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Abstract

PyApprox is a Python-based one-stop-shop for probabilistic analysis
of scientific numerical models. Easy to use and extendable tools are
provided for constructing surrogates, sensitivity analysis, Bayesian
inference, experimental design, and forward uncertainty quantifi-
cation. The algorithms implemented represent the most popular
methods for model analysis developed over the past two decades,
including recent advances in multi-fidelity approaches that use mul-
tiple model discretizations and/or simplified physics to significantly
reduce the computational cost of various types of analyses. Sim-
ple interfaces are provided for the most commonly-used algorithms
to limit a user’s need to tune the various hyper-parameters of each
algorithm. However, more advanced work flows that require cus-
tomization of hyper-parameters is also supported. An extensive set
of Benchmarks from the literature is also provided to facilitate the
easy comparison of different algorithms for a wide range of model
analyses. This paper introduces PyApprox and its various features,
and presents results demonstrating the utility of PyApprox on a
benchmark problem modeling the advection of a tracer in ground
water.

Article Info

Correspondence:
J. D. Jakeman
jdjakem@sandia.gov

SAND Number:
SAND2022-10458

Keywords:
Modeling, uncertainty quantifica-
tion, sensitivity analysis, Bayesian
inference, decision making, surro-
gate models, experimental design,
multi-fidelity

1 Introduction

Numerical models have become an indispensable tool for understanding and predicting the behavior of physi-
cal processes across scientific disciplines spanning the environmental sciences to plasma physics. Advances in
computational speeds and memory have enabled continuous improvements in the expressivity and predictive
accuracy of multi-scale multi-physics phenomena. However, because of their increasing computational cost
and high-dimensional parameterizations, it is challenging to use these high-fidelity (high-accuracy) models
within model analyses and decision-making processes, such as uncertainty quantification and design, which
require repeated evaluation of a model.

PyApprox provides an extensive set of computationally efficient numerical tools for model assessment
and can be applied to most numerical simulation models. In this paper we refer to a model as any scalar or
vector valued function

q = f(z)

that maps a set of D input variables z = [z1, . . . , zD]> ∈ Iz ⊂ RD to a set of Q quantities of interest
(QoI) q = [q1, . . . , qQ]> ⊂ RQ. The variables z can represent various sources of model uncertainty and/or
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design variables that can be be used to control/optimize the behavior of a physical system. As a concrete
example, consider the following advection-diffusion model used to simulate the flow of a tracer through an
S = 2-dimensional aquifer

∂c(x, t, z)

∂t
= ∇ · (K(x, z)∇c(x, t, z))−∇ · (vc) +G(x, t, z), x ∈ Ω ⊂ RS , t ∈ [0, T ], z ∈ Iz (1)

c(x, t) = 0, x ∈ ∂Ω.

Here, K is the hydraulic conductivity, v is the vector valued velocity field that advects the tracer, and G
represents any source terms, such as pumps and wells.

The QoI of any model analysis must be tailored to the modeling objective, but are typically formulated
as linear or nonlinear functionals of model output, e.g. the solution of (1), for example, q = f(z) =
f(c(z)). Examples of QoI for our tracer exemplar model (1) include the temporal integral of the integral
of concentration within the aquifer in a subdomain Γ ⊂ Ω or the flux of the tracer concentration across a
segment ∂Ωi of the boundary at the final time, respectively given by

f(z) =

∫ T

0

∫
Γ

c(x, t, z) dx dt and f(z) =

∫
∂Ωi

K(x, z)∇c(x, T, z) · n dx. (2)

The predictive accuracy of numerical models continues to improve at a rapid pace, nevertheless all models
are approximations of the physical systems they represent. Uncertainties are introduced by the mathematical
formulation of the model equations (model error), errors introduced by the numerical methods used to
solve the model equations e.g. spatial mesh resolution and time-stepping size (discretization error), errors
introduced when measuring experimental and observational data (observational error), and uncertainty in
model parameters, e.g. changing climate, uncertain initial and boundary conditions, and internal model
parameters such as the conductivity field K, which dictate the predictive accuracy of a model (parametric
error).

Given a modeling objective and well defined QoI, PyApprox comprises a plethora of tools supporting the
most common model analyses (analysis algorithms depicted in Figure 1):

1. sensitivity analysis for determining the model inputs most influencing predicted quantities of interest
(QoI);

2. Bayesian inference for using observational and experimental data for model calibration and reducing
the prior-based uncertainty in model QoI;

3. experimental design for judiciously determining when and where to collect observations in a manner
that maximizes information gain and reduction of uncertainty;

4. multi-fidelity Monte Carlo quadrature which uses multiple model discretizations or simplified physics
to significantly reduce the computational cost of the forward propagation of uncertainties; and

5. surrogate modeling (including multi-fidelity algorithms) for reducing costs of sensitivity analysis, model
calibration and experimental design.

PyApprox also has an optimization module for design under uncertainty, however this capability is under
development, and currently limited, so will not be discussed in this paper.

1.1 Novelty

There are several software tools available for various types of model analyses targeted by PyApprox . Some
focus on specialized aspects of of model analysis, e.g. SALib [34] for sensitivity analysis, [24], PyGPC [95]
for surrogate modeling, and MUQ [70] and HippyLib [93] for Bayesian inference of model parameters.
Other packages provide a broader set of tools for model analysis, for example, Dakota [1], UQtk [14]
UQPy [68], UQLab [54], UQ-PyL [94] and OpenTURNS[4], whereas other packages, e.g. Equadratures [84]
and ChaosPy [19], provide a subset of model analysis tools.

Each of the software packages listed above have their own strengths and weaknesses and their capabilities
are continually evolving. So instead of providing a biased summary of these pros and cons, this paper will
instead focus on the capabilities and strengths of PyApprox . At a high-level these strengths are: 1) easy
installation on all major platforms; 2) adoption of state-of the art software quality practices including regular
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Figure 1: Visual depiction of the main modules in PyApprox .

automated unittesting; 3) multiple complementary algorithms for all major model analyses that allow the user
to mitigate the majority of challenges limiting the tractability of model analyses; 4) interfaces for evaluating
multiple black-box models written in any programming language; (5) well-chosen default arguments for the
most commonly used algorithms, which reduce the user’s need to understand the inner-workings, and tune
the hyper-parameters, of these algorithm; 6) highly modular components that facilitate the development of
new algorithms; and 7) extensive documentation of user and developer features.

While some of the aforementioned software tools provide similar capabilities to PyApprox in a number
of areas, PyApprox offers a number of novel features that in combination are not present any of the other
packages. Specifically, PyApprox provides:

1. automated (quasi) optimal algorithms for generating training data and refining surrogates in a manner
that balances the accuracy of the surrogate in high-probability regions of the model input, with the
conditioning of the approximation algorithm, for example of the matrix used in linear least squares to
fit polynomials;

2. model-based optimal experimental design for both linear(ized) and nonlinear models that aim to reduce
uncertainty in not only model parameters but also model predictions; and

3. multi-fidelity methods that use a (possibly non-hierarchical) ensemble of models of varying cost and
accuracy to drastically reduce the computational cost of building surrogates and estimating statistics
summarizing uncertainty in model predictions.

1.2 Software overview

PyApprox is highly modular, allowing the user to implement customized end-to-end model analyses with
a minimal amount of code. Default function arguments are provided for most commonly-used algorithms
that reduce a user’s need to understand the inner workings, and tune the various hyper-parameters, of each
algorithm. However, the software also supports the needs of advanced users and provides a productive
research environment for the development of new model analysis algorithms.

PyApprox is freely available under an MIT license and is managed with a git repository https:

//github.com/sandialabs/pyapprox/. The package has extensive capabilities for model analysis, con-
taining over 100,000 lines of code. The software package is implemented entirely with Python-based tools
and so is highly portable. Moreover, the automated execution of 550 unit and regression tests ensure
the quality of the software. Installation instructions can be found in the online documentation https:

//sandialabs.github.io/pyapprox/index.html. This site also contains user and developer level docu-

https://github.com/sandialabs/pyapprox/
https://github.com/sandialabs/pyapprox/
https://sandialabs.github.io/pyapprox/index.html
https://sandialabs.github.io/pyapprox/index.html
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mentation of available functions and classes, as well as numerous examples of how to use PyApprox and
tutorials on the mathematical foundations of the algorithms implemented.

This paper provides an overview of PyApprox and is organized into two main sections: Section 2 describes
the four modules used for supporting model analyses and verifying and validating analysis algorithms; and
Section 3 summarizes the five main modules that implement a plethora of algorithms for model analysis.
A high-level description of each class of methods implemented is provided along with a demonstration on a
advection diffusion benchmark based on (1). Conclusions, including remarks on the future of PyApprox are
then presented in Section 4.

2 Analysis support tools

This section summarizes the four PyApprox modules used for setting up model analyses and verifying,
validating, and investigating the performance of model analyses tools.

2.1 Variables

All model analyses require defining plausible ranges for the model variables z. Many analyses also necessitate
defining prior probability distributions that describe the various sources of model uncertainty. The variables
module provides various tools to define probability distribution functions (PDFs) that can be used for model
analyses. The most frequently-used tools include definitions of multi-variate random variables and their
PDFs, variable transformations and sampling routines.

PyApprox supports multivariate random variables comprised of independent univariate variables. Such
variables can be defined from a list of any scipy.stats variable objects. The following code shows how to
create and sample from two independent uniform random variables defined on [−2, 2].

1 >>> nsamples = 1000

2 >>> univariate_variables = [stats.uniform(-2, 4), stats.uniform(-2, 4)]

3 >>> variable = IndependentMarginalsVariable(univariate_variables)

4 >>> samples = variable.rvs(nsamples)

5 >>> print_statistics(samples)

6 z0 z1

7 count 1000.000000 1000.000000

8 mean -0.050373 -0.052408

9 std 1.135335 1.178004

10 min -1.992304 -1.996393

11 max 1.994013 1.995606

Here the print statistics function will print useful information about the samples such as minimum
and maximum values, mean and variance.

Custom-dependent random variables can also be constructed by deriving from the abstract JointVariable
base class. PyApprox only dictates that an rvs method be defined to allow sampling from the variable. How-
ever, if a PDF function is provided, Nataf [53] and Rosenblatt [76] transformations can be used to convert
new custom variables into canonical-independent multivariate uniform and Gaussian distributions.

It is often advantageous to scale the inputs of a model when building surrogates. This can be achieved by
using AffineTransform which maps all bounded variables to [−1, 1] and maps (semi) unbounded marginal
variables supported by scipy.stats to canonical 1D variables, e.g. a Gaussian variable N (µ, σ2) with
arbitrary mean and variance is mapped to the standard normal N (0, 1) with mean zero and unit variance.
If only ranges of a model input have been provided we recommend specifying such variables as uniform on
the specified ranges. An example of mapping uniform variables on [−2, 2] to [−1, 1] is shown below.

1 >>> var_trans = AffineTransform(variable)

2 >>> canonical_samples = var_trans.map_to_canonical(samples)
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2.2 Interface

PyApprox treats all models simply as python functions that take in a set of variables and return a vector
of QoI, and optionally a Jacobian, for each sample. The interface module provides tools to interact with
complex numerical simulation software. In this section we provide a brief overview of some useful model
interfacing tools.

It is often useful to be able to track the time needed to evaluate a function. We can track this using the
pyapprox.interface.wrappers.TimerModel and pyapprox.interface.wrappers.WorkTrackingModel ob-
jects which are designed to work together. The former times each evaluation of a function and appends the
time to the quantities of interest returned by the function, i.e returns a 2D numpy.ndarray with shape
(N,Q + 1), where N is the number of evaluations requested. The second extracts the time and removes it
from the quantities of interest and returns output with the original shape (N,Q) of the user function while
saving the execution times per sample as a member variable.

PyApprox also provides a mechanism to evaluate ensembles of models, which is useful for multi-fidelity
modeling (Section 3.5). Specifically, the pyapprox.interface.ModelEnsemble object can be used to create
a function that takes samples of the input z plus an additional configure variable defining which model to
evaluate. Let us use half the samples to evaluate a model with ID = 0 and evaluate the second model, with
ID = 1, at the remaining samples.

1 >>> model_ensemble = ModelEnsemble([pyapprox_fun_1, pyapprox_fun_2])

2 >>> timer_fun_ensemble = TimerModel(model_ensemble)

3 >>> worktracking_fun_ensemble = WorkTrackingModel(

4 timer_fun_ensemble, num_config_vars=1)

5 >>> fun_ids = np.ones(nsamples)

6 >>> fun_ids[:nsamples//2] = 0

7 >>> ensemble_samples = np.vstack([samples, fun_ids])

8 >>> values = worktracking_fun_ensemble(ensemble_samples)

9 >>> query_fun_ids = np.atleast_2d([0, 1])

10 >>> print(worktracking_fun_ensemble.work_tracker(query_fun_ids))

11 [0.02505493 0.07497811]

By using the WorkTracking model we can query the median execution times of each model using the last
two lines of code above. The run time of each sample evaluation can be also be obtained if needed.

For expensive pure python models it is often useful to be able to evaluate each model concurrently. This
can be achieved using pyapprox.interface.wrappers.PoolModel. Note this function is not intended for
use with distributed memory systems, but rather is intended to use all the threads of a personal computer
or compute node. pyapprox.interface.async model.AsynchModel can be used for running multiple sim-
ulations in parallel on a distributed memory system and/or interfacing with models that can be invoked via
command line executables.

2.3 Benchmarks

PyApprox provides numerous benchmarks that can be used to verify, validate and assess the performance of
model analyses algorithms. Only a few attempts have been made at collating such benchmarks. The online
repository of benchmarks [88] and the integration test suite [20] are two noteworthy examples. These bench-
marks have proved highly popular, however are primarily limited to algebraic functions. PyApprox provides
a consistent interface to many of the existing algebraic benchmarks in the aforementioned works, but also
to several benchmarks that utilize partial differential equations for modeling engineering and environmental
processes.

All benchmarks can be setup using a simple consistent interface that returns a dictionary of benchmark
attributes. Each benchmark consists of at least a function and joint random variable. However, in many cases
additional attributes are provided whose nature depends on the purpose of the benchmark. The following
code shows how to create and list the attributes of a sensitivity analysis benchmark.
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1 >>> benchmark = setup_benchmark("ishigami", a=7, b=0.1)

2 >>> print(benchmarks.keys())

3 dict_keys(['fun', 'jac', 'hess', 'variable', 'mean', 'variance', 'main_effects',

'total_effects', 'sobol_indices'])↪→

The names of available benchmarks can be obtained using pyapprox.benchmarks.list benchmarks().
There are several benchmarks for sensitivity analysis [67, 38, 79, 61], integration [20], surrogates [12, 66,
59, 60], Bayesian inference [1, 55], optimization [1], and multi-fidelity modeling [25, 41]. These benchmarks
address one or more of the challenges facing each research area, for example, high-dimensionality, low-
regularity of the model response surface and/or intrinsic structure that can be exploited to reduce the
computational cost of analyses, for instance, anisotropy, low-rank, or low-dimensional structure. Benchmarks
are continually being added to PyApprox to address new challenges posed by model analyses.

2.4 PDE

At the time of writing, PyApprox explicitly supports a number of benchmarks based on solving the advection-
diffusion equations in (1). However additional benchmarks will soon be implemented for various other PDEs
using PyApprox ’s pde module. This module uses Chebyshev spectral collocation [9, 91] to solve various
PDEs including incompressible Stokes and Navier Stokes equations, Helmholtz equations, Euler-Bernoulli
Beam equations, shallow water wave equations, and various PDEs for modeling land-ice evolution including
the shallow-ice, shallow-shelf, and first-order Stokes equations.

The pde module is not intended to solve practical application problems, but rather provide a purely
python model to use as benchmarks. PDEs can be defined on 1D or 2D rectangular meshes. Simple
transformations of 2D rectangular meshes are also supported. New PDE solvers can be implemented simply
by writing a function that evaluates the residual F of any PDE that can be expressed in the form

∂u

∂t
= F (u),

where the solution u can be a scalar or vector valued solution. Given this residual, automatic differentiation
(using PyTorch [71]) can then be used to compute the Jacobian = ∂F

∂u necessary for Newton’s method to solve

steady state PDEs with ∂u
∂t = 0 or the stage solutions of diagonally implicit Runge Kutta time-integration

methods. Jacobians can also be specified manually when available, which can reduce the time in solving a
PDE substantially. Gradients of functionals of PDE solutions with respect to model parameters can also be
computed for steady-state problems using automatically-constructed discrete adjoint equations [11]. Such
gradients are useful for testing gradient-based model analysis tools, e.g. those used for optimization and
Bayesian inference. The symbolic mathematical python package Sympy [56] is used to speed up the process
of constructing manufactured solutions for each PDE implemented in PyApprox .1

3 Model analysis algorithms

In this section we outline the various capabilities of PyApprox and demonstrate their use on the model of
the advection and diffusion of a tracer in (1). The benchmark involves determining the the coefficients of a
Karhunen Loeve expansion (KLE), with a squared exponential kernel, used to represent the log diffusivity
field, i.e

K(x, z) = K0(x) exp

(
D∑
d=1

√
λdψd(x)zd

)
,

which best matches noisy synthetically-generated observational data; here K0(x) = 1 and λ and ψ are the
eigenvalues and eigenfunctions of the KLE, respectively. The data are obtained assuming that the tracer is

1Recent advances in operator inference and discontinuous Galerkin-like methods for multi-scale, multi-physics and domain
decomposition will soon be available in PyApprox . These tools are intended to help benchmark recent advances in scientific
machine learning for solving dynamical systems.
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in equilibrium (steady-state) given a constant addition of the tracer modeled by the forcing function

G(x, t, z) = Gsrc(x) =
ssrc

2πh2
src

exp

(
−|x− xsrc|2

2h2
src

)
where ssrc = 100, hsrc = 0.1, and xsrc = [1/4, 3/4]>.2 The following simple code can be used to setup this
benchmark.

1 >>>inv_benchmark = setup_benchmark("advection_diffusion_kle_inversion", kle_nvars=3,

noise_stdev=0.1, nobs=10, kle_length_scale=0.5)↪→

2 >>> print(inv_benchmark.keys())

3 dict_keys(['negloglike', 'variable', 'noiseless_obs', 'obs', 'true_sample', 'obs_indices',

'obs_fun'])↪→

First, we will use sensitivity analysis to determine the KLE parameters that most influence the model’s
ability to fit the observed data. We will assume that our prior distribution for z is the distribution of inde-
pendent and identically distributed Gaussian variables, with zero mean and unit variance. Second, Bayesian
inference will be used to calibrate the KLE parameters. Third, model-based optimal experimental design
will be used to determine the spatial locations of the most informative observations, Finally, multi-fidelity
modeling will be used to estimate statistics in regard to the uncertainty in predictions of the concentration
of the tracer in a subdomain of the physical domain, made using a transient version of the model when a
sink is introduced to extract some of the tracer, such that

G(x, t, z) = Gsrc(x)− ssink

2πh2
sink

exp

(
−|x− xsink|2

2h2
sink

)
where ssink = 100, hsink = 0.1, and xsink = [3/4, 3/4]>

In the remainder of the paper we include the major code snippets used for this example. The entire code
can be found in the examples folder in the online documentation.

3.1 Surrogate modeling

Many simulation models are extremely computationally expensive such that performing sensitivity analysis,
Bayesian inference, optimal experimental design and the forward propagation of uncertainty can be com-
putationally intractable. Various methods have been developed to produce surrogates fN (z) ≈ f(z) of the
response surface of the parameter-to-QoI map of a model. Generally speaking, surrogates are built using a
“small” number of model simulations N and are then substituted in place of the expensive simulation models
in future analysis.

The various surrogate methods supported in PyApprox are summarized in Table 1. There is no one
best surrogate method. Their utility depends on the type of analysis being performed, the objectives of
that analysis and the properties of the model input variables and response surface which maps these inputs
to the model QoI. An overview of the strengths and weaknesses of surrogate modeling (including, but not
limited to, those implemented in PyApprox ) can be found in [62]. The surrogates in PyApprox were chosen
for their ability to estimate the error in the surrogate and/or automatically adapt to intrinsic structure in
the response surface. These surrogates can either be trained from a fixed training data set, or be adaptive
such that new training data is continually added to improve the surrogate until the surrogate reaches a
pre-specified accuracy or a maximum computational budget associated with obtaining the training data is
reached. We refer to the first class of surrogates as regression-based and the latter as adaptive and we
overview both these classes below.

We remark that deep machine learning methods based upon different types of neural network (NN)
structures have gained a lot of popularity in recent years. These methods are not implemented in PyApprox
for two reasons. First, software tools for constructing neural networks are well developed and supported
via tools, and second the author is unaware of any NN method that can simultaneously adapt the structure
of the network while judiciously choosing training data to maximize accuracy while minimizing the total
amount of training data.

2Typically, the velocity field is determined using the equations for Darcy’s Flow, however for simplicity we assume that the
field is pre-determined and fixed for all random variables.
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Table 1: The Surrogate methods implemented in PyApprox ; polynomial chaos expansions (PCE), Gaussian
processes (GP), tensor-trains (TT), and sparse grids (SG). The columns labeled regression and adaptive
respectively specify whether a method can be used with an arbitrary pre-specified data set or supports
adaptive sampling methods. The techniques used for error estimation are listed in the Error Est. column.

Method Regression Adaptive Error Est. Refs.

PCE 3 3 Cross Validation [42, 44, 43, 65, 57]
GP 3 3 Bayesian [75, 72, 78, 32, 52]
FT 3 7 Cross Validation [26]
SG 7 3 Hierarchical Surpluses [3, 33, 21, 64]

3.1.1 Regression-based surrogates

Regression-based surrogates build a surrogate fN (z) ≈ f(z) from N training samples ZN = z(1), . . . , z(N) and
corresponding values q = [q1, . . . , qN ]>, where qi = f(z(i)). PyApprox supports three different regression-
based surrogates – polynomial chaos expansions (PCEs), Gaussian processes (GPs), and tensor-trains (TT)
– which we detail now.

All regression-based surrogates in PyApprox can be constructed with error estimates. When using GPs
the pointwise standard deviation of its posterior distribution can be used to estimate error as a function of
z. In contrast, K-fold cross validation can be used to estimate the error in PCE and TT. The way in which
each surrogate estimates error is summarized in the 4th column of Table 1.

Polynomial chaos expansions. PCE [97, 22] represent the model output f(z) as an expansion in or-
thonormal polynomials,

fN,K(z) =
∑
λ∈Λ

αλφλ(z), |Λ| = K.

where Λ contains multi-indices λ = [λ1 . . . , λD] specifying the univariate polynomial degrees of each basis
term included in the expansion. Often a total degree truncation is used to define Λ, however this requires
knowing the best maximum degree of the basis. PyApprox uses cross validation to choose the best degree
and more advanced basis adaptation strategies [42] that use cross validation to choose an anisotropic index
set; that is, higher-degree polynomials will be used some dimensions relative to other dimensions.

PCEs are popular because the basis functions φ are constructed to be orthogonal with respect to the
PDF of z, which allows analytical computation of moments and design of well-conditioned sampling schemes.
The PCEs in PyApprox can be constructed for independent and dependent random variables z [44]. The
recent algorithm in [63] allows PyApprox to compute the recursion coefficients of any continuous 1D variable
in scipy.stats of the univariate polynomials that are used in the multivariate basis. Unlike most other
software packages implementing PCE, PyApprox can also be used when z consists of both continuous and
discrete random variables [39].

PyApprox supports several methods for computing the PCE coefficients from a pre-collected training
data set. All methods determine the coefficients such that

Φ(ZN )α ≈ q with matrix entries Φij(ZN ) = φj(z
(i))

where there is a one-to-one mapping between the scalar indices j and the multi-indices λ. Discrete linear
least squares can be used to minimize the `2 norm measuring the mismatch between the data and PCE
predictions. Least angle regression, its LASSO modification [16, 5] and orthogonal matching pursuit [92]
can also be used to build sparse PCEs [42] that attempt to maximize the number of non-zero coefficients in
the PCE. PyApprox also implements risk-adapted surrogates[46] that are guaranteed to produce conservative
estimates of risk measures such as probability of failure and average value at risk.

Gaussian processes. GPs [78, 75] are an extremely popular tool for approximating multivariate functions
from limited data. A GP is a distribution over a set of functions. Given a prior distribution on the class
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of admissible functions, an approximation of a deterministic function is obtained by conditioning the GP
on available observations of the function. Given a kernel C(z, z?, θ) and mean function, a Gaussian process
approximation assumes that the joint prior distribution of f , conditional on kernel hyper-parameters θ (e.g.
the kernel variance and length-scales [σ2, `>]>), is multivariate normal. For a set of training samples Z and
associated values, the posterior distribution of the GP is

fN (·) | θ, y ∼ N (m?(·), C?(·, ·; θ))

where

m?(z) = tZ(z)>A−1
Z y C?(z, z′) = C(z, z′)− tZ(z)>A−1

Z tZ(z′) tZ(z) = [C(z, z(1)), . . . , C(z, z(N))]> (3)

and AZ = C(Z,Z) is the covariance kernel matrix evaluated at the training samples Z.
The GP in PyApprox wraps the basic implementation provided by Scikit-learn [72], which provides well-

maintained software for constructing GPs, including using maximum likelihood estimation for optimizing
the GP hyper-parameters. The wrapper also provides much needed tools for probabilistic model analysis,
such as gradients of the response surface for optimization, analytical estimation of sensitivity indices and
moments (Section 3.2), and also extensions that support gradient enhanced GPs [8] and multi-level GPs [49].

Low-rank tensor-trains. Constructing PCE and GP surrogates of high-dimensional models f(z) with
many inputs can be intractable as the number of training points required can grow exponentially with
the number of inputs z. PyApprox implements low-rank tensor-trains [69, 28] to mitigate this curse of
dimensionality. TTs represent functions as the product of matrix-valued functions, called cores,

fN (z) = F1(z1)F2(z2) · · ·FD(zD) Fd(zd) =


f

(1,1)
d (zd) · · · f

(1,rd)
d (zd)

...
. . .

...

f
(rd−1,1)
d (zd) · · · f

(dd−1,rd)
d (zd)


While tensor-trains can be used with both linear and nonlinear univariate functions, PyApprox only

supports the use of univariate PCE. The coefficients of these PCEs are then obtained via maximum likelihood
estimation (MLE) using gradients obtained analytically by backwards differentiation [26]. If each univariate
PCE has K terms and the rank of each core Fd is R, then the number of unknowns in the tensor-train is
DKR2. Thus, when used with MLE and when the number of training data exceeds, but is proportional
to, the number of unknowns, the number of training samples required only grows linearly with dimension.
Consequently, tensor-trains can require much less training data than GPs and PCEs in high-dimensions,
when the rank of the function is small.3

3.1.2 Adaptive surrogates

The surrogates in PyApprox were also chosen because they facilitate experimental design, also referred to
as active learning strategies, for improving their accuracy while minimizing the amount of training data
required. Most software packages that can be used to build surrogates do not tailor the sampling strategy
to the surrogate being constructed; for example “space-filling” Latin-hypercube designs or low-discrepancy
sequences are often recommended. However, this can be sub-optimal and in some cases leads to severe
ill-conditioning of the optimization procedure, e.g. when least squares is used to build the surrogates.
Furthermore most if not all surrogate packages do not consider the distribution of z when building the
surrogate. Probabilistic information is then only included when sampling the surrogate to compute moments
for example. If this approach is adopted for unbounded variables, such as Gaussian variables, the domain on
which the surrogate is constructed must encapsulate the regions of high non-zero probability [40]. Moreover,
not taking into account the probability of the random variables when building a surrogate often results in
a loss of accuracy when compared to methods that leverage such information [44, 32]. Probability-unaware
methods lose efficiency because to build a stable approximation one must often sample in regions of very low
probability.

3PyApprox provides tools to build GPs and PCEs on low-dimensional active subspaces [13] which can significantly reduce
their data requirements in high-dimensions when there is such low-dimensional structure in the model response surface f .



10 J. D. Jakeman

PyApprox implements a number of recent sampling schemes for building surrogates that target accuracy
in high-probability regions of the input variables z while maintaining a well conditioned training sample set.
Methods are provided for GPs, PCEs, and sparse grids, but currently not TTs.

Sparse grids. Sparse grids [3, 66] represent high-dimensional functions as linear combinations of tensor-
product interpolants

f(z) ≈
∑
β∈I

cβfβ(z),

where β = [β1 . . . , βD] is a multi-index that controls the number of univariate samples comprising the
tensor-product grid used to construct the tensor-product interpolants.

While the tensor-product of any univariate basis, e.g. piecewise polynomials, B-splines, can be used to
construct fβ PyApprox currently only supports tensor-product Lagrange polynomials, such that

φd,j(zd) =

mβd∏
k=1,k 6=j

zd − z(k)
d

z
(j)
d − z

(k)
d

, d ∈ [D], fβ(z) =
∑
j≤β

f(z(j))
∏
d∈[D]

φd,jd(zd).

where mβd is the number of interpolation points used in each variable dimension and the ≤ comparison
is applied to multi-indices per-entry. PyApprox uses weighted univariate Leja sequences [64] to construct
the tensor-product grids. These Leja sequences minimize the weighted Lebesque constant of the univariate
polynomial interpolants, allowing the sparse grid to be highly accurate in high-probability of marginals of
independent random variables, while maintaining the conditioning of the interpolant.

A Leja sequence (LS) is a doubly-greedy computation of a determinant maximization procedure. Given an
existing set of nodes ZN , a Leja sequence update chooses a new node z(N+1) by maximizing the determinant
of a new Vandermonde-like matrix with an additional row and column; the additional column is formed by
adding a single predetermined new basis element, φK+1, and the additional row is defined by the newly
added point. Hence an LS is both greedy in the chosen interpolation points, and also assumes some a priori
ordering of the basis elements.

In one dimension, a weighted LS can be understood without linear algebra: Let ZN be a set of nodes on
with cardinality N ≥ 1. The next point in the Leja sequence is given by

z(N+1) = argmax
z∈Γ

v(z)

N∏
n=1

|z − z(n)|.

A gradient based procedure is used to solve this optimization procedure, using analytical gradients of the
orthonormal polynomials computed using their three term recursion.

Traditionally, Leja sequences were developed with v(z) = 1. PyApprox supports the use of v(z) =√
ρ(z) [64], which is the square-root of the joint probability density of the random variables, and

v(z) =

(
N∑
n=1

φ2
n(z(i))

)− 1
2

,

which is the square-root of the Christoffel function and is useful when explicit knowledge of the joint PDF is
not available, but rather only an orthonormal basis which may have been computed from the moments of z.

PyApprox uses an adaptive algorithm [33, 21] to iteratively build up the index set I thereby controlling
the number of samples (and thus polynomial degree) used to resolve each input dimension. This algorithm is
highly effective at identifying and exploiting anisotropy but requires structured samples, which means that
code failures when evaluating even one point in the grid have to be dealt with by expert manipulation of the
software.

Cross validation cannot be used with sparse grids because they require a structured set of training
samples. Although the sparse grid does have some error estimation capabilities based upon hierarchical
surpluses which measure the change in the sparse grid as new sets of training samples are added, we have
not found them to be practically very useful, although some attempts have been made to improve the
accuracy of sparse grid error estimates [17].
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Optimal sampling for PCEs. PyApprox uses two different approaches for adaptively constructing a
PCE. The first uses multivariate Leja interpolation and the second least-squares or sparse regression.

We use a linear algebra formulation that greedily maximizes the weighted Vandermonde-like determinant
to form multivariate Leja sequences, i.e.

z(N+1) = argmax
z∈Γ

|det v(z)Φ(Z ∪ {z(N+1)})|

The algorithm for generating weighted multivariate Leja sequences using LU factorization is outlined in
Algorithm 1. Leja sequences are nested so that additional points can be added with a rank 1-update of the
pivoted LU factorization.

Algorithm 1 Multivariate Leja Sequence

1: Choose the index set Λ such that K ≥ N
2: Specify an ordering of the basis φ
3: Generate a set of S �M candidate samples ZS
4: Build Φ, Φn,k = φk(z(n)), n ∈ [S], k ∈ [N ]
5: Compute preconditioning matrix V , Vnn = v(z(n))
6: Compute first N pivots of LU factorization, PLU = LU(V Φ,M)
7: Form Leja sequence with candidates corresponding to the first N pivots

Once a Leja sequence has been generated, one can easily generate a polynomial interpolant with two
simple steps. Given function evaluations at the samples in the sequence, i.e. q = f(ZN ), the coefficients of
the PCE interpolant can then be computed via

α = (LU)−1P−1V q

These coefficients are then used with a sparse grid-like adaptive algorithm to add new important basis
functions φ. At each iteration the algorithm identifies a number of different sets J ⊂ Λ of candidate indices
λ that when added to the PCE may significantly reduce the surrogate’s error. The algorithm then chooses
the set J which does produce the biggest change and uses this set to generate new candidate sets J for
refinement. Here we use the change in variance induced by a set as a proxy for the change in PCE error.
This change in variance is simply the sum of the coefficients squared associated with the set, i.e.

∑
λ∈J α

2
λ.

The same steps for adapting the indices of a Leja-based PCE are used to build regression-based PCEs.
However the sampling scheme differs. PyApprox supports three types of sampling schemes in this setting,
Monte Carlo (MC) sampling of z, induced sampling [57, 63] and equilibrium sampling [43, 65]. Induced
sampling has been shown to yield convergence guarantees with a minimum number of samples and equilibrium
sampling yields the same guarantees asymptotically. Each time the basis is adapted new samples are added to
ensure that condition number of the regression matrix Φ(ZN ) is below a user-specified threshold. In general,
MC sampling requires the most additional samples, then equilibrium sampling and induced sampling.

Optimal sampling for GPs. PyApprox implements two computationally-efficient algorithms to greedily
select training samples that minimize the prediction variance of a GP; pivoted Cholesky [82, 32], also known
as power-function sampling, and integrated variance (IVAR) sampling [78]. Pivoted Cholesky sampling
minimizes the weighted Lp error of kernel-based approximations for a given number of data. The method
uses pivoted Cholesky factorization and iteratively generates nested samples that minimize the error in the
GP in high probability regions of densities specified by user.

The unweighted pivoted Cholesky method minimizes the worst case GP prediction variance

PZ(z) =
√
C(z, z)− tZ(z)>A−1

Z tZ(z),

also known as the power function [81, 18] in the radial basis approximation community. The procedure
greedily selects the best set of samples from a candidate set Zcand until the desired number of N samples is
obtained (Algorithm 2).
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Algorithm 2 Pivoted Cholesky Sampling

1: z(1) = argmaxz∈Zcand P{z}(z)

2: Z1 = {z(1)}
3: for j = 2, 3, . . . , N do
4: z(1) = argmaxz∈Zcand\Zj−1

|PZj−1
(z)|

5: Zj = Zj−1 ∪ {z(1)}
6: end for
7: return ZN

PyApprox reduces the computational complexity of this algorithm significantly by leveraging the pivoted
Cholesky decomposition to perform the minimization. The first N pivots of the decomposition minimize the
worst case prediction variance [32]. Moreover, a simple modification of the way pivots are chosen can be
used to create a sample set that is accurate in high-probability regions of z.

PyApprox also supports computing IVAR designs that greedily minimize∫
Γ

PZ(z)2ρ(z) dz = 1− Trace
[
A−1
Z P

]
P =

∫
Γ

tZ(z)>tZ(z)ρ(z) dz

For smooth kernels, the algorithm performs IVAR sampling and pivoted Cholesky sampling to achieve
similar accuracy for the same number of training samples. Moreover, both approaches allow training samples
generated in batches which allows training data to be evaluated in parallel. However, the pivoted Cholesky
approach is computationally faster, but this often does not matter when the computational cost of collecting
training data is large.

3.1.3 Benchmark demonstration

The following code block demonstrates how to use the automated adaptive methods in PyApprox to build a
GP surrogate using weighted power function sampling. Defaults are provided for constructing any surrogate,
but advanced users can tune those defaults via keyword arguments (**kwargs) which are outlined in the online
documentation https://sandialabs.github.io/pyapprox/index.html. Each adaptive method allows the
user to provide a callback that takes an approximation as its sole argument and interrogates that surrogate
to obtain error estimates, number of training samples etc., each time an adaptive step is taken. The example
below shows how to use such a callback to plot the decrease of the surrogate error as the number of training
samples is increased. Figure 2 depicts the decay in the error in the GP surrogate as the number of samples
increases. A very small number of samples is used to highlight the ability to generate error estimates of
sensitivity indices computed in the next section.

1 >>> nsamples, errors = [], []

2 >>> def callback(approx):

3 >>> nsamples.append(approx.sampler.num_training_samples())

4 >>> error = np.linalg.norm(approx(validation_samples)-validation_values, axis=0)

5 >>> error /= np.linalg.norm(validation_values, axis=0)

6 >>> errors.append(error)

7

8 >>> approx_result = adaptive_approximate(inv_benchmark.negloglike, inv_benchmark.variable,

"gaussian_process", {"max_nsamples": 30, "ncandidate_samples": 2e3, "verbose": 0,

"callback": callback, "kernel_variance": 400})

↪→

↪→

9 >>> plt.loglog(nsamples, errors, 'o-')

10 >>> plt.show()

https://sandialabs.github.io/pyapprox/index.html
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As a general rule of the thumb, the efficacy of the adaptive sparse grid, GP and PCE
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Figure 2: The error in an adaptive GP surrogate ob-
tained using a callback function.

algorithms in PyApprox decreases with dimension-
ality. If anisotropy is not present then they can be
used with O(1) variables but if it is then they can
be used with O(10). PCEs and sparse grids exploit
anisotropy by increasing the degree of the polyno-
mial basis in the more important directions, whereas
GPs exploit anisotropy by optimizing the length-
scale of the covariance kernel, upon which they are
built, in each input direction.

It should also be remarked that gradients of each
of these surrogate types can be obtained analytically
using properties unique to each surrogate. This can
be used to drastically speed up optimization, for ex-
ample, used for model calibration. An example of
this use is shown in Section 3.3.

.

3.2 Sensitivity analysis

Sensitivity analysis (SA) is used to quantify the relative influence of uncertainties in model factors (inputs
and parameters) on model outputs. Specifically, SA is often used to determine: the dominant sources of
output variability; the nature of interactions between factors; and modifying model structure by removing
insensitive model inputs. Broadly speaking, SA methods can be classified as either local or global sensitivity
techniques. Local sensitivity methods quantify sensitivity via localized, typically gradient-based, information.
Because sensitivities obtained at nominal samples of the inputs are not representative of the entire input
space, PyApprox does not utilize local SA methods but rather implements global techniques.

Table 2: The SA methods implemented in PyApprox . The number of parameters that can be handled by
each method is summarized in the Dimensionality column. The rate at which the accuracy improves with
the number of model evaluations is summarized in the Convergence column. The techniques used for error
estimation are listed in the Error Est. column.

Method Smoothness Dimensionality Convergence Error Est. Refs.

Sobol PCE 3 O(1)-O(10) Fast Cross Validation [87, 15]
Sobol GP 3 O(1)-O(10) Fast Bayesian [67]
Sobol SG 3 O(1)-O(10) Fast None [10]

Main Effects MC 7 O(103) Slow Bootstrapping [7]
Sobol MC 7 O(102) Slow None [85]

Sobol sensitivity analysis is arguably the most popular global SA method. Main effect, total effect and
Sobol sensitivity indices [85] are used to quantify the relative importance of parameters and their interactions
on the variance of a QoI. These SA indices are useful when the variance of a function V [f ] parameterized by D

independent random variables with probability distribution ρ(z) =
∏D
d=1 ρ(zd) with support Iz =

⊗D
d=1 Izj

can be decomposed into the following finite sum

V [f ] =

D∑
i=1

Vi +

D∑
i,j=1

Vi,j + · · ·+ V1,...,D. (4)

Here, Vi is the amount of variance explained by an individual variable acting alone and Vi,j is the contribution
of the pairwise interactions of parameters, and so on. Provided this decomposition holds, the main-effect
and total effect sensitivity indices are respectively given by

SMd =
Vd
V [f ]

and STd = 1− V∼d
V [f ]

,
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where V∼d is the variance explained by all variables except zd. Some algorithms allow these quantities to be
computed without computing all 2D entries in (4), however PyApprox also supports computation of selected
terms in the expansion when one is interested in comparing the strengths of parameter interactions. The so
called Sobol indices are given by the terms of the decomposition (4) normalized by the total variance, e.g.
Vi
V[f ] .

PyApprox supports using MC sampling and Quasi-Monte Carlo (QMC) sampling to compute main-effect,
total-effect and Sobol sensitivity indices using the algorithm from [85]. This algorithm is recommended when
the response surface of the model under consideration is not smooth, e.g. is only piecewise continuous. How-
ever, unlike MC sampling for computing only the variance, this method is not suitable for high-dimensional
inputs because of its need to generate large replicate samples, with small modifications, for each input vari-
able. For non-smooth and high-dimensional functions we suggest the MC-based algorithm presented in [7]
which can be used for computing main-effect (but not total-effect or Sobol) indices.

The aforementioned MC algorithms can be applied to non-smooth functions, but their estimates of
sensitivity converge slowly as the number of model evaluations is increased. Consequently, for smooth
functions of moderate dimension, we suggest using surrogates for estimating sensitivity. Surrogates can be
used in place of computationally expensive simulation models and interrogated at a fraction of the cost
using MC sensitivity methods. However, surrogates often provide a means to compute sensitivity indices
analytically. PyApprox supports computing sensitivity indices exactly (to machine precision) using GPs,
PCEs, and sparse grids. The variance, main effect indices and total effect indices can be computed from
PCE using [87]

V [f ] =
∑
λ∈Λ

α2
λ − α2

0, SMd =
1

V [f ]

∑
λ∈Λ,λd>0,
λi=0,i6=d

α2
λ STd =

1

V [f ]

∑
λ∈Λ,λd>0

α2
λ

Cross validation can be used to estimate errors in these quantities as suggested in [15]. SA indices computed
using GPs are built using the squared-exponential kernel using the algorithm in [67], which can be used
for any set of independent random variables, and provide estimates of the error (in the form of variance)
for each index computed. The expressions for these quantities for GP are much more complicated and so
omitted here for brevity. SA indices can also be computed for Lagrange polynomial-based sparse grids by
transforming them to PCE using [10]. However, due to the nature of the construction of the sparse grid,
error estimates cannot be computed.

Finally, for high-dimensional smooth functions, the Morris screening method can also be used to rank
model inputs in terms of their impact on model outputs. This method perturbs variables one-at-a-time
through the input space and provides sensitivity indices akin to finite difference based derivatives averaged
over the input space. This method can quickly identify highly insensitive variables but it often does not
provide information that can be easily used to guide other types of probabilistic model analyses.

3.2.1 Benchmark demonstration

The following code snippet shows how to compute and plot the sensitivity indices using the GP surrogate
we have already constructed. Figure 3 contains the plots generated by PyApprox . The confidence bands
on each indices allows one to determine the confidence with which the sensitivity of each parameter can
be ranked. For example, it is clear that the variable z1 has the largest main-effect, however one cannot
confidently rank the other two variables, because thier confidence intervals overlap significantly.

1 >>> sa_result = run_sensitivity_analysis("surrogate_sobol", approx_result.approx,

inv_benchmark.variable)↪→

2 >>> plot_sensitivity_indices(sa_result)

3.3 Bayesian inference

When observational data are available, that data should be used to inform prior assumptions of model uncer-
tainties. This so-called inverse problem, which seeks to estimate uncertain parameters from measurements
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Figure 3: Main effect (left), total effect (middle), and Sobol (right) sensitivity indices obtained from the
GP. The red lines in the box plots represent the median value, the bottom and top are the first and third
quartiles, and the whiskers cover outliers.

or observations, is usually ill-posed such that the parameters are non-identifiable [29]. Many different real-
izations of parameter values may be consistent with the data. The lack of a unique solution can be due to
the non-convexity of the parameter-to-QoI map, lack of data, and model structure and measurement errors.

Deterministic model calibration is an inverse problem that seeks to find a single parameter set that
minimizes the misfit between the measurements and model predictions. A unique solution is found by
simultaneously minimizing the misfit and a regularization term which penalizes certain characteristics of the
model parameters. In the presence of uncertainty we typically do not want a single optimal solution, but
rather a probabilistic description of the extent to which different realizations of parameters are consistent
with the observations. Bayesian inference [48] can be used to define a posterior density for the model
parameters z given observational data y = (y1, . . . , yny ).

Bayes Theorem describes the probability of the parameters conditioned on the data as proportional to the
conditional probability of observing the data given the parameters multiplied by the probability of observing
the data, that is

π(z | y) =
π(y|z)π(z)∫

Γ
π(y|z)π(z)dz

(5)

PyApprox assumes that y = m(z) + η where η ∼ N(0,Σnoise) is normally distributed noise so that the
likelihood π(d | z) of observing the data given a realizations of the parameter z is

π(d|z) =
1√

(2π)k|Σnoise|
exp

(
−1

2
(m(z)− y)TΣ−1

noise(m(z)− y)

)
In special limited situations the posterior density can be evaluated analytically, but in general this is

difficult and the posterior must be characterized by samples drawn from the posterior. PyApprox provides
two main classes tools to draw posterior samples. If using a multivariate Gaussian prior and a linear(ized)
model, the first class leverages properties of linear-Gaussian inference to approximate very-high-dimensional
model parameters. The second class of methods uses Markov Chain Monte Carlo (MCMC) to draw samples
from the posterior distribution. The available methods are summarized in Table 3. The first class of
methods are not exact when the model is nonlinear whereas the second class will sample from the true
posterior (column labeled Exact in Table 3). General rules of thumb about the number of parameters that
each method can handle are listed in the Dimensionality column of Table 3.

3.3.1 Large-scale methods for linear models and Gaussian priors

Computing the covariance of the posterior for linear(ized) Gaussian models is conceptually straightforward;
it satisfies

Σpost =
(
Hmisfit + Σ−1

prior

)−1
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Table 3: Bayesian inference methods in PyApprox . The number of parameters that can be handled by
each method is summarized in the Dimensionality column. The column labeled Exact states whether draws
samples from the true posterior (exact) or an approximation of it.

Method Dimensionality Exact Multi-Modal Refs.

Laplace O(106) 7 7 [74]
Gaussian Bayesian Networks O(105) 7 7 [74]

SMCMC O(10) 3 3 [80, 58]
NUTS O(102) 3 7 [80, 35]

where Hmisfit = (∇m)>Σ−1
noise∇m for linear parameter-observable maps (and when neglecting second-order

terms for linearized nonlinear maps).4 However, using this formula is intractable for very high-dimensional
maps due to the need to invert very large dense matrices. Following [37], PyApprox makes the construction of
the covariance tractable by performing a low-rank update of priors based upon a low rank approximation of
the prior-preconditioned Hessian misfit ΣpriorHmisfit obtained using randomized singular value decomposition;
this algorithm requires Jacobians of the parameter-to-observable map. The resulting Gaussian approximation
will be accurate when the parameter-to-observable map is weakly nonlinear over the support of the posterior,
and when many parameter directions are weakly informed by the observational data such that the prior
dominates in those directions. The latter property can be checked by looking at the eigen-spectrum of the
low-rank approximation of ΣpriorHmisfit. Another implementation of this algorithm can also be found in the
Hippylib software package [93].

Gaussian Bayesian networks [50] can also be constructed using PyApprox for high-dimensional linear(ized)
Gaussian models. These methods are highly effective when using sparse Gaussian prior covariances (or
inverses) that are encoded by conditional independencies.

3.3.2 Markov Chain Monte Carlo methods

For lower-dimensional problems that are not weakly nonlinear it can be advantageous to sample from the
posterior using Markov Chain Monte Carlo (MCMC) methods. Although a closed form expression for the
posterior density is available (5), using this expression is often intractable due to the need to compute the
integral in the denominator. Instead MCMC methods draw samples from the posterior which is often all
that is needed for subsequent model analysis, e.g. to compute statistics such as mean and variance of the
uncertainty in model predictions.

MCMC methods draw samples from a proposal distribution so that each sample only depends on the
previous sample. Samples are either accepted or rejected based on acceptance criteria that compare suc-
cessive samples with respect to the unnormalized posterior distribution, e.g. the numerator of (5). The
efficiency of MCMC depends on the proposal distribution. PyApprox provides a lightweight wrapper of
the PyMC3 package [80] that supports various types of MCMC algorithms. The wrapper provides access
to the metropolis, NUTS and Sequential Monte Carlo algorithms MCMC samplers in PyMC3. If the user
can compute analytical derivatives of the observation model, then NUTS should be used. Sequential Monte
Carlo is useful when the posterior is multi-modal. We refer the reader to the PyMC3 documentation for
further advice.

3.3.3 Benchmark demonstration

The following code shows how to use PyApprox to draw samples from the posterior distribution of the KLE
coefficients of our advection-diffusion model. If one only wants to produce a point estimate of the optimal
KLE parameters, the map point, which is also computed, is often considered the most representative point.
For linear models and Gaussian priors, the MAP has close ties with the optimal point obtained using
Tikhonov regularization to penalize the defiviation of the optimal point from the prior mean [86].

4Linearizing nonlinear models is akin to using a quadratic approximation of the negative log-likelihood
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1 >>> algorithm, npost_samples, njobs = "nuts", 100, 1

2 >>> loglike = partial(loglike_from_negloglike, approx)

3 >>> mcmc_variable = MCMCVariable(inv_benchmark.variable, loglike, algorithm, njobs=njobs,

loglike_grad=True)↪→

4 >>> post_samples = mcmc_variable.rvs(npost_samples)

5 >>> map_sample = mcmc_variable.maximum_aposteriori_point()

6 >>> mcmc_variable.plot_2d_marginals(nsamples_1d=30, plot_samples=[[post_samples, {}],

[map_sample, {"c": "k", "marker": "X", "s": 100}]])↪→

Here we use the GP surrogate instead of the spectral collocation model to evaluate the negative log-
likelihood, but one can wasily use the numerical model if one is willing to incur a substantial increase in
the computational time required to draw the posterior samples. Figure 4 plots the 1D and 2D marginals
of the unnormalized posterior overlaid with samples from the posterior obtained using NUTS MCMC. The
MAP is depicted with a cross. Plotting the marginals is only computationally tractable when using the GP
surrogate.
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Figure 4: 1D and 2D marginals of the unnormalized posterior overlaid with samples from the posterior
obtained using NUTS MCMC. The MAP is depicted with a cross. The tuple in the upper left corner of the
contour plots indicates the active dimensions that have not been marginalized. The first index is the active
dimension of the 1D marginal in the same column.

3.4 Experimental design

Bayesian inference provides a means to condition the uncertainty in model parameters on observational data.
However, not all observational data reduces the uncertainty in the model parameters or predictions equally.
Experimental design can be used to determine where and when to collect observations to reduce uncertainty
in model parameters and predictions. The locations and timing of observations is referred to as the design.

The simplest experimental design strategies are so called space-filling or low-discrepancy designs that
distribute the design locations “evenly” over the design space. PyApprox currently implements two such
designs, called Halton sequences [31] and Sobol sequences [47]. While typically better than simply randomly
choosing design locations, these algorithms do not take into account the properties of the process generating
the observational data. Fortunately, the information content and cost-effectiveness of space-filling designs
can often be significantly improved using optimal experimental design (OED) strategies that use numerical
models to predict the anticipated information content of different experimental designs. OED methods can
be broadly characterized into two main classes. Those that utilize linear(ized) numerical models and those
that use nonlinear models. PyApprox implements instances of both classes. The methods available are listed
in Table 4.
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Table 4: Experimental design methods in PyApprox .. The number of parameters that can be handled by
each method is summarized in the Dimensionality column.

Method Model-informed Dimensionality Refs.

Halton Seq. 7 O(103) [31]
Sobol Seq. 7 O(103) [47]
Fisher OED 3 O(10) [2, 51]

Bayesian OED 3 O(10) [77, 96]

3.4.1 Linear OED

Let ε be mean zero Gaussian noise, with variance σ2, and x parameterizes how to collect observations, e.g.
spatial locations. Then, given noisy data (possibly heteroscedastic) and a model that satisfies

y(x) = m(x; θ) + η(x)ε, (6)

the first class of methods focus on selecting experiments when the unknown parameters θ of the model are
estimated using M-estimation, i.e. by solving

min
θ

1

L

L∑
l=1

e(yl −m(x(l); θ)) (7)

using a vector of observations y ∈ RL collected at a finite set of inputs XL = {x(l)}Ll=1 and an error function
e. Least squares and quantile regression are both examples of M-estimation. In this setting OED can be
very beneficial because the accuracy of the recovered θ depends on the location of the set XL, which may
include multiple repetitions of the same x.

PyApprox implements a candidate-based OED that selects a set of design points from a set of P candidate
(support) points Ξ = {ξ(i)}Pi=1. Letting ri, i = 1, · · · , P be an integer which specifies the number of times the
ith support point ξ(i) is chosen in an M -point experimental design,PyApprox seeks an experimental design
as a (mathematical) measure on the set of support points, i.e.

µM =

{
ξ(1) ξ(2) · · · ξ(P )

r1/M r2/M · · · rP /M

}
(8)

where
∑P
i=1 ri = M . Generally speaking, the measure µ is chosen to optimize a function Ψ(µ) which

quantifies the optimality of a design for the chosen estimation procedure, that is

min
µ∈Ω

Ψ(µ), (9)

where Ω is the set of admissible design measures.
For linear models, i.e. m(x; θ) = F (X )θ (or linearized models F (X ) = ∇m(X ), θ)) the vast majority of

design criteria used to generate OED are based upon the optimality criteria Ψ that are functionals acting
on the Fisher information matrix F (X (µ))TF (X (µ)). PyApprox implements the well known D optimality
criterion, given by

Ψ(µ) = σ2|
(
F (X )TF (X )

)−1|
for homoscedastic noise, i.e. η(x) = 1. PyApprox also implements the well known A, C, I and G optimality
criteria. The A and D optimality criteria focus on reducing uncertainty in the model parameters while the
others focus on reducing uncertainty in predictions made using the updated parameters. For example, for
homoscedastic noise, the I-optimal criterion is

Ψ(µ) =

∫
X′
σ2∇g(x′, θ)T

(
F (X )TF (X )

)−1∇g(x′, θ) dx′,

where g(x′, θ) is a model dependent on the parameters θ of the observational model m (but perhaps different
from m) that makes predictions at a set of points x′ ∈ X ′ that are often but not always the same as the
candidate design points.
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Linear OED methods can be effectively applied with nonlinear models when good initial estimates of
the model parameters are available. The resulting designs are considered locally optimal. Even though
more globally optimal designs can be found in PyApprox using minimax designs that compute the design
minimizing the worst case criteria over a set of discretely chosen parameter values, it is often better to use
Bayesian OED strategies if using nonlinear models.

We also remark that Linear OED can only be used to select designs that consist of more points than the
number of parameters θ. There is also no good way to place a limit on the number of design points chosen.
Once PyApprox computes a design measure, the set of unique points used to estimate the parameters of the
linear model is found using XL = {ξ(i) ∈ Ξ | ri > δ, i = 1, . . . , P} where δ is a user-defined threshold to
limit the impact of numerical noise.

3.4.2 Nonlinear OED

When performing OED with a nonlinear model or when the user wants to impose a limit on the number of
observations, PyApprox ’s Bayesian nonlinear experimental design [77, 36, 96], should be used. This method
uses the numerical model, via the relationship in (6), to predict the observational data that will be seen when
an observation is collected. Specifically, given a prior density p(θ), PyApprox implementation of Bayesian
OED maximizes the expected utility

X ? = argmax
X∈Xcand

EY [u(X , y, θ)]

to find a design X ? for a set of possible locations Xcand. The utility measures some notion of the information
gained or reduction in uncertainty achieved by collecting observations. We take an expectation of all possible
data because we do not know exactly what data will be collected and want to be ‘good’ on average.

Various utility functions can be used for OED. The most common is the expected Kullback-Leibler
(KL) divergence that quantifies the difference between the prior and posterior for a given realization of the
observations. Averaging over all possible realizations yields

Ey [u(X , y, θ)] =

∫
Y

∫
Θ

log

[
p(θ | y,X )

p(θ)

]
p(θ | y,X )p(y | X ) dθ dθ.

Maximizing the KL divergence is equivalent to Bayesian D-optimal design in the case of linear parameter to
observable maps. When estimating the expected KL utility, we use the double-loop approach in [77], such
that

Û(X ) =
1

N

N∑
n=1

log [p(yn | θn,X )]− log [p̂(yn | X )] .

Here (θn, yn), n = 1 . . . , N are samples from p(y, θ | X ) obtained by first sampling θn from p(θ) and then
sampling yn from p(y | θn,X ), and p̂(yn | X ) is typically a sample-based estimate of p(yn | X ) given by∑M
m=1 p(yn | θnm,X ) where θnm are M samples that can be generated independently of the pairs (yn, θn).
In many model analyses one is not interested explicitly in estimating the model parameters but rather

estimating the impact of their uncertainty on predictions. In this case it is more advantageous to use utility
criteria that target the prediction uncertainty, i.e.

U(X ) =

∫
Θ

D(f(θ))p(θ | y) dθ

where D is a deviation measure that quantifies the uncertainty in the prediction, e.g. standard deviation.
In this setting PyApprox also uses a double-loop MC approach for estimating the expected utility. This can
require a large number of model evaluations. Thus combining OED with the surrogates in PyApprox is often
necessary.

3.4.3 Benchmark demonstration

The following code can be used to greedily select an experimental design using Bayesian OED for nonlinear
models.
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1 >>> design_candidates = inv_benchmark.mesh.mesh_pts[:, inv_benchmark.obs_indices]

2 >>> oed = get_bayesian_oed_optimizer("kl_params", design_candidates, inv_benchmark.obs_fun,

noise_stdev, benchmark.variable)↪→

3 >>> oed_results = []

4 >>> ndesign = 3

5 >>> for step in range(ndesign):

6 >>> results_step = oed.update_design()[1]

7 >>> oed_results.append(results_step)

Figure 5 depicts the best three design locations selected using Bayesian OED with the expected K-L
utility from the 10 (red squares) originally-used for inferring the KLE models in our advection diffusion
example. In this case OED selected one location above the source and two locations down steam (given the
specified advection field) of the source. This choice matches intuition for this example because the other
candidate design points are at locations where the concentration of the tracer is typically very small and
thus influenced little by changes in the KLE parameters. However, such intuition is often not available or
two qualitative to be useful which necessitates OED.
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0.8
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Figure 5: Concentration c(x) for a realization of the diffusivity field overlaid with the candidate design points
(red squares) and the design points selected by OED (black circles).

3.5 Multi-fidelity analysis

For many practical applications, a number of viable models of varying cost and accuracy may be available
to simulate a physical system of interest. These models may use different simplifying assumptions about the
system and/or arise from using different values of hyper-parameters that control the numerical accuracy of
the model - e.g., mesh size, time step, convergence tolerance of a nonlinear solver, and so forth - that can
be used to simulate the component with varying accuracy and cost. Model analysis methods that leverage
only one model or solver setting are referred to as single-fidelity methods, whereas approaches that leverage
multiple models and settings are called multi-fidelity methods. When multiple models were available, multi-
fidelity methods have been repeatedly used to reduce the cost of single-fidelity model analyses by orders or
magnitude.

PyApprox supports two types of multi-fidelity analyses, building surrogates and estimating statistics
of prediction uncertainty. The methods implemented can significantly reduce the computational cost of
these tasks compared to traditional single-fidelity approaches that just use one model. This reduction in
computational cost is achieved by enriching a small number of the highest-fidelity simulations, used to
maintain predictive accuracy, with larger numbers of simulations from the lower-fidelity to allow greater
exploration of the model input space. The effectiveness of multi-fidelity approaches depends on the ability
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to identify and exploit relationships among models within the ensemble. Most existing approaches focus on
exploiting a hierarchy of models of increasing fidelity, with varying physics and/or numerical discretizations,
such that ‖fα′ − f‖ ≤ ‖fα− f‖ in some suitable norm if α′ ≥ α and f is the highest-fidelity model. However
PyApprox provides methods that do not require a strict hierarchy. Table 5 list all the methods implemented
in PyApprox .

Table 5: Multi-fidelity analysis techniques implemented in PyApprox . The first three rows are used to
estimate statistics. The remaining are used to build surrogates. The column labeled Auto Sample Allocation
states whether each method can automatically allocated samples to each model fidelity. A cross indicates
that the method can only leverage a fixed data set. The Ensemble column list the assumptions on the
relationships between models.

Method Ensemble Auto Sample Allocation Refs.

MLMC 1D Hierarchy 3 [23]
MFMC Cost/Correlation constrained 3 [73]
ACV None 3 [25, 6]

Multi-level GP 1-D Hierarchy 7 [49]
Multi-level SG 1-D Hierarchy 3 [89]
Multi-index SG N-D Hierarchy 3 [30, 41, 45]

MFNets Directed Acyclic Graph 7 [27]

3.5.1 Multi-fidelity statistical estimation

Often the support of decision making requires estimating uncertainty in model model predictions, for example
computing the expected response of model QoI to uncertainty in model parameters. Given the ability to
sample from a random variable, either from its prior or from its posterior conditioned on available data using
MCMC, Monte Carlo-based multi-fidelity methods can be used compute the expectations of the output of a
function (model), i.e.

Qα =

∫
Γ

fα(z)ρ(z) dz

where α is a multi-index used to denote the fidelity of the model being used, e.g. each entry dictates the
value of a different discretization hyper-parameter. Here we assume that α = 0 denotes the highest-fidelity
model. When using a single model we can approximate the integral Qα using MC quadrature by drawing N
random samples of z from ρ and evaluating the function at each of these samples to obtain the data pairs

{(z(n), f
(n)
α )}Nn=1, where f

(n)
α = fα(z(n)), and computing

Qα,N = N−1
N∑
n=1

f (n)
α

The mean squared error (MSE) of this single-fidelity MC estimator can be edecomposed into two terms

E
[
(Qα,N − E [Q])

2
]

= N−1V [Qα]︸ ︷︷ ︸
I

+ (E [Qα]− E [Q])
2︸ ︷︷ ︸

II

;

a so called stochastic variance (I) and a deterministic bias (II). The first term is the variance of the MC
estimator which comes from using a finite number of samples. The second term is due to using an approx-
imation of f . These two errors should be balanced, but in the vast majority of all MC analyses a single
model fα is used and ad-hoc choices of α, e.g. mesh resolution, are made a priori to balance the bias and
variance. For example often a low-resolution model is used to reduce the stochastic variance at the cost of
increasing the deterministic bias.

Multi-fidelity sampling methods can be used to balance the bias and variance of a MC estimator. Various
multi-fidelity estimators have been developed, for example Multi-level Monte Carlo (MLMC) [23] and Multi-
fidelity Monte Carlo (MFMC) [73], however here we focus on approximate control variate (ACV) estimators
which include the aforementioned estimators as special cases.
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Consider an ensemble of S models {fs(z)}Ss=1 parameterized by the same input variables z. If we assume
that the highest-fidelity model is the truth, i.e. has zero bias, then ACV methods can be used to reduce the
variance of the estimator and thus its MSE. Given M lower-fidelity models with sample ratios rα >= 1, for
α = 1, . . . ,M , the ACV estimator of the mean of the high-fidelity model Q0 = E [f0] is

Q0 ≈ QACV = Q0,Z0,1
+

M∑
α=1

ηα
(
Qα,Zα,1 − µα,Zα,2

)
= Q0,Z0,1

+

M∑
α=1

ηα∆α,Zα,1,Zα,2 = Q0,N + η∆

Here ∆ = [∆1,Z1,1,Z1,2
, . . . ,∆M,ZM,1,ZM,2 ]>, Zα,1, Zα,2 are sample sets that may or may not be disjoint, and

µα,Zα,2 are MC estimates of the low-fidelity model means computed using the samples in Zα,2. Specifying
the exact nature of these sets Zα,1, Zα,2, including their cardinality, can be used to design different ACV
estimators and are the major difference between MLMC, MFMC and other ACV estimators.

The control variate weights η = [η1, . . . , ηM ]> that produce the minimum variance are given by the closed

form expression η = −Cov [∆,∆]
−1 Cov [∆, Q0]. Using these weights, the variance of the ACV estimate of

the high-fidelity mean is

V
[
QACV

]
=

(
1− Cov [∆, Q0]

T Cov [∆,∆]
−1

V [Q0]
Cov [∆, Q0]

)
V [f0]

N0

where N0 = |Z0,1| is the number of evaluations of the highest-fidelity model. This variance is a function
purely of the number of samples allocated to evaluating each model and the how those samples overlap, i.e.
the way in which Zα,1, Zα,2 are constructed. PyApprox uses this estimate of variance to optimally allocate
the number of samples to each model in a manner that minimizes the variance (MSE) for a specified total
computational cost that is distributed to the tasks of evaluating all models. The method in [6] is used to
iterate over a large set of choices of Zα,1, Zα,2. This avoids the user needing to specify whether to use MFMC,
MLMC, or other ACV estimators, instead providing an automated means of selecting the best estimator
for given estimates of the covariance between models, which is determined with a small pilot study, e.g. 10
evaluations of each model.

3.5.2 Multi-fidelity surrogates

PyApprox also supports various multi-fidelity methods for constructing surrogates. These methods again
balance the bias introduced in the surrogate by using training data from lower-fidelity models with the
approximation error introduced by using only a finite amount of training data. Specifically, PyApprox
implements multi-level GPs [49], multilevel collocation (sparse-grids) [89], and multi-index collocation [30,
41, 45]. These methods are extensions of the single-fidelity surrogates presented in Section 3.1 and assume
that lower-fidelity models can be ordered in a 1D or multi-dimensional hierarchy. We refer the reader to the
online documentation of PyApprox and the citations listed in Table 5 for more details. If the model-ensemble
available does not admit the strict hierarchies needed by the aforementioned methods, then the use of the
MFNets algorithm [27] in PyApprox is recommended.

3.5.3 Multi-level Gaussian processes

Given a hierarchy of models, PyApprox constructs multi-level GPs using the algorithm in [49]. Specifically,
adopting the GP convention that the models are indexed from lowest to highest fidelity, the s-th model is
assumed to satisfy

fs(x) = ρs−1(z)fs−1(z) + δs(z) s > 0

where the discrepancies δs are independent GPs and f0(x) = δ0(z). When two models are available this
leads to the following redefinition of the covariance matrices and vectors used to compute the single-fidelity
GP in (3):

AZ =

[
C1(Z1,Z1) ρ1C1(Z1,Z2)
ρ1C1(Z2,Z1) ρ2

1C1(Z2,Z2) + C2(Z2,Z2)

]
t(z)T =

[
ρ1C1(z,Z1), ρ2

1C1(z,Z2) + C2(z,Z2)
]
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where Z = {Z1,Z2} and Cs is the covariance kernel used for the discrepancies at the s-th level. Similar
covariance matrices can be constructed when using more than three models, however the computational cost
of computing the multi-fidelity GP (after training data has been collected) grows quickly with the number
of models and number of samples used per model. If N samples are used for each of the S models then the
computational cost of building the GP will be O(N3S3).

The implementation of multi-level GPs in PyApprox is an extension of the PyApprox wrapper of Scikit-
learn used for single fidelity GPs. Given a definition of a multi-level kernel matrix, as given above for two
models, PyApprox uses the same infrastructure to learn the hyper-parameters of the multi-level GP, which
now include the scaling coefficients ρs, and compute the mean and pointwise variance of the GP. Currently
multi-level GPs can only be constructed in a regression context, i.e. from a pre-specified set of samples for
each model. An adaptive sample allocation strategy similar to the single fidelity GP algorithms is currently
under development.

3.5.4 Multi-level and multi-index collocation

Multi-level collocation and multi-index collocation can respectively be used when one or multiple hyper-
parameters control the discretization and thus accuracy of a numerical model. PyApprox constructs such
multi-fidelity approximations using an extension of single fidelity sparse grids (Section 3.1.2). Letting f
(without a subscript) denote the true model output without discretization error, the multi-index surrogate5

is given by

f(z) ≈
∑
α,β∈I

cα,βfα,β(z).

Here fα,β is a tensor-product interpolant constructed using evaluations of the model fα at the samples
dictated by the multi-index β. An extension of the adaptive algorithm used to build single-fidelity sparse
grids can be effectively used to determine the index set I that assigns evaluations of the different model
fidelities fα in a manner that minimizes error in the surrogate subject to a total computational budget.
Provided the deterministic bias of the numerical model decreases as the entries of α increase, this algorithm
builds a highly accurate sparse grid using only a small number of high-fidelity model evaluations combined
with a much larger number of lower-fidelity evaluations. Even when the number of evaluations of the high-
fidelity model is typically smaller, the computational cost of collecting these evaluations typically exceeds
the cost required to collect the much more numerous low-fidelity evaluations, highlighting the value of multi-
fidelity surrogate methods.

3.5.5 MFNets

The multi-level (multi-index) surrogates above require a (possibly multi-dimensional) hierarchy) of numerical
models. However, for some model analyses the available models do not admit such a hierarchy. In this setting,
MFNets provides a flexible means to encode and exploit prior knowledge about the relationship between
models. MFNets expresses the multi-fidelity surrogate as a directed acyclic graph (DAG) of models of
varying fidelities. Nodes represent models and edges the connections between models. Multi-level surrogates
are a special instance of MFNets that is obtained when the DAG is a chain of models.

The roots of the graph (the lowest fidelity models) are represented by simple discrepancies δs(z) and the
remaining nodes are functions of the low-fidelity nodes (parents) directly connected to them and the inputs
z, i.e.

fs(z) = ∆s(z, {fj(z)}j∈pa(s))

where pa(s) denotes all indices of the the low-fidelity model directly connected to the s-th model. There are
little restrictions theoretically on the form of ∆, however PyApprox currently only supports

fs(z) =
∑

j∈pa(s)

ρjs(z)fj(z) + δs(z)

5the multi-level surrogate is just a special case when the multi-index α has only one entry
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where ρ(z) and δs(z) are multivariate PCEs.6.
Although each PCE is linear in its coefficients the MFNets surrogate is nonlinear in all its unknowns.

Consequently, PyApprox uses gradient-based maximum likelihood estimation of the unknowns, employing
analytical gradients of the objective obtained using backwards differentiation to reduce the computational
cost of training the surrogate once data has been collected. Like multi-level GPs, MFNets can currently only
be used in a regression context. Adaptive sampling methods are currently being developed.

3.5.6 Benchmark demonstration

The following code demonstrates how to setup a pilot study for ACV that will predict the benefit of using
ACV, relative to single fidelity MC using only the highest fidelity model, when estimating uncertainty in
predictions made by the transient advection diffusion equation (1). Specifically, we set T = 0.2 and quantify
the expected value (with respect to the posterior distribution of the KLE parameters) of the left QoI in (2)
with the subdomain Γ = [3/4, 1]× [0, 1/4]. Ten evaluations of eight possible model instances, corresponding
to two different discretizations of the mesh in each physical directions and the time step size, are used to com-
pute the correlation between the two models. The multifidelity.get best models for acv estimator()

function is then used to find the best subset of models that minimizes the ACV estimator variance (thus
MSE, assuming the highest-fidelity model is unbiased).

1 >>> fwd_benchmark = setup_benchmark("multi_index_advection_diffusion",

kle_nvars=inv_benchmark.variable.num_vars(), kle_length_scale=0.5, time_scenario=True)↪→

2 >>> model = WorkTrackingModel(TimerModel(fwd_benchmark.model_ensemble), num_config_vars=1)

3 >>> npilot_samples = 10

4 >>> cov = multifidelity.estimate_model_ensemble_covariance(npilot_samples, post_samples,

model, fwd_benchmark.model_ensemble.nmodels)[0]↪→

5 >>> model_costs =

model.work_tracker(np.asarray([np.arange(fwd_benchmark.model_ensemble.nmodels)]))↪→

6 # make costs in terms of fraction of cost of high-fidelity evaluation

7 >>> model_costs /= model_costs[0]

8 >>> best_est, best_model_indices = (multifidelity.get_best_models_for_acv_estimator("acvgmfb",

cov, model_costs, inv_benchmark.variable, 1e2, max_nmodels=3, tree_depth=4))↪→

9 >>> best_est.allocate_samples(target_cost)

10 >>> print("Predicted variance", best_est.optimized_variance)

The left plot of Figure 6 depicts the relative variance of the MC and ACV estimators, normalized by
the variance of the MC estimator using 10 samples, for different target costs measured in fractions of the
computational cost of a single evaluation of the highest-fidelity model. The right plot, depicts the number of
samples assigned to the two models found to minimize the ACV variance and that were used to generate the
left plot. Because of the high-correlation between the high- and low-fidelity models many more evaluations of
the less computationally expensive low-fidelity model are used. See the online tutorial for code to reproduce
Figure 6.

4 Conclusions

Many model analyses require the repeated evaluation of computationally expensive numerical models. The
central mission of PyApprox is to capture an eclectic and comprehensive range of research methods and
algorithms for minimizing the number of model evaluations whatever the modeling objective in question.
PyApprox consists of nine high-level modules, four dedicated to setting up model analyses and five for
algorithms providing analysis tools. The variables and interface modules, respectively, provide tools: for
characterizing prior probability distributions that describe the various sources of model uncertainty, and
to interface with computationally expensive simulation models. The benchmarks and Partial Differential
Equation (PDE) modules provide numerous challenge problems that can be used to verify, validate and assess
the performance of model analyses algorithms. The five classes of model analysis tools include sensitivity

6Development of other forms of ∆s are currently in development.
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Figure 6: (Left) The variance of an ACV estimate of the mean QOI relative to Monte Carlo estimate. (Right)
The computational cost (in fractions of a single high-fidelity evaluation) and the number of samples allocated
to each model used by the ACV estimator.

analysis, Bayesian inference, experimental design; multi-fidelity forward propagation of uncertainties; and
surrogate modeling (including multi-fidelity algorithms).

PyApprox has been used for a number of high-impact studies. For example, PyApprox was used to
perform the first ever global sensitivity study of a fully coupled version 1 of the Energy Exascale Earth System
Model (E3SM) [90]. PyApprox was able to determine the dominant sources of uncertainty in predictions of
quantities characterizing changes in the arctic climate over a 75 year period, using only 139 model evaluations
that took 106 CPU hours to generate. As another major example, multi-fidelity uncertainty quantification
was used to compute the expected mass ice loss of Humboldt Glacier in Greenland under a likely climate
scenario using 3 different physics models each with their own varying numerical resolutions [83]. PyApprox
was able to identify a set of three model instances that reduced the computational cost of a single model
analysis, which uses only the highest-fidelity model, by approximately an order of magnitude.

Future developments in PyApprox will focus on further strengthening its multi-fidelity capabilities, adding
further PDE based benchmarks for comparing, verifying and validating methods for model analysis including
those focused on hybrid machine learning/ physics-based dynamical models, and utilizing all of PyApprox
’s existing tools to enable efficient optimization under uncertainty.
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sensitivity and uncertainty analysis toolbox for python. SoftwareX, 11:100450, 2020. URL: https:
//www.sciencedirect.com/science/article/pii/S2352711020300078, doi:https://doi.org/10.

1016/j.softx.2020.100450.

[96] R. White, J.D. Jakeman, Bart Van Bloemen Waanders, and B. Alexanderian. Bayesian active learning
for risk-averse sequential experimental optimal design. In preparataion, 2022.

[97] D. Xiu and G.E. Karniadakis. The Wiener-Askey Polynomial Chaos for stochastic differential equations.
SIAM J. Sci. Comput., 24(2):619–644, 2002. URL: http://dx.doi.org/10.1137/S1064827501387826,
doi:10.1137/S1064827501387826.

https://www.sciencedirect.com/science/article/pii/S0378475400002706
https://www.sciencedirect.com/science/article/pii/S0378475400002706
https://doi.org/https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492910000061
https://doi.org/{10.1016/i.ress.2007.04.002}
http://www.sfu.ca/~ssurjano
https://doi.org/10.1137/140969002
https://doi.org/10.1002/essoar.10508267.1
https://epubs.siam.org/doi/book/10.1137/1.9780898719598
https://epubs.siam.org/doi/book/10.1137/1.9780898719598
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1145/3428447
https://www.sciencedirect.com/science/article/pii/S1364815215300955
https://doi.org/https://doi.org/10.1016/j.envsoft.2015.11.004
https://doi.org/https://doi.org/10.1016/j.envsoft.2015.11.004
https://www.sciencedirect.com/science/article/pii/S2352711020300078
https://www.sciencedirect.com/science/article/pii/S2352711020300078
https://doi.org/https://doi.org/10.1016/j.softx.2020.100450
https://doi.org/https://doi.org/10.1016/j.softx.2020.100450
http://dx.doi.org/10.1137/S1064827501387826
https://doi.org/10.1137/S1064827501387826

	Introduction
	Novelty
	Software overview

	Analysis support tools
	Variables
	Interface
	Benchmarks
	PDE

	Model analysis algorithms
	Surrogate modeling
	Regression-based surrogates
	Adaptive surrogates
	Benchmark demonstration

	Sensitivity analysis
	Benchmark demonstration

	Bayesian inference
	Large-scale methods for linear models and Gaussian priors
	Markov Chain Monte Carlo methods
	Benchmark demonstration

	Experimental design
	Linear OED
	Nonlinear OED
	Benchmark demonstration

	Multi-fidelity analysis
	Multi-fidelity statistical estimation
	Multi-fidelity surrogates
	Multi-level Gaussian processes
	Multi-level and multi-index collocation
	MFNets
	Benchmark demonstration


	Conclusions
	Acknowledgements

