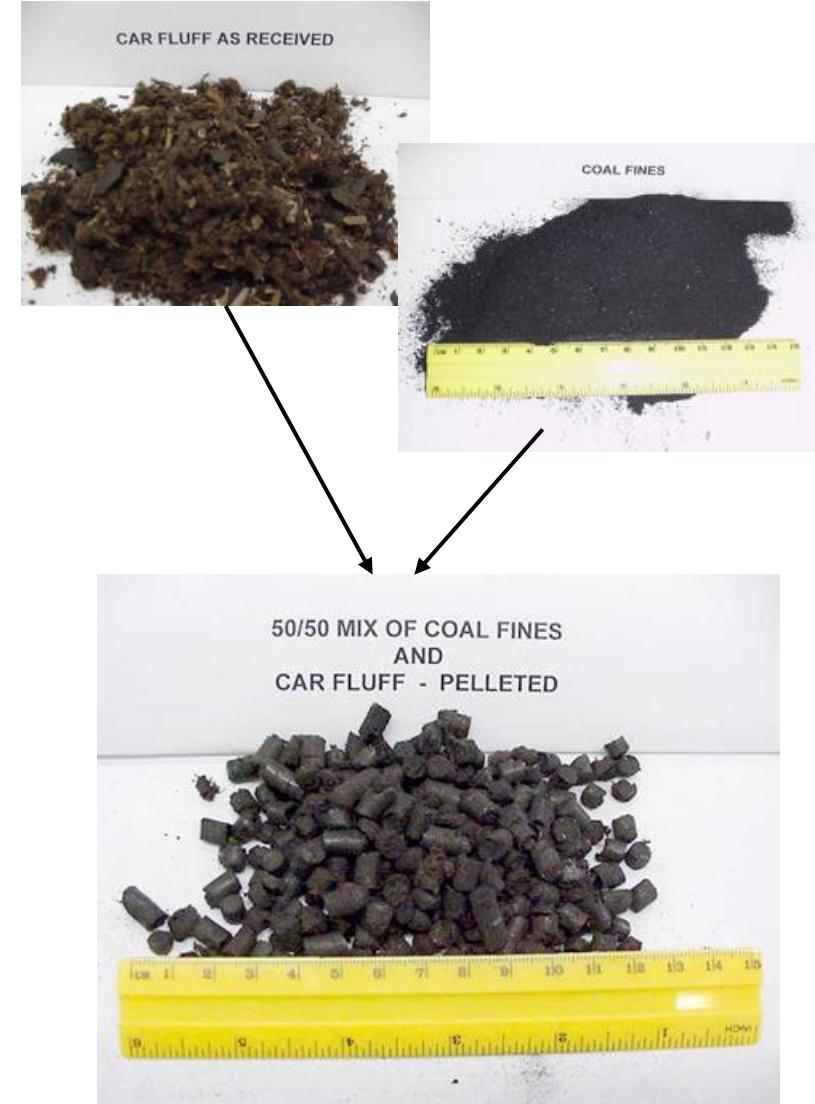
- Gasification technology developer (sub-recipient)
- Leading Feedstock Procurement and Preparation (Task 2) and Data Analysis and Reporting (Task 5)
- Key personnel – Rolf Mauer and David Thimsen


Sotacarbo S.p.A

- R&D organization in Carbonia, Italy (sub-recipient)
- Leading Gasifier Testing (Task 4)
- Key personnel – Dr. Alberto Pettinau and Simone Meloni

The DOE Project Manager is Debalina Dasgupta

HMI Moving Bed Gasifier


- The moving-bed gasifier has been demonstrated with many coal ranks as well as biomass. Testing suggests that it should be well suited for blends of coal, biomass, and plastic waste.
- As the fuel descends, it is dried, devolatilized, and the resulting char is gasified. Ash is removed through a grate and collected in a lock hopper.
- CO_2 produced by combustion and the steam from the blast react with the char in the gasification zone to produce CO and H_2
- Streams leaving are ash out the bottom and dry gas/tar/water vapor/dust out the top

California Pellet Mill (CPM)

- In 1931, the company created its first pellet mill, the 30-hp flat bed with stationary flat die
- Will do the blended feedstock preparation in the form of pellets
- Has considerable experience creating fuel pellets including ones using biomass and waste and has worked with HMI and Sotacarbo on prior projects
 - Presented results of pilot gasifier test runs with coal/car fluff pellets at the 2007 Clean Coal Technology Conference in Sardinia

- Sotacarbo and HMI have collaborated for 17 years on the installation, commissioning, operation, and automation for enhanced operation and control of updraft moving-bed gasifiers for industrial multi-fuel gasification processes
- HMI designed the lab-scale 12" inner diameter updraft moving-bed gasifier at the Sotacarbo facility that will be used for this testing program
- The current project team members from HMI and Sotacarbo have performed significant testing at this facility

Sotacarbo Pilot Moving-Bed Gasifier

Major Project Tasks

- **Task 2 – Feedstock Procurement and Preparation:** Finalize feedstock selection and pellet formulations. Prepare and ship pellets.
- **Task 3 – Test Plan Development:** Specify test data to be reported, review facility instrumentation, and specify sampling procedures
- **Task 4 – Gasifier Testing:** Perform baseline coal gasification test, and tests for 9 different pellet formulations
- **Task 5 – Data Analysis and Reporting:** Correlate gasifier performance with pellet composition, assess overall prospects for gasification of mixed blends, and prepare the final report

Overall project schedule is two years (7/1/21 to 6/30/23)

Task 2 – Feedstock Procurement and Preparation

- Biomass is corn stover
- Coal is PRB subbituminous
- Plastic waste is auto-shredder residue (ASR), a.k.a. “Car Fluff”

HHV, Btu/lb*	Biomass	PRB	Plastics
Dry	8,681	11,516	13,240
As-Rec	4,922	8,564	N/A

* Assumed Heating Values (to be confirmed)

Feed fractions based on dry mass input

No.	Biomass	Coal	Plastic
1	0	100	0
2	31	69	0
3	31	53	15
4	32	36	32
5	47	53	0
6	48	41	12
7	49	27	24
8	67	33	0
9	67	25	7
10	68	17	15

Feed fractions based on heat input

No.	Biomass	Coal	Plastic
1	0	100	0
2	25	75	0
3	25	56	19
4	25	38	38
5	40	60	0
6	40	45	15
7	40	30	30
8	60	40	0
9	60	30	10
10	60	20	20

Approximately 150 kg of tri-fuel pellets are required for each test run

Feedstock Supply

- Corn stover supplier was identified in Nebraska
 - Stover was chopped to minus 1" before delivery to CPM
- Peabody provided Powder River Basin (PRB) coal from their North Antelope Rochelle mine near Gillette, WY
 - Three supersacks of PRB coal were delivered to CPM
- OmniSource provided 2 tons of ASR (car fluff) from Indianapolis and 2 tons from Toledo
 - As-received ASR had much larger pieces than anticipated, and was shredded to -1/2" before delivery to CPM
 - After shredding the ASR it still contained small fragments of metals and wire
 - Additional pre-treatment of the ASR was required

Additional Pre-Treatment of the ASR

- Ball milling of ASR at a facility in Rhode Island was used to reduce size of the ASR and metal particles to prevent damage to CPM's pelletizing die
 - The ball mill had 40-gauge mesh screens (0.4 mm opening)
- Metals were either reduced in size to below 0.4 mm, or they stayed in the ball mill chamber and were separated from the ASR “powder”

Ball-milled ASR -40 mesh (left), +40 mesh (right)

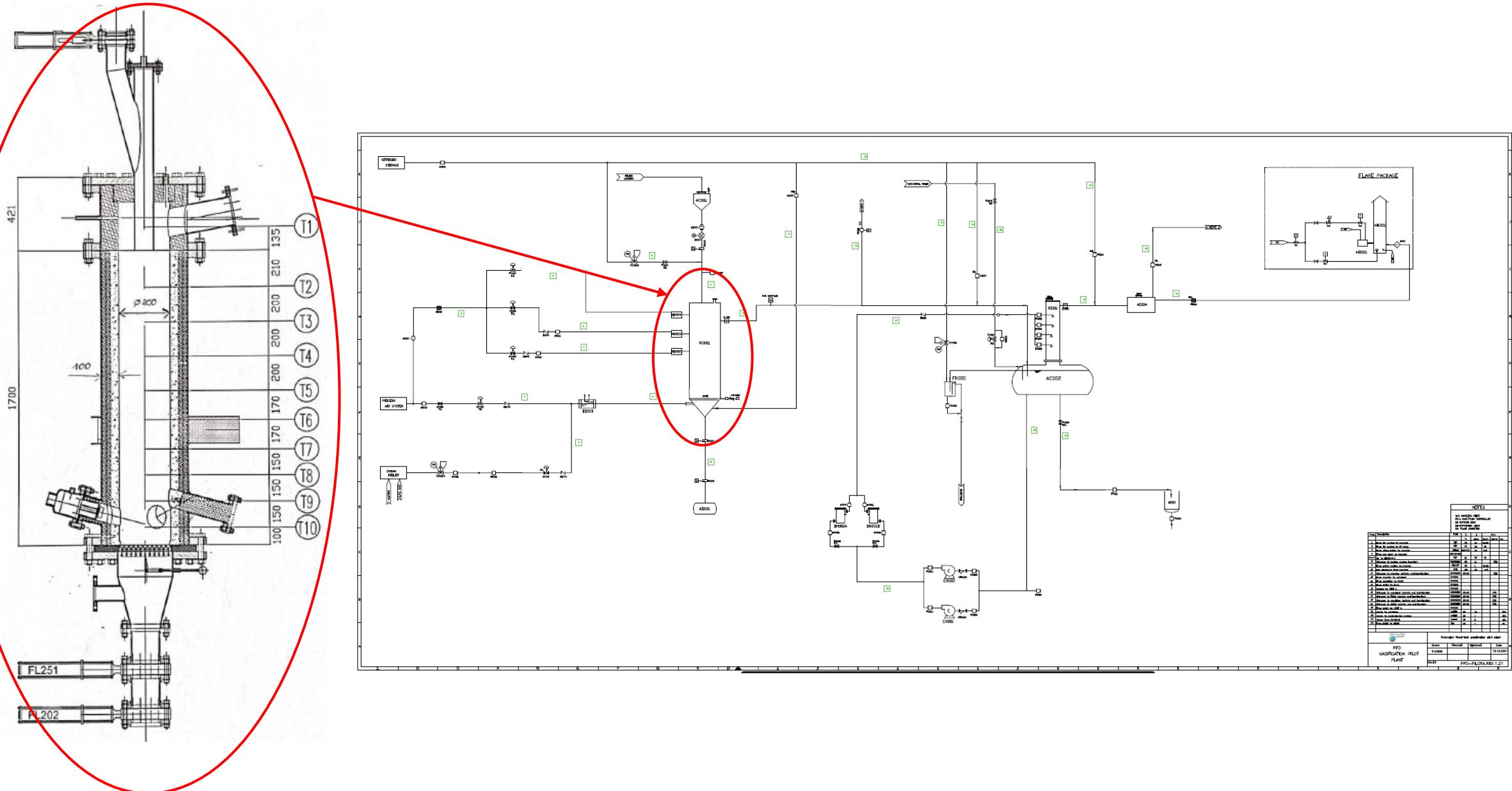
Tri-Fuel Pelletizing Tests Were Successful

- Pelletizing tests at CPM were conducted between July 18-25, 2022
- Pelletizing 100% PRB was not successful (will use lump coal for baseline)

Recipe 3 (left) and
Recipe 7 (right)

Close-up of
pellets

Pelletizing head
open. See the
pencils sticking
out of the die.



Weighing pellet
sample for PDI
(Pellet Durability
Index) test.

Task 3 – Test Plan Development

- Sotacarbo's lab-scale gasifier process flow diagram (PFDs) and piping and instrumentation diagrams have been reviewed
- HMI has reviewed what instrumentation is, or will be, in place, and what other instrumentation may need to be procured
- Sampling and testing procedures are being finalized
- Gasifier startup procedure has been reviewed
- Each gasification test run will last one day, and the gasifier and other equipment will be cleaned up between runs

PFD for Sotacarbo 12" Inner Diameter (ID) Gasifier

Task 4 – Gasifier Testing

- Sotacarbo is completing modifications to their 12" ID lab-scale moving bed gasifier
 - The gasifier is being refurbished, including new refractory wall
 - Piping will be reinstalled after the refractory is replaced
 - Other maintenance activities are being performed
- The gasification system should be available for initial shake-down tests in early fall 2022
 - Lump PRB coal (~1 inch) will be used for the shake-down tests

Reactor removal and refractory layer before the reconstruction

New Gasifier Refractory Has Been Installed

Task 5 – Data Analysis and Reporting

- Individual test run reports will include:
 1. Introduction, project background
 2. Test Objectives
 3. Description of the Fuel Tested – From CPM production report.
 4. Description of the Test Facility
 5. Test procedures
 6. Conduct of the Test – Prose description of the conduct of the test and how conduct might have differed from procedures. Qualitative discussion of the gasification behavior of the test pellets.
 7. Test Results – Test data with descriptions that aid in interpretation.
- Sections 1-5 will be short (~1 page) and similar from test to test, with edits to indicate changes specific to the test being reported.
- The unique test results are in Sections 6 and 7.
- These individual test reports will be appendices in the overall project final report.

Next Steps

- Prepare report on the tri-fuel pelletizing tests
 - Ultimate/proximate analyses and heating values for all tri-fuel pellet samples
 - Ship the tri-fuel pellets to Sotacarbo in sealed barrels
- Finalize the gasification test plan and reporting format
 - Including an outline of the individual gasification test reports
- Complete installation of the lab-scale gasifier
 - Begin shake-down testing of the gasifier and instrumentation systems

Gasification test runs are scheduled for 4Q 2022/1Q 2023

Acknowledgment and Disclaimer

- **Acknowledgment**: This material is based upon work supported by the Department of Energy under Award Number DE-FE0032044.
- **Disclaimer**: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Together...Shaping the Future of Energy®