
LA-UR-20-30168
Accepted Manuscript

Robustifying Links To Combat Reference Rot

Jones, Shawn Morgan
Klein, Martin
Van De Sompel, Herbert

Provided by the author(s) and the Los Alamos National Laboratory (2022-07-28).

To be published in: code{4}lib Journal

DOI to publisher's version:

Permalink to record:
http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-20-30168

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos
National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Robustifying Links
To Combat Reference Rot

Shawn M. Jones (0000-0002-4372-870X), Los Alamos National Laboratory
Martin Klein (0000-0003-0130-2097), Los Alamos National Laboratory
Herbert Van de Sompel (0000-0002-0715-6126), Data Archiving and Networked Services

Abstract
Links to web resources frequently break, and linked content can change at unpredictable rates.
These dynamics of the Web are detrimental when references to web resources provide
evidence or supporting information. In this paper, we highlight the significance of reference rot,
provide an overview of existing techniques and their characteristics to address it, and introduce
our Robust Links approach, including its web service and underlying API. Robustifying links
offers a proactive, uniform, and machine-actionable way to combat reference rot. In addition, we
discuss our reasoning and approach aimed at keeping the approach functional for the long term.
To showcase our approach, we have robustified all links in this article.

Information Integrity Is Impeded by Reference Rot
Two characteristics of the dynamic nature of the Web are link rot and content drift. Link rot
occurs when links break over time -- a detriment we have all encountered numerous times, and
that has been studied and quantified abundantly. Content drift happens when content at a given
web location changes over time, something we expect when gathering information on the
current state of affairs -- e.g., weather, news, stock prices. Because we often assume that the
latest web content is the most desirable, the effects of content drift are not immediately
apparent. In past work, we quantified the extent of content drift for links to web pages
referenced in scholarly papers. We argued that it significantly undermines the integrity of the
web-based scholarly record because it prevents readers from revisiting the exact web content
that authors referenced. But the detrimental effect of content drift is not limited to scholarship on
the Web.

http://orcid.org/0000-0002-4372-870X
https://orcid.org/0000-0003-0130-2097
https://orcid.org/0000-0002-0715-6126
https://doi.org/10.1371/journal.pone.0167475

Figure 1: The Internet Archive holds archived versions (mementos) of the U.S. National
Stockpile website from April 3, 2020 (left) and April 4, 2020 (right). Significant changes in the

textual description of the stockpile can be seen when comparing both mementos.

Content drift can mask changes in government policy. For example, the United States
government has maintained a national stockpile of medical equipment since the 1950s and
consolidated it at the Strategic National Stockpile in 2003. As shown in the left archived web
page ("memento", defined in the next section) of Figure 1, the Stockpile existed to support
“state, local, tribal, and territorial responders” in the case of an emergency. While managing the
COVID-19 pandemic, senior White House official Jared Kushner directed that the stockpile was
not for use by these municipalities, in contrast to the policy stated on its website. The right
memento in Figure 1 reflects this change in policy one day after Kushner’s statement.
Journalists from Ars Technica, Politico, The Hill, The Washington Post, and others used
mementos, like those in Figure 1, to prove that the agency policy existed on the website up until
Kushner’s comments. If journalists had only been able to rely upon the most recent version of
this resource, content drift would have prevented them from proving that the agency changed its
policy after Kushner’s comments.

Figure 2 demonstrates this problem generically. At time t0 an author wrote Article A, which we
formally refer to as a linking page. The article links to eight web pages, referred to as linked
resources. At a later time tm, a reader visits the linking page and finds link rot for two and
content drift for four of the linked resources. Only two linked resources are the same as when
the author originally linked to them. Thus, a reader visiting the linked resources at time tm will not
see the same content to which the author linked at time t0, and, in the case of content drift, may
not even be aware of it.

https://en.wikipedia.org/wiki/Strategic_National_Stockpile
https://arstechnica.com/tech-policy/2020/04/us-edits-national-stockpile-website-after-kushner-claims-its-not-for-states/
https://www.politico.com/news/2020/04/03/strategic-national-stockpile-description-altered-after-kushners-remarks-163181
https://thehill.com/homenews/administration/491037-trump-administration-changes-definition-of-national-stockpile-after
https://www.washingtonpost.com/politics/2020/04/03/jared-kushner-stands-trump-proceeds-offer-very-trumpian-claim-about-stockpiles/

Figure 2: An abstract example of reference rot over time. The linking page (Article A) contains
eight linked resources. At time t0, all linked resources match what the author viewed. At time tm,

two links are rotten, four linked resources have content drift, and only two links remain that
accurately reflect what the author saw at t0.

All linked resources are subject to link rot and content drift, a Web phenomenon which we
collectively refer to as reference rot. Investigative pursuits in journalism, as illustrated above,
the integrity of the scholarly record, and evidence provided to support United States Supreme
Court opinions, are only some of the examples that highlight the essential need to be able to
revisit referenced content as it was at the time the authors of linking pages created links. We are
therefore motivated to address the reference rot problem and propose Robust Links as a
solution that we devised with an eye on long term functionality in an ever-changing Web
environment.

Other Approaches to Address Reference Rot
Reference rot, and especially the link rot component of the problem, has attracted significant
attention. As such, it is not surprising that a variety of approaches exist that attempt to address
it. Here we cover persistent identifiers, approaches to cite web resources, and techniques that
leverage web archives. We show that each has shortcomings when it comes to combating
reference rot.

To discuss these approaches, we borrow terms from the Memento Protocol. An original
resource is the current, most recent version of a web resource. An original resource is identified

https://harvardlawreview.org/2014/03/perma-scoping-and-addressing-the-problem-of-link-and-reference-rot-in-legal-citations/
https://harvardlawreview.org/2014/03/perma-scoping-and-addressing-the-problem-of-link-and-reference-rot-in-legal-citations/
https://tools.ietf.org/html/rfc7089

by a URI-R. Mementos are captures of original resources at specific points in time. A memento
of an original resource is identified by a URI-M and has a specific archival datetime.

Persistent Identifiers
At first thought, we might conclude that persistent identifiers such as Digital Object Identifiers
(DOIs), PURLs, and W3IDs are viable solutions to the reference rot problem. However, a quick
analysis of the way they function reveals they can successfully be used in certain settings but
not generally. All types of persistent identifiers use a similar approach to avoid link rot for links to
a web resource. They consider the actual URL of the resource to be temporary, subject to
change. They introduce a permanent URL for the resource that authors should use for linking
purposes. The persistent identifier registrar manages a central lookup table to express the
correspondences between the permanent URLs and the respective actual, current URLs. When
a reader follows the link to the permanent identifier of a web resource, the registrar applies the
lookup table to generate an HTTP redirect from that permanent URL to the current URL of the
resource. As time goes by and the resource changes web location, its custodian must update
the lookup table and associate the permanent URL with the new web location. This approach
works successfully when the custodian fundamentally cares about the long term accessibility of
its web resources and hence is willing to invest time and energy to keep the lookup table
up-to-date. While this may be the case for scholarly publishers, cultural heritage institutions, and
authors of web ontologies, for example, we cannot expect such commitment from the
middle-of-the-road webmaster. The basic premise of the value proposition of persistent
identifiers, namely a custodian's commitment regarding long term access to its web resources,
does not hold for the majority of web resources. For those resources, the author of a link rather
than the linked resource's custodian has to invest in making the link durable.

Citing Web Resources
Approaches for citing web resources have evolved. Initially, web resources were infrequently
cited, leading citation standard bodies to ignore them. As web resources became more
commonly used as references, these same bodies recognized the need to update their
standards to include web resources and also to support addressing the reference rot problem.
Figure 3 shows an example reference to a web page in the APA format. It includes a URI-R so
that the reader can visit the current version of the cited resource, assuming it still exists. The
reference format also specifies a “retrieved” date, an explicit recognition of the existence of
reference rot. For consistency between reference standards, we refer to this date as the author
view date. The reader can use this date along with the URI-R to manually locate a memento of
the linked resource in a web archive. However, there are no guarantees that such a memento
exists or that it was archived on or close to the date specified in the reference. As such, the
reference leaves it to the reader to manually solve link rot and provides no solution to content
drift.

https://www.dpconline.org/handbook/technical-solutions-and-tools/persistent-identifiers
https://www.doi.org/
https://www.doi.org/
https://archive.org/services/purl/help
https://w3id.org/
https://apastyle.apa.org/style-grammar-guidelines/references/examples/webpage-website-references#6

Figure 3: An annotated example reference to a web page in APA format .

Figure 4: An annotated example reference from Wikipedia.

Figure 5: An annotated example reference to a web page in ISO/DIS 690 format

https://apastyle.apa.org/style-grammar-guidelines/references/examples/webpage-website-references#6
https://www.iso.org/standard/72642.html

Where possible, Wikipedia article citations to linked resources contain information that might be
used to combat reference rot. They contain a link to the original resource, the date when the
linked resource was retrieved by the author of the Wikipedia article (the linking page), a link to a
memento of the linked resource, and the archival datetime of that memento as shown in Figure
4. With the URI-M, the reader avoids link rot. The archival datetime of the URI-M is not always
near the author view date, meaning that this approach does not reliably address content drift.
While it is possible for an author to create their own memento and manually insert its URL into
one of these citations, many of these URI-Ms are inserted by scripts that are run after the
Wikipedia article is updated. The URI-Ms added by these scripts often reflect a best effort to find
a memento near the author view date.

This approach used by Wikipedia and others has found its way into the recommendations of the
recent ISO/DIS 690 reference standard, as shown in an example in Figure 5. It includes the
URI-R and a URI-M for the resource. The reader can use the URI-M to visit a specific version of
the linked resource. Because the author explicitly endorses this URI-M as a reference, this
reference format is, in principle, able to address both link rot and content drift. If the URI-M is
inaccessible due to technical problems or other issues, the reader could still use the author view
date and the URI-R to manually find another memento that might match the version captured on
that date. The standard mentions, however, that the date specified by the “viewed” keyword
does not always correspond to the author view date of the original resource. The example in
Figure 5 shows two dates with the “viewed” keyword. The first one, following the URI-R, is the
author view date of the original resource. A reader can use this date in combination with the
URI-R to locate a memento in a web archive. The second “viewed” date, following the URI-M,
refers to the author view date of the memento. Thus, the textual position of dates in ISO/DIS
690 citations must be carefully considered when consulting referenced web resources.

Authors can adapt these citation standards into any human-readable file format, like PDF,
HTML, or DOCX. Robust Links leverage HTML and thus are confined to that format.

Techniques that Leverage Web Archives
A variety of infrastructural approaches to address the reference rot problem have emerged in
which web archives play an essential role because they hold prior, timestamped versions of web
pages.

Criteria for Characterizing the Techniques

All techniques to combat reference rot that leverage web archives rely on the ability to deliver a
memento for a linked resource as a means to counteract the fact that, some time after the link
was established, the resource may have vanished from the live web or its content may have
drifted. As such, these techniques rely on the existence and hence creation of mementos of
linked resources. A number of factors contribute to the extent to which a given memento that is

https://en.wikipedia.org/wiki/Wikipedia:Citing_sources
https://en.wikipedia.org/wiki/Wikipedia:Link_rot
https://www.iso.org/standard/72642.html

delivered addresses reference rot in an accurate and robust manner. We first discuss these
factors and then describe and characterize the various techniques accordingly.

Temporal accuracy of a memento - Consider a linking page with a set of linked resources. To
address content drift, the archival datetime of a memento for a linked resource must be as close
as possible to the date the author linked to it. If the linking page’s author — or someone on their
behalf — creates a memento for each linked resource around the time the author views the
linked resource’s content, then both link rot and content drift are addressed. Because each such
memento matches the specific version of a linked resource the way the author saw it when
linking, a reader can review the linked resources in the state intended by the author of the
linking page. If a third party, unconnected to the development of the linking page, has created a
memento for one or more of the linked resources, then this third party has incidentally
addressed link rot for that specific link in the author’s linking page. However, because this third
party may not have created this memento at the time the author viewed the linked resource,
content drift is not necessarily addressed.

Distribution of mementos - Redundancy of mementos is also important for addressing reference
rot in a robust manner. Consider an approach to reference rot that creates mementos but only
places them in one archive. If we link to one of these mementos, but the web archive in which it
resides is - temporarily or permanently - not in service, we again have link rot. Thus, an
approach that stores mementos of referenced content in multiple archives is more robust.
Similarly, an approach that only retrieves mementos from one web archive is equally vulnerable
and its robustness is much increased by providing access to mementos across multiple
archives.

Unconstrained memento access - Consider the approach that addresses reference rot, but only
for some readers or some linked resources. Such approaches apply constraints on access to
mementos. Some constraints may be imposed by the tools themselves. Specific browsers or
browser extensions may only address reference rot for the users that install them. A server
running a special extension may only create mementos for the linked resources found in the
linking pages it hosts. Other constraints regard the original resources for which mementos are
accessible. For example, an approach may only provide mementos of linked resources from a
specific domain, like gov.uk, or it may only address reference rot for the linked resources that
are frequently navigated by the visitors of certain Cloudflare customer sites. Approaches that
provide unconstrained memento access are more robust.

Datetime for memento access - Some approaches take a desired datetime into account when
delivering a memento to the reader. This datetime could be the publication date of the linking
page, a manually selected date, or information from the link itself such as the dates included
with various citation standards shown in the previous section. The inclusion of a datetime can
help a reader locate a memento near this date and thus can address content drift. Ideally, the
date information should be machine-readable so that web crawlers, on-page JavaScript, and
other automation can easily parse information and help readers find mementos.

Characterization of Techniques that Leverage Web Archives

Perhaps the most straightforward approach to combating reference rot is to use the URI-M as
the link target when creating new links. This approach supports unconstrained memento access
because it works in all browsers, is not limited to specific domains, and can be used with any
web publishing platform. If the author relies upon a memento created by others, for example via
web crawling by web archives, then this solution at best addresses link rot. If the author
proactively creates the memento, then this approach addresses link rot and content drift.
Unfortunately its effectiveness is dependent on the continued existence of a single web archive.
If the web archive storing the URI-M fails for technical, financial, legal, or other reasons, then we
again have link rot because the memento becomes unavailable. If the web archive is not
available, we could search for the URI-R in other web archives, but how do we know what the
original URI was? URI-Ms do not always convey the URI-R. For example, the URI-R
https://lanl.gov is apparent at the end of the Internet Archive URI-M
https://web.archive.org/web/20201027204016/lanl.gov but can not be obtained from the
Perma.cc URI-M https://perma.cc/Q938-LPMG. Thus, if the URI-M fails, the reader has no way
of reconstructing the reference.

The recent partnership between the Internet Archive and Cloudflare goes a step further. Every
few days, Cloudflare shares its customers’ popular URL paths with the Internet Archive, which
then creates their mementos. If a linked resource served by Cloudflare is unavailable because
its origin server is down, Cloudflare detects this failure and redirects readers to the most recent
memento of the page. This solution works only for Cloudflare-supported websites and only for
those customers who opt-in to this service. Similarly, the UK Government’s Web Continuity
Project proactively preserves UK Government web sites’ pages and redirects from broken links
in government web sites to these UK Government URI-Ms. While these solutions address link
rot, none address content drift because they lack coordination with a linking page’s author.
Because they only work with specific linked resource domains, these solutions also only apply
to a subset of the Web.

The Brave browser, the Wayback Machine browser extensions for multiple browsers, and the
“No More 404s” browser extension all address link rot. When a browser user clicks on a broken
link, each of these approaches aims to detect the broken link and seeks a replacement URI-M in
the Internet Archive, ignoring mementos in other web archives. They do not provide
unconstrained memento access for readers because they limit readers to only using specific
browsers or extensions. The approaches do not address content drift because they rely upon
the incidental preservation of linked resources by a third party, meaning if no memento of a
linked resource exists, then link rot persists. They also only search for resources in a single web
archive, forgoing the possibility that the linked resource might exist in other web archives.

It is worth mentioning that none of these solutions a) know the version that the linking page’s
author intended to reference and b) can address content drift. In contrast, the Memento Time
Travel Chrome extension does allow a user to select a datetime from a calendar picker and
right-click on a broken link to find a memento of the linked resource around the specified

https://lanl.gov
https://web.archive.org/web/20201027204016/lanl.gov
https://perma.cc/Q938-LPMG
http://blog.archive.org/2020/09/17/internet-archive-partners-with-cloudflare-to-help-make-the-web-more-useful-and-reliable/
https://support.cloudflare.com/hc/en-us/articles/200168436-Understanding-Cloudflare-Always-Online
https://blog.cloudflare.com/cloudflares-always-online-and-the-internet-archive-team-up-to-fight-origin-errors/
https://blog.cloudflare.com/cloudflares-always-online-and-the-internet-archive-team-up-to-fight-origin-errors/
http://www.ijdc.net/article/view/106
http://www.ijdc.net/article/view/106
http://blog.archive.org/2020/02/25/brave-browser-and-the-wayback-machine-working-together-to-help-make-the-web-more-useful-and-reliable/
https://www.zdnet.com/article/google-chrome-gets-wayback-machine-extension-end-to-the-pain-of-404-errors/
https://medium.com/firefox-test-pilot/test-pilot-no-more-404s-graduation-report-22e65f62b2b1
https://chrome.google.com/webstore/detail/memento-time-travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en
https://chrome.google.com/webstore/detail/memento-time-travel/jgbfpjledahoajcppakbgilmojkaghgm?hl=en

datetime and across multiple web archives. But it is up to the reader to make an informed guess
for the datetime that should be used. For example, the reader could choose the creation date of
the page that contains the broken link. Unless the author deliberately created a memento
around this date, this approach relies upon incidental archiving and thus may not address
content drift.

Harvard University’s Berkman Center maintains the Amber project, which provides plugins for
the content management systems Drupal and WordPress that create mementos of linked
resources for linking page authors. Amber stores these mementos in multiple web archives
(e.g., perma.cc and the Internet Archive) and caches them on the author’s server. If a reader
clicks on a linked resource and Amber detects that the link is broken, it offers to let the reader
view the specific memento of the linked resource associated with the linking page. Thus, Amber
satisfies multiple robustness criteria. It creates mementos near the time of linking, addressing
content drift. Amber allows readers to reach these specific mementos if the link is broken,
addressing link rot. However, Amber only works for Drupal and WordPress, limiting authors to
those tools. It also does not provide machine-readable links, making it difficult to apply other
solutions if Amber fails or its mementos no longer exist.

As mentioned in the previous section, English-language Wikipedia often links to both the URI-R
and a URI-M. Additionally, it provides the date of the archiving, as seen in Figure 4. This
approach focuses on combating link rot. It only addresses content drift for those linked
resources for which the author explicitly created a memento. This approach does work in all
modern browsers and allows linked resources from any domain, but it only addresses link rot for
Wikipedia and potentially some MediaWiki installations, limiting authors’ options. Even though
an author can apply mementos from other web archives to their references, the Wikipedia
scripts that automatically apply this solution to linked resources were built based on a specific
partnership with the Internet Archive. Much like the reference standards mentioned above, a
reader can use the URI-R and the archive date to find a suitable replacement URI-M in another
web archive if the given URI-M is not available. Humans can read these references and
understand how the pieces fit together, but machines cannot. Any client performing analysis on
these linked resources would have to resort to heuristics to distinguish URI-Ms from URI-Rs. If a
URI-M fails, a machine client would have no method of detecting which date on the linking page
refers to which linked resource and therefore cannot collect the necessary information to find an
alternative URI-M for the linked resource.

http://amberlink.org/
https://github.com/berkmancenter/amber_wordpress/blob/wordpress/readme.txt
https://github.com/berkmancenter/amber_wordpress/blob/wordpress/readme.txt
http://blog.archive.org/2018/10/01/more-than-9-million-broken-links-on-wikipedia-are-now-rescued/

Table 1: Different web archive-based reference rot solutions and their capabilities.
memento creation memento access reference rot

archival
date is the
same as

the linking
date

memento
stored in
multiple

web
archives

linked
resource
from any
domain

works in
all

modern
browsers

approach
applicable

to any
publication

platform

searches
for

mementos
in multiple
archives

applies
date

information
from

linking
page

machine
-readable

links

addresses
link rot

addresses
content

drift

Brave Browser no no yes no yes no no no yes no

Wayback Machine browser
extensions no no yes no yes no no no yes no

404 No More Firefox
extension no no yes no yes no no no yes no

Internet Archive + Cloudflare no no no yes yes no no no yes no

UK Government Web
Continuity Project no no no yes yes no no no yes no

Memento Time Travel
browser extensions no no yes no yes yes

at reader’s
discretion no yes yes

Berkman Center's Amber
Project (Drupal/WordPress
extension) yes yes yes yes no no no no yes yes

Wikipedia + Internet Archive sometimes sometimes yes yes no no yes no yes sometimes

Robust Links yes yes yes yes yes yes yes yes yes yes

Robustifying Links
Motivated by the severity of the problem and the lack of comprehensive and unconstrained
solutions, we devised the Robust Links approach. Robust Links leverage existing web archiving
infrastructure and HTML5 extension attributes. Robust Links is the first approach that actually
annotates links with a date and a URI-M, making it novel compared to other infrastructure
approaches. The approach is devised for links in HTML but not tied to any specific authoring
platform. Robust Links’ reliance upon HTML prevents the approach from being used with other
document formats that contain links (eg., PDF, DOCX) in which reference formats as mentioned
above can be used. In addition, Robust Links are machine-readable, inviting the creation of a
variety of tools that leverage them.

Creating a Robust Link requires the following steps:
1. The linking page’s author, or someone working on their behalf, archives a linked

resource in one or more web archives to improve the odds of survival and ensure
readers can visit that specific version in the future.

2. The author enriches the HTML of the linking page with information about the linked
resources’ URI-R, the URI-M of the memento created in the first step, and the datetime

of archiving, thus enabling readers and machines to find the desired version in web
archives.

For example, instead of this brittle HTML link:

Los Alamos National Laboratory

we propose to use this Robust Link:

<a
href=”http://lanl.gov”
data-versionurl=”https://perma.cc/Q938-LPMG”
data-versiondate="2019-10-28">Los Alamos National Laboratory

Readers clicking on the Robust Link by default will reach the current version of http://lanl.gov.
Tools that leverage this Robust Link can additionally support visiting the URI-M specified in
data-versionurl and can combine the URI-R found in the href with the date from
data-versiondate to find additional URI-Ms.

Alternatively, if the author wishes to allow readers to click on the URI-M by default, they can use
this Robust Link instead:

<a
href=”https://perma.cc/Q938-LPMG”
data-originalurl=”http://lanl.gov”
data-versiondate="2019-10-28">Los Alamos National Laboratory

In this case, machine clients can combine the URI-R found via the data-originalurl
attribute and the date from the data-versiondate attribute to discover a replacement URI-M
should the existing URI-M fail.

Actionable Robust Links
To make the machine-readable attributes provided in Robust Links actionable for human
readers, we have implemented a JavaScript library (robustlinks.js) that an author can reference
in their pages. The JavaScript code parses these attributes and provides readers with a
drop-down menu with three choices, as shown in Figure 6.

http://lanl.gov
http://lanl.gov
https://perma.cc/Q938-LPMG
http://lanl.gov
https://perma.cc/Q938-LPMG
http://lanl.gov

Figure 6: An example of the drop-down menu provided by robustlinks.js and robustlinks.css.

The JavaScript code builds this menu from the Robust Link’s attributes and formats the menu
based on a corresponding CSS file (robustlinks.css). As displayed in Figure 6, the reader has
several options: they can visit the current live version of the page, which the JavaScript reads
from the href, they can navigate to the URI-M of the “version archived on 2020-07-23”, as
extracted from the data-versionurl, or they can click “version archived near 2020-07-23” to
seamlessly connect to the Memento TimeTravel service and find the memento closest to
2020-07-23 from more than 20 Memento-compliant web archives around the world. The reader
does not need to install a plugin because all of this functionality is provided on the page by
JavaScript linked from the HTML.

Our code is merely one example of the type of machine client that can be built upon this
markup. Consider the possibility that both the URI-M and URI-R are inaccessible. A system
(e.g., browser plugin, web crawler) could apply the date and the URI-R to find potential
replacement linked resources from the same time period or it could analyze the spread of dates
from all linked resources to find other documents on the same topic and in close temporal
proximity.

When authors create Robust Links and add this JavaScript and CSS code to their articles, they
allow readers to access the intended default target of their link or find a memento that matches
the date the author intended. Once the author robustifies a link, they address link rot by
providing a memento and combat content drift by pro-actively generating that memento, as such
making sure that the memento’s archival datetime matches the author’s viewing date. From
here, readers can obtain the content that helps them verify evidence.

The Robust Links Web Service
To assist authors in creating Robust Links, we provide a Robust Links web application. As
shown in Figure 7, the minimalist entry page accepts two user inputs: the URL of the resource
and the link text.

https://robustlinks.mementoweb.org/

Figure 7: The Robust Links web application entry page.

Figure 8: The Robust Links web application response page.

Figure 8 shows a screenshot of the web application’s response. It instructs the author to follow
two steps:

1. Decide which resource they want their readers to reach with a default mouse click, the
current version or the memento, and then copy the appropriate HTML.

2. From the second text area, copy the given HTML to ensure that the robustlinks.js and
robustlinks.css are loaded in the linking page. This is only required once per linking
page.

For users who would like to robustify many links we provide access to the Robust Links API
used by our web application. With this API, a client can supply a URI-R or a URI-M and link text.
The API will respond with JSON containing information about the link and how the service
created it, as shown in this cURL example:

$ curl -G --data-urlencode "url=https://abcnews.go.com" --data-urlencode "anchor_text=ABC News for June

15, 2020" https://robustlinks.mementoweb.org/api/

{

"anchor_text": "ABC News for June 15, 2020",

"api_version": "0.8.1",

"data-originalurl": "https://abcnews.go.com",

"data-versiondate": "2020-06-15",

"data-versionurl": "https://archive.li/wip/hWZdd",

"request_url": "https://abcnews.go.com",

"request_url_resource_type": "original-resource",

"robust_links_html": {

"memento_url_as_href": "<​a
href=\"https://archive.li/wip/hWZdd\"\ndata-originalurl=\"https://abcnews.go.com\"\ndata-versiondate=\"202

0-06-15\">ABC News for June 15, 2020<​/a>",
"original_url_as_href": "<​a

href=\"https://abcnews.go.com\"\ndata-versionurl=\"https://archive.li/wip/hWZdd\"\ndata-versiondate=\"2020

-06-15\">ABC News for June 15, 2020<​/a>"
}

}

The JSON response from the API returns the link text and the requested URL to the user. Inside
the robust_links_html key is the preformatted HTML for each default link target. For users’
convenience to construct their own HTML, the API provides each attribute for the Robust Link
as its own JSON key.

If the user supplies a URI-R, the Robust Links service will create a memento via the ArchiveNow
library and use the current datetime as the value for data-versiondate. The service utilizes
either the Internet Archive or Archive.Today to create the memento, and we are exploring the
addition of Perma.cc in a future release. A client can supply an optional argument to the API to
specify which web archive they desire for creating the memento. If they do not indicate a
preferred web archive, the service randomly chooses one. If the user provides a URI-M to the
API, the Robust Links service will dereference the URI-M and extract the values for
data-originalurl and data-versiondate from the memento’s HTTP response headers
as specified in the Memento Protocol. Error codes, source code examples, and more are
available on the API’s documentation page.

https://abcnews.go.com/
https://robustlinks.mementoweb.org/api/
https://doi.org/10.1145/3197026.3203880
https://robustlinks.mementoweb.org/api-docs/

Robustifying the Robust Links Browser Code
We considered advocating that authors include our JavaScript and CSS inline on every page.
This would include the code by-value. Unfortunately, releasing JavaScript code this way has its
problems. Copying and pasting code is error-prone and invites tinkering, which may result in
Robust Links that do not function properly. Additionally, the hosting page will not receive bug
fixes or updates that reflect changes in the environment with which it interacts, including
changes to web archives that are covered and services overlaying those web archives, such as
Memento Time Travel. We therefore decided that it was better to centrally host the code and
recommend that web page authors link to its URLs, thus including it by-reference. The
advantage of this decision was demonstrated during the writing of this article. We resolved an
issue with conflicting CSS styles to ensure that Robust Links menus are presented as intended.
All users of the Robusts Links JavaScript/CSS library will now benefit from this improvement
without having to make changes to their own pages. As Web technologies evolve, providing
code by-reference will allow us to devise new resolutions for future authors and improve
everyone’s Robust Links experience. Unfortunately, this means that our code itself becomes
subject to link rot. To keep this solution operational, we need to solve two problems: First, we
must select a hosting platform for the source code that is expected to remain available for the
foreseeable future. Second, in case we have to move the code to another platform, we must
provide continued access. We explored several options for addressing both issues.

With respect to choosing a suitable hosting platform, we realized that hosting our code at
robustlinks.mementoweb.org is not a long-term solution. If robustlinks.mementoweb.org loses
funding, the take-down of the site is likely. Solutions like hosting the code in a web archive
creates a dependency on that specific web archive, something Robust Links is designed to
avoid. The International Internet Preservation Consortium (IIPC) is an organization with
members from over 45 countries, including national, university and regional libraries and
archives. It focuses on providing tools, techniques, and knowledge for preserving web content
and providing access to that content. The IIPC has graciously provided us with a GitHub
repository in which to deposit robustlinks.js and robustlinks.css. Through GitHub Pages, we
instruct GitHub to serve the code with the correct content-type so that web page authors can
include it by-reference.

With the code hosted in IIPC’s GitHub repository, we have improved its odds of surviving for the
foreseeable future, but we have not solved the potential issue of changing URLs. This scenario
is not inconceivable as, for example, GitHub Pages could change their URL paths, the IIPC
could move their content to another platform such as GitLab, or even host it themselves. A
change in URL would cause the Robust Links menus to fail and readers would no longer be
able to benefit from the convenience provided by this code. We know from a 2020 Cloudflare
report that web page authors rarely update a link to a JavaScript library link once a page is
published. We have no reason to believe that links to robustlinks.js and robustlinks.css will be
any different, so we decided to investigate the possibility of minting persistent identifiers for our
robustlinks.js and robustlinks.css URLs.

https://pages.github.com/
https://blog.cloudflare.com/javascript-libraries-are-almost-never-updated/
https://blog.cloudflare.com/javascript-libraries-are-almost-never-updated/

Considering that funding agencies did not fund our project infrastructure indefinitely, running our
own persistent identifier server would eventually lead to the same link rot for our browser code
that our project is trying to defeat. We considered using DOIs (and their handle variation),
PURLs, and W3IDs. We decided in favor of DataCite DOIs because DataCite is an organization
with a rapidly growing membership base, values regarding openness that we share, and a
strong commitment to the long-term usability of their identifiers. Our constructive interactions
with DataCite staff in the context of this effort gave us further confidence in our choice.

What was still needed was a party - a Datacite member - to mint the DOIs assigned to our code
and manage them going forward, for example, for updating the correspondence table, in case
the code’s location changes. We found an agreement with collaborators from Old Dominion
University (ODU) to take on this role. Our agreement benefits from the fact that ODU holds
memberships in both organizations Datacite and IIPC.

Thus, to robustify the Robust Links browser source code, we developed the following solution
after much collaboration with third parties:

1. Ensure that an entity with longevity hosts our code, in our case the IIPC.
2. Engage a collaborator to mint and manage a DOI so that URL changes do not break

web page access. In our case ODU registered 2 DOIs provided by DataCite pointing
directly at our JavaScript and CSS resources.

3. Use DOIs in all instructions and other code references so that the underlying URLs may
change, but authors do not need to update their pages.

A Journey to Combat Reference Rot
Reference rot, the union of link rot and content drift, is a function of the dynamic nature of the
Web and the increasing frequency at which we link to web resources in our publications. Its
detrimental effects have a negative impact on all web-based inquiries that require accuracy of
referenced resources, yet, thus far, we have not seen a comprehensive approach to effectively
address it. Our Robust Links approach changes the status quo by utilizing publicly available
web archiving infrastructure to proactively create mementos in different archives at the time of
linking. Robustified links offer several fallback mechanisms in case the original linked resource
and its pro-actively created memento become unavailable. Our Robust Links web service
provides a simple user interface for authors to create robust links and conveniently obtain the
HTML that embeds the Robust Links JavaScript and CSS in linking pages. The underlying API
offers the same functionality to machines, for example, to accommodate batch processing of
many links.

Making robustified links actionable in a browser requires the inclusion of robustlinks.js and
robustlinks.css into the web page. With an eye on an ever-changing technological environment,
we were motivated to establish a solution that allows for continued modification of the code
while also helping to ensure its long-term availability and accessibility. Our approach entails

hosting the code in the community-supported IIPC GitHub repository and minting persistent
identifiers (DOIs) that redirect to the code as served by GitHub Pages. This setup enables the
by-reference inclusion of the JavaScript and CSS code using their DOIs.

Robustifying Links takes effort. While our web service makes this process more convenient for
humans and machines, we can envision more automated workflows. For example, content
management systems such as WordPress and MediaWiki, word processing platforms such as
Microsoft Word and Google Docs, or blogging platforms such as Blogger and Medium could
integrate Robust Links functionality. At the end of the day, however, it still takes humans’
commitment to combat reference rot.

As is true for all web archiving based approaches, we work under the assumption that “good
enough” mementos of linked resources can be created but we realize that existing archiving and
replay technology does not always satisfy. However, that is a challenge beyond the scope of this
effort that many talented people are working on.

Acknowledgments
The authors would like to thank everyone who contributed to the Robust Links concept and
service. The Robust Links work was initiated in the Hiberlink project, a collaboration between
the University of Edinburgh and the Los Alamos National Laboratory, funded by the Andrew W.
Mellon Foundation. Michael L. Nelson from Old Dominion University contributed to Robust
Links, both during the Hiberlink project and the recent effort to improve the solution as described
in this paper. We appreciate the assistance of DataCite staff Helena Cousijn, Martin Fenner, and
Matt Buys for supporting the solution that uses DOIs to accord a persistent URI to Robust Links
browser code. We also appreciate the service of Karen Vaughn at Old Dominion University for
managing those DOIs. Thanks to Mark Graham from the Internet Archive for answering
questions about their collaboration with Wikipedia. Finally, we also thank the International
Internet Preservation Consortium for agreeing to ensure the browser code’s longevity.

About the Authors
Shawn Jones is a graduate research assistant working for the Prototyping Team at
LANL’s Research Library. Shawn is also a PhD student at Old Dominion University and
a member of the Web Science and Digital Libraries research group, led by Michael
Nelson. He has contributed tools, data, and analysis to projects and frameworks such
as Memento, Signposting, and Robust Links. In addition, Shawn is the lead of the Dark
and Stormy Archives project, an initiative to summarize web archive collections through
visualization techniques common in social media. More information about Shawn is
available at: https://www.shawnmjones.org/

https://oduwsdl.github.io/dsa/
https://oduwsdl.github.io/dsa/
https://www.shawnmjones.org/

Martin Klein is a scientist and lead of the Prototyping Team in LANL’s Research Library.
In this role he focuses on research and development efforts in the realm of web
archiving, scholarly communication, digital system interoperability, and data
management. He is involved in standards and frameworks such as Memento,
ResourceSync, Signposting, and Robust Links. Martin holds a Diploma in Computer
Science from the University of Applied Sciences Berlin, Germany and a Ph.D. in
Computer Science from Old Dominion University. More information is available at:
https://orcid.org/0000-0003-0130-2097

Herbert Van de Sompel is Chief Innovation Officer at Data Archiving and Networked Services
(DANS) in The Netherlands. He has played a major role in creating the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH), the Open Archives Initiative Object Reuse &
Exchange specifications (OAI-ORE), the OpenURL Framework for Context-Sensitive Services
(ANSI/NISO Z39.88-2004), the SFX linking server, the bX scholarly recommender service, info
URI (RFC 4452), Open Annotation (W3C Community Group specification), ResourceSync
(ANSI/NISO Z39.99-2014), Memento "time travel for the Web" (RFC 7089), Robust Links, and
Signposting. He holds degrees in Mathematics, Computer Science, and Communication
Science from Ghent University, Belgium. More information at https://hvdsomp.info

https://orcid.org/0000-0003-0130-2097
https://hvdsomp.info

