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Key goal: robust and accurate implicit quasi-statics

 Design/qualification of nonlinear mechanical systems, want robust and credible capability
* Desire tight tolerances and mechanically stable solutions
» Efficient and robust contact enforcement (with friction)

* Handle material instabilities (buckling, failure, necking)
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3 I Isn’t statics just ‘F=0’? No!
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Phase space coordinate
Stable equilibrium satisfy The 3 reasons for non-convexity***

second order optimality conditions: : . :
pHmaity e 1) Non-unique solutions: real materials can buckle

K > 0 )

(stiffness eigenvalues are non-negative) 3)

Frame invariance

Positive material densities;: ¥(F) — oo, as detF — 0

* Nucleation in Condensed Matter. Kelton and Greer. 2010.
** mathcurve.com
*** Mathematical Foundations of Elasticity. Marsden, Hughes. 1994. Just be glad I’m not discussing Hadamard Ellipticity.



4+ I Can we always define an energy?

No (but it’s close)

The big challenges:
1. Friction
2. Following loads (pressure BCs)

3. Legacy material models (hypo-elastic)

These have asymmetric stiffnesses.

What if we don’t even know the energy?

1 n n " n
Use incremental work as a surrogate model for the energy: 5 (" + ") - (u"" —u")
Only accept solution steps with negative work increments.

A second order approximation to the work increment, so quadratic convergence when possible.



5 I What is the best way to minimize enerav?

Trace of unconstrained optimization with trust-region method

Probably trust-region solvers 25

Important ideas:

1. Local quadratic model
16

2. Inner iterations use preconditioned linear CG

3. Quickly identity saddle points and directions of negative
curvature

Algorithm 1 Trust-region algorithm
Initialize: x, A>0,e>0,0<m < <ng<l,0<t; <1<ty
while ||V f(x)| > e do
z := arg mingy m(z'; x), s.t. ||Z’|| < A (the minimization can be approximate) -05 | -
x =x+2z
= ) —f(x")
T m(0;x)—m(z;x) -1 1 I 1 1 l l 1
if p>nz then 25 -2 15 -1 05 0 05 1 15
if p > n3 and ||z| = A then
A= tQA
end if
else
A= tlA
end if Machine learning has led to a recent

if p > then growth in non-convex optimization

— .
en’;'i_f x research, which we hope to leverage

end while




6 I Can we solve problems with material instabilities?

Yes, lets try load-controlled Euler beam buckling
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1o I How hard is displacement-controlled loading with softening?

Not very hard
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11 1 What about load-controlled snap-through?

Also not very hard
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2 I What if we reverse the loading?
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< 0,03 is a structural effect
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i3 1 Can we take large load-steps?

Massive
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14 I What about plasticity?

Sure
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15 I What about contact?

Just a constrained minimization problem*

u* = argmina(u), s.t.

u—=
¢p(x+u) >

u
0

u

for x € I'p,

for x € I'n,

*OK, there are inf-sup concerns too and constraint smoothness is essential



16 I How do you enforce the inequality constraints?

* .
. u’ = argmina(u), s.t.
Common options: gmina(u),

1. Penalty methods (wrong answer, stiff system of equations) c(u) >0

2. Interior point methods (stiff, cannot use initial guesses, must be always feasible)

3. Augmented Lagrangian (simple, robust, but 15t order solver convergence)

Macauley bracket

Solve sub-problem to second-order stationary point: v

_ xif
L(w; A", k™) = a(u) + ) 1n (P — Kici(u))? (z) = { >

First-order Lagrange multipliers update:

AT = (A = s e(utth)

Increase penalties *~when sufficient progress is not being made on constraints



17 I Can we get faster convergence on the Lagrange multipliers?
Often

Fisher-Burmeister function

c>0,A>0, =0 €> VE22Z+X2—ke—)\=0

NCP residual: wrp(e,A) = VE22 + A2 — ke — A
. . . : A, 0
Combine NCP with mechanical residual: R(u, A) := [r<u )}
w(u; A)
R e Second order method
v 'h‘\b
. . . . Y por L}
Make sure to avoid saddle-points in u (for fixed A4). os ] NS L AN
- \ .\'*-‘
5 107 ! “u
. ! | L%
Key idea: : .
! -
1010 - ':; A
1. Alternative between minimizing and doing a newton step ' "o,
2. Preconditioned GMRES for full system solves 1012 - ‘1

T T T T T
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T
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19 I How about friction?

A minimization problem ... if we knew the Lagrange multipliers!
(also known as a quasi-variational inequality)/

u* = argmina(u)+ A" - T(s  (u)), s.t.

c(u) > 0,
1)
Smooth Friction potential: T(s,)= v, ALSL " SL for |ls. || < v AL,
Uh/S1 81 — UCQAt for HSLH >’UcAt,
Strong form: fo(w) + £ (0, A%) — Alcu(u) =
c(u) > 0
A >0,
Ci)\z' = O, for 1 = 1, ...,NC
A=,

Solve with augmented Lagrangian method, second-order version works too



20

Frictional contact with no Dirichlet boundary conditions

Tangential displacement vs tangential
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21 I Contact with friction and eventual buckling

middle layers initially out of contact

different stiffnesses and mesh sizes different friction coefficients

AN
NN/

For last load-step, no stable solution could be found!



22 ‘ What about material failure?

Working on it, turns out failure is highly non-convex!

Phase-field fracture, minimize over displacement and damage

/ g(d)i(u) + %h(d) + oGl Vd? dX
Q2

[

st. d>0

residual norm

Robustly propagates damage across multiple
elements in 1 load-step
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Super-linear solver convergence

*Attaining regularization length insensitivity in phase-field models of ductile failure, Talamini, et al. CMAME. 2021.
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Can we automatically design a structure to

23 | hysteresis?
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24 I Can we maximize the hysteresis?

Maximize the integrated external wor%f -vdt over a cycle for a force-controlled loading
t
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25 I Can we maximize the hysteresis?

displacerment ¥
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26 I Conclusions: why use optimization-inspired solvers?

* Robust

* If a stable solution exists, it will almost certainly be found
 Faster turn-around times

* Super-linear solver convergence rates

- Exploit negative curvature information

* Infrequent matrix assembly
* Credibility

 Avoid unstable equilibrium

* Solve to significantly tighter tolerances

Special thanks to google’s JAX library for incredibly powerful and efficient automatic differentiation



27 I No time for

Discussion on setting solver tolerances and pre-scaling the degrees of freedom
Discussion on when to update preconditioner

Details of the trust region solver

s W b=

Warm-start (a.k.a. linearized load-step predictor) which is essential for robust and large
load steps

Saddle point preconditioner

Jax optimizations, tips and tricks

Variational plasticity and phase-field

Lesson’s learned doing design problems in jax

Equations for smooth signed distance field

= © 0 N o O

0. Topology optimization example



28

Project regrets / opportunities for improvement

® N o o

Theoretical results for non-convex optimization solvers show disappointing provable bounds
(very sub-linear solver convergence). Are there features of real materials which improve
these bounds?

Unclear if the solver will be robust with asymmetric hypoelastic material models and following
loads

Utilizing inexact solves. The CG trust-region solver is currently inexact, but the Al sub-
problem could also be inexact to improve efficiency

We lack theoretical proofs that our second order update strategy, staggered with the
nonlinear minimization solver is guaranteed to converge

Jax can exploit GPUs very well, but we have not
Continue effort on inverse problem
Mortar methods for more accurate and smooth contact enforcement

Still planning to open source our finite element code






30

Isn’t the contact constraint non-smooth?

Yes, we use a smoothed signed distance function (levelset). This is a stronger
smoothness than closest point projection to a smoothed surface.

Distance contours
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This part proved much harder than expected, but I'll skip the details!



31 I Extra slides




32 I Contact Verification and Application to Deep Overlap Removal

* Smoothed level-set contact algorithm
* Demonstrated convergent under mesh refinement (15t order)
» Verified against analytic solution of Hertz contact problem

 Demonstrated robust contact enforcement, including large
initial/evolving overlap

» Exercised on more complex/realistic geometry/assembly
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33

Embedded sensitivities derived and implemented

Inverse problem has multiple highly nonlinear constraints
First exemplar: determine pre-strains in multiple bolts
Can solve for pre-strain per element or per block

1 _
mim/—]t—t(U,)H2
U2y A I‘2

s.t. r(u, 2) + cu(u)' A =0

c(u) =0
D 0 AT
0o 0 C
A CT —y
C 0 0

o
0
0

—€

~T > &

QO oK

Augmented linearized system

U, 2, A

2€

Contact inverse problem: bolt pre-loads

Fixed displacements,

prescribed tractions

Robustness and efficiency limited by

: 1 1
min d(u) + [r" + X, | @+ T+ —|le])? + %Hfr + C?;)\HQ

vertical displacement

pre-strain per block

Smoothness of contact constraint

contact enforced

Optimization solver and parameters
System scaling and pre-conditioning



Novel contact algorithms

Continuous shape-function gradient

* Low degree-of-freedom C1 continuous “Gregory” tetrahedral :
* DG contact: element stresses ‘feel’ contact 6
* DG derivatives include contact surface jump e
Vpau; = Vu; — / [[’U,Z — ’ﬁ,z]] QR N - {{Z}} dS w0

* Smooth and search-less MPM-based contact algorithm 0 J

* Uses background cubic b-spline
* Enriched velocity field: angular momentum conservation*

MPM contact on GPU: 400X faster!

*Leveraging ideas from Joey Teran, UCLA
**Material calibration geometry from John Mersch

Serial legacy-contact GPU MPM-contact *k



Academic Alliance: machine learned surrogates with contact

Professor Julian Rimoli, Georgia Tech

Train Long short-term memory Neural Net on lap joint
Create effective “super-element”

Insertion back into finite element models causes instabilities
Requires consideration of proper physical constraints

2000

AEN) 4 nlidinl
- =3 :;3.;4. +  nlin-n?
7N $ ton
/ . , | # ol Ellu.:-..'.. +
| \ 7 f — # +
, I (B | }
' Py |- S 1001
e S || 3 e
" ; : : I-I||| 14 +++
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. e 4+ nl0000-nl
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predicted forces
Runtime: ~1 hour » ¥10 seconds Model training error correlate with simulation error
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