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Abstract

Long-term energy system models—including electric sector capacity
expansion models—are widely used tools for informing planning,
technology assessment, and policy analysis. Recent decarbonization
goals and rapid technological change have increased the need to
appropriately represent economic characteristics and technical details
of energy system resources, including variable renewable energy,
energy storage technologies, carbon-capture-equipped capacity, and
nuclear energy.

Nuclear power represents about 20% of electricity generation and
50% of carbon-free electricity in the United States as of 2021.
However, there are many perspectives on the role of existing and new
nuclear in the future U.S. energy system, which is reflected in the
broad range of potential contributions reported in the literature.

This project aims to understand how issues central to nuclear energy
are represented in long-term energy models. Building on earlier
collaborations that focused on variable renewable energy and energy
storage, this project convenes four modeling teams that use national-
scale long-term energy system models from the Electric Power
Research Institute, the National Renewable Energy Laboratory, the
U.S. Energy Information Administration, and the U.S.
Environmental Protection Agency to share methods and data, update
models, run coordinated scenarios, and identify research needs.
Improving tools can provide more insightful analyses and ensure that
methods are more transparent.

Guided by inter-model comparisons and intra-model scenario
analyses, we investigate how model structures and input assumptions
impact projections, refine model representations of nuclear energy,
and communicate findings to the research community and consumers
of modeled scenario results. A greater understanding of model
structures, assumptions, parameters, and limitations can improve
model capabilities to effectively represent interactions under a variety
of market and technology assumptions.



This report synthesizes our collective modeling experience, reviews
the literature, and highlights research gaps—which results in
recommendations on approaches for representing nuclear energy in
long-term energy system models. Such comparisons can identify
robust findings and critical assumptions impacting model
projections.

Nuclear energy’s role in forward-looking scenarios varies due to
differences in scenario assumptions, model structure, and regional
characteristics. The scenario design assumptions that have the
greatest influence on nuclear deployment are policies and
technological cost. Details about a policy’s stringency, timing, and
technology eligibility influence decarbonization outcomes and
nuclear deployment. Higher shares of nuclear generation occur in
scenarios and regions with favorable:

= Policy conditions: Deeper decarbonization targets and
restrictions on other low-emitting options (e.g., constraints on
carbon removal and carbon capture)

* Regional economic characteristics: Regions with supporting
policies as well as lower wind and solar resource quality

* Financial assumptions: Lower nuclear capital costs and lower
discount rates

= Combinations of these factors

Nuclear power can complement extensive additions of wind, solar,
energy storage, and other resources by providing firm, zero-emissions
electricity. The range of nuclear deployment in forward-looking
scenarios highlights uncertainty moving forward, but it also stresses
the importance of significant nuclear technology advancement and
electric sector policies.

Overall, these findings point to the important roles that underlying
model structure and input assumptions play in projections for nuclear
energy in mitigating climate change and lowering multiple air
pollutant emissions. The four participating models have undertaken a
variety of nuclear-specific modifications and broader model updates
over the course of this project, which have altered model outcomes
and improved insights.
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Model complexity can strongly impact projected electric sector
investments and costs, and many considerations (e.g.,
parameterization of solar, wind, and storage technologies and
temporal resolution) have more significant impacts with deeper
decarbonization. Levelized-cost metrics are incomplete for evaluating
the relative competitiveness of system resources, which requires
detailed energy modeling to assess. The report also identifies several
model development priorities and data needs related to nuclear and
broader energy systems, including representing hybrid systems that
support electric and non-electric applications, capturing integration
across systems, linking modeling tools of different resolutions, and
several others.

Keywords

Capacity expansion modeling
Decarbonization

Energy systems modeling
Model intercomparison
Nuclear energy

Power sector economics
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Section 1: Introduction

E—_

Nuclear power is 20% of

electricity generation in the U.S.

and 50% of low-carbon
electricity.

Background: Nuclear Energy in Long-Term System Models

Capacity expansion models (CEMs) are tools for informing strategies to meet
tuture electricity and energy needs under a range of policy scenarios, technology
options, and market conditions. However, CEMs vary significantly in their
coverage, structure, and input assumptions. As a result, model projections for
similar policies can differ—sometimes dramatically. Such differences can support
alternate strategies for research, development, and demonstration (RD&D); alter
assessments of existing and proposed policies; and shape decisions by
governments and industry. Models can influence the world they seek to
understand and consequently merit detailed examinations and comparisons.

Understanding model differences and output drivers is important for improving
model capabilities and resulting insights, providing context for interpreting
results, and better informing users of model-based studies. Working with teams
who create, update, and apply these models—as well as subject matter experts
from national laboratories, industry, and research community—has led to a
forum in which experts can discuss modeling assumptions and challenges,
including earlier efforts focusing on variable renewables and energy storage (Cole,
et al., 2017; Bistline, et al., 2020) as well as this collaboration on nuclear energy.

Nuclear power currently represents about 20% of electricity generation in the
United States, which makes it the largest source of low-carbon electricity—
roughly half of emissions-free electricity and more than solar, wind, and
hydropower generation combined in 2020 (EIA, 2020a). Many decarbonization
studies see nuclear energy and other low-emissions firm technologies as
complements to renewable energy technologies; in particular, their always-
available power can fill in weekly and monthly gaps when wind and solar output
are low, which can help to lower decarbonization costs (Baik, et al., 2021; Brown
and Botterud, 2021; Bistline and Blanford, 2020; Jenkins, Luke, and
Thernstrom, 2018; Sepulveda, et al., 2018). However, there are many
perspectives on the future role of nuclear in the U.S. energy system, which is
reflected in the broad range of nuclear-related scenario outputs in the literature
(Bistline and Blanford, 2021; Bistline, et al., 2018) and in scenarios from this
study (summarized in Figure 2-1). Although it can provide virtually emissions-
free! electricity and heat with a relatively small land footprint, nuclear energy also

! Nuclear has among the lowest lifecycle emissions intensity of generation (i.e., including fuel
production and material needs), even among clean electricity resources (NREL, 2021; Pehl, et al.,
2017).
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raises potential concerns about safety, cost, waste disposal, and non-proliferation.
Advanced nuclear designs offer potential enhancements around these issues, but
there is uncertainty about how these factors could shape nuclear energy’s
contribution.

Model intercomparison studies such as this one can identify robust findings
across models, transfer learnings, and isolate critical assumptions that impact
projections. Such coordinated multi-model exercises are useful in understanding
differences in data, assumptions, methods, and outputs and have been used in a
range of fields such as climate science and energy modeling (Weyant, 2017).
Through coordinated scenario analysis, model intercomparisons can highlight
which conclusions appear to be robust and which are more uncertain, which can
guide future research. These exercises help to determine how differences in
model outputs may reflect differences in model structure (e.g., temporal
resolution, technology choice), input assumptions (e.g., technology cost and
performance), and scenario specifications.

In this study, different scenarios and their associated technology and policy
assumptions are used to evaluate model behavior. They do not reflect policy or
market expectations of the modelers or their respective organizations. While
these results may provide insight into policy and market behavior, the scenarios
and report itself are not designed or intended to be interpreted as a policy
development exercise.

Summary of Motivating Questions and Findings

What is the potential role of nuclear energy in the U.S. electricity mix by 20502 How
does this role depend on technology and policy uncertainties?

The model intercomparison in Section 2 suggests a broad range of installed
nuclear capacity across models and scenarios—ranging from 36-92 GW in 2030
and 2-329 GW in 2050 across all of the policy and technology scenarios in the
analysis (Figure 2-1). With harmonized technology cost assumptions, the range
of nuclear capacity narrows to 83-92 GW in 2030 and 63-120 GW in 2050.

Future nuclear cost trajectories and CO; policy assumptions have significant
impacts on installed nuclear capacity. Decarbonization targets generally help to
retain existing nuclear capacity but may not be enough to bring new nuclear
capacity online in the absence of significant cost declines. Models show sizable
nuclear additions in scenarios that layer power sector decarbonization policy with
low-cost assumptions for new nuclear capacity. With these low costs, total
installed nuclear capacity including existing plants ranges from 76-187 GW by
2050 with current policies, which increases to 285-329 GW under a zero CO;

policy in the electric sector.

12>



How much do models vary in their projections for nuclear energy? How does this
variation compare with other technologies?

Using default model assumptions,” nuclear generation shares in 2050 vary across
models from 7-13% in the current policies scenario and 10-17% in the 80% CO,
policy scenario (Figure 2-3). This variation across models is similar to other
generation technologies—natural gas shares span 28-61% in the current policies
scenario (9-23% with an 80% power sector CO; cap), and wind and solar shares
span 19-48% in the current policies scenario (53—-69% with an 80% power sector

CO; cap).
How does harmonizing input assumptions impact model projections?

Harmonizing technology cost assumptions narrows the variation in 2050 nuclear
generation shares across models from 7-13% to 10-13% under current policies
and from 10-17% to 12-14% under a power sector CO, policy with 80%
reductions from 2005 levels (Figure 2-3). However, harmonizing discounting
and financing assumptions can broaden this range to 0-13% under current
policies and 6—14% under the 80% CO; policy, a difference largely due to
changes in existing nuclear retirements in REGEN (which is investigated in
detail in Section 7). These comparisons reinforce that differences across models
play critical roles in projections and highlight the value of model intercomparison
studies to inform planning and policy, as single-model studies may understate
potential variation in outputs of interest.

Which model features and assumptions have the largest influence on projections for
installed nuclear capacity?

Using inter-model comparisons (Section 2) and intra-model scenario analyses
(Sections 4 through 7), the report shows how models vary in their treatments of
key considerations related to nuclear energy and other electric sector resources,
which can affect insights about their future roles. Key assumptions include CO;
policy details (Figure 2-1 and Figure 4-4), cost and performance of new nuclear
and other technologies (Figure 2-1), operations and maintenance costs of existing
nuclear (Figure 5-2), and discounting/financing (Figure 7-4).

Differences in projections are due to a combination of these input assumptions,
model structure (e.g., temporal resolution in Figure 7-1), and algorithms (e.g.,
age-based algorithms to represent capital expenditures for existing nuclear
plants). In all cases, having transparent and public data are important for
validating and comparing across models and against observed trends, as
appropriate.

2 Default assumptions include technological cost and performance projections and policies that
were in place when the modeling was completed in 2021. Section 2 discusses scenario assumptions
in detail, and Appendix B summarizes policies included in all scenarios.
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Long-term energy system
models have large influences
on planning and policy
analysis.

This report discusses several additional areas for future work that may impact
model projections, including representing hybrid systems and capturing
integration across systems in greater detail, examining economy-wide net-zero
scenarios, as well as developing methods for quantifying and incorporating
climate impacts and resource adequacy.

What Are Long-Term Energy and Electric System Models?

Long-term energy system models—including CEMs of the electric sector—are
computational tools that are created and applied by a range of organizations to
answer questions and inform decisions. These models can influence planning and
policy analysis, including directly informing policy-makers at federal, state, and
local levels. They can inform government and private sector decisions by
supporting technology assessment, policy analysis, and RD&D prioritization.

Electric sector CEMs capture both investments and operations over multi-
decadal time horizons. The coupling of these decisions makes these models
complex,’® and since there is typically a focus on investments, CEMs make
approximations about the representation of operations relative to other model
types such as operational simulation models. These models are built to represent
the competition among existing and new generation, transmission, and energy
storage assets, where the typical goal is to find least-cost portfolios to balance
demand across all model regions subject to technical, market, and policy
constraints. These constraints include serving electric loads, meeting operating
and planning reserve requirements, satisfying emissions policies, and other
requirements specified by the user. Model decisions can include both investments
in new resources and retirement of existing resources. The geographical scope can
be regional, national, or international.

The report focuses on national-scale models that consider the evolution of the
U.S. energy or electric sector through at least 2050 given their prevalence in
planning and policy analysis, though many findings are transferrable to other
contexts. Details of the models used in this work are presented in Section 3.

The general aim of analyses performed by long-term energy systems and electric
sector models is understanding and insight to guide decisions, rather than specific
numbers or predictions of particular outcomes (Huntington, Weyant, and
Sweeney, 1982). All models are approximations of the complex systems they
represent and make a range of simplifications to render them tractable. Model
decisions involve necessary tradeoffs between the degree of simplification to
ensure tractability and the accuracy of the representation (EPRI, 2021; Merrick
and Weyant, 2019; Saltelli, 2019). CEMs are better suited for answering some

questions (e.g., impact of capital costs or policy design on the economics of

3 These large optimization models are sometimes linked to or embedded in broader energy systems
(or economy) models to capture important interactions.
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This report synthesizes findings

from the two-year collaborative
project among DOE, EIA, EPRI,
INL, NREL, and EPA.

nuclear and renewable energy technologies) and less well suited for others (e.g.,
siting questions for specific plants, value of flexibility in preventing outages when
another generator trips offline).

Project Objectives

The goals of this collaborative research project are:

* To understand how issues central to nuclear energy are modeled in long-term
capacity expansion models;

* To investigate how model structures and input assumptions impact
projections for the roles of existing and new nuclear power plants through
inter- and intra-model comparisons under a range of technology, market, and
policy conditions;

» To identify areas for refining the representation of existing and new nuclear
energy options (and, to the extent feasible, implement these changes and run
diagnostic tests to understand how these features could impact projections);
and

* To communicate findings to the research community and consumers of
model outputs.

We identify technical issues associated with model representations of nuclear
energy and other system resources and develop observations from the literature
on best practices.

Improving these tools can improve insights, helping stakeholders to improve
their understanding of the potential role of nuclear in future energy systems. A
greater awareness of model structures, assumptions, parameters, and limitations
can improve the models’ capability to effectively represent market interactions
under a variety of market and technology assumptions, enhancing the ability of
decision-makers to evaluate the value of new and existing nuclear generation.

Project Participants

Representing nuclear energy in long-term system models led to the current
collaboration to assess current practices, share data and methods, and identify
tuture research needs. The study is patterned after recent collaborations among
EIA, EPRI, NREL, and EPA to assess and compare the model approaches,
structures, and underlying assumptions that impact model outputs for variable
renewable energy (Cole, et al., 2017) and energy storage technologies (Bistline, et
al., 2020). The four participating models include:

» Integrated Planning Model (IPM) from the U.S. Environmental Protection
Agency (EPA)

* National Energy Modeling System (NEMS) from the U.S. Energy
Information Administration (EIA)
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This report surveys the
treatment of key modeling
issues for nuclear energy and
provides a scenario-based
comparison fo explore nuclear
drivers.

= Regional Energy Deployment System (ReEDS) from the National
Renewable Energy Laboratory (NREL)

* Regional Economy, Greenhouse Gas, and Energy (REGEN) from the
Electric Power Research Institute (EPRI)

Existing Literature

There are multiple surveys on best practices for modeling other technologies such
as variable renewables and energy storage, where nuclear energy is mentioned but
is not the focus (Bistline, et al., 2020; Cole, et al., 2017). The only model
intercomparison study focusing on nuclear-related outputs is a paper by Kim, et
al. as part of the Energy Modeling Forum (EMF) 27 study (Kim, et al., 2014).
However, that analysis used global integrated assessment models instead of
detailed CEMs, and the assumptions do not reflect technological developments
over the past decade. Other model intercomparisons include nuclear energy as a
candidate technology but do not focus on nuclear-related drivers or technology

scenarios (Baik, et al., 2021; Mai, et al., 2018).

The existing literature also includes sensitivity and scenario analysis conducted to
better understand the role of nuclear in single-model frameworks, especially in
decarbonization scenarios (Baik, et al., 2021; Zhang, et al., 2021; Bistline and
Blanford, 2020; Bistline, James, and Sowder, 2019; Sepulveda, et al., 2018).
These scenarios generally indicate large roles for variable renewable energy and
battery storage technologies, but least-cost decarbonization portfolios often
include low-emitting firm* technologies such as nuclear, carbon-capture-
equipped capacity, biomass, geothermal, hydropower, and low-carbon gas-fueled
plants (e.g., hydrogen).

The current report offers two unique contributions to the literature. First, we
survey the treatment of key modeling issues for nuclear energy in long-term
system modeling. Second, we provide a scenario-based intercomparison to
investigate how different input assumptions alter model outputs related to
nuclear energy for each of the included models.

Report Structure

This report is organized as follows. Following the introductory section, Section 2
discusses scenarios and results for a coordinated model intercomparison analysis.
Section 3 provides high-level overviews of the four participating models.

Sections 4-7 of the report describe key modeling issues for incorporating nuclear
energy into long-term energy systems analysis. Each provides a summary of
approaches for a specific issue, related literature, intra-model comparisons, and
research gaps. Instead of making prescriptive suggestions about appropriate
model features, these sections emphasize that distinct considerations are

* Firm resources are “technologies that can be counted on to meet demand when needed in all
seasons and over long durations (e.g., weeks or longer)” (Sepulveda, et al., 2018).
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important for different research questions and that navigating these tradeoffs
requires judgment from modeling groups that accounts for their unique
circumstances. Model development decisions depend on the analysis type;
motivating questions; energy system characteristics; and available staff, funding,
and computational resources for development and analysis (Merrick and Weyant,
2019; Saltelli, 2019).

Section 8 recaps insights from the report and describes opportunities for

additional research. Appendix A discusses model-specific enhancements that
were undertaken during this project.
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Section 2:

Model Intercomparison

Summary

To understand impacts of different input assumptions and model structures,
this section summarizes results of a model intercomparison, where the four
participating models ran scenarios with native and harmonized inputs across
a range of future technology and policy assumptions.

Results suggest that installed nuclear capacity can span a broad range across
models and scenarios (Figure 2-1). Installed nuclear capacity ranges from
36-92 GW in 2030 and from 2-329 GW in 2050. With harmonized
technology cost assumptions, the range of nuclear capacity narrows to

83-92 GW in 2030 and 63-120 GW in 2050. Under current policies,
differences in nuclear FOM costs and capital costs for other generation
technologies largely explain the range of nuclear capacity retirements.
Differences across models in the generation mix and capacity deployment are
due to input assumptions about technological cost, financing, and demand.

Results across models indicate the pronounced impact that stringent power
sector carbon policies could have on the future U.S. electricity supply mix.
Under a policy that reduces electric sector CO, by 80% from 2005, there are
several robust findings across models, including keeping most existing
nuclear capacity online; lowering coal generation significantly; and deploying
considerably more wind, solar, and energy storage (though magnitudes vary
by model). The role of nuclear increases under more stringent climate policy
scenarios—decarbonization targets generally help to retain existing nuclear
capacity but may not be enough to bring new nuclear capacity online in

the absence of significant cost declines. In scenarios that layer a deep
decarbonization policy with low capital cost assumptions for new nuclear
(moving from harmonized assumptions of $5,000/kW by 2050 to
$2,000/kW), models show significant nuclear capacity additions, which

are concentrated in the U.S. South and West.

Zero CO; emission scenarios in the electric sector entail additional wind,
solar, energy storage, hydrogen, and nuclear capacity, though shares vary by
model. These scenarios generally indicate large roles for variable renewables
and battery storage, but their variability and energy-limited discharge mean
that least-cost decarbonization portfolios often include other technologies,
especially zero- and low-emitting firm technologies such as nuclear, carbon-
capture-equipped capacity, biomass, geothermal, hydropower, and zero-

carbon gas-fueled plants (e.g., hydrogen).
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Figure 2-1

Total installed nuclear capacity by year and electric sector CO; policy scenario across all
models and technology sensitivities. Policy scenarios include a current policies reference

(“Ref”) and “80%" or “100%" reductions in electric sector CO, by 2050 from 2005 levels.

* Assumed cost reductions and financing parameters for new nuclear have the
greatest influence on the range of simulated nuclear additions under
decarbonization scenarios. Model responses to alternate policy and
technology assumptions vary across models. Differences in projected nuclear
shares are due to differences in underlying assumptions and model structures,
including retirements of existing reactors, the competitiveness of future
technologies, and various model features described in other sections of this
report.

*  While these scenarios should not be interpreted as predictions, they are
informative for understanding differing model assessments of the relative
competitiveness of nuclear energy under a range of policy and technology
conditions. The simulated magnitude of nuclear generation across scenarios
could also provide insights for fuel, supply chain, and planning discussions.

Overview

Later sections of this report describe how the representation of nuclear energy
varies across models. To understand impacts of these differences, this section
summarizes infer-model comparisons, where all four participating models (IPM,
NEMS, ReEDS, and REGEN) run the same scenarios with a common set of
input assumptions and compare outputs of interest. These comparisons
complement qualitative comparisons and infra-model comparisons in later
sections, where a single model runs a series of diagnostic or scenario-based
experiments.
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Comparing outputs across
models, technology
assumptions, and policy
scenarios informs model
understanding, interpretation,
and development decisions.

These diagnostic scenarios can inform model understanding, interpretation, and
development for a range of stakeholders, and many insights may be able to
inform decision-making. These policy and technology scenarios are designed to
span a wide (but incomplete) range of futures to observe model behaviors for
nuclear capacity expansion, retirement, and operation under different
environments. While the results in this section can help inform discussions
related to U.S. energy policy and RD&D priorities for nuclear power, they do
not represent explicit policy analysis, recommendations, or critiques of ongoing
discussions.

The results of this analysis should not be interpreted as predictions or indications
of technology, market, or policy preferences. Instead, their primary role is to offer
two primary forms of comparison—similarities and differences across the four
participating models for a given scenario, and comparisons across technology and
policy sensitivities for a given model. These comparisons offer insights into the
model features and parameters that have the greatest influence on the simulated
role of nuclear power plants across a range of future scenarios.

Scenarios

Scenarios in the model intercomparison include different combinations of
assumptions about policy and technologies. For each scenario, models determine
the least-cost mix of generation, energy storage, and transmission assets that can
meet market and policy requirements through 2050. Later sections describe key
differences in model structure and assumptions, which were not harmonized for
these scenarios, including annual and peak demand assumptions, temporal
resolution, spatial aggregation, transmission costs, foresight, and many others.

There are three policy-related sensitivities:

= Reference (“Current Policies”): This scenario reflects all on-the-books state
and federal policies and incentives.’ The goal of this scenario is to estimate
how existing and new nuclear technologies (e.g., Gen III+, Gen IV, and
SMR designs) could compete on a status quo economic and policy basis.
State and regional policies include renewable portfolio and clean electricity
standards, energy storage mandates, ZEC policies, and CO, caps/taxes both
in the electric sector (Regional Greenhouse Gas Initiative, Colorado) and
economy-wide (California) if models can represent these policies. Federal
policies and incentives include production and investment tax credits with
phasedowns, 45Q_tax credits, and Clean Air Act § 111(b) CO, performance
standards. Appendix B provides a more detailed list of U.S. federal and state

policies represented in this scenario.

5 Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced
nuclear) were not included in these scenarios. Scenarios also do not include economy-wide or
electric sector targets from the updated U.S. Nationally Determined Contribution.
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The “Deep Decarbonization”
scenarios explore nuclear’s
competitiveness in relation fo
other low-emitting
technologies.

* Deep Decarbonization (80-by-50 and 100-by-50): The goal of the deep
decarbonization scenarios, which reflect a policy push to lower CO,
emissions, is to explore the competitiveness of nuclear energy in relation to
other low- and zero-COs; technologies.® The national power sector cap
begins at current levels and linearly decreases to meet 80% and 100% CO,
reductions by 2050 (relative to 2005 levels), as shown in Figure 2-2. These
cap-and-trade policies are implemented as national caps with “where”
flexibility (i.e., free national trade), no banking or borrowing, and no offsets
or alternative compliance payments.” The national CO, cap is implemented
alongside the federal, regional, and state policies in the Reference (“Current
Policies”) scenario.

3,000

2,500

2,000 Historical

1,500

1,000
Deep Decarbonization
100-by-50 Scenario

Power Sector CO, Emissions (Mt-CO,/yr)

80% Below 2005 Levels

oo

0
2000 2005 2010 2015 2020 2025 2030 2035 2040 2045

Figure 2-2
Historical U.S. electric sector emissions and proposed cap trajectories for the Deep
Decarbonization scenarios.

The 100% by 2050 scenarios represent a transformational shift in the U.S.
electricity supply. As a result, only the REGEN and ReEDS models were able to
run these scenarios. Note that some mitigation options that could play important
roles in achieving such a transformational change were not considered in these
scenarios, including negative emissions technologies (such as direct air capture or
bioenergy with carbon capture and sequestration) and demand-side approaches.

¢ Note that COz caps are more technology-neutral emissions reduction approaches relative to
technology-specific tax incentives, mandates, or portfolio standards that only include a subset of
electric sector resources.

7 The NEMS model implemented a carbon tax proxy instead, which was designed to achieve a
similar level of emissions reductions.
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These policy scenarios are run for different technology assumptions:

Native Assumptions: These technological assumptions use all modeling
teams’ default assumptions for technology cost and performance. Native
capital costs over time are compared in Figure 6-1. The goal of this scenario
is to understand the competitiveness of existing/new nuclear technologies,
using the models as they are currently parametrized.

Harmonized Costs Only: These scenarios align costs only in order to
quantify the relative magnitudes of cost assumptions and
discounting/financing in driving model outputs. Here, the cost and
performance assumptions from the Harmonized Technology Assumptions
section are used, but each model uses its native assumptions about financing
and discounting.

Harmonized Assumptions: In this scenario and where existing model
structure allows, all models use a common set of input assumptions for
capital costs, FOM costs, discounting, and financing. The goal is to evaluate
the role of input assumptions versus model structure in projections of nuclear
energy in the power sector. Specific assumptions include:

- Cost and performance assumptions for new investments: Use NREL’s
2020 Annual Technology Baseline (NREL, 2020), due to its public
availability and transparency. All costs are exogenous over time (i.e.,
endogenous technological learning is turned off in all models). Native
capital costs by technology over time are shown in Figure 6-1, and
assumptions from ReEDS are used for the harmonized values.

- FOM costs for existing nuclear: FERC Form 1 FOM plus EUCG
maintenance capital costs are assumed. A comparison of native FOM
costs are shown in Figure 5-1, and assumptions from REGEN are used
for the harmonized values, which do not change over time.

- Financing: Discount rate (Weighted Average Cost of Capital, real dollar
terms) of 3% and capital recovery period (economic lifetime) of 30 years
for all investments (including all nuclear and non-nuclear generation
options). Native and harmonized discount rates and economic lifetime
assumptions are shown in Figure 7-2 and Figure 7-3, respectively.

- Construction time: Construction time for SMRs is assumed to be
5 years, while other new nuclear capacity is assumed to be 10 years.

Harmonized Assumptions with Low-Cost Nuclear: Another scenario uses
the same harmonized assumptions from above, but considers much lower
cost assumptions for new nuclear capital costs and existing nuclear FOM
costs. Although new nuclear capacity is available in each model and scenario
beginning in 2028 or 2030, this scenario adjusts new nuclear costs to
$2,000/kW beginning in 2035 (Table 2-1).® This stylized sensitivity

examines how much lower costs for new nuclear impact deployment

8 This stylized trajectory is informed by breakeven costs from the analysis in Bistline, James, and

Sowder (2019).
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outcomes under different policy conditions. Additionally, FOM costs for
existing nuclear are 25% lower than the reference values, assuming plant
modernization can lower net costs (including modernization costs”).

* Harmonized Assumptions with Nuclear Carveout: In addition to
harmonizing input assumptions, this scenario harmonizes model outputs for
new nuclear additions over time, which illustrates how a nuclear capacity
carveout impacts outputs of interest across models. This scenario enforces a
national-level capacity'® constraint in which total installed new nuclear
capacity meets the following stylized glidepath: 5 GW by 2035, 15 GW by
2040, 30 GW by 2045, and 50 GW by 2050.

Table 2-1
Overnight capital cost assumptions for new nuclear power plants ($,/kW) for the
“Harmonized” (NREL, 2020) and “Low Costs” sensitivities

Sensitivity 2020 2035 2050
Harmonized $6,200/kW $5,600/kW $5,000/kW
o Cads $6,200/kW $2,000,/kW $2,000,/kW

The following assumptions are harmonized across all scenarios:

*  Fuel Prices: These scenarios use EIA’s Annual Energy Outlook 2021
“Reference” fuel prices for natural gas, coal, petroleum, and uranium. Fuel
prices are typically represented as inelastic.™

=  Carbon Removal (“Negative Emission”) Technologies: All scenarios assume
that bioenergy with carbon capture, direct air capture, and other negative-
emission technologies are not included. The intra-model sensitivity in
Section 4 shows how the availability of carbon removal impacts nuclear and
other technology investments under deep decarbonization scenarios.

* Retirements: All scenarios incorporate a list of announced retirements for
all capacity types (e.g., coal, nuclear, and gas), and assume that endogenous
economic retirements can occur in any period. Models use an exogenous
assumption that all remaining nuclear plants can operate for 80 years if
economic (which is represented as an upper bound constraint).

? Information about nuclear plant modernization can be found in the EPRI Nuclear Plant
Modernization Toolbox (https://www.epri.com/NuclearPlantMod) and guide to plant
modernization research (https://www.epri.com/research/programs/111344). For an example of how
modernization can impact existing nuclear plant operations, see the modernization white paper
analysis in US-REGEN (Bistline and Austin, 2019).

10 Since NEMS does not represent capacity constraints, this scenario is approximated with a
nuclear-only generation share requirement.

1 Natural gas prices in the ReEDS scenarios use elastic regional supply curves which are rooted in
fuel price and consumption projections from the AEO2021 “Reference” case.
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Differences in technology cost
and financing assumptions
have a strong influence on the
future electric sector technology
mix.

Several assumptions are not harmonized for this study, including the long-term
growth of energy services, electricity demand, and hourly load profiles. Impacts
of these factors are left for future work.

Results: Trends Across Technology Sensitivities

Figure 2-3 presents the national installed capacity and generation' results in
2050 from across the technology sensitivities under the Current Policies scenario.
Looking first at scenarios with Native cost assumptions, all models indicate a
prominent role for solar, wind, and natural-gas-fired technologies. However,
there are modest differences in generation and capacity shares across models.
For example, the Native ReEDS mix involves a greater role for energy storage,
which primarily takes the form of batteries. The Native REGEN mix indicates
significantly less installed capacity due to lower VRE deployment (i.e., with
lower capacity factor wind and solar buildouts) and peak load. Note, however,
that the total electricity demand is similar across models—as indicated by the
similar height of the generation mix in the bottom panel of Figure 2-3—and it
is met via higher utilization of natural-gas-fired generation in REGEN.

12'The generation panel does not include net or gross contributions from energy storage. The
“Hydrogen+Other” category includes hydrogen, biomass, municipal solid waste, landfill gas,
imports, and fuel cells.
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Figure 2-3
2050 capacity and generation across the technology sensitivities by model under reference
(“current policies”) scenarios.
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Aligning input cost assumptions
reduces differences across
models in overall generation
and capacity results.

The magnitude of nuclear power plant retirements by 2050 varies strongly across
models with Native cost assumptions: ReEDS includes almost no nuclear
retirements (beyond announced retirements), NEMS and REGEN retire
approximately 30 GW of existing nuclear capacity, and IPM retires about

50 GW. Comparing the Native and Harmonized Costs scenarios indicates that
much of this variation can be explained by disparate capital cost assumptions for
all technologies (Figure 6-1) and nuclear FOM costs (Figure 5-1). In other
words, harmonizing these input cost assumptions brings greater agreement
among the nuclear retirements for most of models, such that nuclear retirements
by 2050 differ by 27 GW across models with harmonized cost assumptions
(compared to 43 GW with native assumptions)."

Overall capacity and generation mixes across models come into closer agreement
in the three technology sensitivities that involve harmonized cost and financing
assumptions: the Harmonized, Low-Cost Nuclear, and Nuclear Carveout
sensitivities (Figure 2-3, rightmost columns). This growing similarity suggests
that differences in the native cost and financing assumptions can explain many of
the apparent discrepancies in model projections under Current Policies scenario.
Yet differences remain in terms of the role of nuclear power across these
technology sensitivities. For example, adopting the harmonized financing
assumptions brings REGEN’s total installed capacity in line with the other
models, but it results in the retirement of nearly all nuclear and coal capacity.
This visible difference is primarily driven by the harmonized discount rate (3%),
which is significantly lower than REGEN’s native discount rate (7%).'* More
modest changes in the other model solutions reflect that their native discount
rates are more similar to the harmonized value, as shown in Figure 7-2.

Under the “Low-Cost” nuclear scenario, the very low-cost assumptions for new
nuclear are sufficient to drive new deployment in each model: NEMS, ReEDS,
IPM, and REGEN deploy 100 GW, 25 GW, 15 GW, and 3 GW of new
nuclear capacity by 2050, respectively, in the absence of new power sector
policies. Models with more competitive natural gas generation in the reference
tend to have lower nuclear deployment in this low-cost scenario (and vice versa).
As shown in Figure 2-4, new nuclear deployment is primarily concentrated in the
South and West Census regions due to lower wind and solar resource quality and
higher gas prices in the South and supporting state policies in the West. This
new nuclear capacity primarily displaces additions of natural gas, wind, and solar
capacity in these regions (and, to a lesser extent, energy storage).

13 The intra-model comparison using IPM in Section 5 illustrates how different nuclear FOM cost
assumptions can alter deployment projections.

4 Intra-model comparisons in REGEN illustrating the impacts of different discount rates are
discussed in Section 7.
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Existing and new nuclear tend
to run with high capacity
factors (90% to 94% annually)
across scenarios and models.
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Figure 2-4

Regional distribution of nuclear capacity (existing and new) in 2050 for all combinations of
models and technology sensitivity assumptions under reference (“current policies”) scenarios.
Regional definitions are based on U.S. Census regions.

The final technology sensitivity explores a Nuclear Carveout scenario,
culminating in 50 GW of new nuclear capacity by 2050, which is a binding
constraint across all models and policy scenarios. The same regional and
technology displacement trends generally hold as in the Low Costs scenario.
A unique response occurs in the REGEN solution, which retires the existing
nuclear fleet in conjunction with adding 50 GW of new nuclear capacity,

as mandates for this new dispatchable capacity lower market prices and
consequently the revenues for existing generators with similar operational profiles
(hence, earlier retirements of existing nuclear). This value deflation is akin to
decreasing market value associated with other technology mandates in the
literature including for variable renewables (Bistline, 2017).

Finally, combining the capacity and generation results provides insights into the
utilization (or capacity factors) for nuclear technologies. Nuclear power’s low
variable costs make it well-suited for higher capacity factor operations, which
are consistently high across models and scenarios. Each model solution includes
modest seasonal differences in nuclear capacity factors, due to a combination

of seasonal changes in load and forced outages. However, despite the potential
flexibility of these plants (see “Dispatchability and Flexibility” in Section 5), the
annual average across all models and scenarios with Current Policies is between

90% to 94%.

< 2-10>»



Results: Effects and Interactions of Policy Sensitivities

This section explores results where technology sensitivities are layered with
hypothetical power sector carbon policies. All models explored a set of “80% by
2050” policy sensitivities, in which power sector CO, emissions linearly decline
to reach 80% reductions by 2050 from 2005 levels (Figure 2-2). REGEN and
ReEDS further explored a set of “100% by 2050” sensitivities.

As before, discussion in this section is primarily focused on comparing results
across models, to understand similarities and differences. To avoid repetition
with the previous section, comparisons here are typically rooted in incremental
effects of the policy dimension across models, as well as interactions between
technology and policy assumptions. Unless otherwise stated, the same trends
were observed in terms of variation across technology sensitivity assumptions.

“80-by-50" Policy Results

Layering an “80-by-50" power sector policy with the previously described
technology sensitivities has significant impacts on the least-cost mix of
generation, storage, and transmission investments through 2050 (Figure 2-5). In
general, the policy signal increases the value of low- and zero-carbon generation
technologies. But while there are commonalities among the model responses,
there are also noticeable differences across models and technology sensitivities.

«2-11 >



S

An “80-by-50" electric sector
policy has significant impacts
on the least-cost mix of
generation, storage, and
transmission in 2050.

S

Under an 80-by-50 CO; cap,

models align in keeping
existing nuclear capacity,
lowering coal capacity, and
deploying more renewables
and energy storage.
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Figure 2-5

2050 capacity and generation for all models and technology sensitivities under an 80% by
2050 power sector policy.
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e

Nuclear plant flexibility is
employed more under deeper
decarbonization scenarios,
though annual capacity factors
are still high (between 80%
and 94% across models).

Under Native cost assumptions, there are several common responses to the 80%

CO; policy across models:

* Avoiding nuclear power plant retirements that were present under the
Current Policies scenarios. Existing nuclear capacity increases from the
reference to the 80-by-50 scenario: IPM from 47 to 64 GW, NEMS from
70 to 88 GW, REGEN from 69 to 85 GW. ReEDS installed nuclear
capacity is 89 GW for both scenarios.

* Retiring a large portion of the existing coal fleet and significantly reducing
coal generation.

» Increasing deployment of wind, solar, and energy storage (though
magnitudes vary across models), which leads to higher installed system

capacity.

These high-level trends generally align with the existing deep decarbonization
literature for the U.S. power sector (e.g., Jenkins, Luke, and Thernstrom, 2018;
Bistline, et al., 2018). NEMS, REGEN, and ReEDS retain nearly all existing
nuclear capacity, whereas IPM retires nearly 30 GW of existing nuclear capacity.
All four models see a growing role for solar, wind, and energy storage under the
hypothetical 80-by-50 policy, which results in an increase in total installed
capacity (Figure 2-5) compared to the Current Policies scenarios (Figure 2-3).

In terms of nuclear capacity factors, all four models see growing value in
employing the flexibility (or ramping) options for nuclear power capacity under
80-by-50 scenarios (Figure 2-6). This response is generally modest (one to two
percentage point reductions across models), though changes in annual capacity
factors are larger for REGEN (moving from 93% to 83% between the Current
Policies and 80-by-50 scenarios).” Nuclear power plants reduce their capacity
factors and draw on their flexible capabilities under higher variable renewable
deployment. The value of flexible resources more broadly—including energy
storage, demand response, dispatchable fossil-fueled capacity, hydro, nuclear, and
others—increases in scenarios with higher wind and solar penetration (Gils, et
al., 2022; Bistline, 2019; Jenkins, et al., 2018b). Lower capacity factors for
nuclear power plants are due to reduced utilization of nuclear in non-summer

months (Figure 2-7).

15 Many factors may drive the lower capacity factors for nuclear plants in REGEN, which could be
due to the model’s higher temporal resolution (which may better capture flexibility needs),
endogenous representation of load shapes, or other model features.
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Figure 2-6

Annual average capacity factors over time for nuclear (existing and new) across technology
and policy sensitivities. Panels show different models. Note that vertical axes are truncated at
75%.

Seasonal Nuclear Capacity Factors
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Figure 2-7

Nuclear capacity factors by season for select 80-by-50 policy sensitivities from the models
that provided a seasonal breakdown of generation from nuclear power plants.

<2-14>»



S

Models differ in their extent of
fossil capacity installations,
including CCS-equipped gas.
Harmonizing cost assumptions
better aligns results across
models.

N
Combining very low cost
assumptions for nuclear with
more stringent CO; policy leads
to higher nuclear deployment
than when these drivers are
considered separately.

Under the 80-by-50 policy environment with native costs, models differ in their
assessments of the future role of coal- and gas-fired generation. The REGEN
and NEMS solutions involve retiring nearly all coal-fired capacity by 2050,
whereas the IPM and ReEDS models retain more of the existing coal fleet and
operate it with lower capacity factors. This difference is maintained under the
harmonized cost and financing assumptions, suggesting that there are differences
in how the models treat the economics and retirements of the existing coal fleet.

Finally, there is variation across models in the deployment of CCS-equipped
capacity under deep decarbonization. The IPM and ReEDS solutions indicate a
very modest role for gas CCS under such an 80-by-50 policy, whereas NEMS
and REGEN involve 92 GW and 65 GW (respectively) of new gas CCS
capacity by 2050. Figure 6-1 shows how capital costs for gas with CCS are
similar over time across models (with the exception of higher costs in REGEN),
which suggests that gas CCS costs are not primary drivers of differences in gas
CCS deployment across models. However, the lower gas CCS deployment in
NEMS and REGEN when moving from Native to Harmonized Costs
assumptions suggests that renewables and energy storage costs could play a larger
role in more pronounced deployment of gas CCS, wind, solar, and batteries.
Moreover, nuclear and CCS-equipped capacity are substitutes in REGEN
scenarios, as indicated by the lack of gas CCS in the Low Costs case.

Although models differ in their temporal resolution, spatial resolution, and
sectoral coverage (Table 3-2), these features do not uniquely determine
technology-specific shares, including nuclear-related outputs. High and low
contributions of different technologies are observed in models of different types.
Intra-model comparisons in later sections provide ceteris paribus comparisons to
illustrate how some of these features shape outputs (e.g., temporal resolution in
Section 7).

Combining very low-cost assumptions for new nuclear with an 80-by-50 policy
drives new nuclear deployment across all four models (Figure 2-8). Responses to
cost and policy drivers (separately and in combination) differ in magnitude across
models. For example, NEMS produces the strongest response to each driver,
with the very low-cost nuclear resulting in nearly 100 GW of new nuclear
capacity by 2050, and the 80-by-50 policy resulting in 17 GW of new nuclear
capacity by 2050. When combined, the corresponding NEMS solution involves
175 GW of new nuclear capacity, which is significantly more than the sum of
each individual driver. Therefore, the results indicate that interactions between
policy and technology sensitivities can produce synergies in terms of the
magnitude of potential deployment. Similar interactions are apparent in the other
models, but with smaller magnitude effects overall.
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e
Significant economic
deployment of new nuclear
capacity requires both a
stringent electric sector CO,
policy and very low cost

assumptions for new nuclear.

e

New additions of nuclear
capacity are highest in the
Southern and Western U.S.
regions.
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Figure 2-8

New nuclear capacity over time across all technology and policy sensitivities. Panels show
different models. Note that there are no new additions in many models and scenarios.

The regional distribution of nuclear capacity (Figure 2-9) follows similar trends
as in the previous section, with the greatest deployment in the South and West
Census regions for most models. In the Nuclear Carveout scenario, incremental

deployment is highest in the South and West.
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Reaching zero emissions in the
electric sector entails some
combination of additional
wind, solar, energy storage,
hydrogen, and nuclear
capacity, though shares vary
by model.

80-by-50 Scenarios, Nuclear Capacity in 2050 (GW)
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Figure 2-9

Regional distribution of nuclear capacity (existing and new) in 2050 for all combinations of
models and technology sensitivity assumptions with an 80-by-50 power sector policy.
Regional definitions are based on U.S. Census regions.

“100-by-50" Policy Results

Due to challenges with representing the transformational change of transitioning
to a 100% carbon-free electricity supply, results from only the REGEN and
ReEDS models are presented in this section. As in the previous section, the
policy on its own drives substantial changes to the least-cost capacity and
generation mix (Figure 2-10). Since the scenarios do not allow for consideration
of negative emissions technologies, only zero-emitting resources can contribute
to the generation mix in 2050. As a result, the capacity and generation mixes are
dominated by solar, wind, energy storage, hydrogen-based combustion turbines
(using hydrogen produced by electrolysis), and nuclear technologies, with
contributions from geothermal and hydropower.
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Figure 2-10
2050 capacity and generation results across the technology sensitivity scenarios and models
under a 100-by-50 power sector policy.

These insights are consistent with the intra-model comparison in Section 4
(“Intra-Model Comparison: Policy Design”) and with the emerging literature on
reaching zero-emissions targets (Bistline and Blanford, 2021; DOE, 2021).
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S

Even in scenarios that achieve

100% decarbonization of U.S.

electricity supply in 2050,
financing assumptions have a
pronounced influence on new
nuclear buildout.

S

Nuclear power provides up to
a third of U.S. electricity
generation in 2050 in
scenarios that combine very
low-cost nuclear assumptions
with a 100% by 2050 power
sector policy.

Figure 2-11 shows existing and new nuclear capacity across the range of scenarios
that include a 100% decarbonized U.S. electricity supply in 2050. Under the
Native and Harmonized Costs scenarios, the 100-by-50 policy avoids retiring
large shares of existing nuclear plants. Moreover, REGEN builds about 30 GW
of new nuclear capacity by 2050, whereas the ReEDS model does not build new
nuclear capacity (beyond advanced nuclear reactor demonstration projects).
Comparing with the harmonized cost and financing scenario' (“Harmonized”)
results indicate that this discrepancy can be attributed, in part, to the different
investment lifetime and weighted average cost of capital assumptions in REGEN
and ReEDS, since REGEN builds are much lower in the Harmonized case
(relative to the Harmonized Costs only case).™

100-by-50 Scenarios, Nuclear Capacity in 2050 (GW)
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Costs Nuclear Carveout
W Existing Nuclear ® New Nuclear
Figure 2-11

New and existing nuclear capacity across the 100-by-50 policy scenarios and technology
sensitivities.

Finally, both models respond strongly to the combination of a 100-by-50 power
sector policy and very low-cost assumptions for new nuclear capacity. The new
nuclear cost reductions that are assumed in this scenario are sufficient to enable
nuclear power to play a significant role in a fully decarbonized U.S. electricity

16'We focus on 2050 results due to the more limited impacts in 2030, where the assumed policy
stringency remains relatively modest.

17 REGEN’s native discount rate is 7% versus 3% in the harmonized scenario, which is the native
assumption in ReEDS. REGEN’s native economic lifetime for nuclear is 80 years versus 30 years
in the harmonized scenario, which also is the native assumption in ReEDS. See the “Discounting
and Financing” discussion in Section 7 for additional detail.

18 Similar to earlier Carveout scenario results, REGEN retires the existing nuclear fleet in
conjunction with adding 50 GW of new nuclear capacity, as mandates for this new dispatchable
capacity lower market prices and consequently the revenues for existing generators with similar
operational profiles (hence, earlier retirements of existing nuclear).
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supply, with both models indicating on the order of 300 GW of new nuclear
capacity by 2050 (Figure 2-11). In turn, the combination of very low-cost nuclear
assumptions and a 100% by 2050 policy results in nuclear power plants
contributing between a quarter and a third of total electricity generation in 2050.
While this result should not be interpreted as a prediction of the future, the
magnitude of deployment is informative for understanding the potential impacts
of substantial cost reductions or subsidies and associated implications for
permitting, siting, and fuel supply chains (see the “Deployment Barriers”
discussion in Section 6).

Figure 2-12 compares 2050 capacity mixes across models for the three policy
scenarios (assuming native technological costs). This comparison highlights the
considerable changes in the investment mix and extent of capacity growth under
the 100-by-50 policy.

Native Versions for Each Policy Sensitivity and Model, Capacity Mix (GW)
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Figure 2-12

2050 capacity results across policy scenarios by model (with native technology
assumptions).
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Table 2-2 shows annual capacity factors by technology, model, and policy
scenario. Even under deep decarbonization of the electricity sector with extensive
deployment of wind and solar, capacity factors of nuclear plants tend to be high
(77% in ReEDS and 81% in REGEN). Capacity factors of natural gas combined
cycle (NGCC) plants without and with CCS tend to be much lower, especially

under scenarios with stringent CO; policies.

Table 2-2
2050 annual capacity factor by technology, model, and policy scenario
Policy Model Nuclear NGCC NGCC-CCS
Reference IPM 93% 50% 27%
NEMS 94% 46% 44%
ReEDS 91% 41% N/A
REGEN 93% 61% N/A
80-by-50 IPM 92% 39% 45%
NEMS 921% 18% 55%
ReEDS 89% 14% N/A
REGEN 83% 25% 64%
100-by-50 | ReEDS 77% N/A N/A
REGEN 81% N/A N/A

Other Results

The results presented in this section have focused on the capacity and generation
outcomes, which provide the most direct means of comparison across models and
scenario. Additional model outputs can provide insights into the implications of

various technology and policy assumptions, though some metrics reflect scenario

definitions rather than endogenous model outputs. The remainder of this section
highlights emissions and system cost results for a subset of scenarios.

Power Sector Emissions

The most meaningful insights regarding power sector emissions are those
associated with the Current Policies technology sensitivities." Across the
Current Policies scenarios, power sector CO, emissions from a given model
typically vary by less than 10% across all years and technology sensitivities. In
other words, for most models, the optimal generation mix is similar across these
technology sensitivities with Current Policies, and/or the primary form of
competition is among low-emitting resources (i.e., nuclear and renewable energy

technologies). This finding holds even for the Low-Cost Nuclear and Nuclear

¥ The policy sensitivities—80% and 100% CO; reductions by 2050 from 2005—are binding in the
models, and therefore prescribe CO; emissions pathways. Greater variation exists among the NOx
and SO; emissions results from the models given differences in coal and gas generation. We leave
explorations of such dynamics for future work.
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S

System costs indicate that new
nuclear capacity is close to
being competitive with the
least-cost solution under an
80% by 2050 power sector

policy.

Carveout scenarios for IPM, NEMS, and ReEDS, such that increases (or
decreases) in the role of zero-emitting nuclear generation are primarily offset by
decreases (or increases) in generation from solar and wind technologies.

One exception lies in the REGEN model solutions, for which all of the scenarios
with harmonized cost and financing assumptions involve 20-40% reductions in
power sector CO, emissions, relative to the Native and Harmonized Cost
scenarios (with Current Policies). This result follows from the generation results
presented earlier, where harmonized financing assumptions lead to significant
declines in coal-fired generation, which is replaced by lower-emitting resources.

Power Sector System Costs

Power sector system cost results are another common output across models,
which provide insights into the relative costs of various investment portfolios.
Interpretation of such results can be challenging across technology sensitivities
and models due to scenario- and model-specific assumptions. System cost results
and valuation over time can change if input assumptions differ (e.g., capital costs
in the Low Costs nuclear scenario, discount rates in the Harmonized costs
scenario). Technology-specific interpretations can be misleading in such settings,
especially across models. Finally, the scenarios with harmonized costs involve
increases for some technology cost categories and decreases for others, which
makes it challenging to disentangle competing effects on the power sector system
cost results (Figure 6-1).

Under the Current Policies assumptions, the Nuclear Carveout sensitivity
involves 2-3% increases in annualized power sector system costs in 2040, and
5-8% increases in 2050 (compared to the Harmonized sensitivity results). Since
both scenarios involve the same technology cost and financing assumptions, this
incremental increase in power sector system costs provides an estimate for how
much additional investment and operational expenditure would be needed to
displace some of the least-cost generation resources with 50 GW of new nuclear

capacity.

Performing the same comparison for the corresponding 80-by-50 scenarios
reveals that the system cost implications of forcing in 50 GW of new nuclear
capacity could be significantly reduced when combined with a policy constraint.
In the NEMS and ReEDS solutions, the incremental annualized system cost
impact of the Nuclear Carveout sensitivity remains at 2-3% in 2040 and 2050
(compared to the Harmonized sensitivity results), whereas similar system cost
impacts are observed in IPM as in the previous paragraph. The reduced system
cost implication of the Nuclear Carveout assumptions in NEMS and ReEDS
suggests that, under an 80% by 2050 policy, additional nuclear capacity is close

to being competitive with the least-cost solution in the absence of that constraint.
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Section 3: Overview of Models

.

This project compares four
models—IPM, NEMS, ReEDS,
REGEN—which have a diverse
range of modeling decisions,
scopes, and uses.

The four participating models—IPM, NEMS, ReEDS, and REGEN—are
national-level CEMs that vary in their coverage and detail across a range of
model dimensions. Table 3-1 and Table 3-2 compare several key features across
models. Given that intended model applications often guide development
decisions, differences in characteristics of these four models are driven in part by
differences in their applications.

Note that all four models are long-term electric sector models (in some cases
with linkages to broader energy systems and the economy). These differ from
smaller-scale, shorter-time-horizon models (e.g., production cost models) and
with larger-scale tools (e.g., global integrated assessment models). Production
cost or operational simulation models assess short-run electric system operations
using detailed simulations of unit commitment and dispatch typically over a year
with a fixed capacity mix (unlike CEMs, where the capacity investments and
retirements are model outputs). In contrast to detailed power sector models,
global integrated assessment models are better-suited for exploring interactions
across countries, global technological change and transfer, feedbacks between
energy and land-use systems, and cross-sectoral impacts, but they are not as well-
equipped for informing questions related to detailed technological interactions
across system resources or to those requiring spatial/temporal detail.

The four participating models have undertaken a range of nuclear-specific
modifications and broader model development efforts over the course of this
project, which have altered model outcomes and helped to improve insights.
Nuclear-related improvements implemented by many modeling teams include
adding small modular reactor technologies, allowing existing nuclear plants to
operate for 80 years when economic, and adding/refining representations of
flexible nuclear operations. Broader model updates from some participating
models include running zero-emissions scenarios, increasing temporal resolution,
adding new technologies (e.g., carbon removal, hydrogen, hybrid resources), and
refreshing technology cost assumptions. Appendix A discusses these model
enhancements in detail.
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Integrated Planning Model (IPM) from the U.S. Environmental
Protection Agency (EPA)

IPM®, developed by ICF, is a multi-regional, dynamic, deterministic linear
programming model of the contiguous U.S. electric power sector. It provides
estimates of least-cost capacity expansion, electricity dispatch, and emissions
control strategies while meeting energy demand and environmental,
transmission, dispatch, and reliability constraints. EPA has used IPM for almost
three decades to better understand power sector behavior under future business-
as-usual conditions and to evaluate the economic and emissions impacts of
prospective environmental policies. As a result, EPA has focused considerable
effort on the representation of fossil-based generator technologies and associated
emissions and environmental impacts. IPM® is a registered trademark of ICF
Resources, L.L.C. For further details, see the documentation available at:
https://www.epa.gov/airmarkets/power-sector-modeling

National Energy Modeling System (NEMS) from the U.S. Energy
Information Administration (EIA)

NEMS is EIA’s primary tool to provide projections for its Annual Energy
Outlook (AEQO) and related reports, which provide a baseline examination of
U.S. energy markets and facilitate better understanding of the impact of future
policies and market evolution on U.S. energy supply and consumption. NEMS
links the U.S. energy and macro-economy sectors to allow it to evaluate the
impact of economic feedback with endogenous energy sector development on
the evolution of U.S. energy markets. NEMS consists of twelve major modules
representing various key players in the U.S. energy market. One of them is the
Electricity Market Module (EMM). The NEMS EMM consists of five
submodules representing load and demand, capacity planning, fuel dispatching,
finance and pricing, and renewables and energy storage. These five sub-modules
are designed to collectively simulate major decision points within the U.S.
electricity market by estimating the actions taken by electricity producers to
meet demand in the most economical manner using a least-cost optimization
approach. EMM then outputs electricity prices to the NEMS demand modules,
tuel consumption to the NEMS fuel supply modules, emissions to the
Integrating Module, and capital requirements to the macroeconomic module.
These modules then return updated electricity demand, fuel price, and macro-
economic parameters back to the EMM. The model iterates until a stable supply
and demand solution is reached for each forecast year.

Regional Energy Deployment System (ReEDS) from the National
Renewable Energy Laboratory (NREL)

ReEDS is an electricity-sector-only model with a focus on the contiguous U.S.
power sector (Ho, et al., 2021), though representations currently exist for an
expanded North American model (Canada, U.S., Mexico) and India. ReEDS
has high spatial resolution, representing the U.S. with 134 model balancing areas,
and representing wind and solar resources with up to 50,000 individual sites each.
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Transmission lines connecting each of these 134 regions and spur lines
connecting to each of the wind and solar sites are modeled in ReEDS alongside
generation and storage buildouts.

ReEDS models seven years of hourly, chronological data of wind, solar, and load
in order to capture the value of variable renewable energy (VRE) resources and
energy storage. Non-VRE, non-storage generators are typically dispatched at a
17-time-slice resolution, though that can be customized by the user, while VRE
and storage rely on the chronological hourly representation for many key
modeling parameters. The ReEDS model is publicly available at:
https://www.nrel.gov/analysis/reeds/request-access.html

Regional Economy, Greenhouse Gas, and Energy (REGEN) from
the Electric Power Research Institute (EPRI)

The U.S. Regional Economy, Greenhouse Gas, and Energy (REGEN) model
was developed by the Electric Power Research Institute (EPRI). REGEN
integrates a detailed electric sector capacity planning and dispatch model and an
economic model of non-electric sectors capturing end-use technology tradeofts
(EPRI, 2020a). The electric sector model makes simultaneous decisions about
capacity investments, transmission expansion, and dispatch, including load
profiles that reflect the evolving end-use mix. The model includes hourly
resolution for investment and operations, which better characterizes the
economics of variable renewables, energy storage, and firm low-carbon resources.
The end-use model captures technology choices at the customer level with
heterogeneity across different sectors, structural classes, and regions. Online
documentation is available at: https://us-regen-docs.epri.com
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Table 3-1

Overview comparison of participating models and their key features

NEMS

ReEDS

REGEN

Enwronmental
Protection
Agency (EPA)
and ICF

U.S. Energy
Information
Administration
(EIA)

National
Renewable
Energy
Laboratory

(NREL)

Electric Power
Research
Institute (EPRI)

Minimize the NPV of the
power sector's total system
cost

Least cost optimization for the
U.S. electric power sector; the
EMM projects capacity
planning, generation, fuel use,
and transmission, subject to
inputs and interactions with

other modules in NEMS

Minimize total system cost

using the 20-year NPV

Maximize NPV of surplus over
the model time horizon
(accounting for end effects);
minimize NPV if electric sector
only model

~10 hour run time
on computational
server

~8-12 hour run time
as part of integrated
NEMS runs, ~4 GB

memory

~8 hour run time,
~12 GB memory

Depends on

spatial /temporal
resolution: ~1 hour
run time, ~32 GB
memory for 48-state
runs
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Non-chronological, all
periods solved
simultaneously

Annually through 2050; in
EMM each solve-year
optimizes over a three-
period planning horizon to
examine costs over a 30-
year period

Customizable; 2-year
increments through 2030,
5-year increments through
2050

Customizable; for most
analyses, five-year
increments through 2050

Perfect foresight

Convergent perfect
foresight within the
2050 planning horizon
by using prior run
results as input to the
current run; out-of-
horizon years use
adaptive foresight

Foresight only for
natural gas and CO;
prices when running in
sequential solve;
intertemporal and
sliding window
foresight is available as
an option at
computational cost

Intertemporal perfect
foresight

All grid-connected
generators

All fuel supply and
conversion,
electricity and end
use demand sectors,
macroeconomic

Electric sector only

Electric and all end-
use sectors



Table 3-2

Comparison of power sector constraints and implementation across models used in this study

Model

IPM

NEMS

ReEDS

REGEN

Temporal

Resolution
72 time slices for each
run year (3 seasons x
24 segments) through
2030; 60 time slices
(3 seasons x 20
segments) for all post-
2030 run years

3 seasonal periods
(summer, winter, and
spring/fall) divided
into 3 groups: peak
(highest 1%),
intermediate (next
49%), and base
(lowest 50%), totaling
9 segments

17 Time slices (4 per
day x 4 seasons +
summer afternoon
super-peak) across
one year

Customizable;
typically 100+
“representative hours”
(Blanford et al. 2018)
per year or 8,760
hourly

4

Spatial Resolution

67 regions covering
the contiguous U.S.
(64 power market
regions and 3 power
switching regions),
with 11 provincial
regions for southern
Canada

The generation of
electricity is
accounted forin 25
supply regions that
resemble the NERC
reliability assessment
regions

Contiguous U.S. with
134 load balancing
areas and 18
resource adequacy
regions; some
representation of
Canada/Mexico
Contiguous U.S.
states and Canadian
provinces;
customizable regions
based on state and
provincial boundaries

Plant Retirement
Dynamics

Economic retirements
for all non-VRE
technologies; VRE
assumed to incur life
extension costs to
continue operation
indefinitely

Announced
retirements are a
model input; the model
also evaluates
retirement decisions
for fossil /nuclear
based on whether
continuing operation
costs exceed revenues
Age-based retirements
for all technologies;
additionally, minimum
capacity factor-based
retirements for coal

Exogenous retirements
due to announced
closures and age-
based retirements for
some capacity;
endogenous
retirements for most
capacity

Deployment
Dynamics
Electric sector
capacity planning
and dispatch is a
least-cost linear
program

Linear programs for
capacity planning
and dispatch, and a
third to solve
renewable and
storage dispatch
(576 time slices);
each model minimizes
total system costs
Electric sector
capacity planning
and dispatch is a
least-cost linear
program

Electric sector
capacity planning
and dispatch is a
least-cost linear
program; end-use
decisions are based
on lagged logit
choice models
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Technological

Change
Exogenous cost
and performance
estimates over
time

Endogenous
learning-by-
doing is modeled
in the electric
sector for new
build costs,
based on
assumed learning
rates

Exogenous cost
and performance
estimates over
time

Exogenous cost
and performance
estimates over
time

Fuel Prices

Endogenous codl,
biomass and
natural gas prices,
other fuel prices
based on AEO

In integrated runs,
the electric sector
uses supply curves
from the fuel
supply models
and iterates based
on demand/price
response

Endogenous
regional natural
gas fuel supply
curve

Exogenous fuel
prices for most
runs (sensitivities
with supply
elasticity are
possible in the
electric model)

Demand

Levels/Shapes
Seasonal load
duration curves:
3 seasons, 6
categories (base to
peak), 4 time-of-
day categories, for
a total of 72
segments
End use models
provide annual
demand by sector
and end use; the
EMM has initial
regional load
shapes that can
change over time

Demand levels and
hourly shapes are
exogenous inputs to

ReEDS

Demand levels and
hourly shapes are
endogenously
determined in the
REGEN end-use
model






Section 4:

Grid Value Streams and Market

Participation

Summary

The relative magnitudes of different electric sector value streams vary by
technology, model, region, and scenario. In many instances, nuclear capacity
operates with high capacity factors due to its low variable costs, and energy is
generally the primary value stream. However, a stringent CO; policy can
shift the capacity value stream and make it larger than the energy value. Out-
of-market payments—including federal tax credits, state-level zero emissions
credits, and other policy incentives (Appendix B)—also can be significant
revenue sources for eligible technologies.

CO; emissions policy assumptions are a first-order driver of nuclear capacity
additions and retirements. Details about the policy’s stringency, timing, and
technology eligibility influence decarbonization planning and costs, as
illustrated by the model comparisons in this section. Zero-emissions policies
supporting carbon removal technologies lower deployment of nuclear and
renewables relative to policies that do not support negative emissions options.

Traditional levelized-cost metrics are not indicative of the relative
competitiveness of system resources, which requires detailed energy modeling
to assess.

The section concludes with a list of modeling and analysis needs.

Overview of Considerations and Approaches

Nuclear energy can provide value for a range of electric sector services, including
energy, firm capacity (or long-term resource adequacy products more broadly),
ancillary services, and potential non-power value streams such as hydrogen
production or policy requirements. Long-term systems models attempt to capture
these value streams under scenario-specific variations, potential changes to
market depth as different resource are deployed, competition across technologies
to provide the same service, and ability for resources to participate in multiple
markets. The balance of these values may differ by technology, region, and
scenario.
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Levelized-cost metrics are not
indicative of the relative
competitiveness of system
resources, which require
capacity expansion models to
accurately assess.

Employing long-term planning models that simulate the bulk power system can
provide detailed insights into the relative competitiveness of candidate generation
technologies. Such models simulate investments in utility-scale electricity
generation technologies based on the net value provided by competing
alternatives. CEMs, in particular, can evaluate the impacts of varying technology
and policy futures, both of which are known to have a pronounced impact on the
least-cost portfolio of generation, energy storage, and transmission assets.”

In contrast, the levelized cost of electricity (LCOE) is a common metric to assess
technology-specific costs of electricity generation. It represents “the average
revenue per unit of electricity generated that would be required to recover the
costs of building and operating a generating plant... during an assumed financial
life and duty cycle” (EIA, 2021). While the LCOE metric is commonly used to
assess various technologies’ costs, it is an incomplete metric whose limitations
have been well documented (Bistline, 2021b). For example, a recent report
emphasizes that, “LCOE does not consider the monetary value of that energy to
the system, which varies by location and time, and LCOE ignores the value of
other services altogether” (Mai, Mowers, and Eurek, 2021).

Table 4-1 summarizes market participation assumptions across models, which are
discussed in detail in the following subsections.

20 While capacity expansion modeling can provide insights and quantitative estimates, results from
such modeling should not automatically be interpreted as predictions.
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Table 4-1

Comparison of market participation across models

NEMS

ReEDS

REGEN

Reserve margin requirements are based on the regional
margins reported to NERC. Capacity credits for wind,
solar, hydro, and storage are less than 100% and a
function of technology, year, and location; all other
technologies contribute 100% of net summer capacity.

Reserve margin values are set based on the regional
reserve margins reported to NERC. Capacity credit is
the estimated portion of capacity that will be available
during the peak demand, available capacity is affected
by transmission imports and exports in each region.

Each region holds sufficient capacity to meet seasonal
peak demand plus a planning reserve margin consistent
with NERC guidance. Non-variable generation
technologies receive full capacity credit, storage and
VRE capacity credit considers 7 years of hourly load
and resource profiles.

Planning reserve margin constraint applied to all model
regions (equal to 7% above peak residual load);
endogenous resource contributions to the reserve
margin (dispatchable technologies contribute full
nameplate capacity); single weather year (often 2015).

Operating reserves constraints can be modeled. However, given their
significant computational overhead and small impact on results, these
constraints are applied on an as-needed basis.

Ancillary services are captured in the Electricity Fuel Dispatch
Submodule. Dispatch accounts for spinning reserve requirements with
several operating options to allow for co-optimization of the
production of energy with the deployment of spinning reserves.
Dispatch is done for three time slices in each of three seasons to
account for seasonal variation in electricity demand and available
generation.

Each region and time slice requires spinning, regulation, and flexibility
reserves. Spinning reserves are 3% of load and can be provided by
generators with a 10-minute ramp time. Regulation reserves are 1% of
load 0.5% of wind generation, 0.3% of PV and can be provided by
resources with a 5-minute response time. Flexibility reserves cover
10% of wind and 4% of PV and can be served by resources with a
60-minute response time. PV/wind are not eligible to contribute to
operating reserves. All other technologies provide reserves for a
fraction of their capacity (Ho, et al., 2021).

Spinning and quick start reserve constraints for each hour and region;
includes contingency reserves, frequency regulation reserves, and
wind/solar forecast error reserves; high computational costs for these
constraints and relatively small impact on most model outcomes mean
that these constraints are typically not included in model runs.
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Able to incorporate
incentivizing policies
(e.g., CES, tax credits).

NEMS captures
Electricity Tax Credits,
Production Tax
Credits, Zero Emission
Credit, and other
clean energy credits

(e.g., RPS).

Policy incentives
applied at national,
regional, or state level,
including CES, RPS,
and ZEC policies;
hydrogen production
options.

Policies and incentives
(e.g., CES, ZEC, tax
credits); hydrogen
production options.
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Policy assumptions are first-
order drivers of model outputs,
including nuclear capacity
builds and retirements.

.

Existing studies indicate that
clean firm technologies can
lower decarbonization costs.

Policy Representation and Design

The inclusion and implementation of high-value markets and policies within the
models are often first-order drivers of power systems investments and operations.
Approaches for valuing energy using locational marginal prices are well-
established in both power system models and in existing markets. By comparison,
there is a greater diversity in approaches for modeling other grid services and
policies (Table 4-1) relative to the actual implementation for how these grid
services are valued.

As the intra-model comparison described later in this section suggests, policy
design details (e.g., stringency, timing, technology eligibility) influence model
outputs related to nuclear and other technologies. Tax credits, emissions caps,
Clean Electricity Standards (CESs), Renewable Portfolio Standards (RPSs), and
Zero Emissions Credits (ZECs) each create different incentives for generator
entry, exit, and operations, and their overlap can lead to unanticipated electric
sector outcomes. Appendix B summarizes U.S. federal and state policies and
incentives represented in these models. The level of model granularity
(summarized in Table 3-2) and participation rules for a given policy influence
how much of an effect it will (or will not) have on the model solution.

The existing literature indicates that nuclear energy tends to have a larger role
under deeper decarbonization scenarios (Duan, et al., 2022; Bistline and
Blanford, 2021; Jenkins, Luke, and Thernstrom, 2018; Bistline, et al., 2018),
a conclusion that is supported by the intermodel comparison in Section 2.

Existing studies also indicate that the availability of nuclear and other “clean
firm” technologies® lowers the costs of decarbonization (Baik, et al., 2021;
Bistline and Blanford, 2020; Bistline, James, and Sowder, 2019; Sepulveda, et al.,
2018; Kim, et al., 2014). Clean firm technologies include nuclear, carbon-
capture-equipped capacity, biomass, geothermal, hydropower, and low-carbon
gas-fueled plants (e.g., hydrogen). The value of nuclear in lowering
decarbonization costs depends on the cost and availability of substitutes across
different functional roles (e.g., generation, firm capacity, different ancillary
services). Baik, et al. (2021) quantify diminishing returns to additional zero-
carbon resources but also the important functional role of at least one clean firm
technology and greater value for multiple resources given different cost structures
and system roles.

Energy Markets

The market value of generation from nuclear and other system resources is
typically captured through an electricity market-clearing constraint, which
stipulates that net supply (including generation, energy storage, and trade) equals
demand for each model region and intra-annual period. Shadow prices on this

2 Firm resources are “technologies that can be counted on to meet demand when needed in all
seasons and over long durations (e.g., weeks or longer)” (Sepulveda, et al., 2018).
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Nuclear’s low variable costs
mean that plants often runs with
high capacity factors.

constraint are intended to capture dynamics of competitive wholesale electricity
markets, which dispatch a least-cost combination of resources in “merit order”
(i-e., from lowest to highest short-run marginal costs) subject to technical and
market constraints. Such dynamics are influenced by model design choices
related to temporal resolution (i.e., whether models capture market-clearing on
every hour of the year or only a handful of periods) and spatial resolution (i.e.,
the number of regions where locational clearing occurs), which are described in
Section 7.

For nuclear plants, their low short-run marginal costs typically mean that they
run with high capacity factors, even under high variable renewable grids (as the
model comparison in Section 2 illustrates). Variable costs of nuclear are related to
uranium fuel costs, which is a smaller component of cost profiles relative to coal
and gas plants that are dominated by fuel costs. The low variable costs of nuclear
make many plants price-takers for most hours, which means that their revenues
are dependent on market outcomes and competition between higher-marginal-
cost resources. These dynamics have historically lowered revenues to nuclear
plants as natural gas price declined (Jenkins, 2018a) and increase potential
exposure to future VRE price impacts (Mills, et al., 2020), though the
dispatchability and flexibility of nuclear plants can mitigate such losses

(as discussed in Section 5).

Planning Reserve Margin

A planning reserve margin is designed to ensure sufficient surplus capacity is
available to avoid a generation shortfall during periods of high demand (or net
load). Ensuring that sufficient capacity is available to meet expected demand
depends on the temporal resolution of a model (Bistline, et al., 2021) as well as
the way that the planning reserve is represented. The North American Electric
Reliability Corporation (NERC) provides guidance on capacity requirements
based on a probabilistic standard—loss of load expectation (LOLE). This
guidance is communicated to regional reliability councils that must determine
how to act on the guidance.

Many U.S. markets have dedicated capacity markets or other resource adequacy
mechanisms to compensate generators for providing firm capacity. CEMs often
do not capture intricacies of these markets and instead represent capacity values
of resources through planning reserve margin constraints. To model a planning
reserve margin, CEMs typically include a constraint that total firm capacity must
exceed peak load by a specified margin. The spatial and temporal granularities
used for this constraint vary depending on model structure (Table 3-2).
Determining which technologies are allowed to contribute firm capacity, and
how much, is an impactful area of difference across models. While such a
determination is relatively straightforward for nuclear, coal, natural gas, and
geothermal technologies (which are typically given full credit), it is more
complicated for weather-dependent resources (e.g., wind, solar) and energy-
limited resources (e.g., energy storage), as described in Cole, et al. (2017).
Therefore, care should be taken to assess how much firm capacity solar
photovoltaics, wind, hydropower (especially run-of-river), and energy storage
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The capacity value of nuclear
and other system resources is
typically modeled through a
planning reserve constraint.

e
Operating reserves generally
have smaller impacts on
investments compared with
energy and capacity services.

can contribute toward meeting this requirement, and how that contribution
evolves as such technologies achieve greater levels of deployment. Most models
endogenously determine capacity contributions of different resources (Table 4-1).
The declining capacity credit (and value deflation more broadly) of variable
renewables and other system resources as a function of their penetration is
typically a reason why other technologies come into the mix with deeper
decarbonization, even with very high renewable shares.?

All models discussed in this report use a version of a planning reserve constraint.
Most models implement reserve margins consistent with published NERC
guidance. VRE resources are also generally eligible to contribute to this
constraint; while the participating CEMs employ different approaches in
determining how much capacity counts, the overall formulation is similar across

the CEMs.
Operating Reserves and Ancillary Services

While the planning reserve focuses on longer timescale needs for the power
system, operating reserves and ancillary services are designed to ensure that the
bulk power system can respond to unexpected shifts in the balance of generation
and load. The corresponding services provided address needs on a sub-hourly
time scale and can be grouped into two categories: spinning reserves and non-
spinning reserves.

Spinning reserves—including regulation reserves and longer-duration spinning
reserves—are designed to address needs which can only be satisfied by generation
assets that are already online (or “spinning”). Regulation reserves maintain the
instantaneous balance of the system, with participating generation units adjusting
output automatically to meet needs. Longer-duration spinning reserves are also
maintained to address the loss of a major generation asset, with the need being
satisfied on the order of tens of minutes. By contrast, non-spinning reserves
address needs with sufficient lead time, such that an offline generation (capable
of starting quickly enough) can be brought online to meet the need. This type of
reserve typically addresses forecast errors in load and VRE output.

In addition to spinning and non-spinning reserves, finer timescale services also
exist (e.g., frequency response or fast frequency response) to varying degrees
across U.S. markets. However, these finer timescale services tend to fall outside
of the scopes of many models, which typically employ more aggregate temporal
resolutions and reduced-form representations of dispatch.

The models in this report have similar capabilities for representing operating
reserves, with all making a distinction between spinning and non-spinning
reserves (Table 4-1). Most models seem to have similar formulations, but a major
difference between models is whether reserves are enabled by default. Compared
to energy and capacity services, operating reserves are small and usually have

2 For instance, Cole, et al. (2021a) show that, even at 95% renewable penetration, roughly half of
firm capacity is procured from non-renewable, non-storage resources.
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minimal impacts on investment decisions (Sergi and Cole, 2021; EPRI, 2021);
therefore, questions remain about when these constraints are worth the
computational costs, given their limited impacts on utility-scale capacity and
generation results. Note that firm capacity needs are typically addressed through
the planning reserve margin constraint, as detailed in the earlier subsection.

Non-Power Value Streams

Power and energy sector policies introduce so-called non-power value streams,
which can be an important driver of model outcomes. All four models include
options to represent proposed and implemented policies that impact the power
system (Table 4-1). Policies are implemented either as a system of constraints,
requiring the solution to satisfy a specified need, or through explicit costs or
subsidies that shift a model solution.

Decarbonization policies offer concrete examples of how policy implementation
approaches yield non-power value in the model. A carbon tax increases the cost
of generating power for emissions-intensive resources, which can alter wholesale
electricity prices and consequently revenues received by generators. Power sector
incentives—including the federal investment tax credit for solar, the federal
production tax credit for wind, and state-level zero emissions credits for existing
nuclear—reduce eligible generator costs, thus increasing their relative
competitiveness. Appendix B lists U.S. policies and incentives captured in these
models.

Cap-and-trade systems and other policies that create tradable compliance
instruments also generate value streams of different generators, which can alter
decisions related to dispatch, entry, and exit. Emissions cap policies such as
California’s economy-wide cap and the electric sector Regional Greenhouse Gas
Initiative (RGGI) in the Northeastern U.S. are implemented as emissions
constraints in applicable regions. The shadow price associated with this type of
constraint can be interpreted as the price of an emission credit. RPS and CES
policies, which are widely adopted at the state level, require specified levels of
eligible technologies to supply electricity. These standards can be implemented in
multiple tiers with carveouts for key technologies and differentiation between in-
state and out-of-state resources. The shadow price associated with these
constraints is equivalent to price of a renewable energy or clean energy credit and
increases the competitiveness of eligible technologies.

Finally, plants also can receive revenues from the sale of hydrogen, synthetic
liquid fuels, and potable water produced from high-temperature heat (Sowder,
2021). Some participating models capture hydrogen production, including the
ability to use electricity from nuclear and other resources to produce electrolytic
hydrogen (Table 4-1). None of the participating models currently represents the
possibility of using nuclear for industrial heat applications. These types of
products are becoming more common in analyses of economy-wide deep
decarbonization, and they highlight the value of models that can capture cross-
sector interactions.
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Intra-Model Comparison: Value Stream Analysis

Value streams are measures that indicate the system value of technologies and
better reflect the underlying decision framework for CEMs relative to commonly
reported metrics such as the LCOE. These values allow for the inclusion of a
holistic mix of plant values and costs. Alternative metrics also can be used

that normalize the value streams into a value that is comparable to LCOE (see

Table 3-2).

Table 4-2
Examples of electricity price metrics
Metric Typical Units
LCOE Cost/Energy [$/MWHh]
Net Value of Energy (NVOE) (Value-Cost)/Energy [$/MWh]
Net Value of Capacity (NVOC) (Value-Cost) /Capacity [$/kW]
Normalized Value (Value-Cost)/Value [%)]

Figure 4-1 provides an example of how a plant’s value streams can be understood.
Plant costs include all outlays associated with constructing and operating
resources (including costs to connect a plant to the grid). Next are the sources of
value, which come from the value of the electricity generated by the plant and the
value of its contributions toward the planning reserve margin. Operating reserves
and ancillary services can be both a cost and a revenue source for a generator:
They represent a revenue source for generators that can provide the services,
whereas they represent a cost for VRE generators (based on the increase in
reserves required to address forecast errors). The stacking of value streams and
costs reflect the underlying mathematics of the optimization model; if, at
equilibrium, the net value of a plant is greater than or equal to zero, then that
plant will be selected as part of the model solution.
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Value stream analysis can
illustrate model dynamics and
technology-specific outputs
across scenarios.
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Figure 4-1

Stylized example of plant value streams and costs decomposed by category grouping.

Calculating value streams offers an important tool to explore a range of key
questions. The mix of revenues that a technology receives quantifies the value
that technology offers to the power system as represented by the model.
Examining the value streams also helps to validate and understand model
behavior by allowing for comparison against known uses and revenues for varying
plant types. Finally, because value streams are representative of the optimization
model at equilibrium, measuring value stream changes in response to policy
sensitivities provides a deeper understanding of how that policy influences a
technology’s competitiveness, in greater depth than capacity and generation
results can provide by themselves. In addition to generating value streams for
developed technologies, model outputs can also provide insights into value
streams for technologies that were not included in the model solution (i.e., not
deployed). Knowing how an unbuilt technology would have earned revenue is
valuable for understanding how the model is assessing that technology. The
calculated net negative value of a technology further provides insights into what
level of cost reduction (or increase in revenue) would cause the model to start
choosing to invest in that technology.

To demonstrate the value of such an approach, we use ReEDS to perform a value
streams analysis across three scenarios that mirror the intercomparison scenarios
in Section 2: a Reference (or business-as-usual) scenario, a Low-Cost Nuclear
scenario, and a Nuclear Carveout scenario (in which 50 GW of new nuclear
capacity was required for investment through a constraint that is analogous to a
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nuclear-only clean electricity standard [CES]). This analysis is designed to
facilitate a comparison of how a technology’s sources of revenue—and net-
value—varies across a range of technology and policy assumptions, similar to
those presented in Section 2 of this report. The outcomes of this value streams
analysis provide insights for all generation and storage technologies, but the
tollowing presentation focuses on insights for nuclear power plants.

Figure 4-2 presents the outcomes of our value streams analysis for existing plants
in a given year (as opposed to new investments) under the Nuclear Carveout
scenario; this scenario is unique in certain ways, but the results also highlight
more consistent trends from across the explored scenarios. For example, it is
apparent from this figure that the primary value streams for all technologies are
rooted in energy services and the planning reserve margin (which determines
capacity value). On the other hand, the relative importance of energy versus
capacity value varies depending on the generation technology in question.
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Figure 4-2

Value streams for key existing generation technologies (as opposed to new investments) in a
Nuclear Carveout scenario performed by the ReEDS model. Black lines indicate the
profitability of the technologies (i.e., revenues minus costs). NVOC is the net balance of a
plant’s revenues and costs normalized by installed capacity.
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Nuclear plants see revenues
from both energy and capacity
services, though energy is
primary value stream.

Table 4-3
National average revenue by category for key existing generation technologies in the ReEDS
model’s Nuclear Carveout scenario

Technology Year Energy Planning Other
Reserves
Gas-CC 2050 55% 45% 0%
Gas-CT 2050 17% 83% 0%
Nuclear 2050 74% 26% 0%
Nuclear-SMR 2050 78% 22% 0%
PV 2050 98% 0% 2%
Wind 2050 94% 0% 6%

For solar PV and wind technologies, energy accounts for most of their total value
(yellow bars in Figure 4-2). While these plants can contribute to the planning
reserve margin, their capacity value declines as they capture higher fractions of
the generation mix. The opposite is true for gas combustion turbines, for which
the vast majority of value is derived from contributing capacity towards the
planning reserve margin. NGCC plants fall in between, with an even split
between capacity and energy value. Nuclear power plants also see revenues from
both energy and capacity services, although the majority of nuclear power plant
revenue comes from energy services. Finally, it is important to note that other
revenue sources—including operating reserves and state RPS policies—represent
a small fraction of revenue by 2050. The low operating reserves revenue is driven
in large part by the substantial deployment of energy storage in 2050 in these
scenarios (Section 2), which both serve a large portion of operating reserve and
depress operating reserve prices.

Unique in this scenario is the impact of the Nuclear Carveout, which drives a
measurable shift in the value streams. With the additional nuclear capacity above
what would have been procured otherwise, the value of energy was reduced for all
technologies by ~10%. The value of capacity for the planning reserve remained
constant, due to a significant reduction in battery storage capacity. Finally, the
carveout appears in the value stream stack as an additional revenue source,
analogous to CES credit payments. For this level of carveout, the additional
revenue was on the order of $3,000/kW. Put another way, the carveout value
indicates how much nuclear development costs would need to be reduced to see
new development in the absence of the carveout constraint.

Examining value streams for new nuclear development in 2050 across the three
explored scenarios reveals the technological competitiveness at different levels of
deployment (Figure 4-3). In these scenarios, SMRs reach a lower cost for
development compared to conventional nuclear. Under the Reference, costs fail
to decline sufficiently to allow for new nuclear investment, which is why no value
stream information is presented for this scenario. However, the ReEDS value
stream results indicate that nuclear technology capital costs would need to decline

by approximately $1,104/kW to achieve parity with their expected value (i.e., for
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new nuclear power plants to become part of the model solution). Under the
Low-Cost Nuclear assumptions, approximately 24 GW of new nuclear capacity
was deployed by 2050 (at a reduced cost of $2,822/kW). Together with the
Carveout scenario results, the full suite of value analysis scenarios reveals both the
range of cost assumptions under which new nuclear power plant deployment
could be expected and a corresponding estimate for the degree of response from
the model.
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Figure 4-3
Value stream balance for nuclear SMR capacity builtin ReEDS in 2050.

The value streams provide a useful tool for breaking down the complex balance of
decisions that a CEM is making. Using the carveout and alternate scenarios, we
could identify the competitiveness of the technology across a range of
development. These same techniques can be applied to estimate the response to
alternate policy scenarios including how decarbonization improves the
technological competitiveness.

Intra-Model Comparison: Policy Design
Given the importance of policy assumptions for nuclear deployment, this intra-

model comparison uses REGEN to illustrate how policy timing and eligible
technologies interact within a CEM to affect capacity builds and system costs.

<4-12>»



e

Nuclear is 25% of the
generation mix for a 2035
zero-emissions goal. This share
drops to 13% if the target is
delayed to 2050.

There are three scenario dimensions explored in this analysis:

* Eligible technologies in a power sector net-zero emissions target: One
scenario assumes a “Net-Zero” (NZ) emissions target, where all technologies
are eligible and net CO, emissions equal zero. This broad and technology-
neutral definition of zero implies that any emissions produced from
operations are balanced by an equivalent amount of carbon removal. A
second scenario looks at a “Carbon-Free” (CF) target, where the only eligible
resources are renewables and nuclear. This is the definition used in the zero-
emissions scenarios in Section 2.

* Timing of zero-emissions target: Scenarios vary whether the (net) zero
emissions goal is reached in 2035 or 2050.

*  Costs of new nuclear: “Reference Costs” and “Low Costs” scenarios use the
same harmonized assumptions as the model intercomparison in Section 2.
Reference costs decline over time to approximately $5,000/kW by 2050
(Figure 6-1). The low-cost scenario assumes a $2,000/kW capital cost
beginning in 2035.

For additional detail on net-zero scenarios and role of carbon removal, see
Bistline and Blanford (2021) and Blanford, et al. (2021).

For the scenarios with reference technology costs, the Carbon-Free scenarios
entail rapid builds of energy storage and nuclear to balance large deployment of
solar and wind (Figure 4-4). Nuclear represents a quarter of the generation share
in the 2035 target case, and slightly less than half of this generation is from new
nuclear. Delaying the zero-emissions target to 2050 lowers nuclear generation in
both absolute and relative terms (13% generation share). The main reason is that,
although nuclear costs are assumed to decline through 2050, relative declines for
solar and batteries are assumed to be larger, hence a much larger role for these
technologies. New nuclear capacity additions are 62 GW in the Carbon-Free by
2035 scenario and 24 GW in the 2050 scenario.
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Figure 4-4

Generation by technology in 2035 and 2050 across the zero-emissions policy design and
technology sensitivities in REGEN.

Note that total generation (inclusive of energy storage discharge) is higher under
the Carbon-Free targets relative to Net-Zero ones due to the losses associated
with deployment and utilization of energy storage, especially from the
production, storage, and use of electrolytic hydrogen, which has low roundtrip
efficiencies. Total load increases between 2035 and 2050 from end-use

electrification.
E— Adopting a Net-Zero target instead of a Carbon-Free one leads to the
Net-zero emissions fargets deployment of carbon removal technologies to enable natural gas to balance wind
favor carbon removal and solar variability. Negative emissions from bioenergy with CCS (BECCS) are
technologies and lead to lower roughly three times larger (in t-CO»/MWh terms) than the positive emissions
deployment of nuclear and intensity from NGCC units. Using gas-fired generation to balance renewables
renewables. lowers generation and capacity from other firm resources, including nuclear.?

New nuclear is not deployed in this Net-Zero policy, though existing nuclear still
plays an important role. Wind and solar are just over half of the generation mix
in the Net-Zero scenario, which is lower than the 68% in the Carbon-Free
scenario.

2 The finding that the availability of carbon removal (i.e., negative emissions) technology tends to
displace nuclear is reflected in other studies in the literature (Bistline and Blanford, 2021; Daggash,
et al., 2019).
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Figure 4-5

Cumulative capacity additions and retirements by technology across the zero-emissions
policy design and technology sensitivities in REGEN.

States in the eastern and southern U.S. are most impacted by zero-emissions
target definitions since these regions have lower quality wind and solar resources.

New nuclear and CCS-equipped gas are primarily deployed in the south.

Lower nuclear costs alter projected roles for new nuclear under all policy
scenarios (Figure 4-4). Nuclear generation shares range from 12-25% with
reference nuclear costs to 34-52% with lower costs. Nuclear’s role is less sensitive
to target definitions and timing when its capital costs are low, in part due to the
significant cost reductions assumed in this scenario. Displaced generation with
lower nuclear costs varies by scenario: Renewable generation is lower in all
scenarios, hydrogen and storage are lower in the Carbon-Free scenario, and gas-
fired generation is lower in the Net-Zero scenario.”

Policy timing and technology eligibility impact electric sector costs, as shown in
the U.S. average generation prices in Figure 4-6.% Expanding technology options
decreases the cost of electric sector decarbonization, and prices in the Net-Zero
scenario are 41% higher than the Reference in 2050 and 66% higher in the

24 The four participating models have reporting horizons that end in 2050. Although models have
different methods of treating so-called “end effects” (Section 7), capacity mixes across these
scenarios have different implications for post-2050 system investments and operations. For
instance, the shorter physical lifetimes of batteries, solar, and wind capacity imply more frequent
asset replacements than mixes with longer-lived capacity. See the “Discounting and Financing”
discussion in Section 7 for more information.

2 Reported prices reflect generation and new bulk transmission costs (Bistline, 2021b).
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Policy targets, policy
timeframes, and technology
assumptions jointly influence
decarbonization planning and
costs.

Carbon-Free scenario. Accelerating the target to 2035 requires a faster
introduction of new technologies and creates a higher electricity price spike than

the 2050 scenario.
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Figure 4-6
U.S. generation-weighted average electricity prices over time by scenario in REGEN.

This analysis illustrates how policy targets, policy timeframes, and technology
assumptions interact within a CEM to influence value streams for technologies
such as nuclear and in turn help determine decarbonization planning and costs.
Policy design (especially eligible technologies) have first-order impacts on nuclear
deployment. Zero-emissions policies allowing carbon removal technologies
(Net-Zero) lower deployment of nuclear and renewables relative to policies that
do not allow negative emissions options (Carbon-Free). Policy-related value
streams are important drivers of nuclear and other low-emitting technologies, but
impacts depend on details about the policy’s stringency, timing, and technology
eligibility.

Recommendations for Future Modeling RD&D

Based on the comparisons in this section and discussions from workshops, several
areas are identified for future model RD&D efforts:

*  Understand future changes in value streams and demand for grid services:
Potential changes in planning reserve margins and operating reserves should
be studied in futures with higher renewables penetration, electrification, and

deep decarbonization (EPRI, 2018).

»  Characterize a range of low-emitting technologies: Because nuclear technologies
see much greater deployment in scenarios that require significant
decarbonization, properly capturing the value of nuclear technologies requires
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that other low- and zero-carbon technology options are adequately modeled.
Not adequately representing the portfolio of candidate technologies and
pathways that are being considered to meet such power sector and economy-
wide targets could incompletely characterize the competitiveness of nuclear
relative to these other technologies.

Select appropriate levels of model resolution: Modeling zero- or very-low-
emitting energy systems might require additional temporal or spatial
resolution to properly capture the value of the different generator types.
Additional work is needed to understand the importance of model resolution
on outcomes for these zero and low-carbon solutions.

Improve time-series data: Models often use a single year of historical
meteorological data. Given that many low-carbon futures depend heavily

on variable renewable technologies, multi-year variability in wind resources,
solar resources, and load are particularly important (Diaz, et al., 2021).
Improved understandings of the impact of multi-year variability (of load and
renewables) can inform resource adequacy estimates and contributions of
different resources. If infrequent but impactful wind lulls or cloudy periods
are not captured in the model, then firm capacity resources such as nuclear
could be undervalued. Similarly, capturing the extreme events that seem to
be increasingly common can ensure that power sector solutions are more
robust no matter the composition of the resulting generation fleet produced
by the model. Future work to understand the importance of representing
compensation for uncaptured attributes (e.g., inertia) would also be valuable.

Incorporate hybrid operations and sectoral integration: Pathways towards
achieving a net-zero energy system in the United States typically involve
growing interactions among electricity supply, energy supply, and energy
demand (including electricity, direct fuel use, and heat). Hybrid energy
systems—including those that comprise a nuclear power plant and
electrolyzers—have been proposed as a candidate technology for flexibly
contributing to the full spectrum of demands across the energy system
(Arent, et al., 2021). Planned demonstration projects will help to evaluate
the operational capabilities of such hybrid energy systems, but their ultimate
competitiveness will depend on the incremental costs and benefits of their
ability to contribute products and services across different parts of the U.S.
energy sector. A better understanding of the future demand for, and value
of, hydrogen is a key component of evaluating the incremental value of
hybridization, particularly for models that represent interactions across
different segments of the U.S. energy sector.
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Section 5: Representation of Existing
Nuclear

Summary

* Maintaining a large fraction of the existing nuclear fleet is a robust element
of electric sector decarbonization pathways; however, retirement risks exist
for some plants absent additional policies that support their continued
operation, though the extent varies across models and scenarios.”®

* Representations of retirements for nuclear and other technologies differ by
model. Projections of nuclear plant retirements vary by model and scenario,
especially for scenarios with less stringent climate policy and low natural gas
prices.

* Nuclear FOM cost assumptions vary widely by plant, over time, and across
different models. These cost assumptions are first-order drivers of model
projections of nuclear retirements, as the intra-model comparisons in this
section illustrate.

= A best practice for representing existing nuclear plants is for models to
include endogenous retirement decisions in most instances. Dispatchability
and flexibility assumptions should reflect technical capabilities of plants.
License renewals, state-level ZEC policies, and uprate assumptions can be
important for regional assessments.

» The section concludes with a list of modeling and analysis needs related to
existing nuclear.

26 Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced
nuclear) were not included in these scenarios.
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Existing nuclear is about a fifth
of U.S. generation and half of
zero-emitting electricity, so their
representation in models can
impact outputs.

Overview of Considerations and Approaches

The existing nuclear fleet in the United States consists of nearly 100 GW
nameplate capacity. Existing nuclear currently represents about a fifth of
electricity generation in the U.S. and half of all zero-emissions electricity. Studies
generally indicate that least-cost decarbonization portfolios include maintaining a
large fraction of this nuclear capacity and that mitigation costs would be higher if
these plants retire during outlook horizons, though magnitudes vary by plant and
scenario (Kim, Taiwo, and Dixon, 2021; Bistline and Blanford, 2020; Bistline, et
al., 2018; Roth and Jaramillo, 2017).

Table 5-1 summarizes each model’s characteristics most relevant to the
representation of existing nuclear capacity. This section first reviews retirement
dynamics and cost assumptions, then discusses dispatch and flexibility
assumptions, and finally reviews the implementation of various polices that
directly affect the existing nuclear fleet.
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Table 5-1

Comparison of the representation of existing nuclear across models

NEMS

ReEDS

REGEN

AEO2020 and
Sargent & Lundy
analysis, function of
age

Updated in
AEO2018 based on
INL (2016) report

EIA NEMS Plant
Database; increases
at 1.5%/yr
beginning in 2020

Electric Utility Cost
Group (maintenance
capital costs); ABB
Energy Velocity (non-
maintenance costs)

States with ZEC
policies cannot
endogenously
retire nuclear

ZEC policies
included in NEMS
for qualifying
states

States with ZEC
policies cannot
endogenously
retire nuclear;
lifetime retirements
only

Represented as
lower bound on
eligible nuclear
capacity in
applicable model
regions

Policy-specific,
able to model
with or without
credit

Credit where
specified in
state legislation

Eligible to
contribute in
CA, CO, MA,
NM, NY, WA,
VA

Eligible for
state and
federal CES
policies;
nuclear
receives full
credit

Exogenous,

based on AEO

Exogenous
uprates revised
yearly based on
announced and
NRC requests

Only included if
in NEMS Plant
database

Exogenous
(based on
announced
uprates)
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Endogenous, up to
80 years

Endogenous, up to
80 years

Endogenous, up to
80 years

Endogenous, up to
80 years

Capacity factor based on
AEO assumption

Existing nuclear has
multiple dispatch options
for spinning reserves and
demand. Minimum output
in a given slice is 50%

Nuclear cannot provide
operating reserves

Existing nuclear can be
dispatched down to 70%
of nameplate capacity;
no ramping constraints;
output limited by monthly
availability factors

AEO2020

Exogenous
input
assumption

Exogenous
input
assumptions

from AEO

Exogenous
input
assumptions

from AEO



Retirement Dynamics

Model-driven retirements in all four models are based on the premise that
existing capacity will generate electricity if that capacity is able to recover the
costs on the market (or if the cost of generating electricity is less than the cost of
purchasing).” Those costs vary over time (e.g., periodic large capital
expenditures), and each model evaluates cash flows over their respective time
horizons, comparing the net present values of costs to potential payments. These
retirement dynamics are similar for nuclear plants and other asset types, though
the drivers of such retirements and policy impacts vary (Bistline, et al., 2018).
While these models are based on assumptions of foresight, the existence of
uncertainty introduces complexity into this evaluation for each unit. This
uncertainty is likely a key driver of the notable amount of existing capacity
observed to operate unprofitably in recent years.

Economics have been an important factor in many of the nuclear plant closures
in the U.S. to date. Energy revenues are a key value stream for nuclear plants (see
Section 4). Declining wholesale electricity prices from low natural gas prices have
historically been a primary driver of economic pressures for nuclear plants
(Jenkins, 2018a), but future policy changes and VRE deployment can also alter
pricing dynamics and the economic outlook for nuclear plants. Retiring (zero-
emitting) nuclear plants are generally replaced by fossil-fueled generation, which
leads to increases in CO, and criteria pollutants, as several regional studies in the
U.S. have shown (ISO New England, 2017; EIA, 2016; Davis and Hausman,
2016). Studies have illustrated how extending the lifetimes of nuclear plants can
lower decarbonization costs (Kim, Taiwo, and Dixon, 2021; Bistline and

Blanford, 2020; Roth and Jaramillo, 2017).

Each model captures retirement dynamics differently:

* JPM: Retirements of existing nuclear capacity are modeled endogenously in
IPM—in each run year, the model compares the net present value of revenue
from each model plant to the net present value of all future costs, and
projects a retirement if the latter exceed the former. However, there are two
key elements in IPM that affect the time path of those projections. The first
is a constraint on near-term retirements, which prevents retirements in the
first year of the model horizon beyond the trajectory of what has been
observed recently (in the most recent version, total nuclear retirements are
assumed not to exceed 4 GW in 2025, inclusive of planned retirements).
Additionally, the model includes an uncertainty adjustment which decreases
fixed operations and maintenance costs through 2030. This near-term
adjustment reflects the potential impact of clean energy and/or carbon
regulation optionality that nuclear units may consider while making
retirement decisions.

2 Models also incorporate announced retirements (e.g., for coal plants in many models) and
exogenous retirement schedules based on asset age in some instances (e.g., existing gas-fired

capacity in REGEN).
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* NEMS: In the NEMS model, projected retirements are based on an
economic evaluation in each year of the model looking at two separate
factors—net revenues and reserve requirements. The model calculates net
revenues in each year based on projected marginal energy prices as compared
to going-forward costs and counts the number of years that each plant is
projected to experience a negative net revenue. The model also determines
whether the capacity from each plant is required to meet reserve constraints
in a future year, including in that determination the cost of new capacity.
The model retires an existing nuclear unit if the projected net revenue is
negative for at least six years, and if the model is not using the capacity to
meet a reserve or demand constraint in the future. Planned retirements
reported to EIA through survey mechanisms (primarily near-term) are
assumed to occur as-reported by plant owners; all other retirements are based
on the economic evaluation described above.

= ReEDS: The ReEDS model incorporates both exogenous and endogenous
retirements. Lifetime assumptions can range from 50 to 80 years, based on
scenario design, with a default lifetime of 80 years. The model also allows for
endogenous retirements of capacity prior to the maximum lifetime assumed
for each unit. The net present value of the projected revenue is compared to
the net present value of going-forward costs, and the model retires existing
nuclear capacity for which a percentage of the cost is able to be recovered.
The scenarios supporting this paper assume a 50% cost recovery requirement
for going-forward costs, though that value can be changed by the user.

* REGEN: In REGEN, existing nuclear capacity is grouped together in a
single representative block in each region. As in the other models,
endogenous retirements are able to occur where the net present value of
going-forward costs exceeds the projected revenues. Each regional block is
dispatched together, and the model is able to retire a fraction of that block’s
capacity across time periods.

As discussed in Appendix A, retirement assumptions for some of the
participating models changed over the course of this project.

Fixed Operations and Maintenance (FOM) Costs
FOM costs are key factors in projections of future operation, which makes it
important to review the sources of these costs. These costs include all labor,

materials, contracted services, general and administration (G&A), and
maintenance capital costs.
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Nuclear FOM cost assumptions
vary widely by plant, over time,
and across different models.

As shown in Table 5-1, there are a range of FOM cost assumptions across the
four models:

IPM: IPM adopts the NEMS assumption for all non-capital costs and
applies an age-based equation to estimate capital costs associated with the
investments required to operate existing nuclear plants beyond 40 years.

NEMS: The NEMS model updated its FOM cost assumptions for
AEO2018 based on a 2016 INL report, which is based on a review of public
and proprietary data (INL, 2016). The costs for each unit are a function of
the number of units located at each facility, and for single-unit facilities, the
size of that unit. G&A costs are an additional percentage adder. At 30 years,
a capital cost related to plant aging is added to each unit.

ReEDS: ReEDS also starts with the NEMS assumptions based on the year
2020, and increases that cost by $1.25/kW-yr (in 2017$) each year through
2030 and by $1.81/kW-yr each year after 2030 (Sargent & Lundy, 2018).

REGEN: REGEN adopts FOM cost assumptions from two different

sources. Capital costs are based on data from the Electric Utility Cost Group,
and non-maintenance FOM are based on reported FERC Form 1 data.

Figure 5-1 shows the range of cost assumptions employed by each model. Cost
assumptions vary by plant and over time. These costs vary widely across plants
within each model, as well as across different models. Within each model, there
is a range of cost assumptions that can span up to roughly $200/kW-yr. Across
models, the difference between the highest costs can reach roughly $150/kW-yr.
Note that the 2020 average FOM across the U.S. fleet was about $190/kW
(NEI, 2021). Costs have decreased steadily by a total of 20% across the fleet
between 2014 and 2020, which is consistent with the industry’s “Delivering the
Nuclear Promise” initiative (NEI, 2021).
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Figure 5-1

Nuclear fixed operations and maintenance (FOM) costs in 2020$ over time across models.
FOM costs include all labor, materials and contracted services, general and administration,
and maintenance capital costs. Points represent individual nuclear unit costs. The line shows
2020 average FOM across the U.S. fleet from NEI (2021).

Both IPM and NEMS employ different age-based algorithms to represent the
capital expenditures for continued operation into first and second relicensing
periods. In IPM, capital costs are assumed to increase until age 50, at which
point they remain flat. In NEMS, an annual adder is applied beginning at age
30. In the ReEDS model, an annual 1.5% escalation is applied. REGEN assumes

static costs across the model horizon.

The primary reason for the differences in cost assumption across the models is
data availability. A comprehensive public data source for current FOM costs does
not exist. Additionally, limited data are available on the magnitude and timing of
unit-level capital investments over time. Each of the models has a different
approach to estimate future costs based on the limited available data.

The intra-model comparison later in this section illustrates how FOM cost
assumptions can impact existing nuclear retirement projections. However,
retirement projections are due to a range of model-specific factors, as illustrated
in Section 2, where REGEN has the second highest nuclear retirements in the
reference scenario with native cost assumptions (Figure 2-3) despite having the
lowest FOM costs (Figure 5-1).
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Dispatchability and Flexibility

Assumptions about the dispatchability and flexibility of existing nuclear plants
can impact projections for their operations and retirements. Existing boiling
water reactor (BWR) and pressurized water reactor (PWR) plants in the U.S. can
lower output down to 70% of their nameplate capacity within an hour (Ziebell, et
al., 2021). There are no licensing requirements that would limit the flexibility of
the existing nuclear fleet, though economic and technical considerations may
influence such operating modes. In contrast, many existing energy models
represent nuclear plants as inflexible “must-run” capacity (Jenkins, et al., 2018b).

The projected dispatch of existing nuclear capacity and assumptions about its
flexibility vary across the four models:

» IPM: In IPM, projected dispatch is flexible in each time segment up to a
maximum assumed availability for each unit. That availability is a function of
an age-based capacity factor algorithm (where capacity factors increase for
the first 30 years and then remain flat) and seasonal planned outage
assumptions (which are assumed to occur in the winter and shoulder
segments). Given the low variable cost of existing nuclear, the model
typically dispatches these units up to the availability.

* NEMS: NEMS assigns multiple operating modes for each unit by season to
allow for projected contribution to load or spinning reserves. The maximum
capacity factor is a function of age (where capacity factors increase for the
first 30 years and then remain flat), and each unit can operate down to a 50%
capacity factor if chosen to maximize the spinning reserve contribution.

* ReEDS: In ReEDS, existing nuclear plants are assigned a maximum capacity
factor of 91.2%, and the model typically operates these units at that
maximum value. However, ReEDS enables seasonal decommitment of
nuclear capacity in scenarios where the value of doing so exceeds the variable
cost, subject to a minimum annual capacity factor of 40%. ReEDS also allows
nuclear plants to turn down to 70% of their rated capacity if it is optimal to
do so.

* REGEN: In REGEN, the maximum level of generation at each existing
nuclear unit is a function of monthly availability factors, which account for
seasonal variation in outages and are based on historical data. Unlike IPM
and NEMS, these availability factors are static over time, though hourly
capacity factors are endogenous and can vary over time. Minimum generation
is limited to 70% of nameplate capacity.

Section 6 provides an intra-model comparison that illustrates how flexibility and

dispatchability assumptions can impact model outputs related to new and existing
nuclear.
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Nuclear FOM cost assumptions
are first-order drivers of model
projections of nuclear plant
retirements.

Other Considerations

As shown in Table 5-1, fuel cost assumptions across all four models are based on
the values adopted in EIA’s AEO. Similarly, uprates are exogenously determined
across each of the models. The NEMS team reviews announced updates and
requests submitted to the U.S. Nuclear Regulatory Commission (NRC), and the
other models either rely on this review or perform similar reviews of the available
information. The NEMS model assumes that 2.1 GW of uprates for existing
nuclear plants occur through 2050. This assumption is implemented regionally,
and informed by EIA analysis of the remaining uprate potential by reactor, based
on the reactor design and previously implemented uprates.

The final points of comparison between the four models relate to various policies
that directly affect the existing nuclear fleet. IPM, NEMS, ReEDS, and
REGEN all enable endogenous nuclear retirements and lifetimes up to 80 years
(recall, however, that each model has a different approach for estimating future
FOM costs). All four models represent ZEC programs by preventing
endogenous retirements of existing nuclear capacity in states where these
programs are in effect. In NEMS, the value of the ZEC is calculated and passed
through to retail prices (subject to any applicable cap). Similarly, in all four
models the existing nuclear fleet’s zero-emitting generation is able to contribute

toward CES programs.

Intra-Model Comparison: FOM Cost Assumptions and Nuclear
Retirements

FOM cost assumptions are key drivers in future projections of existing nuclear
capacity. As shown in Figure 5-1, unit-level FOM assumptions vary widely
across the participating models. The differences between the native IPM and
REGEN assumption is notable: In 2030, unit-level differences can be up to
$160/kW-yr (in 20208$).

To assess the sensitivity of the modeling results to FOM assumptions, we
evaluate the impacts of applying two sets of FOM costs using IPM, holding all
else constant and assuming a “current policies” reference scenario. The first
scenario assumes the native IPM FOM cost assumptions. The second scenario
assumes REGEN assumptions, which are generally much lower. The near-term
retirement constraints and uncertainty adjustments, summarized above, were
removed from IPM for these scenarios.

The impact on projected retirements is significant (Figure 5-2): IPM projects a
46 GW decrease in retirements by 2050 as the result of applying the lower FOM
cost assumptions from REGEN (out of an existing fleet of approximately

90 GW). The results are similar in the near- and mid-term, where applying the
lower costs increased operable nuclear capacity by roughly 40 GW.
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Unsurprisingly, these notable changes in projected nuclear retirements have large
impacts on related model projections. For example, the increase in nuclear
generation resulting from the lower nuclear FOM cost assumptions leads to
significant decreases in fossil generation (about 20% and 5% decrease in coal and
gas, respectively, in 2030), as well as decreases in new renewable construction.
Overall, decreases in nuclear retirements result in lower CO,, SO,, and NOx
emissions.
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Figure 5-2

Projected changes in operable capacity resulting from two different sets of FOM assumptions

in IPM.
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Recommendations for Future Modeling RD&D

Given its size, implications for dispatch, and potential to affect emissions,
accurately representing the existing nuclear fleet is key for reliable projections of
power sector investments and operations. As we see above, changes to a single
input assumption can have large impacts on power sector projections. The
tollowing three areas are of particular importance for future modeling research
and development regarding representation of the existing nuclear fleet in capacity
expansion modeling:

Improve data and methods for estimating retirements: Retirements represent a
significant driver for new capacity needs, but these dynamics are challenging
to represent in models. Understanding drivers of retirements across models
would be valuable, especially accounting for uncertainty (e.g., policy, FOM
and future capital costs) and foresight (as discussed in Section 7). Option
theory combined with policy uncertainty may suggest postponing nuclear
plant retirements, especially since such decisions are essentially irreversible.
However, most models are deterministic and do not explicitly account for
such uncertainty.

Provide public data for nuclear costs: Given the notable impact that different
FOM cost assumptions can have on the modeling, it is important to reflect
those costs as accurately as possible. To that end, public data for current
FOM costs by plant and guidance on projected changes (both the magnitude
and timing) would be useful for modeling teams. Such cost data would be
valuable for understanding projections for nuclear generation and estimates
for other resources. In addition to input assumptions, it is important to
compare model algorithms and heuristics for power plant retirement, cost,
and operational decisions against actual data and to update these model
features as appropriate.

Understand possible nuclear plant license renewals to 80 years and beyond: It is
important to consider the possibility of license renewals beyond 80 years,
especially as models begin to expand projections beyond 2050.

28Tt is important to note, however, that IPM includes an FOM adjustment through 2030 that
reflects the potential impact of clean energy and/or carbon regulation optionality that nuclear units
may consider while making retirement decisions.
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Section 6:

Representation of New Nuclear

Summary

New nuclear deployment varies considerably based on scenario definitions—
the most impactful of which are future cost trajectories and policy
assumptions. Default model input assumptions and structures have more
limited impacts on new nuclear deployment.

As with all resources, it is important for models to capture different nuclear
technologies and their anticipated characteristics. The scope of many models,
including the four participating ones in this study, mean that cost
assumptions are key drivers of deployment. Outputs can be highly sensitive
to inputs about the cost and performance assumptions for different nuclear
reactor technologies and to assumptions about the costs of other resources.
However, there is considerable uncertainty about the projected costs of new
nuclear designs and appropriate methods for capturing technological change.

Model representations of changes in technological performance and costs are
critical determinants of model outputs, as the intra-model comparison in this
section illustrates. Technological change can either be exogenous (i.e., based
on pre-defined input assumptions about changes over time) or endogenous
(i-e., based on model-driven changes in deployment given input assumptions
about learning rates). Endogenous technical change raises several challenging
conceptual and practical considerations, including attribution, parameter
selection, spillovers, and computation. The appropriateness of different
approaches to representing technological change varies by model and context.

Nuclear power is a high-capital-cost but low-variable-cost resource, which
makes assumptions about project finance and discounting critical for
evaluating its economic competitiveness.

The section concludes with a list of modeling and analysis needs related to
new nuclear.
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Overview of Considerations and Approaches

The advanced® nuclear reactor technology landscape has evolved over the last
several years in the U.S. and globally, with plans for a range of demonstration
projects and commercial construction over the next decade. These designs offer
new features, attributes, capabilities, and deployment models that differ from
those of the operating fleet and mature commercial offerings (Sowder, 2021,
Marciulescu, et al., 2019). With many drivers of decarbonization at federal and
subnational levels, deployment of zero-emitting technologies like new nuclear
may play important roles, so long-term energy system models should reflect
salient features of these new nuclear technologies.

% Advanced nuclear is used here to refer to reactor concepts beyond Generation III/ITI+
technologies, including non-light-water designs, light-water SMRs, and microreactors.
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Table 6-1

Comparison of the representation of new nuclear across models

NEMS

ReEDS

REGEN

Light Water Reactor
(based on
AEO2020
assumptions)

Advanced Nuclear
and Small Modular
Reactor
disaggregation are
represented as
nuclear technologies
in NEMS

AP1000 and SMR

Gen llI+ (based on
AP1000); generic
advanced nuclear
technology

(parametrized
based on SMR)

AEO2020; exogenous
technical change

AEO2020 based on
Sargent & Lundy
report; endogenous
technical change

AEO2020 for new
nuclear (based on
brownfield AP1000
development);
exogenous technical
change

EPRI “Generation
Options” report;
regional variation in
labor costs; exogenous
technical change

Dispatchable up
to 90% capacity

factor

For capacity
planning, new
nuclear is
assumed to
dispatch at max
generation, but
once built is
allowed to vary

Linear
optimization
allows complete

dispatchability

Fully dispatchable;

no ramping

constraints; output
limited by monthly
availability factors

Approximately 8%
capital charge rate,
40-year book life

Same financing for
all technologies;
30-year economic
life; cost of capital
from macro model
projections,
AEO2021 discount
rate ~6% nominal

20-year economic
life, 6-year
construction, 15-
year MACRS
depreciation
schedule

Technology-specific
physical /economic
lifetimes; discount
rate of 7% typically
assumed
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N/A

Once through,
recirculating, and
cooling pond
technologies (dry
cooling is not
allowed)

Water withdrawal
and consumption

calculated ex post;

REGEN does not
endogenously
determine cooling
for existing/new

capacity

6-year lead time

SMR first online
date is 2028; no
nuclear builds
allowed in NYC
or California

New nuclear
generation
cannot be
available for
generation

before 2028

Constraints on
“brownfield”
sites; advanced
nuclear not
available until
2030; state-
based moratoria

Based on EIA's
AEO

Exogenous
input
assumption
(same value
for existing
and new)

Based on EIA's
AEO

Based on EIA's
AEO
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Model outputs can be highly
sensitive to input assumptions
about the cost and
performance for nuclear and
other system resources.

Table 6-1 compares the representation of new nuclear across the four
participating models.

Technological Avadilability, Cost, and Performance Assumptions

A fundamental consideration for modeling new nuclear is the choice set of
available technologies and their parameterizations. Long-term system models
incorporate the operations of existing nuclear plants (Section 5) as well as new
investments over time, including Generation III/III+ designs (e.g., Westinghouse
AP1000), small modular reactors (SMRs), and Generation IV designs, which are
often distinguished by their primary system coolant (e.g., liquid metal, molten
salt, gas-cooled). As shown in Table 6-1, models generally capture the ability to
invest in AP1000 designs and SMRs.*

Each technology includes associated parameters related to cost (e.g., capital costs,
FOM costs) and performance (e.g., fuel use, flexibility).*' Outputs can be highly
sensitive to inputs about the cost and performance assumptions for nuclear and
other system resources.

Capital cost projections for new nuclear and other generation options over time
are shown in Figure 6-1. Note that ReEDS assumptions are used for the
harmonized cost scenarios in Section 2. Sources for cost projections of new
nuclear over time vary by organization. There is considerable uncertainty about
the projected costs of new nuclear designs over time, which reflects questions
about initial all-in costs for emerging technologies, extent of learning and cost
reductions over time and with greater deployment, country- and region-specific
factors,* indirect costs,” and impacts of policy support. It is important not only
to specify reference costs over time but also reasonable low- and high-cost
sensitivities for additional scenario analysis.

39 Some models have generic characterizations of new nuclear options with unspecified reactor
types. Differentiating could have implications for cost and the fuel cycle.

31 Note that ReEDS explicitly represents cooling technologies for thermal generating assets. Water
use is constrained using technology-specific withdrawal and consumption rates alongside water
availability and cost data.

32 Historical construction costs for new nuclear have varied substantially by country (Lovering, et
al., 2016), though past performance is not necessarily indicative of potential future costs.

33 The rise in U.S. nuclear plant construction costs in recent decades have largely been due to
“indirect” expenses, primarily soft costs (Eash-Gates, et al., 2020).
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Comparison of native capital cost assumptions by technology and model over time. Note that
the ReEDS costs are used for the harmonized cost sensitivities in Section 2.

Technological Change

Model representations of changes in technological performance and costs are
critical determinants of model outputs. Technological change can either be
exogenous (i.e., based on input assumptions about changes over time) or
endogenous (i.e., based on model-driven changes related to deployment and
other factors).* Although the most widespread treatment of technological
change in energy models is to consider it exogenously, endogenous technological
learning has also been widespread in the energy systems and climate policy
modeling literatures (Gillingham, Newell, and Pizer, 2008).

3% For the models in this comparison, IPM, ReEDS, and REGEN assume exogenous technological
change, while NEMS often assumes endogenous technological change, but can be run with
exogenous cost trajectories.
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Endogenous technical change

raises practical and conceptual

issues, including attribution,

parameter selection, spillovers,

computation.

.

Different approaches to
modeling technological change
are appropriate in different
contexts.

There are several key conceptual and practical considerations raised by
endogenous technological learning:

Attribution: Traditional one-factor learning curves assume that changes in
cost are solely a function of cumulative experience. However, technological
change is a complex process, and the empirical literature on historical
determinants of technological change suggests that a broader range of factors
(e.g., economies-of-scale, learning-by-doing, RD&D, forgetting effects,*
materials costs) contributes to these changes (Grubb, et al., 2021; Kavlak,
McNerney, and Trancik, 2018; Gillingham, Newell, and Pizer, 2008;
Nemet, 2006).

* Parametrization: Although there is extensive literature documenting
historical learning rates (Grubb, et al., 2021; EPRI, 2020b; Isoard and Soria,
2001), selecting forward-looking parameters across different technologies is
challenging for prospective modeling.*® This difficulty is especially prominent
for nascent technologies, where there is no empirical basis for parametrizing
technological relationships, but also can present problems for existing
technologies, as learning rates may change across different stages of
deployment. Cost estimates can be highly sensitive to the choice of learning
rates and other parameters, which can bias optimization model outputs

(Nordhaus, 2014).

= Spillovers: Spillover effects across countries, firms, and technologies may be
important for technological change in practice, but these dynamics are often
simplified in prospective models (Grubb, et al., 2021).

*  Computation: Endogenous technical learning leads to several computational
challenges, including increasing the size and solve time of the optimization
problem, creating path dependencies (which can lead to many distinct local
optima), and adding nonlinearities to the problem formulation (Gritsevskyi

and Naki¢enovi, 2000).

The appropriateness of different approaches to representing technological change
varies by model and context, as exogenous technological change may be more
appropriate in settings while endogenous is preferred in others.”” A range of
studies examines strengths, limitations, and policy implications of different
approaches to modeling technological change (Grubb, et al., 2021; Nordhaus,
2014; Gillingham, Newell, and Pizer, 2008). In all cases, emissions policies and
technical change interact with one another (Acemoglu, et al., 2012).

3 Depreciation of the knowledge stock and potential cost increases when deployments and RD&D
decline over time.

3 This is a pervasive challenge for multi-decadal models not only for technological costs but also
for assumptions about fuel costs, demand, policies, and many other areas.

37Tt is unclear ex ante whether adopting exogenous technological change vis-a-vis endogenous
change impacts the deployment of nuclear energy, as a range of context-specific considerations
likely influence how model representations of technical change interact with other model decisions
and outputs.
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Nuclear is a high-capital-cost
but low-variable-cost resource,
which means that financing and
discounting are key
assumptions for assessing its
competitiveness.

Technological change is important for considering new nuclear, due both to the
impact of cost assumptions on model outputs and to the expectation that costs of
new nuclear will fall as the technology moves down the learning curve. Factory-
fabrication of modular technologies can reduce costs over successive builds, and
several recent studies (Sweerts, Detz, and van der Zwaan, 2020; Wilson, et al.,
2020) indicate higher learning with smaller units (i.e., learning rates depend
more on size than on technology). Newer nuclear plants such as SMRs are
designed to be standardized and mass-produced in factories rather than being
built onsite, which has the potential to lower costs. First-of-a-kind technology
additions may be characterized by higher costs, but at moderate learning rates,
costs may come down considerably, especially for SMRs where the cost trajectory
may be more dependent on learning rate assumptions than on first-of-a-kind

costs (Lovering, 2020).

Refer to the intra-model comparison in the subsequent section for an illustration
of how technological change assumptions can impact the deployment of new
nuclear.

Discounting and Financing

Nuclear power—Tlike renewables, transmission, and energy storage—is a high-
capital-cost but low-variable-cost resource, which means that assumptions about
project finance and time preference (i.e., comparing current costs and revenues
vis-a-vis future ones) are important for evaluating its economic competitiveness.
The potential for longer asset lifetimes also makes discounting and financing
assumptions central to assessing the competitiveness of new and existing nuclear
plants. Nuclear and all other generating technologies entail intertemporal
tradeoffs between upfront capital costs and ongoing operating costs.

There are many considerations at play in the selection of parameters and model
representations, which are discussed in detail in Section 7 (including an intra-
model comparison to illustrate how these parameters can materially impact
nuclear-related model outputs). Differences in discounting and financing vary
across models (Figure 7-2).

Deployment Barriers

As potential scenarios are considered with significant and sometimes rapid
deployment of new nuclear, it is important to understand potential challenges
that might arise and could dampen the pace or extent of nuclear deployment.
Issues that could arise during a rapid nuclear build-out in the U.S. include:

* Limited supply chain, including labor and parts, for developing many new
nuclear projects simultaneously;

*  Fuel processing and supply capabilities for new reactors;
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»  State-level restrictions® that might limit the siting options for new nuclear
technologies;

*  Public acceptance of nuclear technologies, especially as they could be
deployed to locations where nuclear plants have not existed in the past;

*  Securing sufficient financing to support the development of many plants
simultaneously;

* Insufficient means for dealing with the waste produced by nuclear plants; and

*  Availability and regulatory approval of new nuclear designs in the timeframe
for the deployments envisioned by the models.

Most of these potential barriers are not explicitly captured in the four
participating models with the exception of state-level restrictions. Integrated
assessment models can impose ad hoc constraints on deployment to capture
“reactor safety and cost, uranium availability, nuclear waste disposal,
proliferation, public acceptance, and others” (Kim, et al., 2014).

Intra-Model Comparison: Technological Change

Given the importance of investment cost assumptions over time for nuclear
deployment, an intra-model comparison is conducted in NEMS to compare
impacts of different representations of technological change. In NEMS, the
EMM solves sequentially and can provide annual feedback from other modules
during the model solution, as well as use one year’s solution to update decisions
in future years. In the typical model process, EIA assumes that new power plant
costs change over time dynamically based on several factors, although it can also
take fixed cost paths as inputs. The dynamic factors include a commodity cost
index® that is calculated based on macroeconomic projections for metals and
metal products, a technological optimism factor,* and a learning factor.

Of the four models in this study, NEMS is the only one that represents
endogenous technological change (Table 6-1). NEMS models endogenous
learning through a log-linear function that projects costs to fall at a fixed
percentage for every doubling of capacity. For the newest technologies, the
learning rate changes over time, with three distinct steps in the calculation.
Learning is implemented at a component level for many technologies to allow
sharing of learning between technologies, and to reflect that different

38 Though states that have previously restricted new nuclear builds have recently passed legislation

to reverse such bans: https://www.ncsl.org/research/environment-and-natural-resources/states-
restrictions-on-new-nuclear-power-facility.aspx

% The commodity cost index was added to NEMS to account for cost escalation for critical
commodity materials and labor in the power sector such as was seen in the mid 2000s and appears
to be occurring in the early 2020’s.

4 Technological optimism reflects the tendency to underestimate costs for new technologies. EIA
currently applies this factor to a few technologies which are considered complex designs or in early
stages of development. The SMR design assumes that initial costs will be 10% above the base cost
estimate due to this technological optimism factor. This adjustment declines linearly over the first
four builds of the new design.
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components are in different stages of development. In general, standardized
learning rates of 20% on the revolutionary step, 10% on the evolutionary step and
1% on the conventional step are used. However, for both nuclear SMRs and
AP1000, aggregated learning rates are used to reflect a mix of experience with
the design without explicitly breaking down the components. For both nuclear
technologies, cost declines of 5% are assumed for the first three doublings of
capacity, cost declines of 3% occur for the next five doublings, and cost declines

of 1% occur for any future doublings (Figure 6-2). Builds of AP1000 and SMR

do not currently contribute to the learning rate of the other design.
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Figure 6-2

Learning factor as a function of cumulative system capacity.

Costs declines are most rapid for early builds, as experience is gained in
developing a new technology (or component), which slows as more capacity is
built. ETA also assumes a minimum level of learning to reflect ongoing research
and development that may affect future costs even absent new builds, which
results in an exogenous, time-dependent component to the learning function as
well as the capacity-driven portion.

To observe the impact of the learning algorithm as applied to a nuclear SMIR,
EIA developed sensitivities with a carbon fee on power sector emissions. An
initial cost for the nuclear technology is chosen that results in new builds
(roughly $5,400/kW initially), so that the learning algorithm can be observed. As
an alternative to EIA’s learning algorithm, a separate case is run with a fixed cost
path, declining linearly by roughly 32% by 2050. In both cases, a $15 per ton
carbon fee is applied in 2030, rising at 5% per year to reach $40 per ton in 2050,
to further stimulate demand for low-carbon generation. These assumptions are
for illustrative purposes only and do not necessarily reflect current technology
assessments or policy expectations of EIA or other modelers.
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The EMM projects new nuclear builds to occur starting after 2035, as shown in
Figure 6-3. In both cases, nuclear costs follow similar trajectories through 2035,
dominated by changes in the commodity price index and scheduled cost
reductions. Once builds begin, the case with endogenous learning experiences
greater cost declines (as the first step of the learning curve results in relatively
large drops in cost for the initial builds), which then leads to higher future builds
of new capacity as the cost becomes even more competitive (Figure 6-3). In the
fixed cost path, the builds occur more slowly, and the rate does not significantly
change over time as the builds had no impact on the cost trajectory.

—
Endogenous technical learning
can lead to greater market
penetration after the first few
builds as costs decline more
rapidly.
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Figure 6-3

Cumulative capacity additions and overnight costs under two carbon fee scenarios and with
fixed costs versus endogenous learning in NEMS.

An additional pair of scenarios is run with higher carbon fees, starting at $50 per
ton in 2030 and rising at 5% per year, reaching $133 per ton in 2050. In these
cases, the new nuclear technology is competitive earlier (by 2030), and additional
builds are seen relative to the $15 fee case. The endogenous learning case
responds with an earlier drop in cost and with a larger drop in costs as a result of
higher builds. Learning leads to higher additions of new nuclear (124 GW versus
78 GW with a fixed cost path). When using endogenous learning, the costs in
2050 are 7% lower in the $50 fee case compared to the $15 case as a result of
additional capacity investments (Figure 6-3, right panel). Costs in 2050 are
between 17% and 23% lower than the fixed cost path, and builds are 57 and 66
GW higher. As a result of the higher nuclear capacity, the cases with endogenous
learning have fewer natural gas-fired and renewable capacity additions and
slightly lower electricity prices.

In the scenarios analyzed, the inclusion of endogenous learning cost reductions
has a greater impact on deployment of SMR technology than the carbon fee
level. There is an additional 20 GW of nuclear capacity built in the $15 fee case
with endogenous learning compared to the $50 fee case with fixed costs,
indicating the decline in the cost of the technology is a larger driver of new builds
than the increased level of carbon fee.
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These intra-model comparisons illustrate how representations of technological
learning can impact long-term expansion model results, especially for new or less
commercially mature technologies. As described in the earlier subsection on
“Technological Change,” implementing endogenous learning requires careful
review of the current status of different technologies to determine where each is
on the current learning curve and what the appropriate parameters should be. But
the ability to have endogenous feedback across scenarios can help identify
potential interactions that result in a technology breakthrough.

Intra-Model Comparison: Flexibility

CEMs often include a representation of operating reserves and ancillary services,
which can be provided by flexible and dispatchable resources. The goal of this
intra-model comparison is to evaluate how impactful the nuclear flexibility
definitions and access to operating reserves and ancillary service revenues in a
model framework are to projected nuclear power plant retirement and investment
decisions.

Using the ReEDS model, we explore scenarios with varying levels of flexibility
for both conventional and advanced (SMR) nuclear technologies (Table 6-2).
Under our “low flexibility” assumptions, conventional nuclear power plants are
assumed to be inflexible (such that they could not provide operating reserves or
ancillary services), and we adopt relatively conservative flexibility assumptions for
SMRs with minimum loads of 70% (Table 6-2). Under our “high flexibility”
assumptions, conventional nuclear power plants are allowed to operate flexibly
and, in turn, provide operating reserves. For SMRs, we adopt “high flexibility”
assumptions based on operating characteristics for a NuScale SMR.

Table 6-2
Flexibility parameterization for conventional and advanced (SMR) nuclear technologies
under our low-flexibility and high-sensitivity assumptions

Minimum Load 100% 70% 70% 40%
Minimum Load for Op. 100% 70% 70% 20%
Characteristics

Ramp Rate (per minute) 0% 0.32% 0.32% 0.67%
Regulation Reserve Cost - $13.71 $13.71 $13.71
($/MWh)

Flexible Reserve Cost - $0 $0 $0
($/MWh)

Spinning Reserve Cost - $0 $0 $0
($/MWh)
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.
Flexibility assumptions about
existing and new nuclear are
smaller determinants of the
economics of these resources
relative to other factors.

These two different levels of flexibility are then layered with two policy scenario
definitions: one with current policies (only) and the other with a hypothetical
power sector carbon policy that forces a linear reduction towards a 100%
decarbonized electricity supply in 2050 (“100% by 2050”). We further explore

these scenario combinations with low-cost assumptions for new SMR capacity.

Scenario outcomes indicate that modifying flexibility assumptions has no impact
on installed nuclear capacity under either the Current Policies or 100% by 2050
policy. In particular, the ReEDS model does not retire any existing nuclear
capacity (beyond announced retirements) in any of the scenarios explored for this
intra-model comparison; in addition, the magnitude of new SMR capacity is
insensitive to the assumed level of flexibility (although it did vary based on policy
and technology cost assumptions). In other words, the flexibility assumptions on
their own are not found to be a principal determinant in the economics of
existing or new nuclear capacity on the bulk power system.

Additional insights can be gained from the reduced-form dispatch results from
ReEDS, which take the form of total generation (or capacity) factor by
representative time slice. When examining these results for new and existing
nuclear power plants, the only visible changes occur in the 100% by 2050
scenarios (Figure 6-4). Under our “high flexibility” assumptions, the model shows
an increase in generation from nuclear power plants during the Spring, which is a
period of significant VRE curtailment. In the model, an inflexible nuclear plant
must operate at a lower seasonal capacity factor, because it cannot vary output to
balance (or avoid the curtailment of) VRE generation. By contrast, our high
flexibility assumptions allow the nuclear power plants to operate more flexibly,
resulting in a greater degree of load following and the ability to increase total
generation in that representative season.
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ReEDS Spring season dispatch of existing and new nuclear capacity across the four
scenarios explored for this model intra-comparison.

Finally, the operating reserves results from ReEDS indicate that modifying
nuclear flexibility assumptions has a modest effect on operating reserve prices
(Figure 6-5). Providing energy and operating reserves are mutually exclusive
decisions within the ReEDS model, and for nuclear power plants, opting to
provide energy typically leads to the greatest system cost (and revenue) benefits.
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Figure 6-5
ReEDS model outputs for operating reserve prices across a subset of the intra-model
comparisons for nuclear power plant flexibility.
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EIA uses supply steps for new
builds to reflect the potential for
cost increases when new
capacity is built faster than
recent experience.

Intra-Model Comparison: Deployment Barriers

EIA includes short-term supply cost adjustment factors for the installation of
new electricity generating technologies in the capacity planning module of
NEMS, which is unique among the four participating models. The factors reflect
the expectation that rapid expansions in the supply of installations using new
technologies may induce shortages of critical manufacturing and project
development resources as discussed earlier. Shortages could reflect manufacturing
bottlenecks; delays in regulation, licensing, and public approval; and resource
constraints resulting from shortages of trained construction and operations
personnel and equipment.

EIA assumes generating capacities can increase in a given year by a pre-specified
amount without incurring cost increases, but costs are assumed to increase above
a threshold rate of increase. The threshold is based on previous builds of the
technology, so that as a specific industry is built up and proven to be able to bring
significant capacity online in a single year, this annual limit will grow and no
longer become binding. Capacity builds in a given year can be up to 25% above a
base amount in a given year without a cost adjustment (that is, 125% of the base
capacity). This increment is based on the greatest amount of capacity brought
online in a single year during the past 10 years, but with recent experience more
heavily weighted. The capacity amounts are specific to the individual designs,
with overlap assumed only for the solar PV and solar PV with battery storage
technology. For other designs, such as the SMR and AP1000 nuclear plants, the
constraints are applied on each individual design. If no existing capacity is online,
then an exogenous assumption is used for the initial base amount. For SMRs, an
initial 3 gigawatts (GW) of capacity can be built without incurring these costs.

The short-term cost adjustment factors are based on the percentage change of
national installed capacity of a technology, using an exponential cost function
relating an increase in capacity to a cost multiplier.*! These adjustment factors are
endogenous to the EMM and are only affected by the rate of increase in specific
technology builds and would not represent external economy-wide disruptions in
supply chains. In reference case modeling, these supply constraints are generally
binding in relatively few years for the newest technologies, as the model tends to
follow recent trends in capacity expansion and new technologies become
economic gradually over time. However, in sensitivity cases which require a large
shift in the generation mix or when new technologies are assumed to have a
breakthrough in cost, these constraints can have a larger impact on model results.

# Because the linear program cannot model a continuous upwardly sloping function, the
formulation creates a three-step supply curve. The capacity assumed for the steps is 125% of the
base amount for the first step (with no cost factor), 75% of the base amount for the second step,
and 100% of the base amount for the third step. The midpoint capacities on steps 2 and 3 are used
to calculate the cost multiplier, using the assumption that a 1% increase in capacity will lead to a 1%
increase in costs.
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Limiting the pace of expansion
of new nuclear through the
supply-step constraint affects
the overall generation mix and
cost of producing power.

To illustrate the impact of this feature, EIA compares two sensitivity cases
around the low-cost decarbonization scenario presented in Section 2.* EIA
models the decarbonization scenario through a carbon fee to the power sector

of $50 per ton in 2030, growing at 5% per year to $133 per ton in 2050. The
sensitivity cases assume a different threshold for the first supply step, one with a
lower value of 115% and another with a higher value of 135%. These
assumptions alter how quickly nuclear capacity could grow without an additional
cost factor. Typically, EIA uses the same elasticity parameters for all
technologies, but for this sensitivity, the value is changed just for nuclear to

isolate the impact on the SMR builds.

In the case with the reference elasticity threshold, the capacity builds hit the
annual constraint on the first supply step for the first 12 years of builds before the
threshold grows enough to become non-binding. With a lower elasticity, this
constraint is binding in all projection years, and cumulative builds are under

100 GW by 2050, while the case with the reference elasticity builds 173 GW in
the same time frame. In the case with the higher elasticity, builds increase more
quickly in the early years and the constraint was no longer binding after nine
years; however, builds in later years are not significantly different, ending around
187 GW in 2050 (Figure 6-6). Under this scenario, the choice of the initial
elasticity parameter affects how quickly new nuclear can be brought online and
has an impact on the overall cost to the system, as shown in the electricity prices

(Figure 6-6) as well as the generation mix (Figure 6-7).
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Figure 6-6

Cumulative small modular reactor capacity and electricity prices in three short-term elasticity
(“elas”) scenarios in NEMS.

2 In these scenarios, the cost of the new nuclear technology is assumed to be lower than the
reference case, and is an economic choice for capacity expansion in the NEMS projections,
particularly in the cases that include a carbon fee.
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Figure 6-7
Electricity power sector generation from select fuels across three short-term elasticity
scenarios in NEMS.

In these cases, electricity prices rise significantly in 2030 when the carbon price is
imposed, but prices fall slightly when the low-cost nuclear capacity is added in
later years. If industry expansion bottlenecks are more constraining and SMR
growth occurs more slowly, electricity prices remain high. More natural gas-fired
generation is used, incurring higher costs through the carbon fees, and additional
renewable capacity is built and operated.

The results of this analysis indicate that, under transformational scenarios where
new technologies are brought online quickly, the inclusion of a short-term
elasticity constraint will have an impact on the overall results of the program or
policy being evaluated. Without a constraint on near-term expansion, models
may tend to overstate the ability to stand-up new supply chains; train engineers,
construction managers, and operators; and develop smoothly functioning
regulatory and permitting processes for complex new technologies. However,
such impacts are transient in nature, and structures that are too constraining may
understate the longer-term potential impact of policies or market developments
that result in breakthrough technologies.

Recommendations for Future Modeling RD&D

Based on the comparisons in this section and discussions from workshops, there
are several modeling needs related to new nuclear:

»  Develop methods and data for characterizing advanced nuclear designs: These
comparisons illustrated how existing models tend to focus on AP1000 and
SMREs for new nuclear deployment decisions (Table 6-1). Additional
advanced or “Gen IV” reactor designs could be incorporated into models if
costs and performance projections were made available, though most public
datasets on electric sector technologies do not include such options. Potential
differences in fuel supply for advanced reactor designs could entail model
development and data needs to appropriately characterize these differences.
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Incorporate more robust representations of hybrid systems: There has been an
increasing focus on policy and planning for hybrid systems for nuclear energy
that provide heat and electricity to non-grid applications (e.g., hydrogen
production, steam delivery to industrial processes, heat to support direct air
capture) and other technologies (e.g., solar and batteries). Such systems can
utilize multiple feedstocks and provide multiple products/services. However,
the dynamic optimization of these resources is complex owing to their diverse
configurations, multiscale interactions, and markets, which makes modeling
such resources challenging (Arent, et al., 2021).*

Develop and apply methods for quantifying and incorporating climate impacts and
resource adequacy: For the future role of nuclear and other technologies,
questions related to climate impacts and resource adequacy (including
extreme events) have been prominent for many stakeholders, especially as
deeper decarbonization is targeted. Approaches for quantifying and
incorporating climate impacts and resource adequacy are under development,
including endogenous changes in capacity contributions of different resources
as the supply-side mix changes and demand-side loads evolve (e.g., shifts
toward winter peaking), cooling water availability, and planning for different
weather years.

4 Dedicated models for optimizing configurations of hybrid resources have been developed and
continue to be enhanced such as the Framework for Optimization of ResourCes and Economics
ecosystem (FORCE) and the Institute for the Design of Advanced Energy Systems (IDAES)
framework. These detailed hybrid system models could be integrated with broader energy systems
and capacity expansion models to capture integration across multiple sectors.
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Section /: Cross-Cutting Issues

Summary

Several cross-cutting modeling issues influence not only projections for
nuclear energy but also model outputs related to other technologies. Model
development decisions depend on the questions being asked, analysis type,
system characteristics, and available resources for development and analysis.

Choices about a model’s temporal and spatial resolutions can be key factors
in influencing model outcomes. Common approaches to simplify temporal
resolution in energy models may not reproduce fundamental relationships for
power sector decarbonization, as the intra-model comparisons in this section
demonstrate. Higher temporal resolution is critically important for policy
analysis, electric sector planning, and technology valuation in a range of
scenarios, including under deeper decarbonization and higher variable
renewables deployment. Simplified approaches understate nuclear
deployment.

Assumptions about discount rates and economic lifetimes can materially
impact power sector generation and capacity outcomes, especially for nuclear
energy given that it is a capital-intensive and long-lived resource. Discount
rates have countervailing effects on existing and new nuclear—lower rates
increase new nuclear capacity but decrease shares from existing nuclear.

These comparisons also identify several other cross-cutting areas where
tuture work would be valuable, including impacts of foresight, end effects,
and uncertainty.

Temporal and Spatial Resolution

Overview

Temporal resolution—the number of time segments within a year*—is widely
viewed as an important model dimension for capturing the joint variability of
time-series variables (e.g., load, potential wind/solar output), system operations,
and economics of system resources (Cole, et al., 2017; Merrick, 2016; Bistline, et
al., 2021). Intra-annual temporal variability is aggregated in energy systems
models and CEMs to reduce solve times. The number of time segments is
typically on the order of 10-100 within the optimization and 100-10,000 outside

4 Temporal resolution is distinct from temporal coverage, which can refer to the length of the time
horizon and length of timesteps.
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Temporal and spatial resolution
of models are important
dimensions for properly
capturing the economics of
investment and operations.

of the optimization. This is an active area of research, with significant learnings
and improvements over the last several years (Bistline, 2021a; Blanford, et al.,
2018). Those who are building, updating, and applying models generally attempt
to select a level of temporal resolution that is sufficient to capture the declining
value of generation, storage, and transmission but insufficient to capture specific
challenges in operating regimes, which more detailed models (e.g., production
cost models) are often more appropriate to investigate.” Lower temporal
resolution can dampen price volatility and thus understate the value of
dispatchable resources including nuclear power (Bistline, 2021a; Bistline, et al.,
2020; Diaz, Inzunza, and Moreno, 2019). A key takeaway from earlier analysis is
that the selection method for temporal and spatial resolution can matter as much
as the resolution itself.

The spatial resolution of models can range from individual projects to nations,
with tradeoffs between model detail and tractability. Spatial resolution is typically
measured by the number of model regions. Plant siting and very local issues are
generally not captured by CEMs, and more specialized tools are used to
investigate more highly spatially resolved questions. Similar to temporal
resolution, spatial resolution is a key consideration for data and model structure,
which is customizable in some models but also influenced by available data.

Temporal and spatial resolutions of the four participating models used in this
study are summarized in Table 3-2.

Decisions about temporal and spatial resolution can have substantial impacts on
model outputs, including the level of nuclear deployment. However, appropriate
levels of resolution for those building and developing models depend on the
questions being asked, analysis type, system characteristics, data availability, and
available resources for development and analysis. For those looking to apply
existing models to answer specific questions, model selection can be a complex
function of the nature of these research questions, available alternatives, model
resolution, and considerations discussed in other sections of this report.

# Some modeling platforms have customizable temporal resolution, which means that the model
user rather than the developer makes decisions about temporal resolution and the methods for
selecting these periods.
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Common approaches to
simplify temporal resolution in
energy models may not
reproduce fundamental
relationships for power sector
decarbonization.

Intra-Model Comparison

To test the impact of temporal resolution on nuclear deployment, an intra-model
comparison was conducted using REGEN.* A full hourly investment and
dispatch model is compared against three common approaches* to simplify
temporal resolution:

» Representative Day (RD): Where 24 days per year are represented, each with

hourly resolution.

= Seasonal Average (SA): Where daily load periods (peak, shoulder, off-peak)
are represented across separate seasons (summer, winter, shoulder). These
intra-annual periods are often referred to as “time slices.”

* Levelized-Cost (LCOE): Where load and renewable resource availability are
averaged across the year for a given region, which is implicit in LCOE
comparisons.*®

These approaches are run under a reference scenario (with current policies) and
CO; caps of 90% and 100% electric sector reductions from 2005 levels.

Detailed scenario descriptions and discussions of the results are provided in

Bistline (2021a).

The results demonstrate how common approaches to simplify temporal
resolution in integrated assessment and energy system models may not reproduce
fundamental relationships for power sector decarbonization or may exhibit large
differences from more detailed hourly modeling. Key features missed in
simplified approaches include nonlinear increases in abatement costs at higher
levels, diminishing marginal returns for high penetrations of variable renewables,
and the value of broader technological portfolios and carbon removal.

# These experiments use a different version of REGEN than the experiments in other sections of
the report, including the intercomparison in Section 2, which means that capacity and generation
mixes may not align. In particular, these scenarios use a single-year version of the model with
greenfield investment (i.e., adding new capacity for most of the system, inheriting only
endowments of existing hydropower, nuclear, and interregional transmission).

# Many models employ side constraints, costs, and out-of-optimization calculations to account for
temporal aggregation simplifications, which are not accounted for in these experiments.

8 Note that this implementation is more sophisticated than typical LCOE approaches, including
the value to generators of reserve margin contributions and policies.
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Figure 7-1

National generation by technology and policy scenario across temporal aggregation
approaches in REGEN.

Simplified temporal aggregation approaches tend to understate the value of
broader technological portfolios, firm low emitting technologies, wind
generation, and energy storage resources and can overstate the value of solar
generation (Figure 7-1). The need for dispatchable, firm capacity is clearer with
higher temporal resolution across all policy scenarios. In particular, new nuclear
increases as decarbonization approaches 100% in the full hourly model, but the
SA and LCOE simplifications do not capture the value of these resources. Under
aggregation approaches the 100% CO; cap, new nuclear additions are 117 GW with hourly resolution,
understate nuclear, natural gas, ¢ 0 GW with the SA and LCOE approaches. Simplified temporal aggregation
and storage deployment. approaches underestimate variability and can distort costs by missing periods that
are important to the valuation of low-carbon technologies as emissions decline
and the deployment of renewables increases.

e
Simplified temporal

Errors from simplified temporal aggregation approaches increase with tighter
CO; targets, understating abatement costs by an order of magnitude in many
instances, which are discussed in detail in Bistline (2021a). Approximation
accuracy also depends on assumptions about technological cost and availability:
Differences across approaches are smaller when carbon removal is available and
when wind, solar, and storage costs are lower (Bistline, 2021a). Additionally,
using the capacity mixes from simplified approaches in detailed operational
simulation models would illustrate reliability shortcomings of lower temporal
resolution models, as there would likely be a significant number of hours where
system resources could not meet load.

Overall, the analysis suggests that higher temporal resolution is critically
important for policy analysis, electric sector planning, and technology valuation
in a range of scenarios, including under deeper decarbonization and higher
variable renewables deployment.
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Discount rates, economic
lifetimes, and methods for
selecting these parameters
differ across models.

Discounting and Financing
Overview

Nuclear power—like renewables, transmission, and energy storage—is a high-
capital-cost but low-variable-cost resource, which means that assumptions about
project finance and time preference (i.e., comparing current costs and revenues
vis-a-vis future ones) are important for evaluating their economic
competitiveness.

There is a wide range of financing treatments across models, but the most
important differences likely stem from differences in the assumed discount rate
and economic life.* In energy systems models, effective discount rates may
aggregate many effects like the pure rate of time preference (i.e., social discount
rate*), opportunity cost of capital, risk, and/or financing (e.g., costs of equity and
debt), and could differ by sector and decision-maker. For power sector
technologies, this rate is typically based on a utility’s weighted average cost of
capital (WACC).** All else equal, lower rates improve the economics of capital-
intensive technologies and decrease the relative importance of nearer-term cash
flows. The economic lifetime of an asset (also referred to as the “book life”) is the
asset recovery time or the lifetime assumed in economic investment decisions,
which could differ from the asset’s physical lifetime (i.e., the maximum length of
operation when economic) or service lifetime (i.e., time online before retirement,
which is less than or equal to the physical lifetime).

The average discount rate across the four models is 4.5% (real), as shown in
Figure 7-2. REGEN assumptions fall on the higher end of the range (with values
that reflect electric sector and end-use decisions), while other models use similar
values between 3-4%. These assumptions fall within the broader literature
reviewed. The harmonized scenarios in the model intercomparison analysis
(Section 2) assume a 3% discount rate.

4 Other factors (e.g., debt fraction, debt rate, tax rate, inflation) could be compared across models
in future work. This section compares long-run parameters, but these values may change over time
and across decision-makers (e.g., NEMS models changing discount rates over time, IPM
differentiates between merchant and utility investors, NEMS and ReEDS model the changing debt

fraction as a function of tax credits).
%0 This rate is the weight applied to cash flows or utility occurring at different times.

51 The cost of capital may be technology-specific and include a risk premium that varies by
technology (Donovan and Corbishley, 2016).
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Figure 7-2
Comparison of native discount rate assumptions across models and the broader literature.
“Harmonized” indicates the value used for the model intercomparison analysis in Section 2.

A wide range of economic lifetimes are assumed due to technology-specific
variations (Figure 7-3). The high end of the range is typically for hydropower
and nuclear to capture residual value for these long-lived assets. Assumptions for
wind and solar fall within a narrower range (20-30 years) consistent with the
broader literature. Models vary in terms of whether they reflect separate
economic (i.e., asset recovery time) and physical lifetimes. NEMS assumes no
fixed physical lifetimes, ReEDS assumes longer physical lifetimes than the
economic lifetimes from Figure 7-3, and REGEN assumes that economic and
physical lifetimes are equal. All four models assume endogenous service lifetimes
(i.e., model-driven retirements) for many assets, including endogenous
retirements for existing nuclear power plants with lifetimes up to 80 years

(Table 5-1).
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Figure 7-3
Comparison of native economic lifetime (i.e., asset recovery time) assumptions across models.
“Harmonized” indicates the value used for the intercomparison in Section 2.

There are many questions about discounting and financing that analysts must
contend with in building and applying models (Lind, et al., 1982). What should
the long-term discount rate be? How should this rate be chosen (and does it
reflect a descriptive or normative basis)? Should this rate change over time? Do
models reflect separate economic and physical lifetimes? These dilemmas do not
have clear answers, and solutions are likely to vary across different modeling
contexts, which increases the importance of transparency in documenting what
was assumed and why (Bistline, Budolfson, and Francis, 2021; DeCarolis, et al.,
2017).

Intra-Model Comparison

To test the impact of assumed discount rates and economic lifetimes on nuclear
generation, an intra-model comparison was conducted using REGEN. There are
three dimensions explored in these sensitivities:

=  Discount rate: The effective discount rate was varied from 3% (the
harmonized assumption in the model comparison in Section 2), 5%, 7% (the
native assumption in REGEN), and 9%.

= Economic lifetime: Economic lifetimes for new investments are assumed to
be either uniform at 30 years (the harmonized assumption in the model
comparison in Section 2) or heterogenous lifetimes across different
generation options (the native assumption in REGEN).

* Policy: Each discount rate and economic lifetime assumption is varied across
the three policy scenarios from Section 2: A “current policies” Reference
(Ref), Deep Decarbonization with an 80% reduction in 2050 relative to 2005
(DD80), and Deep Decarbonization with a 100% target in 2050 (DD100).
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Discount rates have
countervailing effects on
existing and new nuclear—
lower rates increase new
nuclear but decrease shares
from existing nuclear.

.
Assumptions about discount
rates and economic lifetimes
can materially impact power
sector generation and capacity
outcomes, especially for
nuclear.

Figure 7-4 illustrates how discount rate assumptions alter new build and
retirement decisions across different policy environments. New nuclear is built
only in the 100% decarbonization scenario, and much like other capital-intensive
technologies like renewables and storage, nuclear deployment is highest with
lower discount rates. New nuclear spans 18 GW (with a 9% discount rate) to 45
GW (with a 3% discount rate).

On the other hand, existing assets (including the current nuclear fleet) benefit
from higher discount rates. Early nuclear retirements are especially common
when low discount rates occur in a Reference policy scenario. Nuclear retirements
are lower for all discount rates under the 80% and 100% decarbonization
scenarios, since the shadow price on CO; increases electricity prices, which in
turn increases revenues for inframarginal units like nuclear. Ultimately, the
discount rate response has countervailing effects on existing and new nuclear—
lower rates increase new nuclear generation but decrease shares from existing
nuclear. Under the 100% decarbonization scenario, these opposing effects mean
that overall nuclear shares are similar across discount rates.
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Figure 7-4

National generation in 2050 by technology across policy and discount rate sensitivities in
REGEN.

Figure 7-5 suggests that economic lifetime assumptions have more limited
impacts on the generation mix relative to discount rates. A large fraction of
revenues (in net-present-value terms) occurs in the first couple decades of
operation, which lowers impacts of revenues and costs beyond a 30-year horizon.
However, due to its longer anticipated lifetime, new nuclear power generation
has a larger sensitivity to assumed lifetimes, especially in the 100%
decarbonization policy. New nuclear additions are 23.7 GW in the 100%

decarbonization case with heterogenous lifetimes and only 5.3 GW with uniform
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(30-year) lifetimes.” Note that impacts of discount rates and economic lifetimes
may depend on the model’s time horizon and treatment of end effects, which are

discussed in the last portion of this section.
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National generation in 2050 by technology across policy and economic lifetime sensitivities

in REGEN.

Overall, these sensitivities illustrate how assumptions about discount rates and
economic lifetimes can materially impact generator entry and exit decisions.
For these scenarios and assumptions, discount rates have larger impacts on the
generation and capacity mix for most technologies, though lifetime effects are
larger for nuclear relative to other resource classes. For the model
intercomparison in Section 2, the larger difference between native and
harmonized results in REGEN reflect differences in these input assumptions,

especially the discount rate.

52 Note that discount rate assumptions can interact with lifetime assumptions. A 7% discount rate is

used for these comparisons.

53 This finding is consistent with other studies in the literature that find that financing assumptions
can impact power sector investment decisions (Polzin, et al., 2021; Emmerling, et al., 2019).
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Other Considerations

Although the workshops and analysis focused on the aforementioned issues, a
number of important ancillary topics were also discussed, which deserve
consideration for long-term planning RD&D:

Foresight: Assumptions about foresight are central to long-term CEMs and
energy system models and shape generator investment and retirement
decisions. A model with foresight will adjust investment activity in response
to anticipated future policies and technological change, especially for long-
lived low-carbon resources such as nuclear. Intertemporal perfect foresight
and sequential myopic approaches are common in the literature (Merrick,

Bistline, Blanford, 2021) and across models in this report (Table 3-1).

End effects: The time horizon considered for planning can create distortions
in final model periods. Approaches for correcting these end effects can
impact technology-specific outputs, including for nuclear energy in light of

its long physical lifetime (Figure 7-3).

Uncertainty: Modeling uncertainty is a perennial challenge in prospective
analysis. Parametric uncertainty is often addressed by conducting sensitivity
and scenario analysis, though explicit uncertainty can be considered with
several stochastic methods (Kann and Weyant, 2000; Bistline, 2015).
Addressing structural uncertainty can be more difficult, but modelers can
experiment by changing adding, removing, or modifying model constraints
or features to observe the impact on outputs (e.g., the temporal resolution
sensitivities from earlier in this section) or can participate in model
intercomparison projects like this one. There are several indirect methods of
accounting for uncertainty. An example is the inclusion in NEMS of a three-
percentage-point adder applied to the costs of debt and equity for new coal
capacity that represents “the implicit costs being added to GHG-intensive
projects to account for the possibility that, eventually, they may have to
purchase allowances or invest in other projects that offset their emissions”
(EIA, 2020b), which is a proxy for market behavior around uncertainty.
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Section 8: Summary and Conclusions

Capacity expansion and energy system models can generate useful insights for
understanding nuclear energy and broader energy systems under a variety of
tuture policy, technology, and market conditions. The insights in this report on
developing and interpreting the results of such models can help stakeholders
improve their tools and their understanding of the role of nuclear energy in future
energy systems. Although not an exhaustive list of considerations, this report
highlights progress to date and identifies opportunities to improve the
representation of nuclear energy in long-term models.

Implications for Policy and Planning

This report highlights how models vary in their treatment of key considerations
related to nuclear energy and that better understanding key features and tradeoffs
can provide context for interpreting outputs used for resource planning,
policymaking, and global analysis. Central issues for those using and interpreting
model outputs include:

»  Model representations of nuclear energy (and features that affect nuclear’s role)
can vary considerably: Sections 4 through 7 discuss a range of model
considerations and dimensions that impact nuclear energy, including
capturing different value streams and market participation, representing new
and existing nuclear capacity, and cross-cutting issues such as temporal
resolution and financing. These areas suggest questions that consumers of
modeled scenarios can ask to help evaluate results when nuclear-focused or
decarbonization analyses are released.

*  New nuclear deployment depends on combinations of policies and cost reductions:
Model results across organizations indicate the pronounced impact that
stringent power sector CO, policies could have on the future U.S. electricity
supply mix. Decarbonization targets generally help to retain existing nuclear
capacity but may not be enough to bring new capacity online unless nuclear
experiences significant cost declines. In scenarios that layer a deep
decarbonization policy with low capital cost assumptions for new nuclear,
models show significant nuclear capacity additions.

= Ample scenarios should be conducted, given the sensitivity of model outputs
to uncertainties related to input assumptions and model structures, especially
with deep decarbonization: Model outputs should not be viewed as forecasts
for how the world will unfold, but are conditional projections that are
sensitive to model structures and assumptions about technologies, markets,
behaviors, and policies. Consumers of model outputs are increasingly
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expecting analysts to conduct a wide range of sensitivities to test the
robustness of conclusions, especially under deeper decarbonization targets,
including a decarbonized electric sector and economy-wide net-zero
emissions. This report summarizes how normative and descriptive
disagreements exist about appropriate parameter values (e.g., discount rates)
and how models navigate tradeoffs between parsimony and accuracy (e.g.,
temporal resolution), which can materially impact model outputs related to
nuclear energy and other technologies.

*  Model resolution and parametrization decisions influence projections of nuclear
energy deployment: The intra-model and inter-model comparisons in this
report highlight how model development decisions can alter the projected
role of nuclear energy. For instance, lower temporal resolution tends to
understate the value of nuclear (Section 7). On the other hand, the intra-
model comparisons also suggest areas that have more limited impacts on the
competitiveness of new and existing nuclear in these models, including
flexibility assumptions.

*  Nuclear can complement other low-emitting technologies but such
interactions require detailed capacity expansion and energy systems models to
evaluate: Nuclear generation provides firm, zero-emissions electricity, which
can complement other clean electricity resources that are subject to weather
fluctuations. Evaluating these interactions require systems models—like
capacity expansion and energy systems models that are the focus of this
report. Linking these models with other tools can provide more detailed
insights depending on the questions being asked. Levelized-cost metrics are
incomplete metrics for evaluating the relative competitiveness of system
resources, which requires detailed energy modeling to assess.

Implications for Modelers

This report stresses tradeoffs between a range of model considerations, which are
necessary to make models tractable. Appropriate levels of detail for nuclear
energy and other model dimensions depend on the type of analysis being
performed, motivating questions, available data and resources, system
characteristics, and analysis timeframe (Section 3) and may merit using multiple
tools to capture all relevant interactions. Key implications for modelers include:

*  Transparency about model decisions and analysis assumptions are important for
communicating with stakeholders: There are many transparency-related
practices that can help to encourage better modeling and move dialogues in
more productive directions, including making code and data available,
participating in model intercomparison studies, and providing a range of
outputs across scenarios (Bistline, Budolfson, and Francis, 2021; DeCarolis,
et al., 2017). In particular, given the sensitivity of outputs to model decisions
and assumptions, it is important to make these model decisions and analysis
assumptions as clear as possible. For instance, the model intercomparison in

Section 2 illustrated how installed nuclear capacity ranges 2-329 GW in
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2050 depending on assumptions about nuclear costs and policy. Such
transparency is valuable not only to understand the strengths, limitations,
and implications of chosen modeling approaches but also to convey these
compromises and caveats to different audiences.

Encouraging collaborations across models at different scales: Increased
collaborations between energy-economic models and more detailed
operational models are needed for integrating and linking perspectives. Intra-
model comparisons on value streams (Section 4), endogenous technological
change (Section 6), and temporal resolution (Section 7) suggest that linking
with more detailed models can provide additional insights.

Stress test models with a range of assumptions: The sensitivity of nuclear-related
outputs to input assumptions and model structures suggest that modelers
should be sensitive to possible parametric and structural uncertainties and
should conduct a wide range of stress tests to understand the robustness of
insights.

Future Work

Sections 4 through 7 identified many specific model and data needs related to the
representation of nuclear energy and other electric sector and energy system
resources:

Understand future changes in value streams and demand for grid services:
Potential changes in planning reserve margins and operating reserves should
be studied in futures with higher renewables penetration, electrification, and

deep decarbonization (EPRI, 2018).

Characterize a range of low-emitting technologies: Because nuclear technologies
see much greater deployment in scenarios that require significant
decarbonization, properly capturing the value of nuclear technologies requires
that other low- and zero-carbon technology options are adequately modeled.
Not adequately representing the portfolio of candidate technologies and
pathways that are being considered to meet such power sector and economy-
wide targets could incompletely characterize the competitiveness of nuclear
relative to these other technologies.

Select appropriate levels of model resolution: Modeling zero- or very-low-
emitting energy systems might require additional temporal or spatial
resolution to properly capture the value of the different generator types.
Additional work is needed to understand the importance of model resolution
on outcomes for these zero and low-carbon solutions.

Improve time-series data: Models often use a single year of historical
meteorological data. Given that many low-carbon futures depend heavily on
variable renewable technologies, multi-year variability in wind resources,
solar resources, and load are particularly important (Diaz, et al., 2021).
Improved understandings of the impact of multi-year variability (of load and
renewables) can inform resource adequacy estimates and contributions of
different resources. If infrequent but impactful wind lulls or cloudy periods
are not captured in the model, then firm capacity resources such as nuclear
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could be undervalued. Similarly, capturing the extreme events that seem to be
increasingly common can ensure that power sector solutions are more robust
no matter the composition of the resulting generation fleet produced by the
model. Future work to understand the importance of representing
compensation for currently uncaptured attributes in markets (e.g., inertia)
would also be valuable.

Incorporate more robust representations of hybrid systems and sectoral integration:
Pathways towards achieving a net-zero energy system in the United States
typically involve growing interactions among electricity supply, energy
supply, and energy demand (including electricity, direct fuel use, and heat).
There has been an increasing focus on policy and planning for hybrid systems
for nuclear energy that provide heat and electricity to non-grid applications
(e.g., hydrogen production, steam delivery to industrial processes, heat to
support direct air capture) and other technologies (e.g., solar and batteries).
These hybrid energy systems have been proposed as candidates for flexibly
contributing to the full spectrum of demands across the energy system
(Arent, et al., 2021). However, the dynamic optimization of these resources
is complex owing to their diverse configurations, multiscale interactions, and
markets, which makes modeling such resources challenging. Planned
demonstration projects will help to evaluate the operational capabilities of
such hybrid energy systems, but their ultimate competitiveness will depend
on the incremental costs and benefits of their ability to contribute products
and services across different parts of the U.S. energy sector. A better
understanding of the future demand for, and value of, hydrogen is a key
component of evaluating the incremental value of hybridization, particularly
for models that represent interactions across different segments of the U.S.
energy sector.

Improve data and methods for estimating retirements: Retirements represent a
significant driver for new capacity needs, but these dynamics are challenging
to represent in models. Understanding drivers of retirements across models
would be valuable, especially accounting for uncertainty (e.g., policy, FOM

and future capital costs) and foresight (as discussed in Section 7).

Provide public data for nuclear costs: Given the notable impact that different
FOM cost assumptions can have on the modeling, it is important to reflect
those costs as accurately as possible. To that end, public data for current
FOM costs by plant and guidance on projected changes (both the magnitude
and timing) would be useful for modeling teams. Such cost data would be
valuable for understanding projections for nuclear generation and estimates
for other resources. In addition to input assumptions, it is important to
compare model algorithms and heuristics for power plant retirement, cost,
and operational decisions against actual data and to update these model
features as appropriate.

Understand possible nuclear plant license renewals to 80 years and beyond: It is
important to consider the possibility of license renewals beyond 80 years,

especially as models begin to expand projections beyond 2050.
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*  Develop methods and data for characterizing advanced nuclear designs: These
comparisons illustrated how existing models tend to focus on AP1000 and
SMRs for new nuclear deployment decisions (T'able 6-1). Additional “Gen
IV” reactor designs could be incorporated into models if costs and
performance projections were made available, though most public datasets on
electric sector technologies do not include such options. Potential differences
in fuel supply for advanced reactor designs could entail model development
and data needs to appropriately characterize these differences.

*  Develop and apply methods for quantifying and incorporating climate impacts and
resource adequacy: For the future role of nuclear and other technologies,
questions related to climate impacts and resource adequacy (including
extreme events) have been prominent for many stakeholders, especially as
deeper decarbonization is targeted. Approaches for quantifying and
incorporating climate impacts and resource adequacy are under development,
including endogenous changes in capacity contributions of different resources
as the supply-side mix changes and demand-side loads evolve (e.g., shifts
toward winter peaking), cooling water availability, and planning for different
weather years.

A broader model need is to determine appropriate levels of model complexity for
given applications. Model development decisions depend on the analysis type,
motivating questions, system characteristics, and available resources for
development and analysis (Merrick and Weyant, 2019; Saltelli, 2019). The
temporal resolution sensitivities in Section 7 illustrate an area where model
complexity has first-order impacts on the deployment of nuclear energy and other
low-emitting technologies, but there is currently limited guidance about the
conditions under which higher fidelity modeling is needed.

Another general model challenge and need is to assess suitable levels of model
endogeneity. The report touches on several areas of model-driven decisions
related to existing and new nuclear—retirements, operations, load shapes,
technological change—where there is variation in model treatments. Much like
model complexity, there is a need to understand the conditions under which
endogenous decisions are most important.

Finally, future work should investigate net-zero emissions energy systems and
modeling dimensions to appropriately characterize these systems given interest
from policy-makers, companies, and other stakeholders (Bistline, 2021c). Electric
sector capacity expansion models can be linked to other fuels, end use, and
economy models to represent these cross-sectoral interactions. REGEN has
recently added a range of additional supply-side technologies, fuel conversion
pathways, and end-use options to characterize economy-wide net-zero emissions
scenarios, which will be released in its forthcoming Low-Carbon Resources
Initiative (LCRI) report later in 2022. ReEDS has recently added similar
capabilities—in the form of hydrogen, negative emissions technologies, and
demand-side trajectories consistent with an economy-side decarbonization
pathway—which were implemented in recent analyses (Cole, et al., 2021b;
DOE, 2021) and also will be highlighted in a forthcoming study on rapid
decarbonization of the U.S. energy sector.
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Appendix A:  Summary of Model
Enhancements

An objective of the workshops and project was to stimulate model improvements,
especially in areas related to nuclear energy. Each modeling team identified
and/or incorporated improvements across the course of the two-year project, and
a summary of these changes is provided here.

Integrated Planning Model (IPM) from the U.S. Environmental
Protection Agency (EPA)

EPA has recently incorporated several model improvements relevant to this
project:

» The operational costs of existing nuclear capacity were updated to reflect the

AEO2020 assumptions.
* Inclusion of small modular reactors as a new generation technology option.

=  Updated RPS and CES assumptions for OR, IL, DE, NC, and MA.

National Energy Modeling System (NEMS) from the U.S. Energy
Information Administration (EIA)

EIA has implemented several model enhancements for AEO2022. EIA revised
the operating modes available for baseload technologies so that they can operate
more flexibly within a season, responding to changes in net load based on
intermittent generation in the region. The addition of the RESTORE
submodule to the NEMS electricity market module during AEO2019 has helped
improve the overall accuracy of EMM’s long-term capacity planning and
dispatch modeling capability with an increasingly high renewable penetration
level. However, operation modes for nuclear and fossil plants have been
determined without feedback from the captured dispatch solution from
RESTORE. As projections have incorporated more intermittent generation with
distinct seasonal and daily resource profiles, the net load by time slice has a
different pattern than total load in many regions and will affect how baseload
dispatch will need to change to load follow. For the AEOQ2022, the RESTORE
average dispatch information for the nuclear and fossil plants is passed to EMM
as an additional operating mode which will allow more flexible dispatch within a
season for coal, natural gas-fired combined cycle, and nuclear electric generating
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technologies. This will allow nuclear capacity to operate more flexibly to supply
additional spinning reserves if that is more valuable to the system than generation
due to excess renewables in certain time slices.

EIA also has improved the market sharing algorithm which adjusts build
decisions among competitive technologies to allow options for sharing across all
technologies, or within subsets (i.e., dispatchable versus non-dispatchable). There
are a few minor improvements made for the renewables modeling representation
during AEO2022 such as devising a new declining capacity credit algorithm for
standalone energy storage, allowing endogenous wind retirements, updating the
solar inverter loading ratio for standalone solar PV from 1.2 to 1.3, improving
biomass supply curves, and representing the Civil Nuclear Credit Program as
included in the Bipartisan Infrastructure Law.

Regional Energy Deployment System (ReEDS) from the National
Renewable Energy Laboratory (NREL)

The following changes were made to ReEDS as part of this project:
* Added a SMR technology. Previously, ReEDS only represented AP1000

nuclear power plants.

* Added the nuclear demonstration projects to the ReEDS plant database.
This enables the demonstration projects to come online in the locations and
at the dates specified by the companies developing them.

* Changed existing nuclear power plants to be able to ramp down to 70% of
their rated capacity. Plants are assumed to ramp up to 2% per minute and are
allowed to use this ramping capacity to contribute toward operating reserves.

* Changed the default lifetime of existing nuclear plants to 80 years.
Previously, ReEDS used a mix of 60- and 80-year lifetimes for existing
plants. The shorter 60-year plant lifetime was used for nuclear plants in
restructured power market regions, with all other nuclear plants using the 80-
year lifetime. The model can still choose to retire plants before they reach
their 80-year lifetime if they become uneconomic.

* Adjusted capacity in the model to be represented using summer and winter
capacity ratings. Previously ReEDS only used the summer capacity rating.
Because nuclear power plants typically have a higher winter capacity rating
than summer capacity rating, this change increased the output of the nuclear
power plants during the winter, which in turn led to slightly higher (~1%)
annual capacity factors.
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Regional Economy, Greenhouse Gas, and Energy (REGEN) from
the Electric Power Research Institute (EPRI)

The REGEN model made several nuclear-related model improvements during
the course of this project. These changes and their timeline for inclusion in the
model are summarized in Table A-1.

Table A-1

REGEN model improvements under the nuclear comparison project

Feature

Flexibility of existing
and new nuclear

Lifetimes of existing
nuclear plants

New nuclear options

Temporal resolution

Hydrogen production

Change
Updating flexibility-related

parameters based on EPRI research

Updated to allow all existing
capacity to extend operations to
80 years when economic

Adding small modular reactors

Routinely running configurations of
REGEN with 8,760 hourly

resolution for expansion decisions

Adding more pathways for
creating/using hydrogen

<A3>

Timeline

In current production
code

In current production
code

In current production
code

In current production
code (inclusion varies by
application)

Early 2022






Appendix B: Policies and Incentives in

Model Current Policies
(Reference) Scenarios

The four participating models in this study reflect a range of on-the-books state
and federal policies and incentives that impact the electric sector and energy
system.>*

U.S. state and regional policies generally include:

State-level renewable portfolio standards, including technology-specific
carveouts for solar

State-level clean electricity standards with state-specific definitions of
qualifying resources

State-level offshore wind mandates
State-level energy storage mandates

State-level Zero-Emissions Credit (ZEC) policies for existing nuclear power
plants

California AB32, represented as a carbon tax based on projections by the
California Air Resources Board

Regional Greenhouse Gas Initiative (RGGI) cap-and-trade system
Other state-level CO; caps in the electric sector and economy-wide

State-level constraints on new nuclear capacity

5% Modeling for this study was completed in 2021 before the Bipartisan Infrastructure Law was
passed, which means that the Civil Nuclear Credit Program and incentives for other electric sector
resources (e.g., carbon capture, long-duration energy storage, transmission, hydrogen, advanced
nuclear) were not included in these scenarios. Scenarios also do not include economy-wide or
electric sector targets from the updated U.S. Nationally Determined Contribution.
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Federal policies and regulations generally include:

»  Current Clean Air Act Section 111(b) new source performance standards for
power plants

= Production tax credits for wind

= Investment tax credits for solar

»  45Q_tax credits for CO; capture
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