This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2021-9041C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Bayesian calibration of interatomic potential
models for binary alloys
ke

. THE OHIO STATE
Laboratories UNIVERSITY

Arun Hegde Elan Weiss
(ahegde@sandia.gov) Wolfgang Wind|
Cosmin Safta

Habib Najm

Sandia.National Laboratories,is.a.multimission.laboratory.managed.and,operated.| bv National,Technology.&.Engineering.Solutions.of.Sandia,.LLC,.a.wholly.owned,
-


mailto:ahegde@sandia.gov

Overview

» Interatomic potential models and UQ

* Problem setup (RAMPAGE potentials for binary alloys)
« Bayesian calibration for interatomic potential fitting

« Case study — Au-Cu binary alloy systems
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Interatomic potentials and UQ

* |Interatomic potentials

— function that takes as input the positions of atoms and returns the energy
of the system
— contains unknown parameters that must be determined empirically
« comparison with experiment

« comparison with higher-fidelity theory
— e.g. density functional theory (DFT)
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Interatomic potentials and UQ

* |Interatomic potentials

— function that takes as input the positions of atoms and returns the energy
of the system

— contains unknown parameters that must be determined empirically
« comparison with experiment

« comparison with higher-fidelity theory
— e.g. density functional theory (DFT)

* Reliable simulation with interatomic potentials requires
quantified uncertainties™
— for model validation and comparison
— for predictivity
— for decision-making S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, J.P.

Sethna, Phys. Rev. Lett. 93, 165501 (2004)
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RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

Embedded Atom Model (Finnis-Sinclair type) for systems with two element types: A and B

- atom 7 oftype a € {A, B}
- atom j oftype B € {A, B}

energy at atom /

1
% =5 > Vap(ri) + Fa | Y pap(ri;)

component functions could
each contribute to £

*L. Ward, A. Agrawal, K.M. Flores, and W. Windl. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619

USNCCM 16 JULY 25-29, 2021



RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

Embedded Atom Model (Finnis-Sinclair type) for systems with two element types: A and B

Fa paa
A IO VAA already fitted,
Fg PBB VBB presumably valid

extracted from
existing literature

PBA PAB == modeling and
fitting effort

VBa = Vasg

*L. Ward, A. Agrawal, K.M. Flores, and W. Windl. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619
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RAMPAGE potentials for binary alloy design

Rapid Alloy Method for Producing Accurate General Empirical potentials*

» Generate DFT data for a variety of
structures with compositions
ranging from 100% A, 0%B to
0%A, 100% B.

» Use data to fit the cross-term
components of the interatomic
potential

O —

increasing composition (%) red

*L. Ward, A. Agrawal, K.M. Flores, and W. Windl. Rapid production of accurate embedded-
atom method potentials for metal alloys. (2012). arXiv:cond-mat.mtrl-sci/1209.0619
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A 5-parameter model

Interatomic potential model

VAB(T‘) =D (6_2a(r_reQ) — QQ_Q(T_Teq)) Morse pair

potential

-

_ 6 —SAT’ 29 —ZSAT
IOBA(T) r (e AT ) Voter electron

PAB (’I“) = r6 (G_SBT - 296—25'37“) densities

- Y
5 uncertain parameters: 6 = |r.,, D, a, 54, SB]
* 102 QOiIs total

— 17 compositions ranging from 3% Ato 97% A

— For each composition: lattice parameter, mixing enthalpy, C11, C12, C44,
bulk modulus

« Higher-fidelity DFT data generated for each QOI
— used for fitting the uncertain parameters
USNCCM 16
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Workflow for computing QOls

Step 1: download fitted
potentials for the pure

B
Fp system, combine with
PBB proposed model
VBB
online database / literature

A PBA PAB
Fu VBa = Vag
i proposed model, for a given
Vaa parameter vector (9
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Workflow for computing QOls

Step 2: compute quantities
of interest using LAMMPS

B F other inputs:
B . structures
PBB « composition ranges
+ optimization tolerances
VBB . etc.
online database / literature ‘

AI : PBA PAB —_—

-
"
%
"
>

%
»

FA VBA — VAB % " o' ¢ o) ‘
molecular dynamics
PAA proposed model, f(()gr a given simulation s}(;ftware* ;C)?(;?)Zl::iz(:
Vaa parameter vector & post
processing

*image from https://www.lammps.org
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Workflow for computing QOls

Step 3: compare to
reference DFT data

B F other inputs:
B . structures
PBB « composition ranges
+ optimization tolerances
VBB . etc.
online database / literature ‘

AI : PBA PAB —_—

s

e
]

..
%

[ >

L)
L

FA VBA — VAB Lo o o N O RN O N & ‘
molecular dynamics
PAA proposed model, fc()gr a given el tuling ;gofgr;gtt;g
Vaa parameter vector & post
processing

inference

*image from https://www.lammps.org

USNCCM 16 JULY 25-29, 2021 11/37




Bayesian calibration

finite composition space T € X } notation used to

physical properties 1 € {lata miX7 Clla C127 C44> bulk} cairc]ac:s)z1d(i)f£etr§tr:|)

yi(2)|= fi(w;60) + ei(a)

DFT data simulation

e simulation N

5} . Interatomic '
(9 = R potential model - %

molecular dynamics
\_ simulation software* %

*image from https://www.lammps.org
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Bayesian calibration

finite composition space & € X } notation used to

physical properties 1 € {lata miX7 Clla C127 C44> bulk} Q”C])cils%d(;fzfetrstnatl)

yi(2)|= fi(w;60) + ei(x)

DFT data simulation

e (z) ~ N (0, o? fi(x; 9)2) i € {lat, Cq1, Cqa, Cyyq, bulk}

ei(z) ~ N (0,07 fi(2;0)° +7°) i € {mix}

¢ A = [0, logo, logr]
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Bayesian calibration

finite composition space T € X

physical properties 1 € {lat, HliX7 Clla Clg, C44, bU_H{}

USNCCM 16

notation used to

index different

QOls (102 total)

, C12, Cyq, blﬂk}

,logo, logT]
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Inference strategy

« Standard strategy

1. specify a reasonable prior, e.g. uniform over a plausible range
2. perform MCMC with the full model (i.e. LAMMPS)
3. analyze posterior samples
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Inference strategy

« Challenges

1.
2.

not always clear how to specify prior parameter ranges

portions of the parameter space lead to unphysical results

« unconverged minimizations, flat QOI response, kinks, etc. (next slide)
simulation runtime depends on the input parameter choices

* single evaluation ~15 minutes — 1hrs+ on a single cpu
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lllustrations of challenge #2

bulk
mod.

2D slices of the
simulation response

Teq : 2.70 1.90
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Inference strategy

Strategy
1. Find a good initial box in the parameter space.

(found through optimization or
“expert opinion”)

————————————————————————

________________________

USNCCM 16 JULY 25-29, 2021



Inference strategy

Strategy
1. Find a good initial box in the parameter space.

2. Initialize a set of training/test samples.
3. Fit Gaussian process surrogates.

————————————————————————

________________________

LAMMPS evaluations
performed “offline” in a
highly parallelized HPC
setting

USNCCM 16
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Inference strategy

L=

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.
Fit Gaussian process surrogates.
Perform MCMC (with surrogates, uniform prior).

USNCCM 16
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Inference strategy

s wh =

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.

Fit Gaussian process surrogates. B
Perform MCMC (with surrogates, uniform prior). i ,; §
Adapt box based on posterior samples. | | |

________________________
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Inference strategy

DA =

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.

Fit Gaussian process surrogates.

Perform MCMC (with surrogates, uniform prior).
Adapt box based on posterior samples.
Append posterior samples to training set.

USNCCM 16

LAMMPS evaluations of
new samples performed
“offline” in a highly

parallelized HPC setting
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Inference strategy

NoakwN -~

Strategy
Find a good initial box in the parameter space.

Initialize a set of training/test samples.

Fit Gaussian process surrogates.

Perform MCMC (with surrogates, uniform prior).
Adapt box based on posterior samples.
Append posterior samples to training set.

Repeat steps 3-6 until: | 5
- : : ' (may also add new
* surrogate error on training/test samplesis ~ { . samples)
small
« posterior samples strictly contained LAMMPS evaluations of

new samples performed
“offline” in a highly
parallelized HPC setting
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Case study: Au-Cu system

* |Interatomic potential model
— RAMPAGE potential, single element terms for Au* and Cu*
— 5-parameter cross-term model

« 102 QOIs in total

— 17 compositions ranging from 3% Au to 97% Au

— for each composition: lattice parameter, mixing enthalpy, C11, C12, C44,
bulk modulus

« Higher-fidelity DFT data generated for each QOI

— used for fitting the uncertain parameters

« MCMC algorithm: Adaptive Metropolis

*X. W. Zhou, R. A. Johnson, H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004
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Results: posterior marginals

Pair potential
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Results: snapshot of posterior predictive

QOI evaluates of posterior samples \
Bulk modulus: Posterior predictive
® DFT
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Results: snapshot of pushforward posteriors

QOI evaluates of marginal posterior samples @
Bulk modulus: Pushforward posterior
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A 7-parameter model

What happens if we change the model? +2 parameters

Interatomic potential model

' Van(r) = D (e7200r) _ gematr—ru) A
IOBA(T) _ CI/AT6 (e—SA'I" 4+ 296—25A7“)
_ 6 —SBT 9 —QSBT
pap(r) =apgr’ (e + 2%
\ ( ) %
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A 7-parameter model

Algorithm: Adaptive Metropolis

* multiple modes
« strong correlations

Diagnosing convergence in such settings
can be challenging.
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A 7-parameter model

A

Algorithm: Transitional MCMC
ey l/\\\ ‘ sequential monte carlo algorithm that

evolves an ensemble of particles

p(r)

p(D)

015  0.20

JNT 2 j\  multiple modes
« strong correlations

v A  “spiky” posteriors imply particle degeneracy
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Practical considerations:

aA

p(aA)

Success of “out of the box” algorithms
depends on the tuning parameters.
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 Investigated RAMPAGE potential model for fitting Au-Cu
systems

Bayesian framework for fitting interatomic potentials
— sequential strategy based on adaptively exploring the parameter space
with locally fit surrogate models.
Success story: 5-parameter model

Ongoing story: 7-parameter model

 strong correlations among parameters, multimodal posteriors

« sampling strategies tested: adaptive metropolis, transitional MCMC, parallel
tempering

Key topics for future work: model selection, prediction of other
QOls
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