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Abstract 

 

Long-term energy system models—including electric sector capacity 
expansion models—are widely used tools for informing planning, 
technology assessment, and policy analysis. Recent decarbonization 
goals and rapid technological change have increased the need to 
appropriately represent economic characteristics and technical details 
of energy system resources, including variable renewable energy, 
energy storage technologies, carbon-capture-equipped capacity, and 
nuclear energy. 

Nuclear power represents about 20% of electricity generation and 
50% of carbon-free electricity in the United States as of 2021. 
However, there are many perspectives on the role of existing and new 
nuclear in the future U.S. energy system, which is reflected in the 
broad range of potential contributions reported in the literature. 

This project aims to understand how issues central to nuclear energy 
are represented in long-term energy models. Building on earlier 
collaborations that focused on variable renewable energy and energy 
storage, this project convenes four modeling teams that use national-
scale long-term energy system models from the Electric Power 
Research Institute, the National Renewable Energy Laboratory, the 
U.S. Energy Information Administration, and the U.S. 
Environmental Protection Agency to share methods and data, update 
models, run coordinated scenarios, and identify research needs. 
Improving tools can provide more insightful analyses and ensure that 
methods are more transparent. 

Guided by inter-model comparisons and intra-model scenario 
analyses, we investigate how model structures and input assumptions 
impact projections, refine model representations of nuclear energy, 
and communicate findings to the research community and consumers 
of modeled scenario results. A greater understanding of model 
structures, assumptions, parameters, and limitations can improve 
model capabilities to effectively represent interactions under a variety 
of market and technology assumptions. 
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This report synthesizes our collective modeling experience, reviews 
the literature, and highlights research gaps—which results in 
recommendations on approaches for representing nuclear energy in 
long-term energy system models. Such comparisons can identify 
robust findings and critical assumptions impacting model 
projections. 

Nuclear energy’s role in forward-looking scenarios varies due to 
differences in scenario assumptions, model structure, and regional 
characteristics. The scenario design assumptions that have the 
greatest influence on nuclear deployment are policies and 
technological cost. Details about a policy’s stringency, timing, and 
technology eligibility influence decarbonization outcomes and 
nuclear deployment. Higher shares of nuclear generation occur in 
scenarios and regions with favorable: 

 Policy conditions: Deeper decarbonization targets and 
restrictions on other low-emitting options (e.g., constraints on 
carbon removal and carbon capture) 

 Regional economic characteristics: Regions with supporting 
policies as well as lower wind and solar resource quality 

 Financial assumptions: Lower nuclear capital costs and lower 
discount rates 

 Combinations of these factors 

Nuclear power can complement extensive additions of wind, solar, 
energy storage, and other resources by providing firm, zero-emissions 
electricity. The range of nuclear deployment in forward-looking 
scenarios highlights uncertainty moving forward, but it also stresses 
the importance of significant nuclear technology advancement and 
electric sector policies. 

Overall, these findings point to the important roles that underlying 
model structure and input assumptions play in projections for nuclear 
energy in mitigating climate change and lowering multiple air 
pollutant emissions. The four participating models have undertaken a 
variety of nuclear-specific modifications and broader model updates 
over the course of this project, which have altered model outcomes 
and improved insights. 
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Model complexity can strongly impact projected electric sector 
investments and costs, and many considerations (e.g., 
parameterization of solar, wind, and storage technologies and 
temporal resolution) have more significant impacts with deeper 
decarbonization. Levelized-cost metrics are incomplete for evaluating 
the relative competitiveness of system resources, which requires 
detailed energy modeling to assess. The report also identifies several 
model development priorities and data needs related to nuclear and 
broader energy systems, including representing hybrid systems that 
support electric and non-electric applications, capturing integration 
across systems, linking modeling tools of different resolutions, and 
several others. 

Keywords 
Capacity expansion modeling 
Decarbonization 
Energy systems modeling 
Model intercomparison 
Nuclear energy 
Power sector economics 
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 Introduction 
Background: Nuclear Energy in Long-Term System Models 

Capacity expansion models (CEMs) are tools for informing strategies to meet 
future electricity and energy needs under a range of policy scenarios, technology 
options, and market conditions. However, CEMs vary significantly in their 
coverage, structure, and input assumptions. As a result, model projections for 
similar policies can differ—sometimes dramatically. Such differences can support 
alternate strategies for research, development, and demonstration (RD&D); alter 
assessments of existing and proposed policies; and shape decisions by 
governments and industry. Models can influence the world they seek to 
understand and consequently merit detailed examinations and comparisons. 

Understanding model differences and output drivers is important for improving 
model capabilities and resulting insights, providing context for interpreting 
results, and better informing users of model-based studies. Working with teams 
who create, update, and apply these models—as well as subject matter experts 
from national laboratories, industry, and research community—has led to a 
forum in which experts can discuss modeling assumptions and challenges, 
including earlier efforts focusing on variable renewables and energy storage (Cole, 
et al., 2017; Bistline, et al., 2020) as well as this collaboration on nuclear energy. 

Nuclear power currently represents about 20% of electricity generation in the 
United States, which makes it the largest source of low-carbon electricity—
roughly half of emissions-free electricity and more than solar, wind, and 
hydropower generation combined in 2020 (EIA, 2020a). Many decarbonization 
studies see nuclear energy and other low-emissions firm technologies as 
complements to renewable energy technologies; in particular, their always-
available power can fill in weekly and monthly gaps when wind and solar output 
are low, which can help to lower decarbonization costs (Baik, et al., 2021; Brown 
and Botterud, 2021; Bistline and Blanford, 2020; Jenkins, Luke, and 
Thernstrom, 2018; Sepulveda, et al., 2018). However, there are many 
perspectives on the future role of nuclear in the U.S. energy system, which is 
reflected in the broad range of nuclear-related scenario outputs in the literature 
(Bistline and Blanford, 2021; Bistline, et al., 2018) and in scenarios from this 
study (summarized in Figure 2-1). Although it can provide virtually emissions-
free1 electricity and heat with a relatively small land footprint, nuclear energy also 

 
1 Nuclear has among the lowest lifecycle emissions intensity of generation (i.e., including fuel 
production and material needs), even among clean electricity resources (NREL, 2021; Pehl, et al., 
2017). 

 
Nuclear power is 20% of 
electricity generation in the U.S. 
and 50% of low-carbon 
electricity. 
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raises potential concerns about safety, cost, waste disposal, and non-proliferation. 
Advanced nuclear designs offer potential enhancements around these issues, but 
there is uncertainty about how these factors could shape nuclear energy’s 
contribution. 

Model intercomparison studies such as this one can identify robust findings 
across models, transfer learnings, and isolate critical assumptions that impact 
projections. Such coordinated multi-model exercises are useful in understanding 
differences in data, assumptions, methods, and outputs and have been used in a 
range of fields such as climate science and energy modeling (Weyant, 2017). 
Through coordinated scenario analysis, model intercomparisons can highlight 
which conclusions appear to be robust and which are more uncertain, which can 
guide future research. These exercises help to determine how differences in 
model outputs may reflect differences in model structure (e.g., temporal 
resolution, technology choice), input assumptions (e.g., technology cost and 
performance), and scenario specifications. 

In this study, different scenarios and their associated technology and policy 
assumptions are used to evaluate model behavior. They do not reflect policy or 
market expectations of the modelers or their respective organizations. While 
these results may provide insight into policy and market behavior, the scenarios 
and report itself are not designed or intended to be interpreted as a policy 
development exercise. 

Summary of Motivating Questions and Findings 

What is the potential role of nuclear energy in the U.S. electricity mix by 2050? How 
does this role depend on technology and policy uncertainties? 

The model intercomparison in Section 2 suggests a broad range of installed 
nuclear capacity across models and scenarios—ranging from 36–92 GW in 2030 
and 2–329 GW in 2050 across all of the policy and technology scenarios in the 
analysis (Figure 2-1). With harmonized technology cost assumptions, the range 
of nuclear capacity narrows to 83–92 GW in 2030 and 63–120 GW in 2050. 

Future nuclear cost trajectories and CO2 policy assumptions have significant 
impacts on installed nuclear capacity. Decarbonization targets generally help to 
retain existing nuclear capacity but may not be enough to bring new nuclear 
capacity online in the absence of significant cost declines. Models show sizable 
nuclear additions in scenarios that layer power sector decarbonization policy with 
low-cost assumptions for new nuclear capacity. With these low costs, total 
installed nuclear capacity including existing plants ranges from 76–187 GW by 
2050 with current policies, which increases to 285–329 GW under a zero CO2 
policy in the electric sector. 
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How much do models vary in their projections for nuclear energy? How does this 
variation compare with other technologies? 

Using default model assumptions,2 nuclear generation shares in 2050 vary across 
models from 7–13% in the current policies scenario and 10–17% in the 80% CO2 
policy scenario (Figure 2-3). This variation across models is similar to other 
generation technologies—natural gas shares span 28–61% in the current policies 
scenario (9–23% with an 80% power sector CO2 cap), and wind and solar shares 
span 19–48% in the current policies scenario (53–69% with an 80% power sector 
CO2 cap). 

How does harmonizing input assumptions impact model projections? 

Harmonizing technology cost assumptions narrows the variation in 2050 nuclear 
generation shares across models from 7–13% to 10–13% under current policies 
and from 10–17% to 12–14% under a power sector CO2 policy with 80% 
reductions from 2005 levels (Figure 2-3). However, harmonizing discounting 
and financing assumptions can broaden this range to 0–13% under current 
policies and 6–14% under the 80% CO2 policy, a difference largely due to 
changes in existing nuclear retirements in REGEN (which is investigated in 
detail in Section 7). These comparisons reinforce that differences across models 
play critical roles in projections and highlight the value of model intercomparison 
studies to inform planning and policy, as single-model studies may understate 
potential variation in outputs of interest. 

Which model features and assumptions have the largest influence on projections for 
installed nuclear capacity? 

Using inter-model comparisons (Section 2) and intra-model scenario analyses 
(Sections 4 through 7), the report shows how models vary in their treatments of 
key considerations related to nuclear energy and other electric sector resources, 
which can affect insights about their future roles. Key assumptions include CO2 
policy details (Figure 2-1 and Figure 4-4), cost and performance of new nuclear 
and other technologies (Figure 2-1), operations and maintenance costs of existing 
nuclear (Figure 5-2), and discounting/financing (Figure 7-4). 

Differences in projections are due to a combination of these input assumptions, 
model structure (e.g., temporal resolution in Figure 7-1), and algorithms (e.g., 
age-based algorithms to represent capital expenditures for existing nuclear 
plants). In all cases, having transparent and public data are important for 
validating and comparing across models and against observed trends, as 
appropriate. 

 
2 Default assumptions include technological cost and performance projections and policies that 
were in place when the modeling was completed in 2021. Section 2 discusses scenario assumptions 
in detail, and Appendix B summarizes policies included in all scenarios. 
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This report discusses several additional areas for future work that may impact 
model projections, including representing hybrid systems and capturing 
integration across systems in greater detail, examining economy-wide net-zero 
scenarios, as well as developing methods for quantifying and incorporating 
climate impacts and resource adequacy. 

What Are Long-Term Energy and Electric System Models? 

Long-term energy system models—including CEMs of the electric sector—are 
computational tools that are created and applied by a range of organizations to 
answer questions and inform decisions. These models can influence planning and 
policy analysis, including directly informing policy-makers at federal, state, and 
local levels. They can inform government and private sector decisions by 
supporting technology assessment, policy analysis, and RD&D prioritization. 

Electric sector CEMs capture both investments and operations over multi-
decadal time horizons. The coupling of these decisions makes these models 
complex,3 and since there is typically a focus on investments, CEMs make 
approximations about the representation of operations relative to other model 
types such as operational simulation models. These models are built to represent 
the competition among existing and new generation, transmission, and energy 
storage assets, where the typical goal is to find least-cost portfolios to balance 
demand across all model regions subject to technical, market, and policy 
constraints. These constraints include serving electric loads, meeting operating 
and planning reserve requirements, satisfying emissions policies, and other 
requirements specified by the user. Model decisions can include both investments 
in new resources and retirement of existing resources. The geographical scope can 
be regional, national, or international. 

The report focuses on national-scale models that consider the evolution of the 
U.S. energy or electric sector through at least 2050 given their prevalence in 
planning and policy analysis, though many findings are transferrable to other 
contexts. Details of the models used in this work are presented in Section 3. 

The general aim of analyses performed by long-term energy systems and electric 
sector models is understanding and insight to guide decisions, rather than specific 
numbers or predictions of particular outcomes (Huntington, Weyant, and 
Sweeney, 1982). All models are approximations of the complex systems they 
represent and make a range of simplifications to render them tractable. Model 
decisions involve necessary tradeoffs between the degree of simplification to 
ensure tractability and the accuracy of the representation (EPRI, 2021; Merrick 
and Weyant, 2019; Saltelli, 2019). CEMs are better suited for answering some 
questions (e.g., impact of capital costs or policy design on the economics of  
 
 
 

 
3 These large optimization models are sometimes linked to or embedded in broader energy systems 
(or economy) models to capture important interactions. 

 
Long-term energy system 
models have large influences 
on planning and policy 
analysis. 
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nuclear and renewable energy technologies) and less well suited for others (e.g., 
siting questions for specific plants, value of flexibility in preventing outages when 
another generator trips offline). 

Project Objectives 

The goals of this collaborative research project are: 

 To understand how issues central to nuclear energy are modeled in long-term 
capacity expansion models; 

 To investigate how model structures and input assumptions impact 
projections for the roles of existing and new nuclear power plants through 
inter- and intra-model comparisons under a range of technology, market, and 
policy conditions; 

 To identify areas for refining the representation of existing and new nuclear 
energy options (and, to the extent feasible, implement these changes and run 
diagnostic tests to understand how these features could impact projections); 
and 

 To communicate findings to the research community and consumers of 
model outputs. 

We identify technical issues associated with model representations of nuclear 
energy and other system resources and develop observations from the literature 
on best practices. 

Improving these tools can improve insights, helping stakeholders to improve 
their understanding of the potential role of nuclear in future energy systems. A 
greater awareness of model structures, assumptions, parameters, and limitations 
can improve the models’ capability to effectively represent market interactions 
under a variety of market and technology assumptions, enhancing the ability of 
decision-makers to evaluate the value of new and existing nuclear generation. 

Project Participants 

Representing nuclear energy in long-term system models led to the current 
collaboration to assess current practices, share data and methods, and identify 
future research needs. The study is patterned after recent collaborations among 
EIA, EPRI, NREL, and EPA to assess and compare the model approaches, 
structures, and underlying assumptions that impact model outputs for variable 
renewable energy (Cole, et al., 2017) and energy storage technologies (Bistline, et 
al., 2020). The four participating models include: 

 Integrated Planning Model (IPM) from the U.S. Environmental Protection 
Agency (EPA) 

 National Energy Modeling System (NEMS) from the U.S. Energy 
Information Administration (EIA) 

 
This report synthesizes findings 
from the two-year collaborative 
project among DOE, EIA, EPRI, 
INL, NREL, and EPA. 
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 Regional Energy Deployment System (ReEDS) from the National 
Renewable Energy Laboratory (NREL) 

 Regional Economy, Greenhouse Gas, and Energy (REGEN) from the 
Electric Power Research Institute (EPRI) 

Existing Literature 

There are multiple surveys on best practices for modeling other technologies such 
as variable renewables and energy storage, where nuclear energy is mentioned but 
is not the focus (Bistline, et al., 2020; Cole, et al., 2017). The only model 
intercomparison study focusing on nuclear-related outputs is a paper by Kim, et 
al. as part of the Energy Modeling Forum (EMF) 27 study (Kim, et al., 2014). 
However, that analysis used global integrated assessment models instead of 
detailed CEMs, and the assumptions do not reflect technological developments 
over the past decade. Other model intercomparisons include nuclear energy as a 
candidate technology but do not focus on nuclear-related drivers or technology 
scenarios (Baik, et al., 2021; Mai, et al., 2018). 

The existing literature also includes sensitivity and scenario analysis conducted to 
better understand the role of nuclear in single-model frameworks, especially in 
decarbonization scenarios (Baik, et al., 2021; Zhang, et al., 2021; Bistline and 
Blanford, 2020; Bistline, James, and Sowder, 2019; Sepulveda, et al., 2018). 
These scenarios generally indicate large roles for variable renewable energy and 
battery storage technologies, but least-cost decarbonization portfolios often 
include low-emitting firm4 technologies such as nuclear, carbon-capture-
equipped capacity, biomass, geothermal, hydropower, and low-carbon gas-fueled 
plants (e.g., hydrogen). 

The current report offers two unique contributions to the literature. First, we 
survey the treatment of key modeling issues for nuclear energy in long-term 
system modeling. Second, we provide a scenario-based intercomparison to 
investigate how different input assumptions alter model outputs related to 
nuclear energy for each of the included models. 

Report Structure 

This report is organized as follows. Following the introductory section, Section 2 
discusses scenarios and results for a coordinated model intercomparison analysis. 
Section 3 provides high-level overviews of the four participating models. 

Sections 4–7 of the report describe key modeling issues for incorporating nuclear 
energy into long-term energy systems analysis. Each provides a summary of 
approaches for a specific issue, related literature, intra-model comparisons, and 
research gaps. Instead of making prescriptive suggestions about appropriate 
model features, these sections emphasize that distinct considerations are 

 
4 Firm resources are “technologies that can be counted on to meet demand when needed in all 
seasons and over long durations (e.g., weeks or longer)” (Sepulveda, et al., 2018). 

 
This report surveys the 
treatment of key modeling 
issues for nuclear energy and 
provides a scenario-based 
comparison to explore nuclear 
drivers. 
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important for different research questions and that navigating these tradeoffs 
requires judgment from modeling groups that accounts for their unique 
circumstances. Model development decisions depend on the analysis type; 
motivating questions; energy system characteristics; and available staff, funding, 
and computational resources for development and analysis (Merrick and Weyant, 
2019; Saltelli, 2019). 

Section 8 recaps insights from the report and describes opportunities for 
additional research. Appendix A discusses model-specific enhancements that 
were undertaken during this project. 
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 Model Intercomparison 
Summary 

 To understand impacts of different input assumptions and model structures, 
this section summarizes results of a model intercomparison, where the four 
participating models ran scenarios with native and harmonized inputs across 
a range of future technology and policy assumptions. 

 Results suggest that installed nuclear capacity can span a broad range across 
models and scenarios (Figure 2-1). Installed nuclear capacity ranges from  
36–92 GW in 2030 and from 2–329 GW in 2050. With harmonized 
technology cost assumptions, the range of nuclear capacity narrows to  
83–92 GW in 2030 and 63–120 GW in 2050. Under current policies, 
differences in nuclear FOM costs and capital costs for other generation 
technologies largely explain the range of nuclear capacity retirements. 
Differences across models in the generation mix and capacity deployment are 
due to input assumptions about technological cost, financing, and demand. 

 Results across models indicate the pronounced impact that stringent power 
sector carbon policies could have on the future U.S. electricity supply mix. 
Under a policy that reduces electric sector CO2 by 80% from 2005, there are 
several robust findings across models, including keeping most existing 
nuclear capacity online; lowering coal generation significantly; and deploying 
considerably more wind, solar, and energy storage (though magnitudes vary 
by model). The role of nuclear increases under more stringent climate policy 
scenarios—decarbonization targets generally help to retain existing nuclear 
capacity but may not be enough to bring new nuclear capacity online in 
the absence of significant cost declines. In scenarios that layer a deep 
decarbonization policy with low capital cost assumptions for new nuclear 
(moving from harmonized assumptions of $5,000/kW by 2050 to 
$2,000/kW), models show significant nuclear capacity additions, which 
are concentrated in the U.S. South and West. 

 Zero CO2 emission scenarios in the electric sector entail additional wind, 
solar, energy storage, hydrogen, and nuclear capacity, though shares vary by 
model. These scenarios generally indicate large roles for variable renewables 
and battery storage, but their variability and energy-limited discharge mean 
that least-cost decarbonization portfolios often include other technologies, 
especially zero- and low-emitting firm technologies such as nuclear, carbon-
capture-equipped capacity, biomass, geothermal, hydropower, and zero-
carbon gas-fueled plants (e.g., hydrogen). 
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Figure 2-1 
Total installed nuclear capacity by year and electric sector CO2 policy scenario across all 
models and technology sensitivities. Policy scenarios include a current policies reference 
(“Ref”) and “80%” or “100%” reductions in electric sector CO2 by 2050 from 2005 levels. 

 Assumed cost reductions and financing parameters for new nuclear have the 
greatest influence on the range of simulated nuclear additions under 
decarbonization scenarios. Model responses to alternate policy and 
technology assumptions vary across models. Differences in projected nuclear 
shares are due to differences in underlying assumptions and model structures, 
including retirements of existing reactors, the competitiveness of future 
technologies, and various model features described in other sections of this 
report. 

 While these scenarios should not be interpreted as predictions, they are 
informative for understanding differing model assessments of the relative 
competitiveness of nuclear energy under a range of policy and technology 
conditions. The simulated magnitude of nuclear generation across scenarios 
could also provide insights for fuel, supply chain, and planning discussions. 

Overview 

Later sections of this report describe how the representation of nuclear energy 
varies across models. To understand impacts of these differences, this section 
summarizes inter-model comparisons, where all four participating models (IPM, 
NEMS, ReEDS, and REGEN) run the same scenarios with a common set of 
input assumptions and compare outputs of interest. These comparisons 
complement qualitative comparisons and intra-model comparisons in later 
sections, where a single model runs a series of diagnostic or scenario-based 
experiments. 
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These diagnostic scenarios can inform model understanding, interpretation, and 
development for a range of stakeholders, and many insights may be able to 
inform decision-making. These policy and technology scenarios are designed to 
span a wide (but incomplete) range of futures to observe model behaviors for 
nuclear capacity expansion, retirement, and operation under different 
environments. While the results in this section can help inform discussions 
related to U.S. energy policy and RD&D priorities for nuclear power, they do 
not represent explicit policy analysis, recommendations, or critiques of ongoing 
discussions. 

The results of this analysis should not be interpreted as predictions or indications 
of technology, market, or policy preferences. Instead, their primary role is to offer 
two primary forms of comparison—similarities and differences across the four 
participating models for a given scenario, and comparisons across technology and 
policy sensitivities for a given model. These comparisons offer insights into the 
model features and parameters that have the greatest influence on the simulated 
role of nuclear power plants across a range of future scenarios. 

Scenarios 

Scenarios in the model intercomparison include different combinations of 
assumptions about policy and technologies. For each scenario, models determine 
the least-cost mix of generation, energy storage, and transmission assets that can 
meet market and policy requirements through 2050. Later sections describe key 
differences in model structure and assumptions, which were not harmonized for 
these scenarios, including annual and peak demand assumptions, temporal 
resolution, spatial aggregation, transmission costs, foresight, and many others. 

There are three policy-related sensitivities: 

 Reference (“Current Policies”): This scenario reflects all on-the-books state 
and federal policies and incentives.5 The goal of this scenario is to estimate 
how existing and new nuclear technologies (e.g., Gen III+, Gen IV, and 
SMR designs) could compete on a status quo economic and policy basis. 
State and regional policies include renewable portfolio and clean electricity 
standards, energy storage mandates, ZEC policies, and CO2 caps/taxes both 
in the electric sector (Regional Greenhouse Gas Initiative, Colorado) and 
economy-wide (California) if models can represent these policies. Federal 
policies and incentives include production and investment tax credits with 
phasedowns, 45Q tax credits, and Clean Air Act § 111(b) CO2 performance 
standards. Appendix B provides a more detailed list of U.S. federal and state 
policies represented in this scenario. 

 
5 Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was 
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector 
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced 
nuclear) were not included in these scenarios. Scenarios also do not include economy-wide or 
electric sector targets from the updated U.S. Nationally Determined Contribution. 

 
Comparing outputs across 
models, technology 
assumptions, and policy 
scenarios informs model 
understanding, interpretation, 
and development decisions. 
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 Deep Decarbonization (80-by-50 and 100-by-50): The goal of the deep 
decarbonization scenarios, which reflect a policy push to lower CO2 
emissions, is to explore the competitiveness of nuclear energy in relation to 
other low- and zero-CO2 technologies.6 The national power sector cap 
begins at current levels and linearly decreases to meet 80% and 100% CO2 
reductions by 2050 (relative to 2005 levels), as shown in Figure 2-2. These 
cap-and-trade policies are implemented as national caps with “where” 
flexibility (i.e., free national trade), no banking or borrowing, and no offsets 
or alternative compliance payments.7 The national CO2 cap is implemented 
alongside the federal, regional, and state policies in the Reference (“Current 
Policies”) scenario. 

 

Figure 2-2 
Historical U.S. electric sector emissions and proposed cap trajectories for the Deep 
Decarbonization scenarios. 

The 100% by 2050 scenarios represent a transformational shift in the U.S. 
electricity supply. As a result, only the REGEN and ReEDS models were able to 
run these scenarios. Note that some mitigation options that could play important 
roles in achieving such a transformational change were not considered in these 
scenarios, including negative emissions technologies (such as direct air capture or 
bioenergy with carbon capture and sequestration) and demand-side approaches. 

 
6 Note that CO2 caps are more technology-neutral emissions reduction approaches relative to 
technology-specific tax incentives, mandates, or portfolio standards that only include a subset of 
electric sector resources. 
7 The NEMS model implemented a carbon tax proxy instead, which was designed to achieve a 
similar level of emissions reductions. 
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The “Deep Decarbonization” 
scenarios explore nuclear’s 
competitiveness in relation to 
other low-emitting 
technologies. 
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These policy scenarios are run for different technology assumptions: 

 Native Assumptions: These technological assumptions use all modeling 
teams’ default assumptions for technology cost and performance. Native 
capital costs over time are compared in Figure 6-1. The goal of this scenario 
is to understand the competitiveness of existing/new nuclear technologies, 
using the models as they are currently parametrized. 

 Harmonized Costs Only: These scenarios align costs only in order to 
quantify the relative magnitudes of cost assumptions and 
discounting/financing in driving model outputs. Here, the cost and 
performance assumptions from the Harmonized Technology Assumptions 
section are used, but each model uses its native assumptions about financing 
and discounting. 

 Harmonized Assumptions: In this scenario and where existing model 
structure allows, all models use a common set of input assumptions for 
capital costs, FOM costs, discounting, and financing. The goal is to evaluate 
the role of input assumptions versus model structure in projections of nuclear 
energy in the power sector. Specific assumptions include: 

- Cost and performance assumptions for new investments: Use NREL’s 
2020 Annual Technology Baseline (NREL, 2020), due to its public 
availability and transparency. All costs are exogenous over time (i.e., 
endogenous technological learning is turned off in all models). Native 
capital costs by technology over time are shown in Figure 6-1, and 
assumptions from ReEDS are used for the harmonized values. 

- FOM costs for existing nuclear: FERC Form 1 FOM plus EUCG 
maintenance capital costs are assumed. A comparison of native FOM 
costs are shown in Figure 5-1, and assumptions from REGEN are used 
for the harmonized values, which do not change over time. 

- Financing: Discount rate (Weighted Average Cost of Capital, real dollar 
terms) of 3% and capital recovery period (economic lifetime) of 30 years 
for all investments (including all nuclear and non-nuclear generation 
options). Native and harmonized discount rates and economic lifetime 
assumptions are shown in Figure 7-2 and Figure 7-3, respectively. 

- Construction time: Construction time for SMRs is assumed to be 
5 years, while other new nuclear capacity is assumed to be 10 years. 

 Harmonized Assumptions with Low-Cost Nuclear: Another scenario uses 
the same harmonized assumptions from above, but considers much lower 
cost assumptions for new nuclear capital costs and existing nuclear FOM 
costs. Although new nuclear capacity is available in each model and scenario 
beginning in 2028 or 2030, this scenario adjusts new nuclear costs to 
$2,000/kW beginning in 2035 (Table 2-1).8 This stylized sensitivity 
examines how much lower costs for new nuclear impact deployment  
 

 
8 This stylized trajectory is informed by breakeven costs from the analysis in Bistline, James, and 
Sowder (2019). 
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outcomes under different policy conditions. Additionally, FOM costs for 
existing nuclear are 25% lower than the reference values, assuming plant 
modernization can lower net costs (including modernization costs9). 

 Harmonized Assumptions with Nuclear Carveout: In addition to 
harmonizing input assumptions, this scenario harmonizes model outputs for 
new nuclear additions over time, which illustrates how a nuclear capacity 
carveout impacts outputs of interest across models. This scenario enforces a 
national-level capacity10 constraint in which total installed new nuclear 
capacity meets the following stylized glidepath: 5 GW by 2035, 15 GW by 
2040, 30 GW by 2045, and 50 GW by 2050. 

Table 2-1 
Overnight capital cost assumptions for new nuclear power plants ($/kW) for the 
“Harmonized” (NREL, 2020) and “Low Costs” sensitivities 

Sensitivity 2020 2035 2050 

Harmonized $6,200/kW $5,600/kW $5,000/kW 

Low Costs $6,200/kW $2,000/kW $2,000/kW 

The following assumptions are harmonized across all scenarios: 

 Fuel Prices: These scenarios use EIA’s Annual Energy Outlook 2021 
“Reference” fuel prices for natural gas, coal, petroleum, and uranium. Fuel 
prices are typically represented as inelastic.11 

 Carbon Removal (“Negative Emission”) Technologies: All scenarios assume 
that bioenergy with carbon capture, direct air capture, and other negative-
emission technologies are not included. The intra-model sensitivity in 
Section 4 shows how the availability of carbon removal impacts nuclear and 
other technology investments under deep decarbonization scenarios. 

 Retirements: All scenarios incorporate a list of announced retirements for 
all capacity types (e.g., coal, nuclear, and gas), and assume that endogenous 
economic retirements can occur in any period. Models use an exogenous 
assumption that all remaining nuclear plants can operate for 80 years if 
economic (which is represented as an upper bound constraint). 

 
9 Information about nuclear plant modernization can be found in the EPRI Nuclear Plant 
Modernization Toolbox (https://www.epri.com/NuclearPlantMod) and guide to plant 
modernization research (https://www.epri.com/research/programs/111344). For an example of how 
modernization can impact existing nuclear plant operations, see the modernization white paper 
analysis in US-REGEN (Bistline and Austin, 2019). 
10 Since NEMS does not represent capacity constraints, this scenario is approximated with a 
nuclear-only generation share requirement. 
11 Natural gas prices in the ReEDS scenarios use elastic regional supply curves which are rooted in 
fuel price and consumption projections from the AEO2021 “Reference” case. 
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Several assumptions are not harmonized for this study, including the long-term 
growth of energy services, electricity demand, and hourly load profiles. Impacts 
of these factors are left for future work. 

Results: Trends Across Technology Sensitivities 

Figure 2-3 presents the national installed capacity and generation12 results in 
2050 from across the technology sensitivities under the Current Policies scenario. 
Looking first at scenarios with Native cost assumptions, all models indicate a 
prominent role for solar, wind, and natural-gas-fired technologies. However, 
there are modest differences in generation and capacity shares across models. 
For example, the Native ReEDS mix involves a greater role for energy storage, 
which primarily takes the form of batteries. The Native REGEN mix indicates 
significantly less installed capacity due to lower VRE deployment (i.e., with 
lower capacity factor wind and solar buildouts) and peak load. Note, however, 
that the total electricity demand is similar across models—as indicated by the 
similar height of the generation mix in the bottom panel of Figure 2-3—and it 
is met via higher utilization of natural-gas-fired generation in REGEN. 

 
12 The generation panel does not include net or gross contributions from energy storage. The 
“Hydrogen+Other” category includes hydrogen, biomass, municipal solid waste, landfill gas, 
imports, and fuel cells. 

 
Differences in technology cost 
and financing assumptions 
have a strong influence on the 
future electric sector technology 
mix. 
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Figure 2-3 
2050 capacity and generation across the technology sensitivities by model under reference 
(“current policies”) scenarios. 

 
Under current policies, models 
differ in their projections for 
nuclear retirements, and new 
builds only occur in scenarios 
with very low nuclear costs and 
prescribed builds. 
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The magnitude of nuclear power plant retirements by 2050 varies strongly across 
models with Native cost assumptions: ReEDS includes almost no nuclear 
retirements (beyond announced retirements), NEMS and REGEN retire 
approximately 30 GW of existing nuclear capacity, and IPM retires about 
50 GW. Comparing the Native and Harmonized Costs scenarios indicates that 
much of this variation can be explained by disparate capital cost assumptions for 
all technologies (Figure 6-1) and nuclear FOM costs (Figure 5-1). In other 
words, harmonizing these input cost assumptions brings greater agreement 
among the nuclear retirements for most of models, such that nuclear retirements 
by 2050 differ by 27 GW across models with harmonized cost assumptions 
(compared to 43 GW with native assumptions).13 

Overall capacity and generation mixes across models come into closer agreement 
in the three technology sensitivities that involve harmonized cost and financing 
assumptions: the Harmonized, Low-Cost Nuclear, and Nuclear Carveout 
sensitivities (Figure 2-3, rightmost columns). This growing similarity suggests 
that differences in the native cost and financing assumptions can explain many of 
the apparent discrepancies in model projections under Current Policies scenario. 
Yet differences remain in terms of the role of nuclear power across these 
technology sensitivities. For example, adopting the harmonized financing 
assumptions brings REGEN’s total installed capacity in line with the other 
models, but it results in the retirement of nearly all nuclear and coal capacity. 
This visible difference is primarily driven by the harmonized discount rate (3%), 
which is significantly lower than REGEN’s native discount rate (7%).14 More 
modest changes in the other model solutions reflect that their native discount 
rates are more similar to the harmonized value, as shown in Figure 7-2. 

Under the “Low-Cost” nuclear scenario, the very low-cost assumptions for new 
nuclear are sufficient to drive new deployment in each model: NEMS, ReEDS, 
IPM, and REGEN deploy 100 GW, 25 GW, 15 GW, and 3 GW of new 
nuclear capacity by 2050, respectively, in the absence of new power sector 
policies. Models with more competitive natural gas generation in the reference 
tend to have lower nuclear deployment in this low-cost scenario (and vice versa). 
As shown in Figure 2-4, new nuclear deployment is primarily concentrated in the 
South and West Census regions due to lower wind and solar resource quality and 
higher gas prices in the South and supporting state policies in the West. This 
new nuclear capacity primarily displaces additions of natural gas, wind, and solar 
capacity in these regions (and, to a lesser extent, energy storage). 

 
13 The intra-model comparison using IPM in Section 5 illustrates how different nuclear FOM cost 
assumptions can alter deployment projections. 
14 Intra-model comparisons in REGEN illustrating the impacts of different discount rates are 
discussed in Section 7. 

 
Aligning input cost assumptions 
reduces differences across 
models in overall generation 
and capacity results. 
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Figure 2-4 
Regional distribution of nuclear capacity (existing and new) in 2050 for all combinations of 
models and technology sensitivity assumptions under reference (“current policies”) scenarios. 
Regional definitions are based on U.S. Census regions. 

The final technology sensitivity explores a Nuclear Carveout scenario, 
culminating in 50 GW of new nuclear capacity by 2050, which is a binding 
constraint across all models and policy scenarios. The same regional and 
technology displacement trends generally hold as in the Low Costs scenario. 
A unique response occurs in the REGEN solution, which retires the existing 
nuclear fleet in conjunction with adding 50 GW of new nuclear capacity, 
as mandates for this new dispatchable capacity lower market prices and 
consequently the revenues for existing generators with similar operational profiles 
(hence, earlier retirements of existing nuclear). This value deflation is akin to 
decreasing market value associated with other technology mandates in the 
literature including for variable renewables (Bistline, 2017). 

Finally, combining the capacity and generation results provides insights into the 
utilization (or capacity factors) for nuclear technologies. Nuclear power’s low 
variable costs make it well-suited for higher capacity factor operations, which 
are consistently high across models and scenarios. Each model solution includes 
modest seasonal differences in nuclear capacity factors, due to a combination 
of seasonal changes in load and forced outages. However, despite the potential 
flexibility of these plants (see “Dispatchability and Flexibility” in Section 5), the 
annual average across all models and scenarios with Current Policies is between 
90% to 94%. 

 

 
Existing and new nuclear tend 
to run with high capacity 
factors (90% to 94% annually) 
across scenarios and models. 
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Results: Effects and Interactions of Policy Sensitivities 

This section explores results where technology sensitivities are layered with 
hypothetical power sector carbon policies. All models explored a set of “80% by 
2050” policy sensitivities, in which power sector CO2 emissions linearly decline 
to reach 80% reductions by 2050 from 2005 levels (Figure 2-2). REGEN and 
ReEDS further explored a set of “100% by 2050” sensitivities. 

As before, discussion in this section is primarily focused on comparing results 
across models, to understand similarities and differences. To avoid repetition 
with the previous section, comparisons here are typically rooted in incremental 
effects of the policy dimension across models, as well as interactions between 
technology and policy assumptions. Unless otherwise stated, the same trends 
were observed in terms of variation across technology sensitivity assumptions. 

“80-by-50” Policy Results 

Layering an “80-by-50” power sector policy with the previously described 
technology sensitivities has significant impacts on the least-cost mix of 
generation, storage, and transmission investments through 2050 (Figure 2-5). In 
general, the policy signal increases the value of low- and zero-carbon generation 
technologies. But while there are commonalities among the model responses, 
there are also noticeable differences across models and technology sensitivities. 
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Figure 2-5 
2050 capacity and generation for all models and technology sensitivities under an 80% by 
2050 power sector policy. 

 
Under an 80-by-50 CO2 cap, 
models align in keeping 
existing nuclear capacity, 
lowering coal capacity, and 
deploying more renewables 
and energy storage. 

 
An “80-by-50” electric sector 
policy has significant impacts 
on the least-cost mix of 
generation, storage, and 
transmission in 2050. 
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Under Native cost assumptions, there are several common responses to the 80% 
CO2 policy across models: 

 Avoiding nuclear power plant retirements that were present under the 
Current Policies scenarios. Existing nuclear capacity increases from the 
reference to the 80-by-50 scenario: IPM from 47 to 64 GW, NEMS from 
70 to 88 GW, REGEN from 69 to 85 GW. ReEDS installed nuclear 
capacity is 89 GW for both scenarios. 

 Retiring a large portion of the existing coal fleet and significantly reducing 
coal generation. 

 Increasing deployment of wind, solar, and energy storage (though 
magnitudes vary across models), which leads to higher installed system 
capacity. 

These high-level trends generally align with the existing deep decarbonization 
literature for the U.S. power sector (e.g., Jenkins, Luke, and Thernstrom, 2018; 
Bistline, et al., 2018). NEMS, REGEN, and ReEDS retain nearly all existing 
nuclear capacity, whereas IPM retires nearly 30 GW of existing nuclear capacity. 
All four models see a growing role for solar, wind, and energy storage under the 
hypothetical 80-by-50 policy, which results in an increase in total installed 
capacity (Figure 2-5) compared to the Current Policies scenarios (Figure 2-3). 

In terms of nuclear capacity factors, all four models see growing value in 
employing the flexibility (or ramping) options for nuclear power capacity under 
80-by-50 scenarios (Figure 2-6). This response is generally modest (one to two 
percentage point reductions across models), though changes in annual capacity 
factors are larger for REGEN (moving from 93% to 83% between the Current 
Policies and 80-by-50 scenarios).15 Nuclear power plants reduce their capacity 
factors and draw on their flexible capabilities under higher variable renewable 
deployment. The value of flexible resources more broadly—including energy 
storage, demand response, dispatchable fossil-fueled capacity, hydro, nuclear, and 
others—increases in scenarios with higher wind and solar penetration (Gils, et 
al., 2022; Bistline, 2019; Jenkins, et al., 2018b). Lower capacity factors for 
nuclear power plants are due to reduced utilization of nuclear in non-summer 
months (Figure 2-7). 

 
15 Many factors may drive the lower capacity factors for nuclear plants in REGEN, which could be 
due to the model’s higher temporal resolution (which may better capture flexibility needs), 
endogenous representation of load shapes, or other model features. 

 
Nuclear plant flexibility is 
employed more under deeper 
decarbonization scenarios, 
though annual capacity factors 
are still high (between 80% 
and 94% across models). 
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Figure 2-6 
Annual average capacity factors over time for nuclear (existing and new) across technology 
and policy sensitivities. Panels show different models. Note that vertical axes are truncated at 
75%. 

 

Figure 2-7 
Nuclear capacity factors by season for select 80-by-50 policy sensitivities from the models 
that provided a seasonal breakdown of generation from nuclear power plants. 
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Under the 80-by-50 policy environment with native costs, models differ in their 
assessments of the future role of coal- and gas-fired generation. The REGEN 
and NEMS solutions involve retiring nearly all coal-fired capacity by 2050, 
whereas the IPM and ReEDS models retain more of the existing coal fleet and 
operate it with lower capacity factors. This difference is maintained under the 
harmonized cost and financing assumptions, suggesting that there are differences 
in how the models treat the economics and retirements of the existing coal fleet. 

Finally, there is variation across models in the deployment of CCS-equipped 
capacity under deep decarbonization. The IPM and ReEDS solutions indicate a 
very modest role for gas CCS under such an 80-by-50 policy, whereas NEMS 
and REGEN involve 92 GW and 65 GW (respectively) of new gas CCS 
capacity by 2050. Figure 6-1 shows how capital costs for gas with CCS are 
similar over time across models (with the exception of higher costs in REGEN), 
which suggests that gas CCS costs are not primary drivers of differences in gas 
CCS deployment across models. However, the lower gas CCS deployment in 
NEMS and REGEN when moving from Native to Harmonized Costs 
assumptions suggests that renewables and energy storage costs could play a larger 
role in more pronounced deployment of gas CCS, wind, solar, and batteries. 
Moreover, nuclear and CCS-equipped capacity are substitutes in REGEN 
scenarios, as indicated by the lack of gas CCS in the Low Costs case. 

Although models differ in their temporal resolution, spatial resolution, and 
sectoral coverage (Table 3-2), these features do not uniquely determine 
technology-specific shares, including nuclear-related outputs. High and low 
contributions of different technologies are observed in models of different types. 
Intra-model comparisons in later sections provide ceteris paribus comparisons to 
illustrate how some of these features shape outputs (e.g., temporal resolution in 
Section 7). 

Combining very low-cost assumptions for new nuclear with an 80-by-50 policy 
drives new nuclear deployment across all four models (Figure 2-8). Responses to 
cost and policy drivers (separately and in combination) differ in magnitude across 
models. For example, NEMS produces the strongest response to each driver, 
with the very low-cost nuclear resulting in nearly 100 GW of new nuclear 
capacity by 2050, and the 80-by-50 policy resulting in 17 GW of new nuclear 
capacity by 2050. When combined, the corresponding NEMS solution involves 
175 GW of new nuclear capacity, which is significantly more than the sum of 
each individual driver. Therefore, the results indicate that interactions between 
policy and technology sensitivities can produce synergies in terms of the 
magnitude of potential deployment. Similar interactions are apparent in the other 
models, but with smaller magnitude effects overall. 

 
Models differ in their extent of 
fossil capacity installations, 
including CCS-equipped gas. 
Harmonizing cost assumptions 
better aligns results across 
models. 

 
Combining very low cost 
assumptions for nuclear with 
more stringent CO2 policy leads 
to higher nuclear deployment 
than when these drivers are 
considered separately. 
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Figure 2-8 
New nuclear capacity over time across all technology and policy sensitivities. Panels show 
different models. Note that there are no new additions in many models and scenarios. 

The regional distribution of nuclear capacity (Figure 2-9) follows similar trends 
as in the previous section, with the greatest deployment in the South and West 
Census regions for most models. In the Nuclear Carveout scenario, incremental 
deployment is highest in the South and West. 

 

 
New additions of nuclear 
capacity are highest in the 
Southern and Western U.S. 
regions. 

 
Significant economic 
deployment of new nuclear 
capacity requires both a 
stringent electric sector CO2 
policy and very low cost 
assumptions for new nuclear. 

12340898



 

 2-17  

 

Figure 2-9 
Regional distribution of nuclear capacity (existing and new) in 2050 for all combinations of 
models and technology sensitivity assumptions with an 80-by-50 power sector policy. 
Regional definitions are based on U.S. Census regions. 

“100-by-50” Policy Results 

Due to challenges with representing the transformational change of transitioning 
to a 100% carbon-free electricity supply, results from only the REGEN and 
ReEDS models are presented in this section. As in the previous section, the 
policy on its own drives substantial changes to the least-cost capacity and 
generation mix (Figure 2-10). Since the scenarios do not allow for consideration 
of negative emissions technologies, only zero-emitting resources can contribute 
to the generation mix in 2050. As a result, the capacity and generation mixes are 
dominated by solar, wind, energy storage, hydrogen-based combustion turbines 
(using hydrogen produced by electrolysis), and nuclear technologies, with 
contributions from geothermal and hydropower. 

 
Reaching zero emissions in the 
electric sector entails some 
combination of additional 
wind, solar, energy storage, 
hydrogen, and nuclear 
capacity, though shares vary 
by model. 
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Figure 2-10 
2050 capacity and generation results across the technology sensitivity scenarios and models 
under a 100-by-50 power sector policy. 

These insights are consistent with the intra-model comparison in Section 4 
(“Intra-Model Comparison: Policy Design”) and with the emerging literature on 
reaching zero-emissions targets (Bistline and Blanford, 2021; DOE, 2021). 
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Figure 2-11 shows existing and new nuclear capacity across the range of scenarios 
that include a 100% decarbonized U.S. electricity supply in 2050.16 Under the 
Native and Harmonized Costs scenarios, the 100-by-50 policy avoids retiring 
large shares of existing nuclear plants. Moreover, REGEN builds about 30 GW 
of new nuclear capacity by 2050, whereas the ReEDS model does not build new 
nuclear capacity (beyond advanced nuclear reactor demonstration projects). 
Comparing with the harmonized cost and financing scenario17 (“Harmonized”) 
results indicate that this discrepancy can be attributed, in part, to the different 
investment lifetime and weighted average cost of capital assumptions in REGEN 
and ReEDS, since REGEN builds are much lower in the Harmonized case 
(relative to the Harmonized Costs only case).18 

 

Figure 2-11 
New and existing nuclear capacity across the 100-by-50 policy scenarios and technology 
sensitivities. 

Finally, both models respond strongly to the combination of a 100-by-50 power 
sector policy and very low-cost assumptions for new nuclear capacity. The new 
nuclear cost reductions that are assumed in this scenario are sufficient to enable 
nuclear power to play a significant role in a fully decarbonized U.S. electricity 

 
16 We focus on 2050 results due to the more limited impacts in 2030, where the assumed policy 
stringency remains relatively modest. 
17 REGEN’s native discount rate is 7% versus 3% in the harmonized scenario, which is the native 
assumption in ReEDS. REGEN’s native economic lifetime for nuclear is 80 years versus 30 years 
in the harmonized scenario, which also is the native assumption in ReEDS. See the “Discounting 
and Financing” discussion in Section 7 for additional detail. 
18 Similar to earlier Carveout scenario results, REGEN retires the existing nuclear fleet in 
conjunction with adding 50 GW of new nuclear capacity, as mandates for this new dispatchable 
capacity lower market prices and consequently the revenues for existing generators with similar 
operational profiles (hence, earlier retirements of existing nuclear). 

 
Even in scenarios that achieve 
100% decarbonization of U.S. 
electricity supply in 2050, 
financing assumptions have a 
pronounced influence on new 
nuclear buildout. 

 
Nuclear power provides up to 
a third of U.S. electricity 
generation in 2050 in 
scenarios that combine very 
low-cost nuclear assumptions 
with a 100% by 2050 power 
sector policy. 
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supply, with both models indicating on the order of 300 GW of new nuclear 
capacity by 2050 (Figure 2-11). In turn, the combination of very low-cost nuclear 
assumptions and a 100% by 2050 policy results in nuclear power plants 
contributing between a quarter and a third of total electricity generation in 2050. 
While this result should not be interpreted as a prediction of the future, the 
magnitude of deployment is informative for understanding the potential impacts 
of substantial cost reductions or subsidies and associated implications for 
permitting, siting, and fuel supply chains (see the “Deployment Barriers” 
discussion in Section 6). 

Figure 2-12 compares 2050 capacity mixes across models for the three policy 
scenarios (assuming native technological costs). This comparison highlights the 
considerable changes in the investment mix and extent of capacity growth under 
the 100-by-50 policy. 

 

Figure 2-12 
2050 capacity results across policy scenarios by model (with native technology 
assumptions). 
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Table 2-2 shows annual capacity factors by technology, model, and policy 
scenario. Even under deep decarbonization of the electricity sector with extensive 
deployment of wind and solar, capacity factors of nuclear plants tend to be high 
(77% in ReEDS and 81% in REGEN). Capacity factors of natural gas combined 
cycle (NGCC) plants without and with CCS tend to be much lower, especially 
under scenarios with stringent CO2 policies. 

Table 2-2 
2050 annual capacity factor by technology, model, and policy scenario 

Policy Model Nuclear NGCC NGCC-CCS 

Reference IPM 93% 50% 27% 

NEMS 94% 46% 44% 

ReEDS 91% 41% N/A 

REGEN 93% 61% N/A 

80-by-50 IPM 92% 39% 45% 

NEMS 91% 18% 55% 

ReEDS 89% 14% N/A 

REGEN 83% 25% 64% 

100-by-50 ReEDS 77% N/A N/A 

REGEN 81% N/A N/A 

Other Results 

The results presented in this section have focused on the capacity and generation 
outcomes, which provide the most direct means of comparison across models and 
scenario. Additional model outputs can provide insights into the implications of 
various technology and policy assumptions, though some metrics reflect scenario 
definitions rather than endogenous model outputs. The remainder of this section 
highlights emissions and system cost results for a subset of scenarios. 

Power Sector Emissions 

The most meaningful insights regarding power sector emissions are those 
associated with the Current Policies technology sensitivities.19 Across the 
Current Policies scenarios, power sector CO2 emissions from a given model 
typically vary by less than 10% across all years and technology sensitivities. In 
other words, for most models, the optimal generation mix is similar across these 
technology sensitivities with Current Policies, and/or the primary form of 
competition is among low-emitting resources (i.e., nuclear and renewable energy 
technologies). This finding holds even for the Low-Cost Nuclear and Nuclear 

 
19 The policy sensitivities—80% and 100% CO2 reductions by 2050 from 2005—are binding in the 
models, and therefore prescribe CO2 emissions pathways. Greater variation exists among the NOx 
and SO2 emissions results from the models given differences in coal and gas generation. We leave 
explorations of such dynamics for future work. 
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Carveout scenarios for IPM, NEMS, and ReEDS, such that increases (or 
decreases) in the role of zero-emitting nuclear generation are primarily offset by 
decreases (or increases) in generation from solar and wind technologies. 

One exception lies in the REGEN model solutions, for which all of the scenarios 
with harmonized cost and financing assumptions involve 20-40% reductions in 
power sector CO2 emissions, relative to the Native and Harmonized Cost 
scenarios (with Current Policies). This result follows from the generation results 
presented earlier, where harmonized financing assumptions lead to significant 
declines in coal-fired generation, which is replaced by lower-emitting resources. 

Power Sector System Costs 

Power sector system cost results are another common output across models, 
which provide insights into the relative costs of various investment portfolios. 
Interpretation of such results can be challenging across technology sensitivities 
and models due to scenario- and model-specific assumptions. System cost results 
and valuation over time can change if input assumptions differ (e.g., capital costs 
in the Low Costs nuclear scenario, discount rates in the Harmonized costs 
scenario). Technology-specific interpretations can be misleading in such settings, 
especially across models. Finally, the scenarios with harmonized costs involve 
increases for some technology cost categories and decreases for others, which 
makes it challenging to disentangle competing effects on the power sector system 
cost results (Figure 6-1).  

Under the Current Policies assumptions, the Nuclear Carveout sensitivity 
involves 2-3% increases in annualized power sector system costs in 2040, and  
5-8% increases in 2050 (compared to the Harmonized sensitivity results). Since 
both scenarios involve the same technology cost and financing assumptions, this 
incremental increase in power sector system costs provides an estimate for how 
much additional investment and operational expenditure would be needed to 
displace some of the least-cost generation resources with 50 GW of new nuclear 
capacity. 

Performing the same comparison for the corresponding 80-by-50 scenarios 
reveals that the system cost implications of forcing in 50 GW of new nuclear 
capacity could be significantly reduced when combined with a policy constraint. 
In the NEMS and ReEDS solutions, the incremental annualized system cost 
impact of the Nuclear Carveout sensitivity remains at 2-3% in 2040 and 2050 
(compared to the Harmonized sensitivity results), whereas similar system cost 
impacts are observed in IPM as in the previous paragraph. The reduced system 
cost implication of the Nuclear Carveout assumptions in NEMS and ReEDS 
suggests that, under an 80% by 2050 policy, additional nuclear capacity is close 
to being competitive with the least-cost solution in the absence of that constraint. 

 

 
System costs indicate that new 
nuclear capacity is close to 
being competitive with the 
least-cost solution under an 
80% by 2050 power sector 
policy. 
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 Overview of Models 
The four participating models—IPM, NEMS, ReEDS, and REGEN—are 
national-level CEMs that vary in their coverage and detail across a range of 
model dimensions. Table 3-1 and Table 3-2 compare several key features across 
models. Given that intended model applications often guide development 
decisions, differences in characteristics of these four models are driven in part by 
differences in their applications. 

Note that all four models are long-term electric sector models (in some cases 
with linkages to broader energy systems and the economy). These differ from 
smaller-scale, shorter-time-horizon models (e.g., production cost models) and 
with larger-scale tools (e.g., global integrated assessment models). Production 
cost or operational simulation models assess short-run electric system operations 
using detailed simulations of unit commitment and dispatch typically over a year 
with a fixed capacity mix (unlike CEMs, where the capacity investments and 
retirements are model outputs). In contrast to detailed power sector models, 
global integrated assessment models are better-suited for exploring interactions 
across countries, global technological change and transfer, feedbacks between 
energy and land-use systems, and cross-sectoral impacts, but they are not as well-
equipped for informing questions related to detailed technological interactions 
across system resources or to those requiring spatial/temporal detail. 

The four participating models have undertaken a range of nuclear-specific 
modifications and broader model development efforts over the course of this 
project, which have altered model outcomes and helped to improve insights. 
Nuclear-related improvements implemented by many modeling teams include 
adding small modular reactor technologies, allowing existing nuclear plants to 
operate for 80 years when economic, and adding/refining representations of 
flexible nuclear operations. Broader model updates from some participating 
models include running zero-emissions scenarios, increasing temporal resolution, 
adding new technologies (e.g., carbon removal, hydrogen, hybrid resources), and 
refreshing technology cost assumptions. Appendix A discusses these model 
enhancements in detail. 

 

 
This project compares four 
models—IPM, NEMS, ReEDS, 
REGEN—which have a diverse 
range of modeling decisions, 
scopes, and uses. 
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Integrated Planning Model (IPM) from the U.S. Environmental 
Protection Agency (EPA) 

IPM®, developed by ICF, is a multi-regional, dynamic, deterministic linear 
programming model of the contiguous U.S. electric power sector. It provides 
estimates of least-cost capacity expansion, electricity dispatch, and emissions 
control strategies while meeting energy demand and environmental, 
transmission, dispatch, and reliability constraints. EPA has used IPM for almost 
three decades to better understand power sector behavior under future business-
as-usual conditions and to evaluate the economic and emissions impacts of 
prospective environmental policies. As a result, EPA has focused considerable 
effort on the representation of fossil-based generator technologies and associated 
emissions and environmental impacts. IPM® is a registered trademark of ICF 
Resources, L.L.C. For further details, see the documentation available at: 
https://www.epa.gov/airmarkets/power-sector-modeling 

National Energy Modeling System (NEMS) from the U.S. Energy 
Information Administration (EIA) 

NEMS is EIA’s primary tool to provide projections for its Annual Energy 
Outlook (AEO) and related reports, which provide a baseline examination of 
U.S. energy markets and facilitate better understanding of the impact of future 
policies and market evolution on U.S. energy supply and consumption. NEMS 
links the U.S. energy and macro-economy sectors to allow it to evaluate the 
impact of economic feedback with endogenous energy sector development on 
the evolution of U.S. energy markets. NEMS consists of twelve major modules 
representing various key players in the U.S. energy market. One of them is the 
Electricity Market Module (EMM). The NEMS EMM consists of five 
submodules representing load and demand, capacity planning, fuel dispatching, 
finance and pricing, and renewables and energy storage. These five sub-modules 
are designed to collectively simulate major decision points within the U.S. 
electricity market by estimating the actions taken by electricity producers to 
meet demand in the most economical manner using a least-cost optimization 
approach. EMM then outputs electricity prices to the NEMS demand modules, 
fuel consumption to the NEMS fuel supply modules, emissions to the 
Integrating Module, and capital requirements to the macroeconomic module. 
These modules then return updated electricity demand, fuel price, and macro-
economic parameters back to the EMM. The model iterates until a stable supply 
and demand solution is reached for each forecast year. 

Regional Energy Deployment System (ReEDS) from the National 
Renewable Energy Laboratory (NREL) 

ReEDS is an electricity-sector-only model with a focus on the contiguous U.S. 
power sector (Ho, et al., 2021), though representations currently exist for an 
expanded North American model (Canada, U.S., Mexico) and India. ReEDS 
has high spatial resolution, representing the U.S. with 134 model balancing areas, 
and representing wind and solar resources with up to 50,000 individual sites each. 
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Transmission lines connecting each of these 134 regions and spur lines 
connecting to each of the wind and solar sites are modeled in ReEDS alongside 
generation and storage buildouts. 

ReEDS models seven years of hourly, chronological data of wind, solar, and load 
in order to capture the value of variable renewable energy (VRE) resources and 
energy storage. Non-VRE, non-storage generators are typically dispatched at a 
17-time-slice resolution, though that can be customized by the user, while VRE 
and storage rely on the chronological hourly representation for many key 
modeling parameters. The ReEDS model is publicly available at: 
https://www.nrel.gov/analysis/reeds/request-access.html 

Regional Economy, Greenhouse Gas, and Energy (REGEN) from 
the Electric Power Research Institute (EPRI) 

The U.S. Regional Economy, Greenhouse Gas, and Energy (REGEN) model 
was developed by the Electric Power Research Institute (EPRI). REGEN 
integrates a detailed electric sector capacity planning and dispatch model and an 
economic model of non-electric sectors capturing end-use technology tradeoffs 
(EPRI, 2020a). The electric sector model makes simultaneous decisions about 
capacity investments, transmission expansion, and dispatch, including load 
profiles that reflect the evolving end-use mix. The model includes hourly 
resolution for investment and operations, which better characterizes the 
economics of variable renewables, energy storage, and firm low-carbon resources. 
The end-use model captures technology choices at the customer level with 
heterogeneity across different sectors, structural classes, and regions. Online 
documentation is available at: https://us-regen-docs.epri.com 
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Table 3-1 
Overview comparison of participating models and their key features 

Model Institution Objective Function Computational 
Requirements 

Planning Horizon Foresight Sectoral 
Coverage 

IPM U.S. 
Environmental 
Protection 
Agency (EPA) 
and ICF 

Minimize the NPV of the 
power sector's total system 
cost 

~10 hour run time 
on computational 
server 

Non-chronological, all 
periods solved 
simultaneously 

Perfect foresight All grid-connected 
generators 

NEMS U.S. Energy 
Information 
Administration 
(EIA) 

Least cost optimization for the 
U.S. electric power sector; the 
EMM projects capacity 
planning, generation, fuel use, 
and transmission, subject to 
inputs and interactions with 
other modules in NEMS 

~8-12 hour run time 
as part of integrated 
NEMS runs, ~4 GB 
memory 

Annually through 2050; in 
EMM each solve-year 
optimizes over a three-
period planning horizon to 
examine costs over a 30-
year period 

Convergent perfect 
foresight within the 
2050 planning horizon 
by using prior run 
results as input to the 
current run; out-of-
horizon years use 
adaptive foresight 

All fuel supply and 
conversion, 
electricity and end 
use demand sectors, 
macroeconomic 

ReEDS National 
Renewable 
Energy 
Laboratory 
(NREL) 

Minimize total system cost 
using the 20-year NPV 

~8 hour run time, 
~12 GB memory 

Customizable; 2-year 
increments through 2030, 
5-year increments through 
2050 

Foresight only for 
natural gas and CO2 
prices when running in 
sequential solve; 
intertemporal and 
sliding window 
foresight is available as 
an option at 
computational cost 

Electric sector only 

REGEN Electric Power 
Research 
Institute (EPRI) 

Maximize NPV of surplus over 
the model time horizon 
(accounting for end effects); 
minimize NPV if electric sector 
only model 

Depends on 
spatial/temporal 
resolution: ~1 hour 
run time, ~32 GB 
memory for 48-state 
runs 

Customizable; for most 
analyses, five-year 
increments through 2050 

Intertemporal perfect 
foresight 

Electric and all end-
use sectors 
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Table 3-2 
Comparison of power sector constraints and implementation across models used in this study 

Model Temporal 
Resolution 

Spatial Resolution Plant Retirement 
Dynamics 

Deployment 
Dynamics 

Technological 
Change 

Fuel Prices Demand 
Levels/Shapes 

IPM 72 time slices for each 
run year (3 seasons x 
24 segments) through 
2030; 60 time slices 
(3 seasons x 20 
segments) for all post-
2030 run years 

67 regions covering 
the contiguous U.S. 
(64 power market 
regions and 3 power 
switching regions), 
with 11 provincial 
regions for southern 
Canada 

Economic retirements 
for all non-VRE 
technologies; VRE 
assumed to incur life 
extension costs to 
continue operation 
indefinitely 

Electric sector 
capacity planning 
and dispatch is a 
least-cost linear 
program 

Exogenous cost 
and performance 
estimates over 
time 

Endogenous coal, 
biomass and 
natural gas prices, 
other fuel prices 
based on AEO 

Seasonal load 
duration curves: 
3 seasons, 6 
categories (base to 
peak), 4 time-of-
day categories, for 
a total of 72 
segments 

NEMS 3 seasonal periods 
(summer, winter, and 
spring/fall) divided 
into 3 groups: peak 
(highest 1%), 
intermediate (next 
49%), and base 
(lowest 50%), totaling 
9 segments 

The generation of 
electricity is 
accounted for in 25 
supply regions that 
resemble the NERC 
reliability assessment 
regions 

Announced 
retirements are a 
model input; the model 
also evaluates 
retirement decisions 
for fossil/nuclear 
based on whether 
continuing operation 
costs exceed revenues 

Linear programs for 
capacity planning 
and dispatch, and a 
third to solve 
renewable and 
storage dispatch 
(576 time slices); 
each model minimizes 
total system costs 

Endogenous 
learning-by-
doing is modeled 
in the electric 
sector for new 
build costs, 
based on 
assumed learning 
rates 

In integrated runs, 
the electric sector 
uses supply curves 
from the fuel 
supply models 
and iterates based 
on demand/price 
response 

End use models 
provide annual 
demand by sector 
and end use; the 
EMM has initial 
regional load 
shapes that can 
change over time 

ReEDS 17 Time slices (4 per 
day x 4 seasons + 
summer afternoon 
super-peak) across 
one year 

Contiguous U.S. with 
134 load balancing 
areas and 18 
resource adequacy 
regions; some 
representation of 
Canada/Mexico 

Age-based retirements 
for all technologies; 
additionally, minimum 
capacity factor-based 
retirements for coal 

Electric sector 
capacity planning 
and dispatch is a 
least-cost linear 
program 

Exogenous cost 
and performance 
estimates over 
time 

Endogenous 
regional natural 
gas fuel supply 
curve 

Demand levels and 
hourly shapes are 
exogenous inputs to 
ReEDS 

REGEN Customizable; 
typically 100+ 
“representative hours” 
(Blanford et al. 2018) 
per year or 8,760 
hourly 

Contiguous U.S. 
states and Canadian 
provinces; 
customizable regions 
based on state and 
provincial boundaries 

Exogenous retirements 
due to announced 
closures and age-
based retirements for 
some capacity; 
endogenous 
retirements for most 
capacity 

Electric sector 
capacity planning 
and dispatch is a 
least-cost linear 
program; end-use 
decisions are based 
on lagged logit 
choice models 

Exogenous cost 
and performance 
estimates over 
time 

Exogenous fuel 
prices for most 
runs (sensitivities 
with supply 
elasticity are 
possible in the 
electric model) 

Demand levels and 
hourly shapes are 
endogenously 
determined in the 
REGEN end-use 
model 
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 Grid Value Streams and Market 
Participation 

Summary 

 The relative magnitudes of different electric sector value streams vary by 
technology, model, region, and scenario. In many instances, nuclear capacity 
operates with high capacity factors due to its low variable costs, and energy is 
generally the primary value stream. However, a stringent CO2 policy can 
shift the capacity value stream and make it larger than the energy value. Out-
of-market payments—including federal tax credits, state-level zero emissions 
credits, and other policy incentives (Appendix B)—also can be significant 
revenue sources for eligible technologies. 

 CO2 emissions policy assumptions are a first-order driver of nuclear capacity 
additions and retirements. Details about the policy’s stringency, timing, and 
technology eligibility influence decarbonization planning and costs, as 
illustrated by the model comparisons in this section. Zero-emissions policies 
supporting carbon removal technologies lower deployment of nuclear and 
renewables relative to policies that do not support negative emissions options. 

 Traditional levelized-cost metrics are not indicative of the relative 
competitiveness of system resources, which requires detailed energy modeling 
to assess. 

 The section concludes with a list of modeling and analysis needs. 

Overview of Considerations and Approaches 

Nuclear energy can provide value for a range of electric sector services, including 
energy, firm capacity (or long-term resource adequacy products more broadly), 
ancillary services, and potential non-power value streams such as hydrogen 
production or policy requirements. Long-term systems models attempt to capture 
these value streams under scenario-specific variations, potential changes to 
market depth as different resource are deployed, competition across technologies 
to provide the same service, and ability for resources to participate in multiple 
markets. The balance of these values may differ by technology, region, and 
scenario. 
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Employing long-term planning models that simulate the bulk power system can 
provide detailed insights into the relative competitiveness of candidate generation 
technologies. Such models simulate investments in utility-scale electricity 
generation technologies based on the net value provided by competing 
alternatives. CEMs, in particular, can evaluate the impacts of varying technology 
and policy futures, both of which are known to have a pronounced impact on the 
least-cost portfolio of generation, energy storage, and transmission assets.20 

In contrast, the levelized cost of electricity (LCOE) is a common metric to assess 
technology-specific costs of electricity generation. It represents “the average 
revenue per unit of electricity generated that would be required to recover the 
costs of building and operating a generating plant… during an assumed financial 
life and duty cycle” (EIA, 2021). While the LCOE metric is commonly used to 
assess various technologies’ costs, it is an incomplete metric whose limitations 
have been well documented (Bistline, 2021b). For example, a recent report 
emphasizes that, “LCOE does not consider the monetary value of that energy to 
the system, which varies by location and time, and LCOE ignores the value of 
other services altogether” (Mai, Mowers, and Eurek, 2021). 

Table 4-1 summarizes market participation assumptions across models, which are 
discussed in detail in the following subsections. 

 

 
20 While capacity expansion modeling can provide insights and quantitative estimates, results from 
such modeling should not automatically be interpreted as predictions. 

 
Levelized-cost metrics are not 
indicative of the relative 
competitiveness of system 
resources, which require 
capacity expansion models to 
accurately assess. 
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Table 4-1 
Comparison of market participation across models 

Model Resource Adequacy Requirement Ancillary Services Markets and Eligibility Non-Power Value 
Streams 

IPM Reserve margin requirements are based on the regional 
margins reported to NERC. Capacity credits for wind, 
solar, hydro, and storage are less than 100% and a 
function of technology, year, and location; all other 
technologies contribute 100% of net summer capacity. 

Operating reserves constraints can be modeled. However, given their 
significant computational overhead and small impact on results, these 
constraints are applied on an as-needed basis. 

Able to incorporate 
incentivizing policies 
(e.g., CES, tax credits). 

NEMS Reserve margin values are set based on the regional 
reserve margins reported to NERC. Capacity credit is 
the estimated portion of capacity that will be available 
during the peak demand, available capacity is affected 
by transmission imports and exports in each region. 

Ancillary services are captured in the Electricity Fuel Dispatch 
Submodule. Dispatch accounts for spinning reserve requirements with 
several operating options to allow for co-optimization of the 
production of energy with the deployment of spinning reserves. 
Dispatch is done for three time slices in each of three seasons to 
account for seasonal variation in electricity demand and available 
generation. 

NEMS captures 
Electricity Tax Credits, 
Production Tax 
Credits, Zero Emission 
Credit, and other 
clean energy credits 
(e.g., RPS). 

ReEDS Each region holds sufficient capacity to meet seasonal 
peak demand plus a planning reserve margin consistent 
with NERC guidance. Non-variable generation 
technologies receive full capacity credit, storage and 
VRE capacity credit considers 7 years of hourly load 
and resource profiles. 

Each region and time slice requires spinning, regulation, and flexibility 
reserves. Spinning reserves are 3% of load and can be provided by 
generators with a 10-minute ramp time. Regulation reserves are 1% of 
load 0.5% of wind generation, 0.3% of PV and can be provided by 
resources with a 5-minute response time. Flexibility reserves cover 
10% of wind and 4% of PV and can be served by resources with a 
60-minute response time. PV/wind are not eligible to contribute to 
operating reserves. All other technologies provide reserves for a 
fraction of their capacity (Ho, et al., 2021). 

Policy incentives 
applied at national, 
regional, or state level, 
including CES, RPS, 
and ZEC policies; 
hydrogen production 
options. 

REGEN Planning reserve margin constraint applied to all model 
regions (equal to 7% above peak residual load); 
endogenous resource contributions to the reserve 
margin (dispatchable technologies contribute full 
nameplate capacity); single weather year (often 2015). 

Spinning and quick start reserve constraints for each hour and region; 
includes contingency reserves, frequency regulation reserves, and 
wind/solar forecast error reserves; high computational costs for these 
constraints and relatively small impact on most model outcomes mean 
that these constraints are typically not included in model runs. 

Policies and incentives 
(e.g., CES, ZEC, tax 
credits); hydrogen 
production options. 
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Policy Representation and Design 

The inclusion and implementation of high-value markets and policies within the 
models are often first-order drivers of power systems investments and operations. 
Approaches for valuing energy using locational marginal prices are well-
established in both power system models and in existing markets. By comparison, 
there is a greater diversity in approaches for modeling other grid services and 
policies (Table 4-1) relative to the actual implementation for how these grid 
services are valued. 

As the intra-model comparison described later in this section suggests, policy 
design details (e.g., stringency, timing, technology eligibility) influence model 
outputs related to nuclear and other technologies. Tax credits, emissions caps, 
Clean Electricity Standards (CESs), Renewable Portfolio Standards (RPSs), and 
Zero Emissions Credits (ZECs) each create different incentives for generator 
entry, exit, and operations, and their overlap can lead to unanticipated electric 
sector outcomes. Appendix B summarizes U.S. federal and state policies and 
incentives represented in these models. The level of model granularity 
(summarized in Table 3-2) and participation rules for a given policy influence 
how much of an effect it will (or will not) have on the model solution. 

The existing literature indicates that nuclear energy tends to have a larger role 
under deeper decarbonization scenarios (Duan, et al., 2022; Bistline and 
Blanford, 2021; Jenkins, Luke, and Thernstrom, 2018; Bistline, et al., 2018), 
a conclusion that is supported by the intermodel comparison in Section 2. 

Existing studies also indicate that the availability of nuclear and other “clean 
firm” technologies21 lowers the costs of decarbonization (Baik, et al., 2021; 
Bistline and Blanford, 2020; Bistline, James, and Sowder, 2019; Sepulveda, et al., 
2018; Kim, et al., 2014). Clean firm technologies include nuclear, carbon-
capture-equipped capacity, biomass, geothermal, hydropower, and low-carbon 
gas-fueled plants (e.g., hydrogen). The value of nuclear in lowering 
decarbonization costs depends on the cost and availability of substitutes across 
different functional roles (e.g., generation, firm capacity, different ancillary 
services). Baik, et al. (2021) quantify diminishing returns to additional zero-
carbon resources but also the important functional role of at least one clean firm 
technology and greater value for multiple resources given different cost structures 
and system roles. 

Energy Markets 

The market value of generation from nuclear and other system resources is 
typically captured through an electricity market-clearing constraint, which 
stipulates that net supply (including generation, energy storage, and trade) equals 
demand for each model region and intra-annual period. Shadow prices on this 

 
21 Firm resources are “technologies that can be counted on to meet demand when needed in all 
seasons and over long durations (e.g., weeks or longer)” (Sepulveda, et al., 2018). 

 
Policy assumptions are first-
order drivers of model outputs, 
including nuclear capacity 
builds and retirements. 

 
Existing studies indicate that 
clean firm technologies can 
lower decarbonization costs. 
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constraint are intended to capture dynamics of competitive wholesale electricity 
markets, which dispatch a least-cost combination of resources in “merit order” 
(i.e., from lowest to highest short-run marginal costs) subject to technical and 
market constraints. Such dynamics are influenced by model design choices 
related to temporal resolution (i.e., whether models capture market-clearing on 
every hour of the year or only a handful of periods) and spatial resolution (i.e., 
the number of regions where locational clearing occurs), which are described in 
Section 7. 

For nuclear plants, their low short-run marginal costs typically mean that they 
run with high capacity factors, even under high variable renewable grids (as the 
model comparison in Section 2 illustrates). Variable costs of nuclear are related to 
uranium fuel costs, which is a smaller component of cost profiles relative to coal 
and gas plants that are dominated by fuel costs. The low variable costs of nuclear 
make many plants price-takers for most hours, which means that their revenues 
are dependent on market outcomes and competition between higher-marginal-
cost resources. These dynamics have historically lowered revenues to nuclear 
plants as natural gas price declined (Jenkins, 2018a) and increase potential 
exposure to future VRE price impacts (Mills, et al., 2020), though the 
dispatchability and flexibility of nuclear plants can mitigate such losses 
(as discussed in Section 5). 

Planning Reserve Margin 

A planning reserve margin is designed to ensure sufficient surplus capacity is 
available to avoid a generation shortfall during periods of high demand (or net 
load). Ensuring that sufficient capacity is available to meet expected demand 
depends on the temporal resolution of a model (Bistline, et al., 2021) as well as 
the way that the planning reserve is represented. The North American Electric 
Reliability Corporation (NERC) provides guidance on capacity requirements 
based on a probabilistic standard—loss of load expectation (LOLE). This 
guidance is communicated to regional reliability councils that must determine 
how to act on the guidance. 

Many U.S. markets have dedicated capacity markets or other resource adequacy 
mechanisms to compensate generators for providing firm capacity. CEMs often 
do not capture intricacies of these markets and instead represent capacity values 
of resources through planning reserve margin constraints. To model a planning 
reserve margin, CEMs typically include a constraint that total firm capacity must 
exceed peak load by a specified margin. The spatial and temporal granularities 
used for this constraint vary depending on model structure (Table 3-2). 
Determining which technologies are allowed to contribute firm capacity, and 
how much, is an impactful area of difference across models. While such a 
determination is relatively straightforward for nuclear, coal, natural gas, and 
geothermal technologies (which are typically given full credit), it is more 
complicated for weather-dependent resources (e.g., wind, solar) and energy-
limited resources (e.g., energy storage), as described in Cole, et al. (2017). 
Therefore, care should be taken to assess how much firm capacity solar 
photovoltaics, wind, hydropower (especially run-of-river), and energy storage 

 
Nuclear’s low variable costs 
mean that plants often runs with 
high capacity factors. 
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can contribute toward meeting this requirement, and how that contribution 
evolves as such technologies achieve greater levels of deployment. Most models 
endogenously determine capacity contributions of different resources (Table 4-1). 
The declining capacity credit (and value deflation more broadly) of variable 
renewables and other system resources as a function of their penetration is 
typically a reason why other technologies come into the mix with deeper 
decarbonization, even with very high renewable shares.22 

All models discussed in this report use a version of a planning reserve constraint. 
Most models implement reserve margins consistent with published NERC 
guidance. VRE resources are also generally eligible to contribute to this 
constraint; while the participating CEMs employ different approaches in 
determining how much capacity counts, the overall formulation is similar across 
the CEMs. 

Operating Reserves and Ancillary Services 

While the planning reserve focuses on longer timescale needs for the power 
system, operating reserves and ancillary services are designed to ensure that the 
bulk power system can respond to unexpected shifts in the balance of generation 
and load. The corresponding services provided address needs on a sub-hourly 
time scale and can be grouped into two categories: spinning reserves and non-
spinning reserves. 

Spinning reserves—including regulation reserves and longer-duration spinning 
reserves—are designed to address needs which can only be satisfied by generation 
assets that are already online (or “spinning”). Regulation reserves maintain the 
instantaneous balance of the system, with participating generation units adjusting 
output automatically to meet needs. Longer-duration spinning reserves are also 
maintained to address the loss of a major generation asset, with the need being 
satisfied on the order of tens of minutes. By contrast, non-spinning reserves 
address needs with sufficient lead time, such that an offline generation (capable 
of starting quickly enough) can be brought online to meet the need. This type of 
reserve typically addresses forecast errors in load and VRE output. 

In addition to spinning and non-spinning reserves, finer timescale services also 
exist (e.g., frequency response or fast frequency response) to varying degrees 
across U.S. markets. However, these finer timescale services tend to fall outside 
of the scopes of many models, which typically employ more aggregate temporal 
resolutions and reduced-form representations of dispatch. 

The models in this report have similar capabilities for representing operating 
reserves, with all making a distinction between spinning and non-spinning 
reserves (Table 4-1). Most models seem to have similar formulations, but a major 
difference between models is whether reserves are enabled by default. Compared 
to energy and capacity services, operating reserves are small and usually have 

 
22 For instance, Cole, et al. (2021a) show that, even at 95% renewable penetration, roughly half of 
firm capacity is procured from non-renewable, non-storage resources. 

 
The capacity value of nuclear 
and other system resources is 
typically modeled through a 
planning reserve constraint. 

 
Operating reserves generally 
have smaller impacts on 
investments compared with 
energy and capacity services. 
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minimal impacts on investment decisions (Sergi and Cole, 2021; EPRI, 2021); 
therefore, questions remain about when these constraints are worth the 
computational costs, given their limited impacts on utility-scale capacity and 
generation results. Note that firm capacity needs are typically addressed through 
the planning reserve margin constraint, as detailed in the earlier subsection. 

Non-Power Value Streams 

Power and energy sector policies introduce so-called non-power value streams, 
which can be an important driver of model outcomes. All four models include 
options to represent proposed and implemented policies that impact the power 
system (Table 4-1). Policies are implemented either as a system of constraints, 
requiring the solution to satisfy a specified need, or through explicit costs or 
subsidies that shift a model solution. 

Decarbonization policies offer concrete examples of how policy implementation 
approaches yield non-power value in the model. A carbon tax increases the cost 
of generating power for emissions-intensive resources, which can alter wholesale 
electricity prices and consequently revenues received by generators. Power sector 
incentives—including the federal investment tax credit for solar, the federal 
production tax credit for wind, and state-level zero emissions credits for existing 
nuclear—reduce eligible generator costs, thus increasing their relative 
competitiveness. Appendix B lists U.S. policies and incentives captured in these 
models. 

Cap-and-trade systems and other policies that create tradable compliance 
instruments also generate value streams of different generators, which can alter 
decisions related to dispatch, entry, and exit. Emissions cap policies such as 
California’s economy-wide cap and the electric sector Regional Greenhouse Gas 
Initiative (RGGI) in the Northeastern U.S. are implemented as emissions 
constraints in applicable regions. The shadow price associated with this type of 
constraint can be interpreted as the price of an emission credit. RPS and CES 
policies, which are widely adopted at the state level, require specified levels of 
eligible technologies to supply electricity. These standards can be implemented in 
multiple tiers with carveouts for key technologies and differentiation between in-
state and out-of-state resources. The shadow price associated with these 
constraints is equivalent to price of a renewable energy or clean energy credit and 
increases the competitiveness of eligible technologies. 

Finally, plants also can receive revenues from the sale of hydrogen, synthetic 
liquid fuels, and potable water produced from high-temperature heat (Sowder, 
2021). Some participating models capture hydrogen production, including the 
ability to use electricity from nuclear and other resources to produce electrolytic 
hydrogen (Table 4-1). None of the participating models currently represents the 
possibility of using nuclear for industrial heat applications. These types of 
products are becoming more common in analyses of economy-wide deep 
decarbonization, and they highlight the value of models that can capture cross-
sector interactions. 
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Intra-Model Comparison: Value Stream Analysis 

Value streams are measures that indicate the system value of technologies and 
better reflect the underlying decision framework for CEMs relative to commonly 
reported metrics such as the LCOE. These values allow for the inclusion of a 
holistic mix of plant values and costs. Alternative metrics also can be used 
that normalize the value streams into a value that is comparable to LCOE (see 
Table 3-2). 

Table 4-2 
Examples of electricity price metrics 

Metric Typical Units 

LCOE Cost/Energy [$/MWh] 

Net Value of Energy (NVOE) (Value-Cost)/Energy [$/MWh] 

Net Value of Capacity (NVOC) (Value-Cost)/Capacity [$/kW] 

Normalized Value (Value-Cost)/Value [%] 

Figure 4-1 provides an example of how a plant’s value streams can be understood. 
Plant costs include all outlays associated with constructing and operating 
resources (including costs to connect a plant to the grid). Next are the sources of 
value, which come from the value of the electricity generated by the plant and the 
value of its contributions toward the planning reserve margin. Operating reserves 
and ancillary services can be both a cost and a revenue source for a generator: 
They represent a revenue source for generators that can provide the services, 
whereas they represent a cost for VRE generators (based on the increase in 
reserves required to address forecast errors). The stacking of value streams and 
costs reflect the underlying mathematics of the optimization model; if, at 
equilibrium, the net value of a plant is greater than or equal to zero, then that 
plant will be selected as part of the model solution. 
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Figure 4-1 
Stylized example of plant value streams and costs decomposed by category grouping. 

Calculating value streams offers an important tool to explore a range of key 
questions. The mix of revenues that a technology receives quantifies the value 
that technology offers to the power system as represented by the model. 
Examining the value streams also helps to validate and understand model 
behavior by allowing for comparison against known uses and revenues for varying 
plant types. Finally, because value streams are representative of the optimization 
model at equilibrium, measuring value stream changes in response to policy 
sensitivities provides a deeper understanding of how that policy influences a 
technology’s competitiveness, in greater depth than capacity and generation 
results can provide by themselves. In addition to generating value streams for 
developed technologies, model outputs can also provide insights into value 
streams for technologies that were not included in the model solution (i.e., not 
deployed). Knowing how an unbuilt technology would have earned revenue is 
valuable for understanding how the model is assessing that technology. The 
calculated net negative value of a technology further provides insights into what 
level of cost reduction (or increase in revenue) would cause the model to start 
choosing to invest in that technology. 

To demonstrate the value of such an approach, we use ReEDS to perform a value 
streams analysis across three scenarios that mirror the intercomparison scenarios 
in Section 2: a Reference (or business-as-usual) scenario, a Low-Cost Nuclear 
scenario, and a Nuclear Carveout scenario (in which 50 GW of new nuclear 
capacity was required for investment through a constraint that is analogous to a 

 
Value stream analysis can 
illustrate model dynamics and 
technology-specific outputs 
across scenarios. 
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nuclear-only clean electricity standard [CES]). This analysis is designed to 
facilitate a comparison of how a technology’s sources of revenue—and net-
value—varies across a range of technology and policy assumptions, similar to 
those presented in Section 2 of this report. The outcomes of this value streams 
analysis provide insights for all generation and storage technologies, but the 
following presentation focuses on insights for nuclear power plants. 

Figure 4-2 presents the outcomes of our value streams analysis for existing plants 
in a given year (as opposed to new investments) under the Nuclear Carveout 
scenario; this scenario is unique in certain ways, but the results also highlight 
more consistent trends from across the explored scenarios. For example, it is 
apparent from this figure that the primary value streams for all technologies are 
rooted in energy services and the planning reserve margin (which determines 
capacity value). On the other hand, the relative importance of energy versus 
capacity value varies depending on the generation technology in question. 

 

Figure 4-2 
Value streams for key existing generation technologies (as opposed to new investments) in a 
Nuclear Carveout scenario performed by the ReEDS model. Black lines indicate the 
profitability of the technologies (i.e., revenues minus costs). NVOC is the net balance of a 
plant’s revenues and costs normalized by installed capacity. 
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Table 4-3 
National average revenue by category for key existing generation technologies in the ReEDS 
model’s Nuclear Carveout scenario 

Technology Year Energy Planning 
Reserves 

Other 

Gas-CC 2050 55% 45% 0% 

Gas-CT 2050 17% 83% 0% 

Nuclear 2050 74% 26% 0% 

Nuclear-SMR 2050 78% 22% 0% 

PV 2050 98% 0% 2% 

Wind 2050 94% 0% 6% 

For solar PV and wind technologies, energy accounts for most of their total value 
(yellow bars in Figure 4-2). While these plants can contribute to the planning 
reserve margin, their capacity value declines as they capture higher fractions of 
the generation mix. The opposite is true for gas combustion turbines, for which 
the vast majority of value is derived from contributing capacity towards the 
planning reserve margin. NGCC plants fall in between, with an even split 
between capacity and energy value. Nuclear power plants also see revenues from 
both energy and capacity services, although the majority of nuclear power plant 
revenue comes from energy services. Finally, it is important to note that other 
revenue sources—including operating reserves and state RPS policies—represent 
a small fraction of revenue by 2050. The low operating reserves revenue is driven 
in large part by the substantial deployment of energy storage in 2050 in these 
scenarios (Section 2), which both serve a large portion of operating reserve and 
depress operating reserve prices. 

Unique in this scenario is the impact of the Nuclear Carveout, which drives a 
measurable shift in the value streams. With the additional nuclear capacity above 
what would have been procured otherwise, the value of energy was reduced for all 
technologies by ~10%. The value of capacity for the planning reserve remained 
constant, due to a significant reduction in battery storage capacity. Finally, the 
carveout appears in the value stream stack as an additional revenue source, 
analogous to CES credit payments. For this level of carveout, the additional 
revenue was on the order of $3,000/kW. Put another way, the carveout value 
indicates how much nuclear development costs would need to be reduced to see 
new development in the absence of the carveout constraint. 

Examining value streams for new nuclear development in 2050 across the three 
explored scenarios reveals the technological competitiveness at different levels of 
deployment (Figure 4-3). In these scenarios, SMRs reach a lower cost for 
development compared to conventional nuclear. Under the Reference, costs fail 
to decline sufficiently to allow for new nuclear investment, which is why no value 
stream information is presented for this scenario. However, the ReEDS value 
stream results indicate that nuclear technology capital costs would need to decline 
by approximately $1,104/kW to achieve parity with their expected value (i.e., for 

 
Nuclear plants see revenues 
from both energy and capacity 
services, though energy is 
primary value stream. 
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new nuclear power plants to become part of the model solution). Under the 
Low-Cost Nuclear assumptions, approximately 24 GW of new nuclear capacity 
was deployed by 2050 (at a reduced cost of $2,822/kW). Together with the 
Carveout scenario results, the full suite of value analysis scenarios reveals both the 
range of cost assumptions under which new nuclear power plant deployment 
could be expected and a corresponding estimate for the degree of response from 
the model. 

 

Figure 4-3 
Value stream balance for nuclear SMR capacity built in ReEDS in 2050. 

The value streams provide a useful tool for breaking down the complex balance of 
decisions that a CEM is making. Using the carveout and alternate scenarios, we 
could identify the competitiveness of the technology across a range of 
development. These same techniques can be applied to estimate the response to 
alternate policy scenarios including how decarbonization improves the 
technological competitiveness. 

Intra-Model Comparison: Policy Design 

Given the importance of policy assumptions for nuclear deployment, this intra-
model comparison uses REGEN to illustrate how policy timing and eligible 
technologies interact within a CEM to affect capacity builds and system costs. 
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There are three scenario dimensions explored in this analysis: 

 Eligible technologies in a power sector net-zero emissions target: One 
scenario assumes a “Net-Zero” (NZ) emissions target, where all technologies 
are eligible and net CO2 emissions equal zero. This broad and technology-
neutral definition of zero implies that any emissions produced from 
operations are balanced by an equivalent amount of carbon removal. A 
second scenario looks at a “Carbon-Free” (CF) target, where the only eligible 
resources are renewables and nuclear. This is the definition used in the zero-
emissions scenarios in Section 2. 

 Timing of zero-emissions target: Scenarios vary whether the (net) zero 
emissions goal is reached in 2035 or 2050. 

 Costs of new nuclear: “Reference Costs” and “Low Costs” scenarios use the 
same harmonized assumptions as the model intercomparison in Section 2. 
Reference costs decline over time to approximately $5,000/kW by 2050 
(Figure 6-1). The low-cost scenario assumes a $2,000/kW capital cost 
beginning in 2035. 

For additional detail on net-zero scenarios and role of carbon removal, see 
Bistline and Blanford (2021) and Blanford, et al. (2021). 

For the scenarios with reference technology costs, the Carbon-Free scenarios 
entail rapid builds of energy storage and nuclear to balance large deployment of 
solar and wind (Figure 4-4). Nuclear represents a quarter of the generation share 
in the 2035 target case, and slightly less than half of this generation is from new 
nuclear. Delaying the zero-emissions target to 2050 lowers nuclear generation in 
both absolute and relative terms (13% generation share). The main reason is that, 
although nuclear costs are assumed to decline through 2050, relative declines for 
solar and batteries are assumed to be larger, hence a much larger role for these 
technologies. New nuclear capacity additions are 62 GW in the Carbon-Free by 
2035 scenario and 24 GW in the 2050 scenario. 

 
Nuclear is 25% of the 
generation mix for a 2035 
zero-emissions goal. This share 
drops to 13% if the target is 
delayed to 2050. 
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Figure 4-4 
Generation by technology in 2035 and 2050 across the zero-emissions policy design and 
technology sensitivities in REGEN. 

Note that total generation (inclusive of energy storage discharge) is higher under 
the Carbon-Free targets relative to Net-Zero ones due to the losses associated 
with deployment and utilization of energy storage, especially from the 
production, storage, and use of electrolytic hydrogen, which has low roundtrip 
efficiencies. Total load increases between 2035 and 2050 from end-use 
electrification. 

Adopting a Net-Zero target instead of a Carbon-Free one leads to the 
deployment of carbon removal technologies to enable natural gas to balance wind 
and solar variability. Negative emissions from bioenergy with CCS (BECCS) are 
roughly three times larger (in t-CO2/MWh terms) than the positive emissions 
intensity from NGCC units. Using gas-fired generation to balance renewables 
lowers generation and capacity from other firm resources, including nuclear.23 
New nuclear is not deployed in this Net-Zero policy, though existing nuclear still 
plays an important role. Wind and solar are just over half of the generation mix 
in the Net-Zero scenario, which is lower than the 68% in the Carbon-Free 
scenario. 

 
23 The finding that the availability of carbon removal (i.e., negative emissions) technology tends to 
displace nuclear is reflected in other studies in the literature (Bistline and Blanford, 2021; Daggash, 
et al., 2019). 
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Figure 4-5 
Cumulative capacity additions and retirements by technology across the zero-emissions 
policy design and technology sensitivities in REGEN. 

States in the eastern and southern U.S. are most impacted by zero-emissions 
target definitions since these regions have lower quality wind and solar resources. 
New nuclear and CCS-equipped gas are primarily deployed in the south. 

Lower nuclear costs alter projected roles for new nuclear under all policy 
scenarios (Figure 4-4). Nuclear generation shares range from 12–25% with 
reference nuclear costs to 34–52% with lower costs. Nuclear’s role is less sensitive 
to target definitions and timing when its capital costs are low, in part due to the 
significant cost reductions assumed in this scenario. Displaced generation with 
lower nuclear costs varies by scenario: Renewable generation is lower in all 
scenarios, hydrogen and storage are lower in the Carbon-Free scenario, and gas-
fired generation is lower in the Net-Zero scenario.24 

Policy timing and technology eligibility impact electric sector costs, as shown in 
the U.S. average generation prices in Figure 4-6.25 Expanding technology options 
decreases the cost of electric sector decarbonization, and prices in the Net-Zero 
scenario are 41% higher than the Reference in 2050 and 66% higher in the  
 
 
 

 
24 The four participating models have reporting horizons that end in 2050. Although models have 
different methods of treating so-called “end effects” (Section 7), capacity mixes across these 
scenarios have different implications for post-2050 system investments and operations. For 
instance, the shorter physical lifetimes of batteries, solar, and wind capacity imply more frequent 
asset replacements than mixes with longer-lived capacity. See the “Discounting and Financing” 
discussion in Section 7 for more information. 
25 Reported prices reflect generation and new bulk transmission costs (Bistline, 2021b). 
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Carbon-Free scenario. Accelerating the target to 2035 requires a faster 
introduction of new technologies and creates a higher electricity price spike than 
the 2050 scenario. 

 

Figure 4-6 
U.S. generation-weighted average electricity prices over time by scenario in REGEN. 

This analysis illustrates how policy targets, policy timeframes, and technology 
assumptions interact within a CEM to influence value streams for technologies 
such as nuclear and in turn help determine decarbonization planning and costs. 
Policy design (especially eligible technologies) have first-order impacts on nuclear 
deployment. Zero-emissions policies allowing carbon removal technologies 
(Net-Zero) lower deployment of nuclear and renewables relative to policies that 
do not allow negative emissions options (Carbon-Free). Policy-related value 
streams are important drivers of nuclear and other low-emitting technologies, but 
impacts depend on details about the policy’s stringency, timing, and technology 
eligibility. 

Recommendations for Future Modeling RD&D 

Based on the comparisons in this section and discussions from workshops, several 
areas are identified for future model RD&D efforts: 

 Understand future changes in value streams and demand for grid services: 
Potential changes in planning reserve margins and operating reserves should 
be studied in futures with higher renewables penetration, electrification, and 
deep decarbonization (EPRI, 2018). 

 Characterize a range of low-emitting technologies: Because nuclear technologies 
see much greater deployment in scenarios that require significant 
decarbonization, properly capturing the value of nuclear technologies requires 
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that other low- and zero-carbon technology options are adequately modeled. 
Not adequately representing the portfolio of candidate technologies and 
pathways that are being considered to meet such power sector and economy-
wide targets could incompletely characterize the competitiveness of nuclear 
relative to these other technologies. 

 Select appropriate levels of model resolution: Modeling zero- or very-low-
emitting energy systems might require additional temporal or spatial 
resolution to properly capture the value of the different generator types. 
Additional work is needed to understand the importance of model resolution 
on outcomes for these zero and low-carbon solutions. 

 Improve time-series data: Models often use a single year of historical 
meteorological data. Given that many low-carbon futures depend heavily 
on variable renewable technologies, multi-year variability in wind resources, 
solar resources, and load are particularly important (Diaz, et al., 2021). 
Improved understandings of the impact of multi-year variability (of load and 
renewables) can inform resource adequacy estimates and contributions of 
different resources. If infrequent but impactful wind lulls or cloudy periods 
are not captured in the model, then firm capacity resources such as nuclear 
could be undervalued. Similarly, capturing the extreme events that seem to 
be increasingly common can ensure that power sector solutions are more 
robust no matter the composition of the resulting generation fleet produced 
by the model. Future work to understand the importance of representing 
compensation for uncaptured attributes (e.g., inertia) would also be valuable. 

 Incorporate hybrid operations and sectoral integration: Pathways towards 
achieving a net-zero energy system in the United States typically involve 
growing interactions among electricity supply, energy supply, and energy 
demand (including electricity, direct fuel use, and heat). Hybrid energy 
systems—including those that comprise a nuclear power plant and 
electrolyzers—have been proposed as a candidate technology for flexibly 
contributing to the full spectrum of demands across the energy system 
(Arent, et al., 2021). Planned demonstration projects will help to evaluate 
the operational capabilities of such hybrid energy systems, but their ultimate 
competitiveness will depend on the incremental costs and benefits of their 
ability to contribute products and services across different parts of the U.S. 
energy sector. A better understanding of the future demand for, and value 
of, hydrogen is a key component of evaluating the incremental value of 
hybridization, particularly for models that represent interactions across 
different segments of the U.S. energy sector. 
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 Representation of Existing 
Nuclear 

Summary 

 Maintaining a large fraction of the existing nuclear fleet is a robust element 
of electric sector decarbonization pathways; however, retirement risks exist 
for some plants absent additional policies that support their continued 
operation, though the extent varies across models and scenarios.26 

 Representations of retirements for nuclear and other technologies differ by 
model. Projections of nuclear plant retirements vary by model and scenario, 
especially for scenarios with less stringent climate policy and low natural gas 
prices. 

 Nuclear FOM cost assumptions vary widely by plant, over time, and across 
different models. These cost assumptions are first-order drivers of model 
projections of nuclear retirements, as the intra-model comparisons in this 
section illustrate. 

 A best practice for representing existing nuclear plants is for models to 
include endogenous retirement decisions in most instances. Dispatchability 
and flexibility assumptions should reflect technical capabilities of plants. 
License renewals, state-level ZEC policies, and uprate assumptions can be 
important for regional assessments. 

 The section concludes with a list of modeling and analysis needs related to 
existing nuclear. 

  

 
26 Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was 
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector 
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced 
nuclear) were not included in these scenarios. 
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Overview of Considerations and Approaches 

The existing nuclear fleet in the United States consists of nearly 100 GW 
nameplate capacity. Existing nuclear currently represents about a fifth of 
electricity generation in the U.S. and half of all zero-emissions electricity. Studies 
generally indicate that least-cost decarbonization portfolios include maintaining a 
large fraction of this nuclear capacity and that mitigation costs would be higher if 
these plants retire during outlook horizons, though magnitudes vary by plant and 
scenario (Kim, Taiwo, and Dixon, 2021; Bistline and Blanford, 2020; Bistline, et 
al., 2018; Roth and Jaramillo, 2017). 

Table 5-1 summarizes each model’s characteristics most relevant to the 
representation of existing nuclear capacity. This section first reviews retirement 
dynamics and cost assumptions, then discusses dispatch and flexibility 
assumptions, and finally reviews the implementation of various polices that 
directly affect the existing nuclear fleet. 

 

 
Existing nuclear is about a fifth 
of U.S. generation and half of 
zero-emitting electricity, so their 
representation in models can 
impact outputs. 
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Table 5-1 
Comparison of the representation of existing nuclear across models 

Model Source(s) of Fixed 
O&M Costs 

Representation 
of ZEC Policies 

CES 
Eligibility 

Uprates Existing Nuclear 
Retirements 

Flexibility 
Assumptions 

Fuel Cost 
Assumptions 

IPM AEO2020 and 
Sargent & Lundy 
analysis, function of 
age 

States with ZEC 
policies cannot 
endogenously 
retire nuclear 

Policy-specific, 
able to model 
with or without 
credit 

Exogenous, 
based on AEO 

Endogenous, up to 
80 years 

Capacity factor based on 
AEO assumption 

AEO2020 

NEMS Updated in 
AEO2018 based on 
INL (2016) report 

ZEC policies 
included in NEMS 
for qualifying 
states 

Credit where 
specified in 
state legislation 

Exogenous 
uprates revised 
yearly based on 
announced and 
NRC requests 

Endogenous, up to 
80 years 

Existing nuclear has 
multiple dispatch options 
for spinning reserves and 
demand. Minimum output 
in a given slice is 50% 

Exogenous 
input 
assumption 

ReEDS EIA NEMS Plant 
Database; increases 
at 1.5%/yr 
beginning in 2020 

States with ZEC 
policies cannot 
endogenously 
retire nuclear; 
lifetime retirements 
only 

Eligible to 
contribute in 
CA, CO, MA, 
NM, NY, WA, 
VA 

Only included if 
in NEMS Plant 
database 

Endogenous, up to 
80 years 

Nuclear cannot provide 
operating reserves 

Exogenous 
input 
assumptions 
from AEO 

REGEN Electric Utility Cost 
Group (maintenance 
capital costs); ABB 
Energy Velocity (non-
maintenance costs) 

Represented as 
lower bound on 
eligible nuclear 
capacity in 
applicable model 
regions 

Eligible for 
state and 
federal CES 
policies; 
nuclear 
receives full 
credit 

Exogenous 
(based on 
announced 
uprates) 

Endogenous, up to 
80 years 

Existing nuclear can be 
dispatched down to 70% 
of nameplate capacity; 
no ramping constraints; 
output limited by monthly 
availability factors 

Exogenous 
input 
assumptions 
from AEO 
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Retirement Dynamics 

Model-driven retirements in all four models are based on the premise that 
existing capacity will generate electricity if that capacity is able to recover the 
costs on the market (or if the cost of generating electricity is less than the cost of 
purchasing).27 Those costs vary over time (e.g., periodic large capital 
expenditures), and each model evaluates cash flows over their respective time 
horizons, comparing the net present values of costs to potential payments. These 
retirement dynamics are similar for nuclear plants and other asset types, though 
the drivers of such retirements and policy impacts vary (Bistline, et al., 2018). 
While these models are based on assumptions of foresight, the existence of 
uncertainty introduces complexity into this evaluation for each unit. This 
uncertainty is likely a key driver of the notable amount of existing capacity 
observed to operate unprofitably in recent years. 

Economics have been an important factor in many of the nuclear plant closures 
in the U.S. to date. Energy revenues are a key value stream for nuclear plants (see 
Section 4). Declining wholesale electricity prices from low natural gas prices have 
historically been a primary driver of economic pressures for nuclear plants 
(Jenkins, 2018a), but future policy changes and VRE deployment can also alter 
pricing dynamics and the economic outlook for nuclear plants. Retiring (zero-
emitting) nuclear plants are generally replaced by fossil-fueled generation, which 
leads to increases in CO2 and criteria pollutants, as several regional studies in the 
U.S. have shown (ISO New England, 2017; EIA, 2016; Davis and Hausman, 
2016). Studies have illustrated how extending the lifetimes of nuclear plants can 
lower decarbonization costs (Kim, Taiwo, and Dixon, 2021; Bistline and 
Blanford, 2020; Roth and Jaramillo, 2017). 

Each model captures retirement dynamics differently: 

 IPM: Retirements of existing nuclear capacity are modeled endogenously in 
IPM—in each run year, the model compares the net present value of revenue 
from each model plant to the net present value of all future costs, and 
projects a retirement if the latter exceed the former. However, there are two 
key elements in IPM that affect the time path of those projections. The first 
is a constraint on near-term retirements, which prevents retirements in the 
first year of the model horizon beyond the trajectory of what has been 
observed recently (in the most recent version, total nuclear retirements are 
assumed not to exceed 4 GW in 2025, inclusive of planned retirements). 
Additionally, the model includes an uncertainty adjustment which decreases 
fixed operations and maintenance costs through 2030. This near-term 
adjustment reflects the potential impact of clean energy and/or carbon 
regulation optionality that nuclear units may consider while making 
retirement decisions. 

 
27 Models also incorporate announced retirements (e.g., for coal plants in many models) and 
exogenous retirement schedules based on asset age in some instances (e.g., existing gas-fired 
capacity in REGEN). 
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 NEMS: In the NEMS model, projected retirements are based on an 
economic evaluation in each year of the model looking at two separate 
factors—net revenues and reserve requirements. The model calculates net 
revenues in each year based on projected marginal energy prices as compared 
to going-forward costs and counts the number of years that each plant is 
projected to experience a negative net revenue. The model also determines 
whether the capacity from each plant is required to meet reserve constraints 
in a future year, including in that determination the cost of new capacity. 
The model retires an existing nuclear unit if the projected net revenue is 
negative for at least six years, and if the model is not using the capacity to 
meet a reserve or demand constraint in the future. Planned retirements 
reported to EIA through survey mechanisms (primarily near-term) are 
assumed to occur as-reported by plant owners; all other retirements are based 
on the economic evaluation described above. 

 ReEDS: The ReEDS model incorporates both exogenous and endogenous 
retirements. Lifetime assumptions can range from 50 to 80 years, based on 
scenario design, with a default lifetime of 80 years. The model also allows for 
endogenous retirements of capacity prior to the maximum lifetime assumed 
for each unit. The net present value of the projected revenue is compared to 
the net present value of going-forward costs, and the model retires existing 
nuclear capacity for which a percentage of the cost is able to be recovered. 
The scenarios supporting this paper assume a 50% cost recovery requirement 
for going-forward costs, though that value can be changed by the user. 

 REGEN: In REGEN, existing nuclear capacity is grouped together in a 
single representative block in each region. As in the other models, 
endogenous retirements are able to occur where the net present value of 
going-forward costs exceeds the projected revenues. Each regional block is 
dispatched together, and the model is able to retire a fraction of that block’s 
capacity across time periods. 

As discussed in Appendix A, retirement assumptions for some of the 
participating models changed over the course of this project. 

Fixed Operations and Maintenance (FOM) Costs 

FOM costs are key factors in projections of future operation, which makes it 
important to review the sources of these costs. These costs include all labor, 
materials, contracted services, general and administration (G&A), and 
maintenance capital costs. 
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As shown in Table 5-1, there are a range of FOM cost assumptions across the 
four models: 

 IPM: IPM adopts the NEMS assumption for all non-capital costs and 
applies an age-based equation to estimate capital costs associated with the 
investments required to operate existing nuclear plants beyond 40 years. 

 NEMS: The NEMS model updated its FOM cost assumptions for 
AEO2018 based on a 2016 INL report, which is based on a review of public 
and proprietary data (INL, 2016). The costs for each unit are a function of 
the number of units located at each facility, and for single-unit facilities, the 
size of that unit. G&A costs are an additional percentage adder. At 30 years, 
a capital cost related to plant aging is added to each unit. 

 ReEDS: ReEDS also starts with the NEMS assumptions based on the year 
2020, and increases that cost by $1.25/kW-yr (in 2017$) each year through 
2030 and by $1.81/kW-yr each year after 2030 (Sargent & Lundy, 2018). 

 REGEN: REGEN adopts FOM cost assumptions from two different 
sources. Capital costs are based on data from the Electric Utility Cost Group, 
and non-maintenance FOM are based on reported FERC Form 1 data. 

Figure 5-1 shows the range of cost assumptions employed by each model. Cost 
assumptions vary by plant and over time. These costs vary widely across plants 
within each model, as well as across different models. Within each model, there 
is a range of cost assumptions that can span up to roughly $200/kW-yr. Across 
models, the difference between the highest costs can reach roughly $150/kW-yr. 
Note that the 2020 average FOM across the U.S. fleet was about $190/kW 
(NEI, 2021). Costs have decreased steadily by a total of 20% across the fleet 
between 2014 and 2020, which is consistent with the industry’s “Delivering the 
Nuclear Promise” initiative (NEI, 2021). 

 
Nuclear FOM cost assumptions 
vary widely by plant, over time, 
and across different models. 
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Figure 5-1 
Nuclear fixed operations and maintenance (FOM) costs in 2020$ over time across models. 
FOM costs include all labor, materials and contracted services, general and administration, 
and maintenance capital costs. Points represent individual nuclear unit costs. The line shows 
2020 average FOM across the U.S. fleet from NEI (2021). 

Both IPM and NEMS employ different age-based algorithms to represent the 
capital expenditures for continued operation into first and second relicensing 
periods. In IPM, capital costs are assumed to increase until age 50, at which 
point they remain flat. In NEMS, an annual adder is applied beginning at age 
30. In the ReEDS model, an annual 1.5% escalation is applied. REGEN assumes 
static costs across the model horizon. 

The primary reason for the differences in cost assumption across the models is 
data availability. A comprehensive public data source for current FOM costs does 
not exist. Additionally, limited data are available on the magnitude and timing of 
unit-level capital investments over time. Each of the models has a different 
approach to estimate future costs based on the limited available data. 

The intra-model comparison later in this section illustrates how FOM cost 
assumptions can impact existing nuclear retirement projections. However, 
retirement projections are due to a range of model-specific factors, as illustrated 
in Section 2, where REGEN has the second highest nuclear retirements in the 
reference scenario with native cost assumptions (Figure 2-3) despite having the 
lowest FOM costs (Figure 5-1). 

NEI 2020

$0

$50

$100

$150

$200

$250

$300

$350

$400

2010 2020 2030 2040 2050 2060

N
uc

le
ar

 F
O

M
 C

os
t (

$/
kW

-y
r)

IPM NEMS ReEDS REGEN

12340898



 

 5-8  

Dispatchability and Flexibility 

Assumptions about the dispatchability and flexibility of existing nuclear plants 
can impact projections for their operations and retirements. Existing boiling 
water reactor (BWR) and pressurized water reactor (PWR) plants in the U.S. can 
lower output down to 70% of their nameplate capacity within an hour (Ziebell, et 
al., 2021). There are no licensing requirements that would limit the flexibility of 
the existing nuclear fleet, though economic and technical considerations may 
influence such operating modes. In contrast, many existing energy models 
represent nuclear plants as inflexible “must-run” capacity (Jenkins, et al., 2018b). 

The projected dispatch of existing nuclear capacity and assumptions about its 
flexibility vary across the four models: 

 IPM: In IPM, projected dispatch is flexible in each time segment up to a 
maximum assumed availability for each unit. That availability is a function of 
an age-based capacity factor algorithm (where capacity factors increase for 
the first 30 years and then remain flat) and seasonal planned outage 
assumptions (which are assumed to occur in the winter and shoulder 
segments). Given the low variable cost of existing nuclear, the model 
typically dispatches these units up to the availability. 

 NEMS: NEMS assigns multiple operating modes for each unit by season to 
allow for projected contribution to load or spinning reserves. The maximum 
capacity factor is a function of age (where capacity factors increase for the 
first 30 years and then remain flat), and each unit can operate down to a 50% 
capacity factor if chosen to maximize the spinning reserve contribution. 

 ReEDS: In ReEDS, existing nuclear plants are assigned a maximum capacity 
factor of 91.2%, and the model typically operates these units at that 
maximum value. However, ReEDS enables seasonal decommitment of 
nuclear capacity in scenarios where the value of doing so exceeds the variable 
cost, subject to a minimum annual capacity factor of 40%. ReEDS also allows 
nuclear plants to turn down to 70% of their rated capacity if it is optimal to 
do so. 

 REGEN: In REGEN, the maximum level of generation at each existing 
nuclear unit is a function of monthly availability factors, which account for 
seasonal variation in outages and are based on historical data. Unlike IPM 
and NEMS, these availability factors are static over time, though hourly 
capacity factors are endogenous and can vary over time. Minimum generation 
is limited to 70% of nameplate capacity. 

Section 6 provides an intra-model comparison that illustrates how flexibility and 
dispatchability assumptions can impact model outputs related to new and existing 
nuclear. 
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Other Considerations 

As shown in Table 5-1, fuel cost assumptions across all four models are based on 
the values adopted in EIA’s AEO. Similarly, uprates are exogenously determined 
across each of the models. The NEMS team reviews announced updates and 
requests submitted to the U.S. Nuclear Regulatory Commission (NRC), and the 
other models either rely on this review or perform similar reviews of the available 
information. The NEMS model assumes that 2.1 GW of uprates for existing 
nuclear plants occur through 2050. This assumption is implemented regionally, 
and informed by EIA analysis of the remaining uprate potential by reactor, based 
on the reactor design and previously implemented uprates. 

The final points of comparison between the four models relate to various policies 
that directly affect the existing nuclear fleet. IPM, NEMS, ReEDS, and 
REGEN all enable endogenous nuclear retirements and lifetimes up to 80 years 
(recall, however, that each model has a different approach for estimating future 
FOM costs). All four models represent ZEC programs by preventing 
endogenous retirements of existing nuclear capacity in states where these 
programs are in effect. In NEMS, the value of the ZEC is calculated and passed 
through to retail prices (subject to any applicable cap). Similarly, in all four 
models the existing nuclear fleet’s zero-emitting generation is able to contribute 
toward CES programs. 

Intra-Model Comparison: FOM Cost Assumptions and Nuclear 
Retirements 

FOM cost assumptions are key drivers in future projections of existing nuclear 
capacity. As shown in Figure 5-1, unit-level FOM assumptions vary widely 
across the participating models. The differences between the native IPM and 
REGEN assumption is notable: In 2030, unit-level differences can be up to 
$160/kW-yr (in 2020$). 

To assess the sensitivity of the modeling results to FOM assumptions, we 
evaluate the impacts of applying two sets of FOM costs using IPM, holding all 
else constant and assuming a “current policies” reference scenario. The first 
scenario assumes the native IPM FOM cost assumptions. The second scenario 
assumes REGEN assumptions, which are generally much lower. The near-term 
retirement constraints and uncertainty adjustments, summarized above, were 
removed from IPM for these scenarios. 

The impact on projected retirements is significant (Figure 5-2): IPM projects a 
46 GW decrease in retirements by 2050 as the result of applying the lower FOM 
cost assumptions from REGEN (out of an existing fleet of approximately 
90 GW). The results are similar in the near- and mid-term, where applying the 
lower costs increased operable nuclear capacity by roughly 40 GW. 

 
Nuclear FOM cost assumptions 
are first-order drivers of model 
projections of nuclear plant 
retirements. 
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Unsurprisingly, these notable changes in projected nuclear retirements have large 
impacts on related model projections. For example, the increase in nuclear 
generation resulting from the lower nuclear FOM cost assumptions leads to 
significant decreases in fossil generation (about 20% and 5% decrease in coal and 
gas, respectively, in 2030), as well as decreases in new renewable construction. 
Overall, decreases in nuclear retirements result in lower CO2, SO2, and NOX 
emissions. 

 

Figure 5-2 
Projected changes in operable capacity resulting from two different sets of FOM assumptions 
in IPM. 
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Recommendations for Future Modeling RD&D 

Given its size, implications for dispatch, and potential to affect emissions, 
accurately representing the existing nuclear fleet is key for reliable projections of 
power sector investments and operations. As we see above, changes to a single 
input assumption can have large impacts on power sector projections. The 
following three areas are of particular importance for future modeling research 
and development regarding representation of the existing nuclear fleet in capacity 
expansion modeling: 

 Improve data and methods for estimating retirements: Retirements represent a 
significant driver for new capacity needs, but these dynamics are challenging 
to represent in models. Understanding drivers of retirements across models 
would be valuable, especially accounting for uncertainty (e.g., policy, FOM 
and future capital costs) and foresight (as discussed in Section 7). Option 
theory combined with policy uncertainty may suggest postponing nuclear 
plant retirements, especially since such decisions are essentially irreversible. 
However, most models are deterministic and do not explicitly account for 
such uncertainty.28 

 Provide public data for nuclear costs: Given the notable impact that different 
FOM cost assumptions can have on the modeling, it is important to reflect 
those costs as accurately as possible. To that end, public data for current 
FOM costs by plant and guidance on projected changes (both the magnitude 
and timing) would be useful for modeling teams. Such cost data would be 
valuable for understanding projections for nuclear generation and estimates 
for other resources. In addition to input assumptions, it is important to 
compare model algorithms and heuristics for power plant retirement, cost, 
and operational decisions against actual data and to update these model 
features as appropriate. 

 Understand possible nuclear plant license renewals to 80 years and beyond: It is 
important to consider the possibility of license renewals beyond 80 years, 
especially as models begin to expand projections beyond 2050. 

 
28 It is important to note, however, that IPM includes an FOM adjustment through 2030 that 
reflects the potential impact of clean energy and/or carbon regulation optionality that nuclear units 
may consider while making retirement decisions. 
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 Representation of New Nuclear 
Summary 

 New nuclear deployment varies considerably based on scenario definitions—
the most impactful of which are future cost trajectories and policy 
assumptions. Default model input assumptions and structures have more 
limited impacts on new nuclear deployment. 

 As with all resources, it is important for models to capture different nuclear 
technologies and their anticipated characteristics. The scope of many models, 
including the four participating ones in this study, mean that cost 
assumptions are key drivers of deployment. Outputs can be highly sensitive 
to inputs about the cost and performance assumptions for different nuclear 
reactor technologies and to assumptions about the costs of other resources. 
However, there is considerable uncertainty about the projected costs of new 
nuclear designs and appropriate methods for capturing technological change. 

 Model representations of changes in technological performance and costs are 
critical determinants of model outputs, as the intra-model comparison in this 
section illustrates. Technological change can either be exogenous (i.e., based 
on pre-defined input assumptions about changes over time) or endogenous 
(i.e., based on model-driven changes in deployment given input assumptions 
about learning rates). Endogenous technical change raises several challenging 
conceptual and practical considerations, including attribution, parameter 
selection, spillovers, and computation. The appropriateness of different 
approaches to representing technological change varies by model and context. 

 Nuclear power is a high-capital-cost but low-variable-cost resource, which 
makes assumptions about project finance and discounting critical for 
evaluating its economic competitiveness. 

 The section concludes with a list of modeling and analysis needs related to 
new nuclear. 
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Overview of Considerations and Approaches 

The advanced29 nuclear reactor technology landscape has evolved over the last 
several years in the U.S. and globally, with plans for a range of demonstration 
projects and commercial construction over the next decade. These designs offer 
new features, attributes, capabilities, and deployment models that differ from 
those of the operating fleet and mature commercial offerings (Sowder, 2021; 
Marciulescu, et al., 2019). With many drivers of decarbonization at federal and 
subnational levels, deployment of zero-emitting technologies like new nuclear 
may play important roles, so long-term energy system models should reflect 
salient features of these new nuclear technologies. 

 
29 Advanced nuclear is used here to refer to reactor concepts beyond Generation III/III+ 
technologies, including non-light-water designs, light-water SMRs, and microreactors. 
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Table 6-1 
Comparison of the representation of new nuclear across models 

Model New Nuclear 
Technology 

Options 

Cost Assumptions 
and Source(s) 

Flexibility 
Assumptions 

Financing 
Assumptions 

Cooling 
Technologies 

Deployment 
Constraints 

Fuel Cost 
Assumptions 

IPM Light Water Reactor 
(based on 
AEO2020 
assumptions) 

AEO2020; exogenous 
technical change 

Dispatchable up 
to 90% capacity 
factor 

Approximately 8% 
capital charge rate, 
40-year book life 

N/A 6-year lead time Based on EIA’s 
AEO 

NEMS Advanced Nuclear 
and Small Modular 
Reactor 
disaggregation are 
represented as 
nuclear technologies 
in NEMS 

AEO2020 based on 
Sargent & Lundy 
report; endogenous 
technical change 

For capacity 
planning, new 
nuclear is 
assumed to 
dispatch at max 
generation, but 
once built is 
allowed to vary 

Same financing for 
all technologies; 
30-year economic 
life; cost of capital 
from macro model 
projections, 
AEO2021 discount 
rate ~6% nominal 

N/A SMR first online 
date is 2028; no 
nuclear builds 
allowed in NYC 
or California 

Exogenous 
input 
assumption 
(same value 
for existing 
and new) 

ReEDS AP1000 and SMR AEO2020 for new 
nuclear (based on 
brownfield AP1000 
development); 
exogenous technical 
change 

Linear 
optimization 
allows complete 
dispatchability 

20-year economic 
life, 6-year 
construction, 15-
year MACRS 
depreciation 
schedule 

Once through, 
recirculating, and 
cooling pond 
technologies (dry 
cooling is not 
allowed) 

New nuclear 
generation 
cannot be 
available for 
generation 
before 2028 

Based on EIA’s 
AEO 

REGEN Gen III+ (based on 
AP1000); generic 
advanced nuclear 
technology 
(parametrized 
based on SMR) 

EPRI “Generation 
Options” report; 
regional variation in 
labor costs; exogenous 
technical change 

Fully dispatchable; 
no ramping 
constraints; output 
limited by monthly 
availability factors 

Technology-specific 
physical/economic 
lifetimes; discount 
rate of 7% typically 
assumed 

Water withdrawal 
and consumption 
calculated ex post; 
REGEN does not 
endogenously 
determine cooling 
for existing/new 
capacity 

Constraints on 
“brownfield” 
sites; advanced 
nuclear not 
available until 
2030; state-
based moratoria 

Based on EIA’s 
AEO 

12340898



 

 6-4  

Table 6-1 compares the representation of new nuclear across the four 
participating models. 

Technological Availability, Cost, and Performance Assumptions 

A fundamental consideration for modeling new nuclear is the choice set of 
available technologies and their parameterizations. Long-term system models 
incorporate the operations of existing nuclear plants (Section 5) as well as new 
investments over time, including Generation III/III+ designs (e.g., Westinghouse 
AP1000), small modular reactors (SMRs), and Generation IV designs, which are 
often distinguished by their primary system coolant (e.g., liquid metal, molten 
salt, gas-cooled). As shown in Table 6-1, models generally capture the ability to 
invest in AP1000 designs and SMRs.30 

Each technology includes associated parameters related to cost (e.g., capital costs, 
FOM costs) and performance (e.g., fuel use, flexibility).31 Outputs can be highly 
sensitive to inputs about the cost and performance assumptions for nuclear and 
other system resources. 

Capital cost projections for new nuclear and other generation options over time 
are shown in Figure 6-1. Note that ReEDS assumptions are used for the 
harmonized cost scenarios in Section 2. Sources for cost projections of new 
nuclear over time vary by organization. There is considerable uncertainty about 
the projected costs of new nuclear designs over time, which reflects questions 
about initial all-in costs for emerging technologies, extent of learning and cost 
reductions over time and with greater deployment, country- and region-specific 
factors,32 indirect costs,33 and impacts of policy support. It is important not only 
to specify reference costs over time but also reasonable low- and high-cost 
sensitivities for additional scenario analysis. 

 
30 Some models have generic characterizations of new nuclear options with unspecified reactor 
types. Differentiating could have implications for cost and the fuel cycle. 
31 Note that ReEDS explicitly represents cooling technologies for thermal generating assets. Water 
use is constrained using technology-specific withdrawal and consumption rates alongside water 
availability and cost data. 
32 Historical construction costs for new nuclear have varied substantially by country (Lovering, et 
al., 2016), though past performance is not necessarily indicative of potential future costs. 
33 The rise in U.S. nuclear plant construction costs in recent decades have largely been due to 
“indirect” expenses, primarily soft costs (Eash-Gates, et al., 2020). 

 
Model outputs can be highly 
sensitive to input assumptions 
about the cost and 
performance for nuclear and 
other system resources. 
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Figure 6-1 
Comparison of native capital cost assumptions by technology and model over time. Note that 
the ReEDS costs are used for the harmonized cost sensitivities in Section 2. 

Technological Change 

Model representations of changes in technological performance and costs are 
critical determinants of model outputs. Technological change can either be 
exogenous (i.e., based on input assumptions about changes over time) or 
endogenous (i.e., based on model-driven changes related to deployment and 
other factors).34 Although the most widespread treatment of technological 
change in energy models is to consider it exogenously, endogenous technological 
learning has also been widespread in the energy systems and climate policy 
modeling literatures (Gillingham, Newell, and Pizer, 2008). 

 
34 For the models in this comparison, IPM, ReEDS, and REGEN assume exogenous technological 
change, while NEMS often assumes endogenous technological change, but can be run with 
exogenous cost trajectories. 
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There are several key conceptual and practical considerations raised by 
endogenous technological learning: 

 Attribution: Traditional one-factor learning curves assume that changes in 
cost are solely a function of cumulative experience. However, technological 
change is a complex process, and the empirical literature on historical 
determinants of technological change suggests that a broader range of factors 
(e.g., economies-of-scale, learning-by-doing, RD&D, forgetting effects,35 
materials costs) contributes to these changes (Grubb, et al., 2021; Kavlak, 
McNerney, and Trancik, 2018; Gillingham, Newell, and Pizer, 2008; 
Nemet, 2006). 

 Parametrization: Although there is extensive literature documenting 
historical learning rates (Grubb, et al., 2021; EPRI, 2020b; Isoard and Soria, 
2001), selecting forward-looking parameters across different technologies is 
challenging for prospective modeling.36 This difficulty is especially prominent 
for nascent technologies, where there is no empirical basis for parametrizing 
technological relationships, but also can present problems for existing 
technologies, as learning rates may change across different stages of 
deployment. Cost estimates can be highly sensitive to the choice of learning 
rates and other parameters, which can bias optimization model outputs 
(Nordhaus, 2014). 

 Spillovers: Spillover effects across countries, firms, and technologies may be 
important for technological change in practice, but these dynamics are often 
simplified in prospective models (Grubb, et al., 2021). 

 Computation: Endogenous technical learning leads to several computational 
challenges, including increasing the size and solve time of the optimization 
problem, creating path dependencies (which can lead to many distinct local 
optima), and adding nonlinearities to the problem formulation (Gritsevskyi 
and Nakićenovi, 2000). 

The appropriateness of different approaches to representing technological change 
varies by model and context, as exogenous technological change may be more 
appropriate in settings while endogenous is preferred in others.37 A range of 
studies examines strengths, limitations, and policy implications of different 
approaches to modeling technological change (Grubb, et al., 2021; Nordhaus, 
2014; Gillingham, Newell, and Pizer, 2008). In all cases, emissions policies and 
technical change interact with one another (Acemoglu, et al., 2012). 

 
35 Depreciation of the knowledge stock and potential cost increases when deployments and RD&D 
decline over time. 
36 This is a pervasive challenge for multi-decadal models not only for technological costs but also 
for assumptions about fuel costs, demand, policies, and many other areas. 
37 It is unclear ex ante whether adopting exogenous technological change vis-à-vis endogenous 
change impacts the deployment of nuclear energy, as a range of context-specific considerations 
likely influence how model representations of technical change interact with other model decisions 
and outputs. 

 
Endogenous technical change 
raises practical and conceptual 
issues, including attribution, 
parameter selection, spillovers, 
computation. 

 
Different approaches to 
modeling technological change 
are appropriate in different 
contexts. 
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Technological change is important for considering new nuclear, due both to the 
impact of cost assumptions on model outputs and to the expectation that costs of 
new nuclear will fall as the technology moves down the learning curve. Factory-
fabrication of modular technologies can reduce costs over successive builds, and 
several recent studies (Sweerts, Detz, and van der Zwaan, 2020; Wilson, et al., 
2020) indicate higher learning with smaller units (i.e., learning rates depend 
more on size than on technology). Newer nuclear plants such as SMRs are 
designed to be standardized and mass-produced in factories rather than being 
built onsite, which has the potential to lower costs. First-of-a-kind technology 
additions may be characterized by higher costs, but at moderate learning rates, 
costs may come down considerably, especially for SMRs where the cost trajectory 
may be more dependent on learning rate assumptions than on first-of-a-kind 
costs (Lovering, 2020). 

Refer to the intra-model comparison in the subsequent section for an illustration 
of how technological change assumptions can impact the deployment of new 
nuclear. 

Discounting and Financing 

Nuclear power—like renewables, transmission, and energy storage—is a high-
capital-cost but low-variable-cost resource, which means that assumptions about 
project finance and time preference (i.e., comparing current costs and revenues 
vis-à-vis future ones) are important for evaluating its economic competitiveness. 
The potential for longer asset lifetimes also makes discounting and financing 
assumptions central to assessing the competitiveness of new and existing nuclear 
plants. Nuclear and all other generating technologies entail intertemporal 
tradeoffs between upfront capital costs and ongoing operating costs. 

There are many considerations at play in the selection of parameters and model 
representations, which are discussed in detail in Section 7 (including an intra-
model comparison to illustrate how these parameters can materially impact 
nuclear-related model outputs). Differences in discounting and financing vary 
across models (Figure 7-2). 

Deployment Barriers 

As potential scenarios are considered with significant and sometimes rapid 
deployment of new nuclear, it is important to understand potential challenges 
that might arise and could dampen the pace or extent of nuclear deployment. 
Issues that could arise during a rapid nuclear build-out in the U.S. include: 

 Limited supply chain, including labor and parts, for developing many new 
nuclear projects simultaneously; 

 Fuel processing and supply capabilities for new reactors; 

 
Nuclear is a high-capital-cost 
but low-variable-cost resource, 
which means that financing and 
discounting are key 
assumptions for assessing its 
competitiveness. 
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 State-level restrictions38 that might limit the siting options for new nuclear 
technologies; 

 Public acceptance of nuclear technologies, especially as they could be 
deployed to locations where nuclear plants have not existed in the past; 

 Securing sufficient financing to support the development of many plants 
simultaneously; 

 Insufficient means for dealing with the waste produced by nuclear plants; and 

 Availability and regulatory approval of new nuclear designs in the timeframe 
for the deployments envisioned by the models. 

Most of these potential barriers are not explicitly captured in the four 
participating models with the exception of state-level restrictions. Integrated 
assessment models can impose ad hoc constraints on deployment to capture 
“reactor safety and cost, uranium availability, nuclear waste disposal, 
proliferation, public acceptance, and others” (Kim, et al., 2014). 

Intra-Model Comparison: Technological Change 

Given the importance of investment cost assumptions over time for nuclear 
deployment, an intra-model comparison is conducted in NEMS to compare 
impacts of different representations of technological change. In NEMS, the 
EMM solves sequentially and can provide annual feedback from other modules 
during the model solution, as well as use one year’s solution to update decisions 
in future years. In the typical model process, EIA assumes that new power plant 
costs change over time dynamically based on several factors, although it can also 
take fixed cost paths as inputs. The dynamic factors include a commodity cost 
index39 that is calculated based on macroeconomic projections for metals and 
metal products, a technological optimism factor,40 and a learning factor. 

Of the four models in this study, NEMS is the only one that represents 
endogenous technological change (Table 6-1). NEMS models endogenous 
learning through a log-linear function that projects costs to fall at a fixed 
percentage for every doubling of capacity. For the newest technologies, the 
learning rate changes over time, with three distinct steps in the calculation. 
Learning is implemented at a component level for many technologies to allow 
sharing of learning between technologies, and to reflect that different 

 
38 Though states that have previously restricted new nuclear builds have recently passed legislation 
to reverse such bans: https://www.ncsl.org/research/environment-and-natural-resources/states-
restrictions-on-new-nuclear-power-facility.aspx 
39 The commodity cost index was added to NEMS to account for cost escalation for critical 
commodity materials and labor in the power sector such as was seen in the mid 2000s and appears 
to be occurring in the early 2020’s. 
40 Technological optimism reflects the tendency to underestimate costs for new technologies. EIA 
currently applies this factor to a few technologies which are considered complex designs or in early 
stages of development. The SMR design assumes that initial costs will be 10% above the base cost 
estimate due to this technological optimism factor. This adjustment declines linearly over the first 
four builds of the new design. 
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components are in different stages of development. In general, standardized 
learning rates of 20% on the revolutionary step, 10% on the evolutionary step and 
1% on the conventional step are used. However, for both nuclear SMRs and 
AP1000, aggregated learning rates are used to reflect a mix of experience with 
the design without explicitly breaking down the components. For both nuclear 
technologies, cost declines of 5% are assumed for the first three doublings of 
capacity, cost declines of 3% occur for the next five doublings, and cost declines 
of 1% occur for any future doublings (Figure 6-2). Builds of AP1000 and SMR 
do not currently contribute to the learning rate of the other design. 

 

Figure 6-2 
Learning factor as a function of cumulative system capacity. 

Costs declines are most rapid for early builds, as experience is gained in 
developing a new technology (or component), which slows as more capacity is 
built. EIA also assumes a minimum level of learning to reflect ongoing research 
and development that may affect future costs even absent new builds, which 
results in an exogenous, time-dependent component to the learning function as 
well as the capacity-driven portion. 

To observe the impact of the learning algorithm as applied to a nuclear SMR, 
EIA developed sensitivities with a carbon fee on power sector emissions. An 
initial cost for the nuclear technology is chosen that results in new builds 
(roughly $5,400/kW initially), so that the learning algorithm can be observed. As 
an alternative to EIA’s learning algorithm, a separate case is run with a fixed cost 
path, declining linearly by roughly 32% by 2050. In both cases, a $15 per ton 
carbon fee is applied in 2030, rising at 5% per year to reach $40 per ton in 2050, 
to further stimulate demand for low-carbon generation. These assumptions are 
for illustrative purposes only and do not necessarily reflect current technology 
assessments or policy expectations of EIA or other modelers. 
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The EMM projects new nuclear builds to occur starting after 2035, as shown in 
Figure 6-3. In both cases, nuclear costs follow similar trajectories through 2035, 
dominated by changes in the commodity price index and scheduled cost 
reductions. Once builds begin, the case with endogenous learning experiences 
greater cost declines (as the first step of the learning curve results in relatively 
large drops in cost for the initial builds), which then leads to higher future builds 
of new capacity as the cost becomes even more competitive (Figure 6-3). In the 
fixed cost path, the builds occur more slowly, and the rate does not significantly 
change over time as the builds had no impact on the cost trajectory. 

 

Figure 6-3 
Cumulative capacity additions and overnight costs under two carbon fee scenarios and with 
fixed costs versus endogenous learning in NEMS. 

An additional pair of scenarios is run with higher carbon fees, starting at $50 per 
ton in 2030 and rising at 5% per year, reaching $133 per ton in 2050. In these 
cases, the new nuclear technology is competitive earlier (by 2030), and additional 
builds are seen relative to the $15 fee case. The endogenous learning case 
responds with an earlier drop in cost and with a larger drop in costs as a result of 
higher builds. Learning leads to higher additions of new nuclear (124 GW versus 
78 GW with a fixed cost path). When using endogenous learning, the costs in 
2050 are 7% lower in the $50 fee case compared to the $15 case as a result of 
additional capacity investments (Figure 6-3, right panel). Costs in 2050 are 
between 17% and 23% lower than the fixed cost path, and builds are 57 and 66 
GW higher. As a result of the higher nuclear capacity, the cases with endogenous 
learning have fewer natural gas-fired and renewable capacity additions and 
slightly lower electricity prices. 

In the scenarios analyzed, the inclusion of endogenous learning cost reductions 
has a greater impact on deployment of SMR technology than the carbon fee 
level. There is an additional 20 GW of nuclear capacity built in the $15 fee case 
with endogenous learning compared to the $50 fee case with fixed costs, 
indicating the decline in the cost of the technology is a larger driver of new builds 
than the increased level of carbon fee. 

 
Endogenous technical learning 
can lead to greater market 
penetration after the first few 
builds as costs decline more 
rapidly. 
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These intra-model comparisons illustrate how representations of technological 
learning can impact long-term expansion model results, especially for new or less 
commercially mature technologies. As described in the earlier subsection on 
“Technological Change,” implementing endogenous learning requires careful 
review of the current status of different technologies to determine where each is 
on the current learning curve and what the appropriate parameters should be. But 
the ability to have endogenous feedback across scenarios can help identify 
potential interactions that result in a technology breakthrough. 

Intra-Model Comparison: Flexibility 

CEMs often include a representation of operating reserves and ancillary services, 
which can be provided by flexible and dispatchable resources. The goal of this 
intra-model comparison is to evaluate how impactful the nuclear flexibility 
definitions and access to operating reserves and ancillary service revenues in a 
model framework are to projected nuclear power plant retirement and investment 
decisions. 

Using the ReEDS model, we explore scenarios with varying levels of flexibility 
for both conventional and advanced (SMR) nuclear technologies (Table 6-2). 
Under our “low flexibility” assumptions, conventional nuclear power plants are 
assumed to be inflexible (such that they could not provide operating reserves or 
ancillary services), and we adopt relatively conservative flexibility assumptions for 
SMRs with minimum loads of 70% (Table 6-2). Under our “high flexibility” 
assumptions, conventional nuclear power plants are allowed to operate flexibly 
and, in turn, provide operating reserves. For SMRs, we adopt “high flexibility” 
assumptions based on operating characteristics for a NuScale SMR. 

Table 6-2 
Flexibility parameterization for conventional and advanced (SMR) nuclear technologies 
under our low-flexibility and high-sensitivity assumptions 

Characteristic Conventional Nuclear SMR 

Low Flex High Flex Low Flex High Flex 

Minimum Load 100% 70% 70% 40% 

Minimum Load for Op. 
Characteristics 

100% 70% 70% 20% 

Ramp Rate (per minute) 0% 0.32% 0.32% 0.67% 

Regulation Reserve Cost 
($/MWh) 

- $13.71 $13.71 $13.71 

Flexible Reserve Cost 
($/MWh) 

- $0 $0 $0 

Spinning Reserve Cost 
($/MWh) 

- $0 $0 $0 
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These two different levels of flexibility are then layered with two policy scenario 
definitions: one with current policies (only) and the other with a hypothetical 
power sector carbon policy that forces a linear reduction towards a 100% 
decarbonized electricity supply in 2050 (“100% by 2050”). We further explore 
these scenario combinations with low-cost assumptions for new SMR capacity. 

Scenario outcomes indicate that modifying flexibility assumptions has no impact 
on installed nuclear capacity under either the Current Policies or 100% by 2050 
policy. In particular, the ReEDS model does not retire any existing nuclear 
capacity (beyond announced retirements) in any of the scenarios explored for this 
intra-model comparison; in addition, the magnitude of new SMR capacity is 
insensitive to the assumed level of flexibility (although it did vary based on policy 
and technology cost assumptions). In other words, the flexibility assumptions on 
their own are not found to be a principal determinant in the economics of 
existing or new nuclear capacity on the bulk power system. 

Additional insights can be gained from the reduced-form dispatch results from 
ReEDS, which take the form of total generation (or capacity) factor by 
representative time slice. When examining these results for new and existing 
nuclear power plants, the only visible changes occur in the 100% by 2050 
scenarios (Figure 6-4). Under our “high flexibility” assumptions, the model shows 
an increase in generation from nuclear power plants during the Spring, which is a 
period of significant VRE curtailment. In the model, an inflexible nuclear plant 
must operate at a lower seasonal capacity factor, because it cannot vary output to 
balance (or avoid the curtailment of) VRE generation. By contrast, our high 
flexibility assumptions allow the nuclear power plants to operate more flexibly, 
resulting in a greater degree of load following and the ability to increase total 
generation in that representative season. 

 
Flexibility assumptions about 
existing and new nuclear are 
smaller determinants of the 
economics of these resources 
relative to other factors. 
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Figure 6-4 
ReEDS Spring season dispatch of existing and new nuclear capacity across the four 
scenarios explored for this model intra-comparison. 

Finally, the operating reserves results from ReEDS indicate that modifying 
nuclear flexibility assumptions has a modest effect on operating reserve prices 
(Figure 6-5). Providing energy and operating reserves are mutually exclusive 
decisions within the ReEDS model, and for nuclear power plants, opting to 
provide energy typically leads to the greatest system cost (and revenue) benefits. 

 

Figure 6-5 
ReEDS model outputs for operating reserve prices across a subset of the intra-model 
comparisons for nuclear power plant flexibility. 
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Intra-Model Comparison: Deployment Barriers 

EIA includes short-term supply cost adjustment factors for the installation of 
new electricity generating technologies in the capacity planning module of 
NEMS, which is unique among the four participating models. The factors reflect 
the expectation that rapid expansions in the supply of installations using new 
technologies may induce shortages of critical manufacturing and project 
development resources as discussed earlier. Shortages could reflect manufacturing 
bottlenecks; delays in regulation, licensing, and public approval; and resource 
constraints resulting from shortages of trained construction and operations 
personnel and equipment. 

EIA assumes generating capacities can increase in a given year by a pre-specified 
amount without incurring cost increases, but costs are assumed to increase above 
a threshold rate of increase. The threshold is based on previous builds of the 
technology, so that as a specific industry is built up and proven to be able to bring 
significant capacity online in a single year, this annual limit will grow and no 
longer become binding. Capacity builds in a given year can be up to 25% above a 
base amount in a given year without a cost adjustment (that is, 125% of the base 
capacity). This increment is based on the greatest amount of capacity brought 
online in a single year during the past 10 years, but with recent experience more 
heavily weighted. The capacity amounts are specific to the individual designs, 
with overlap assumed only for the solar PV and solar PV with battery storage 
technology. For other designs, such as the SMR and AP1000 nuclear plants, the 
constraints are applied on each individual design. If no existing capacity is online, 
then an exogenous assumption is used for the initial base amount. For SMRs, an 
initial 3 gigawatts (GW) of capacity can be built without incurring these costs. 

The short-term cost adjustment factors are based on the percentage change of 
national installed capacity of a technology, using an exponential cost function 
relating an increase in capacity to a cost multiplier.41 These adjustment factors are 
endogenous to the EMM and are only affected by the rate of increase in specific 
technology builds and would not represent external economy-wide disruptions in 
supply chains. In reference case modeling, these supply constraints are generally 
binding in relatively few years for the newest technologies, as the model tends to 
follow recent trends in capacity expansion and new technologies become 
economic gradually over time. However, in sensitivity cases which require a large 
shift in the generation mix or when new technologies are assumed to have a 
breakthrough in cost, these constraints can have a larger impact on model results. 

 
41 Because the linear program cannot model a continuous upwardly sloping function, the 
formulation creates a three-step supply curve. The capacity assumed for the steps is 125% of the 
base amount for the first step (with no cost factor), 75% of the base amount for the second step, 
and 100% of the base amount for the third step. The midpoint capacities on steps 2 and 3 are used 
to calculate the cost multiplier, using the assumption that a 1% increase in capacity will lead to a 1% 
increase in costs. 

 
EIA uses supply steps for new 
builds to reflect the potential for 
cost increases when new 
capacity is built faster than 
recent experience. 
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To illustrate the impact of this feature, EIA compares two sensitivity cases 
around the low-cost decarbonization scenario presented in Section 2.42 EIA 
models the decarbonization scenario through a carbon fee to the power sector 
of $50 per ton in 2030, growing at 5% per year to $133 per ton in 2050. The 
sensitivity cases assume a different threshold for the first supply step, one with a 
lower value of 115% and another with a higher value of 135%. These 
assumptions alter how quickly nuclear capacity could grow without an additional 
cost factor. Typically, EIA uses the same elasticity parameters for all 
technologies, but for this sensitivity, the value is changed just for nuclear to 
isolate the impact on the SMR builds. 

In the case with the reference elasticity threshold, the capacity builds hit the 
annual constraint on the first supply step for the first 12 years of builds before the 
threshold grows enough to become non-binding. With a lower elasticity, this 
constraint is binding in all projection years, and cumulative builds are under 
100 GW by 2050, while the case with the reference elasticity builds 173 GW in 
the same time frame. In the case with the higher elasticity, builds increase more 
quickly in the early years and the constraint was no longer binding after nine 
years; however, builds in later years are not significantly different, ending around 
187 GW in 2050 (Figure 6-6). Under this scenario, the choice of the initial 
elasticity parameter affects how quickly new nuclear can be brought online and 
has an impact on the overall cost to the system, as shown in the electricity prices 
(Figure 6-6) as well as the generation mix (Figure 6-7). 

 

Figure 6-6 
Cumulative small modular reactor capacity and electricity prices in three short-term elasticity 
(“elas”) scenarios in NEMS. 

 
42 In these scenarios, the cost of the new nuclear technology is assumed to be lower than the 
reference case, and is an economic choice for capacity expansion in the NEMS projections, 
particularly in the cases that include a carbon fee. 

 
Limiting the pace of expansion 
of new nuclear through the 
supply-step constraint affects 
the overall generation mix and 
cost of producing power. 
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Figure 6-7 
Electricity power sector generation from select fuels across three short-term elasticity 
scenarios in NEMS. 

In these cases, electricity prices rise significantly in 2030 when the carbon price is 
imposed, but prices fall slightly when the low-cost nuclear capacity is added in 
later years. If industry expansion bottlenecks are more constraining and SMR 
growth occurs more slowly, electricity prices remain high. More natural gas-fired 
generation is used, incurring higher costs through the carbon fees, and additional 
renewable capacity is built and operated. 

The results of this analysis indicate that, under transformational scenarios where 
new technologies are brought online quickly, the inclusion of a short-term 
elasticity constraint will have an impact on the overall results of the program or 
policy being evaluated. Without a constraint on near-term expansion, models 
may tend to overstate the ability to stand-up new supply chains; train engineers, 
construction managers, and operators; and develop smoothly functioning 
regulatory and permitting processes for complex new technologies. However, 
such impacts are transient in nature, and structures that are too constraining may 
understate the longer-term potential impact of policies or market developments 
that result in breakthrough technologies. 

Recommendations for Future Modeling RD&D 

Based on the comparisons in this section and discussions from workshops, there 
are several modeling needs related to new nuclear: 

 Develop methods and data for characterizing advanced nuclear designs: These 
comparisons illustrated how existing models tend to focus on AP1000 and 
SMRs for new nuclear deployment decisions (Table 6-1). Additional 
advanced or “Gen IV” reactor designs could be incorporated into models if 
costs and performance projections were made available, though most public 
datasets on electric sector technologies do not include such options. Potential 
differences in fuel supply for advanced reactor designs could entail model 
development and data needs to appropriately characterize these differences. 
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 Incorporate more robust representations of hybrid systems: There has been an 
increasing focus on policy and planning for hybrid systems for nuclear energy 
that provide heat and electricity to non-grid applications (e.g., hydrogen 
production, steam delivery to industrial processes, heat to support direct air 
capture) and other technologies (e.g., solar and batteries). Such systems can 
utilize multiple feedstocks and provide multiple products/services. However, 
the dynamic optimization of these resources is complex owing to their diverse 
configurations, multiscale interactions, and markets, which makes modeling 
such resources challenging (Arent, et al., 2021).43 

 Develop and apply methods for quantifying and incorporating climate impacts and 
resource adequacy: For the future role of nuclear and other technologies, 
questions related to climate impacts and resource adequacy (including 
extreme events) have been prominent for many stakeholders, especially as 
deeper decarbonization is targeted. Approaches for quantifying and 
incorporating climate impacts and resource adequacy are under development, 
including endogenous changes in capacity contributions of different resources 
as the supply-side mix changes and demand-side loads evolve (e.g., shifts 
toward winter peaking), cooling water availability, and planning for different 
weather years. 

 

 

 
43 Dedicated models for optimizing configurations of hybrid resources have been developed and 
continue to be enhanced such as the Framework for Optimization of ResourCes and Economics 
ecosystem (FORCE) and the Institute for the Design of Advanced Energy Systems (IDAES) 
framework. These detailed hybrid system models could be integrated with broader energy systems 
and capacity expansion models to capture integration across multiple sectors. 
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 Cross-Cutting Issues 
Summary 

 Several cross-cutting modeling issues influence not only projections for 
nuclear energy but also model outputs related to other technologies. Model 
development decisions depend on the questions being asked, analysis type, 
system characteristics, and available resources for development and analysis. 

 Choices about a model’s temporal and spatial resolutions can be key factors 
in influencing model outcomes. Common approaches to simplify temporal 
resolution in energy models may not reproduce fundamental relationships for 
power sector decarbonization, as the intra-model comparisons in this section 
demonstrate. Higher temporal resolution is critically important for policy 
analysis, electric sector planning, and technology valuation in a range of 
scenarios, including under deeper decarbonization and higher variable 
renewables deployment. Simplified approaches understate nuclear 
deployment. 

 Assumptions about discount rates and economic lifetimes can materially 
impact power sector generation and capacity outcomes, especially for nuclear 
energy given that it is a capital-intensive and long-lived resource. Discount 
rates have countervailing effects on existing and new nuclear—lower rates 
increase new nuclear capacity but decrease shares from existing nuclear. 

 These comparisons also identify several other cross-cutting areas where 
future work would be valuable, including impacts of foresight, end effects, 
and uncertainty. 

Temporal and Spatial Resolution 

Overview 

Temporal resolution—the number of time segments within a year44—is widely 
viewed as an important model dimension for capturing the joint variability of 
time-series variables (e.g., load, potential wind/solar output), system operations, 
and economics of system resources (Cole, et al., 2017; Merrick, 2016; Bistline, et 
al., 2021). Intra-annual temporal variability is aggregated in energy systems 
models and CEMs to reduce solve times. The number of time segments is 
typically on the order of 10-100 within the optimization and 100-10,000 outside 

 
44 Temporal resolution is distinct from temporal coverage, which can refer to the length of the time 
horizon and length of timesteps. 
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of the optimization. This is an active area of research, with significant learnings 
and improvements over the last several years (Bistline, 2021a; Blanford, et al., 
2018). Those who are building, updating, and applying models generally attempt 
to select a level of temporal resolution that is sufficient to capture the declining 
value of generation, storage, and transmission but insufficient to capture specific 
challenges in operating regimes, which more detailed models (e.g., production 
cost models) are often more appropriate to investigate.45 Lower temporal 
resolution can dampen price volatility and thus understate the value of 
dispatchable resources including nuclear power (Bistline, 2021a; Bistline, et al., 
2020; Diaz, Inzunza, and Moreno, 2019). A key takeaway from earlier analysis is 
that the selection method for temporal and spatial resolution can matter as much 
as the resolution itself. 

The spatial resolution of models can range from individual projects to nations, 
with tradeoffs between model detail and tractability. Spatial resolution is typically 
measured by the number of model regions. Plant siting and very local issues are 
generally not captured by CEMs, and more specialized tools are used to 
investigate more highly spatially resolved questions. Similar to temporal 
resolution, spatial resolution is a key consideration for data and model structure, 
which is customizable in some models but also influenced by available data. 

Temporal and spatial resolutions of the four participating models used in this 
study are summarized in Table 3-2. 

Decisions about temporal and spatial resolution can have substantial impacts on 
model outputs, including the level of nuclear deployment. However, appropriate 
levels of resolution for those building and developing models depend on the 
questions being asked, analysis type, system characteristics, data availability, and 
available resources for development and analysis. For those looking to apply 
existing models to answer specific questions, model selection can be a complex 
function of the nature of these research questions, available alternatives, model 
resolution, and considerations discussed in other sections of this report. 

 
45 Some modeling platforms have customizable temporal resolution, which means that the model 
user rather than the developer makes decisions about temporal resolution and the methods for 
selecting these periods. 

 
Temporal and spatial resolution 
of models are important 
dimensions for properly 
capturing the economics of 
investment and operations. 
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Intra-Model Comparison 

To test the impact of temporal resolution on nuclear deployment, an intra-model 
comparison was conducted using REGEN.46 A full hourly investment and 
dispatch model is compared against three common approaches47 to simplify 
temporal resolution: 

 Representative Day (RD): Where 24 days per year are represented, each with 
hourly resolution. 

 Seasonal Average (SA): Where daily load periods (peak, shoulder, off-peak) 
are represented across separate seasons (summer, winter, shoulder). These 
intra-annual periods are often referred to as “time slices.” 

 Levelized-Cost (LCOE): Where load and renewable resource availability are 
averaged across the year for a given region, which is implicit in LCOE 
comparisons.48 

These approaches are run under a reference scenario (with current policies) and 
CO2 caps of 90% and 100% electric sector reductions from 2005 levels. 

Detailed scenario descriptions and discussions of the results are provided in 
Bistline (2021a). 

The results demonstrate how common approaches to simplify temporal 
resolution in integrated assessment and energy system models may not reproduce 
fundamental relationships for power sector decarbonization or may exhibit large 
differences from more detailed hourly modeling. Key features missed in 
simplified approaches include nonlinear increases in abatement costs at higher 
levels, diminishing marginal returns for high penetrations of variable renewables, 
and the value of broader technological portfolios and carbon removal. 

 
46 These experiments use a different version of REGEN than the experiments in other sections of 
the report, including the intercomparison in Section 2, which means that capacity and generation 
mixes may not align. In particular, these scenarios use a single-year version of the model with 
greenfield investment (i.e., adding new capacity for most of the system, inheriting only 
endowments of existing hydropower, nuclear, and interregional transmission). 
47 Many models employ side constraints, costs, and out-of-optimization calculations to account for 
temporal aggregation simplifications, which are not accounted for in these experiments. 
48 Note that this implementation is more sophisticated than typical LCOE approaches, including 
the value to generators of reserve margin contributions and policies. 

 
Common approaches to 
simplify temporal resolution in 
energy models may not 
reproduce fundamental 
relationships for power sector 
decarbonization. 
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Figure 7-1 
National generation by technology and policy scenario across temporal aggregation 
approaches in REGEN. 

Simplified temporal aggregation approaches tend to understate the value of 
broader technological portfolios, firm low emitting technologies, wind 
generation, and energy storage resources and can overstate the value of solar 
generation (Figure 7-1). The need for dispatchable, firm capacity is clearer with 
higher temporal resolution across all policy scenarios. In particular, new nuclear 
increases as decarbonization approaches 100% in the full hourly model, but the 
SA and LCOE simplifications do not capture the value of these resources. Under 
the 100% CO2 cap, new nuclear additions are 117 GW with hourly resolution, 
but 0 GW with the SA and LCOE approaches. Simplified temporal aggregation 
approaches underestimate variability and can distort costs by missing periods that 
are important to the valuation of low-carbon technologies as emissions decline 
and the deployment of renewables increases. 

Errors from simplified temporal aggregation approaches increase with tighter 
CO2 targets, understating abatement costs by an order of magnitude in many 
instances, which are discussed in detail in Bistline (2021a). Approximation 
accuracy also depends on assumptions about technological cost and availability: 
Differences across approaches are smaller when carbon removal is available and 
when wind, solar, and storage costs are lower (Bistline, 2021a). Additionally, 
using the capacity mixes from simplified approaches in detailed operational 
simulation models would illustrate reliability shortcomings of lower temporal 
resolution models, as there would likely be a significant number of hours where 
system resources could not meet load. 

Overall, the analysis suggests that higher temporal resolution is critically 
important for policy analysis, electric sector planning, and technology valuation 
in a range of scenarios, including under deeper decarbonization and higher 
variable renewables deployment. 
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Simplified temporal 
aggregation approaches 
understate nuclear, natural gas, 
and storage deployment. 
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Discounting and Financing 

Overview 

Nuclear power—like renewables, transmission, and energy storage—is a high-
capital-cost but low-variable-cost resource, which means that assumptions about 
project finance and time preference (i.e., comparing current costs and revenues 
vis-à-vis future ones) are important for evaluating their economic 
competitiveness. 

There is a wide range of financing treatments across models, but the most 
important differences likely stem from differences in the assumed discount rate 
and economic life.49 In energy systems models, effective discount rates may 
aggregate many effects like the pure rate of time preference (i.e., social discount 
rate50), opportunity cost of capital, risk, and/or financing (e.g., costs of equity and 
debt), and could differ by sector and decision-maker. For power sector 
technologies, this rate is typically based on a utility’s weighted average cost of 
capital (WACC).51 All else equal, lower rates improve the economics of capital-
intensive technologies and decrease the relative importance of nearer-term cash 
flows. The economic lifetime of an asset (also referred to as the “book life”) is the 
asset recovery time or the lifetime assumed in economic investment decisions, 
which could differ from the asset’s physical lifetime (i.e., the maximum length of 
operation when economic) or service lifetime (i.e., time online before retirement, 
which is less than or equal to the physical lifetime). 

The average discount rate across the four models is 4.5% (real), as shown in 
Figure 7-2. REGEN assumptions fall on the higher end of the range (with values 
that reflect electric sector and end-use decisions), while other models use similar 
values between 3-4%. These assumptions fall within the broader literature 
reviewed. The harmonized scenarios in the model intercomparison analysis 
(Section 2) assume a 3% discount rate. 

 
49 Other factors (e.g., debt fraction, debt rate, tax rate, inflation) could be compared across models 
in future work. This section compares long-run parameters, but these values may change over time 
and across decision-makers (e.g., NEMS models changing discount rates over time, IPM 
differentiates between merchant and utility investors, NEMS and ReEDS model the changing debt 
fraction as a function of tax credits). 
50 This rate is the weight applied to cash flows or utility occurring at different times. 
51 The cost of capital may be technology-specific and include a risk premium that varies by 
technology (Donovan and Corbishley, 2016). 

 
Discount rates, economic 
lifetimes, and methods for 
selecting these parameters 
differ across models. 
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Figure 7-2 
Comparison of native discount rate assumptions across models and the broader literature. 
“Harmonized” indicates the value used for the model intercomparison analysis in Section 2. 

A wide range of economic lifetimes are assumed due to technology-specific 
variations (Figure 7-3). The high end of the range is typically for hydropower 
and nuclear to capture residual value for these long-lived assets. Assumptions for 
wind and solar fall within a narrower range (20-30 years) consistent with the 
broader literature. Models vary in terms of whether they reflect separate 
economic (i.e., asset recovery time) and physical lifetimes. NEMS assumes no 
fixed physical lifetimes, ReEDS assumes longer physical lifetimes than the 
economic lifetimes from Figure 7-3, and REGEN assumes that economic and 
physical lifetimes are equal. All four models assume endogenous service lifetimes 
(i.e., model-driven retirements) for many assets, including endogenous 
retirements for existing nuclear power plants with lifetimes up to 80 years  
(Table 5-1). 
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Figure 7-3 
Comparison of native economic lifetime (i.e., asset recovery time) assumptions across models. 
“Harmonized” indicates the value used for the intercomparison in Section 2. 

There are many questions about discounting and financing that analysts must 
contend with in building and applying models (Lind, et al., 1982). What should 
the long-term discount rate be? How should this rate be chosen (and does it 
reflect a descriptive or normative basis)? Should this rate change over time? Do 
models reflect separate economic and physical lifetimes? These dilemmas do not 
have clear answers, and solutions are likely to vary across different modeling 
contexts, which increases the importance of transparency in documenting what 
was assumed and why (Bistline, Budolfson, and Francis, 2021; DeCarolis, et al., 
2017). 

Intra-Model Comparison 

To test the impact of assumed discount rates and economic lifetimes on nuclear 
generation, an intra-model comparison was conducted using REGEN. There are 
three dimensions explored in these sensitivities: 

 Discount rate: The effective discount rate was varied from 3% (the 
harmonized assumption in the model comparison in Section 2), 5%, 7% (the 
native assumption in REGEN), and 9%. 

 Economic lifetime: Economic lifetimes for new investments are assumed to 
be either uniform at 30 years (the harmonized assumption in the model 
comparison in Section 2) or heterogenous lifetimes across different 
generation options (the native assumption in REGEN). 

 Policy: Each discount rate and economic lifetime assumption is varied across 
the three policy scenarios from Section 2: A “current policies” Reference 
(Ref), Deep Decarbonization with an 80% reduction in 2050 relative to 2005 
(DD80), and Deep Decarbonization with a 100% target in 2050 (DD100). 
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Figure 7-4 illustrates how discount rate assumptions alter new build and 
retirement decisions across different policy environments. New nuclear is built 
only in the 100% decarbonization scenario, and much like other capital-intensive 
technologies like renewables and storage, nuclear deployment is highest with 
lower discount rates. New nuclear spans 18 GW (with a 9% discount rate) to 45 
GW (with a 3% discount rate). 

On the other hand, existing assets (including the current nuclear fleet) benefit 
from higher discount rates. Early nuclear retirements are especially common 
when low discount rates occur in a Reference policy scenario. Nuclear retirements 
are lower for all discount rates under the 80% and 100% decarbonization 
scenarios, since the shadow price on CO2 increases electricity prices, which in 
turn increases revenues for inframarginal units like nuclear. Ultimately, the 
discount rate response has countervailing effects on existing and new nuclear—
lower rates increase new nuclear generation but decrease shares from existing 
nuclear. Under the 100% decarbonization scenario, these opposing effects mean 
that overall nuclear shares are similar across discount rates. 

 

Figure 7-4 
National generation in 2050 by technology across policy and discount rate sensitivities in 
REGEN. 

Figure 7-5 suggests that economic lifetime assumptions have more limited 
impacts on the generation mix relative to discount rates. A large fraction of 
revenues (in net-present-value terms) occurs in the first couple decades of 
operation, which lowers impacts of revenues and costs beyond a 30-year horizon. 
However, due to its longer anticipated lifetime, new nuclear power generation 
has a larger sensitivity to assumed lifetimes, especially in the 100% 
decarbonization policy. New nuclear additions are 23.7 GW in the 100% 
decarbonization case with heterogenous lifetimes and only 5.3 GW with uniform 
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(30-year) lifetimes.52 Note that impacts of discount rates and economic lifetimes 
may depend on the model’s time horizon and treatment of end effects, which are 
discussed in the last portion of this section. 

 

Figure 7-5 
National generation in 2050 by technology across policy and economic lifetime sensitivities 
in REGEN. 

Overall, these sensitivities illustrate how assumptions about discount rates and 
economic lifetimes can materially impact generator entry and exit decisions.53 
For these scenarios and assumptions, discount rates have larger impacts on the 
generation and capacity mix for most technologies, though lifetime effects are 
larger for nuclear relative to other resource classes. For the model 
intercomparison in Section 2, the larger difference between native and 
harmonized results in REGEN reflect differences in these input assumptions, 
especially the discount rate. 

 
52 Note that discount rate assumptions can interact with lifetime assumptions. A 7% discount rate is 
used for these comparisons. 
53 This finding is consistent with other studies in the literature that find that financing assumptions 
can impact power sector investment decisions (Polzin, et al., 2021; Emmerling, et al., 2019). 
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Other Considerations 

Although the workshops and analysis focused on the aforementioned issues, a 
number of important ancillary topics were also discussed, which deserve 
consideration for long-term planning RD&D: 

 Foresight: Assumptions about foresight are central to long-term CEMs and 
energy system models and shape generator investment and retirement 
decisions. A model with foresight will adjust investment activity in response 
to anticipated future policies and technological change, especially for long-
lived low-carbon resources such as nuclear. Intertemporal perfect foresight 
and sequential myopic approaches are common in the literature (Merrick, 
Bistline, Blanford, 2021) and across models in this report (Table 3-1). 

 End effects: The time horizon considered for planning can create distortions 
in final model periods. Approaches for correcting these end effects can 
impact technology-specific outputs, including for nuclear energy in light of 
its long physical lifetime (Figure 7-3). 

 Uncertainty: Modeling uncertainty is a perennial challenge in prospective 
analysis. Parametric uncertainty is often addressed by conducting sensitivity 
and scenario analysis, though explicit uncertainty can be considered with 
several stochastic methods (Kann and Weyant, 2000; Bistline, 2015). 
Addressing structural uncertainty can be more difficult, but modelers can 
experiment by changing adding, removing, or modifying model constraints 
or features to observe the impact on outputs (e.g., the temporal resolution 
sensitivities from earlier in this section) or can participate in model 
intercomparison projects like this one. There are several indirect methods of 
accounting for uncertainty. An example is the inclusion in NEMS of a three-
percentage-point adder applied to the costs of debt and equity for new coal 
capacity that represents “the implicit costs being added to GHG-intensive 
projects to account for the possibility that, eventually, they may have to 
purchase allowances or invest in other projects that offset their emissions” 
(EIA, 2020b), which is a proxy for market behavior around uncertainty. 
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 Summary and Conclusions 
Capacity expansion and energy system models can generate useful insights for 
understanding nuclear energy and broader energy systems under a variety of 
future policy, technology, and market conditions. The insights in this report on 
developing and interpreting the results of such models can help stakeholders 
improve their tools and their understanding of the role of nuclear energy in future 
energy systems. Although not an exhaustive list of considerations, this report 
highlights progress to date and identifies opportunities to improve the 
representation of nuclear energy in long-term models. 

Implications for Policy and Planning 

This report highlights how models vary in their treatment of key considerations 
related to nuclear energy and that better understanding key features and tradeoffs 
can provide context for interpreting outputs used for resource planning, 
policymaking, and global analysis. Central issues for those using and interpreting 
model outputs include: 

 Model representations of nuclear energy (and features that affect nuclear’s role) 
can vary considerably: Sections 4 through 7 discuss a range of model 
considerations and dimensions that impact nuclear energy, including 
capturing different value streams and market participation, representing new 
and existing nuclear capacity, and cross-cutting issues such as temporal 
resolution and financing. These areas suggest questions that consumers of 
modeled scenarios can ask to help evaluate results when nuclear-focused or 
decarbonization analyses are released. 

 New nuclear deployment depends on combinations of policies and cost reductions: 
Model results across organizations indicate the pronounced impact that 
stringent power sector CO2 policies could have on the future U.S. electricity 
supply mix. Decarbonization targets generally help to retain existing nuclear 
capacity but may not be enough to bring new capacity online unless nuclear 
experiences significant cost declines. In scenarios that layer a deep 
decarbonization policy with low capital cost assumptions for new nuclear, 
models show significant nuclear capacity additions. 

 Ample scenarios should be conducted, given the sensitivity of model outputs 
to uncertainties related to input assumptions and model structures, especially 
with deep decarbonization: Model outputs should not be viewed as forecasts 
for how the world will unfold, but are conditional projections that are 
sensitive to model structures and assumptions about technologies, markets, 
behaviors, and policies. Consumers of model outputs are increasingly 
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expecting analysts to conduct a wide range of sensitivities to test the 
robustness of conclusions, especially under deeper decarbonization targets, 
including a decarbonized electric sector and economy-wide net-zero 
emissions. This report summarizes how normative and descriptive 
disagreements exist about appropriate parameter values (e.g., discount rates) 
and how models navigate tradeoffs between parsimony and accuracy (e.g., 
temporal resolution), which can materially impact model outputs related to 
nuclear energy and other technologies. 

 Model resolution and parametrization decisions influence projections of nuclear 
energy deployment: The intra-model and inter-model comparisons in this 
report highlight how model development decisions can alter the projected 
role of nuclear energy. For instance, lower temporal resolution tends to 
understate the value of nuclear (Section 7). On the other hand, the intra-
model comparisons also suggest areas that have more limited impacts on the 
competitiveness of new and existing nuclear in these models, including 
flexibility assumptions. 

 Nuclear can complement other low-emitting technologies but such 
interactions require detailed capacity expansion and energy systems models to 
evaluate: Nuclear generation provides firm, zero-emissions electricity, which 
can complement other clean electricity resources that are subject to weather 
fluctuations. Evaluating these interactions require systems models—like 
capacity expansion and energy systems models that are the focus of this 
report. Linking these models with other tools can provide more detailed 
insights depending on the questions being asked. Levelized-cost metrics are 
incomplete metrics for evaluating the relative competitiveness of system 
resources, which requires detailed energy modeling to assess. 

Implications for Modelers 

This report stresses tradeoffs between a range of model considerations, which are 
necessary to make models tractable. Appropriate levels of detail for nuclear 
energy and other model dimensions depend on the type of analysis being 
performed, motivating questions, available data and resources, system 
characteristics, and analysis timeframe (Section 3) and may merit using multiple 
tools to capture all relevant interactions. Key implications for modelers include: 

 Transparency about model decisions and analysis assumptions are important for 
communicating with stakeholders: There are many transparency-related 
practices that can help to encourage better modeling and move dialogues in 
more productive directions, including making code and data available, 
participating in model intercomparison studies, and providing a range of 
outputs across scenarios (Bistline, Budolfson, and Francis, 2021; DeCarolis, 
et al., 2017). In particular, given the sensitivity of outputs to model decisions 
and assumptions, it is important to make these model decisions and analysis 
assumptions as clear as possible. For instance, the model intercomparison in 
Section 2 illustrated how installed nuclear capacity ranges 2–329 GW in  
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2050 depending on assumptions about nuclear costs and policy. Such 
transparency is valuable not only to understand the strengths, limitations, 
and implications of chosen modeling approaches but also to convey these 
compromises and caveats to different audiences. 

 Encouraging collaborations across models at different scales: Increased 
collaborations between energy-economic models and more detailed 
operational models are needed for integrating and linking perspectives. Intra-
model comparisons on value streams (Section 4), endogenous technological 
change (Section 6), and temporal resolution (Section 7) suggest that linking 
with more detailed models can provide additional insights. 

 Stress test models with a range of assumptions: The sensitivity of nuclear-related 
outputs to input assumptions and model structures suggest that modelers 
should be sensitive to possible parametric and structural uncertainties and 
should conduct a wide range of stress tests to understand the robustness of 
insights. 

Future Work 

Sections 4 through 7 identified many specific model and data needs related to the 
representation of nuclear energy and other electric sector and energy system 
resources: 

 Understand future changes in value streams and demand for grid services: 
Potential changes in planning reserve margins and operating reserves should 
be studied in futures with higher renewables penetration, electrification, and 
deep decarbonization (EPRI, 2018). 

 Characterize a range of low-emitting technologies: Because nuclear technologies 
see much greater deployment in scenarios that require significant 
decarbonization, properly capturing the value of nuclear technologies requires 
that other low- and zero-carbon technology options are adequately modeled. 
Not adequately representing the portfolio of candidate technologies and 
pathways that are being considered to meet such power sector and economy-
wide targets could incompletely characterize the competitiveness of nuclear 
relative to these other technologies. 

 Select appropriate levels of model resolution: Modeling zero- or very-low-
emitting energy systems might require additional temporal or spatial 
resolution to properly capture the value of the different generator types. 
Additional work is needed to understand the importance of model resolution 
on outcomes for these zero and low-carbon solutions. 

 Improve time-series data: Models often use a single year of historical 
meteorological data. Given that many low-carbon futures depend heavily on 
variable renewable technologies, multi-year variability in wind resources, 
solar resources, and load are particularly important (Diaz, et al., 2021). 
Improved understandings of the impact of multi-year variability (of load and 
renewables) can inform resource adequacy estimates and contributions of 
different resources. If infrequent but impactful wind lulls or cloudy periods 
are not captured in the model, then firm capacity resources such as nuclear 
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could be undervalued. Similarly, capturing the extreme events that seem to be 
increasingly common can ensure that power sector solutions are more robust 
no matter the composition of the resulting generation fleet produced by the 
model. Future work to understand the importance of representing 
compensation for currently uncaptured attributes in markets (e.g., inertia) 
would also be valuable. 

 Incorporate more robust representations of hybrid systems and sectoral integration: 
Pathways towards achieving a net-zero energy system in the United States 
typically involve growing interactions among electricity supply, energy 
supply, and energy demand (including electricity, direct fuel use, and heat). 
There has been an increasing focus on policy and planning for hybrid systems 
for nuclear energy that provide heat and electricity to non-grid applications 
(e.g., hydrogen production, steam delivery to industrial processes, heat to 
support direct air capture) and other technologies (e.g., solar and batteries). 
These hybrid energy systems have been proposed as candidates for flexibly 
contributing to the full spectrum of demands across the energy system 
(Arent, et al., 2021). However, the dynamic optimization of these resources 
is complex owing to their diverse configurations, multiscale interactions, and 
markets, which makes modeling such resources challenging. Planned 
demonstration projects will help to evaluate the operational capabilities of 
such hybrid energy systems, but their ultimate competitiveness will depend 
on the incremental costs and benefits of their ability to contribute products 
and services across different parts of the U.S. energy sector. A better 
understanding of the future demand for, and value of, hydrogen is a key 
component of evaluating the incremental value of hybridization, particularly 
for models that represent interactions across different segments of the U.S. 
energy sector. 

 Improve data and methods for estimating retirements: Retirements represent a 
significant driver for new capacity needs, but these dynamics are challenging 
to represent in models. Understanding drivers of retirements across models 
would be valuable, especially accounting for uncertainty (e.g., policy, FOM 
and future capital costs) and foresight (as discussed in Section 7). 

 Provide public data for nuclear costs: Given the notable impact that different 
FOM cost assumptions can have on the modeling, it is important to reflect 
those costs as accurately as possible. To that end, public data for current 
FOM costs by plant and guidance on projected changes (both the magnitude 
and timing) would be useful for modeling teams. Such cost data would be 
valuable for understanding projections for nuclear generation and estimates 
for other resources. In addition to input assumptions, it is important to 
compare model algorithms and heuristics for power plant retirement, cost, 
and operational decisions against actual data and to update these model 
features as appropriate. 

 Understand possible nuclear plant license renewals to 80 years and beyond: It is 
important to consider the possibility of license renewals beyond 80 years, 
especially as models begin to expand projections beyond 2050. 
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 Develop methods and data for characterizing advanced nuclear designs: These 
comparisons illustrated how existing models tend to focus on AP1000 and 
SMRs for new nuclear deployment decisions (Table 6-1). Additional “Gen 
IV” reactor designs could be incorporated into models if costs and 
performance projections were made available, though most public datasets on 
electric sector technologies do not include such options. Potential differences 
in fuel supply for advanced reactor designs could entail model development 
and data needs to appropriately characterize these differences. 

 Develop and apply methods for quantifying and incorporating climate impacts and 
resource adequacy: For the future role of nuclear and other technologies, 
questions related to climate impacts and resource adequacy (including 
extreme events) have been prominent for many stakeholders, especially as 
deeper decarbonization is targeted. Approaches for quantifying and 
incorporating climate impacts and resource adequacy are under development, 
including endogenous changes in capacity contributions of different resources 
as the supply-side mix changes and demand-side loads evolve (e.g., shifts 
toward winter peaking), cooling water availability, and planning for different 
weather years. 

A broader model need is to determine appropriate levels of model complexity for 
given applications. Model development decisions depend on the analysis type, 
motivating questions, system characteristics, and available resources for 
development and analysis (Merrick and Weyant, 2019; Saltelli, 2019). The 
temporal resolution sensitivities in Section 7 illustrate an area where model 
complexity has first-order impacts on the deployment of nuclear energy and other 
low-emitting technologies, but there is currently limited guidance about the 
conditions under which higher fidelity modeling is needed. 

Another general model challenge and need is to assess suitable levels of model 
endogeneity. The report touches on several areas of model-driven decisions 
related to existing and new nuclear—retirements, operations, load shapes, 
technological change—where there is variation in model treatments. Much like 
model complexity, there is a need to understand the conditions under which 
endogenous decisions are most important. 

Finally, future work should investigate net-zero emissions energy systems and 
modeling dimensions to appropriately characterize these systems given interest 
from policy-makers, companies, and other stakeholders (Bistline, 2021c). Electric 
sector capacity expansion models can be linked to other fuels, end use, and 
economy models to represent these cross-sectoral interactions. REGEN has 
recently added a range of additional supply-side technologies, fuel conversion 
pathways, and end-use options to characterize economy-wide net-zero emissions 
scenarios, which will be released in its forthcoming Low-Carbon Resources 
Initiative (LCRI) report later in 2022. ReEDS has recently added similar 
capabilities—in the form of hydrogen, negative emissions technologies, and 
demand-side trajectories consistent with an economy-side decarbonization 
pathway—which were implemented in recent analyses (Cole, et al., 2021b; 
DOE, 2021) and also will be highlighted in a forthcoming study on rapid 
decarbonization of the U.S. energy sector. 
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Appendix A: Summary of Model 
Enhancements 

An objective of the workshops and project was to stimulate model improvements, 
especially in areas related to nuclear energy. Each modeling team identified 
and/or incorporated improvements across the course of the two-year project, and 
a summary of these changes is provided here. 

Integrated Planning Model (IPM) from the U.S. Environmental 
Protection Agency (EPA) 

EPA has recently incorporated several model improvements relevant to this 
project: 

 The operational costs of existing nuclear capacity were updated to reflect the 
AEO2020 assumptions. 

 Inclusion of small modular reactors as a new generation technology option. 

 Updated RPS and CES assumptions for OR, IL, DE, NC, and MA. 

National Energy Modeling System (NEMS) from the U.S. Energy 
Information Administration (EIA) 

EIA has implemented several model enhancements for AEO2022. EIA revised 
the operating modes available for baseload technologies so that they can operate 
more flexibly within a season, responding to changes in net load based on 
intermittent generation in the region. The addition of the RESTORE 
submodule to the NEMS electricity market module during AEO2019 has helped 
improve the overall accuracy of EMM’s long-term capacity planning and 
dispatch modeling capability with an increasingly high renewable penetration 
level. However, operation modes for nuclear and fossil plants have been 
determined without feedback from the captured dispatch solution from 
RESTORE. As projections have incorporated more intermittent generation with 
distinct seasonal and daily resource profiles, the net load by time slice has a 
different pattern than total load in many regions and will affect how baseload 
dispatch will need to change to load follow. For the AEO2022, the RESTORE 
average dispatch information for the nuclear and fossil plants is passed to EMM 
as an additional operating mode which will allow more flexible dispatch within a 
season for coal, natural gas-fired combined cycle, and nuclear electric generating  
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technologies. This will allow nuclear capacity to operate more flexibly to supply 
additional spinning reserves if that is more valuable to the system than generation 
due to excess renewables in certain time slices. 

EIA also has improved the market sharing algorithm which adjusts build 
decisions among competitive technologies to allow options for sharing across all 
technologies, or within subsets (i.e., dispatchable versus non-dispatchable). There 
are a few minor improvements made for the renewables modeling representation 
during AEO2022 such as devising a new declining capacity credit algorithm for 
standalone energy storage, allowing endogenous wind retirements, updating the 
solar inverter loading ratio for standalone solar PV from 1.2 to 1.3, improving 
biomass supply curves, and representing the Civil Nuclear Credit Program as 
included in the Bipartisan Infrastructure Law. 

Regional Energy Deployment System (ReEDS) from the National 
Renewable Energy Laboratory (NREL) 

The following changes were made to ReEDS as part of this project: 

 Added a SMR technology. Previously, ReEDS only represented AP1000 
nuclear power plants. 

 Added the nuclear demonstration projects to the ReEDS plant database. 
This enables the demonstration projects to come online in the locations and 
at the dates specified by the companies developing them. 

 Changed existing nuclear power plants to be able to ramp down to 70% of 
their rated capacity. Plants are assumed to ramp up to 2% per minute and are 
allowed to use this ramping capacity to contribute toward operating reserves. 

 Changed the default lifetime of existing nuclear plants to 80 years. 
Previously, ReEDS used a mix of 60- and 80-year lifetimes for existing 
plants. The shorter 60-year plant lifetime was used for nuclear plants in 
restructured power market regions, with all other nuclear plants using the 80-
year lifetime. The model can still choose to retire plants before they reach 
their 80-year lifetime if they become uneconomic. 

 Adjusted capacity in the model to be represented using summer and winter 
capacity ratings. Previously ReEDS only used the summer capacity rating. 
Because nuclear power plants typically have a higher winter capacity rating 
than summer capacity rating, this change increased the output of the nuclear 
power plants during the winter, which in turn led to slightly higher (~1%) 
annual capacity factors. 
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Regional Economy, Greenhouse Gas, and Energy (REGEN) from 
the Electric Power Research Institute (EPRI) 

The REGEN model made several nuclear-related model improvements during 
the course of this project. These changes and their timeline for inclusion in the 
model are summarized in Table A-1. 

Table A-1 
REGEN model improvements under the nuclear comparison project 

Feature Change Timeline 

Flexibility of existing 
and new nuclear 

Updating flexibility-related 
parameters based on EPRI research 

In current production 
code 

Lifetimes of existing 
nuclear plants 

Updated to allow all existing 
capacity to extend operations to 
80 years when economic 

In current production 
code 

New nuclear options Adding small modular reactors In current production 
code 

Temporal resolution Routinely running configurations of 
REGEN with 8,760 hourly 
resolution for expansion decisions 

In current production 
code (inclusion varies by 
application) 

Hydrogen production Adding more pathways for 
creating/using hydrogen 

Early 2022 
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Appendix B: Policies and Incentives in 
Model Current Policies 
(Reference) Scenarios 

The four participating models in this study reflect a range of on-the-books state 
and federal policies and incentives that impact the electric sector and energy 
system.54 

U.S. state and regional policies generally include: 

 State-level renewable portfolio standards, including technology-specific 
carveouts for solar 

 State-level clean electricity standards with state-specific definitions of 
qualifying resources 

 State-level offshore wind mandates 

 State-level energy storage mandates 

 State-level Zero-Emissions Credit (ZEC) policies for existing nuclear power 
plants 

 California AB32, represented as a carbon tax based on projections by the 
California Air Resources Board 

 Regional Greenhouse Gas Initiative (RGGI) cap-and-trade system 

 Other state-level CO2 caps in the electric sector and economy-wide 

 State-level constraints on new nuclear capacity 

  

 
54 Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was 
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector 
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced 
nuclear) were not included in these scenarios. Scenarios also do not include economy-wide or 
electric sector targets from the updated U.S. Nationally Determined Contribution. 
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Federal policies and regulations generally include: 

 Current Clean Air Act Section 111(b) new source performance standards for 
power plants 

 Production tax credits for wind 

 Investment tax credits for solar 

 45Q tax credits for CO2 capture 
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