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Abstract—Microencapsulated phase change materials are 

being studied for applications for thermal energy storage in 

concentrated solar fields.  During fabrication, the thickness 

of the encapsulation cannot be readily measured for real-

time control.  Therefore, a machine learning network, 

specifically a Long Short-Term Memory network, is being 

developed to estimate the ratio of the shell radius to core 

radius based on a one second temperature history.  The 

mini-batch size determines how often the algorithm weights 

are updated during network training, and shuffle indicates 

whether the training data is shuffled during training.  A 

general factorial design is used to analyze the effects of 

varying mini-batch size and shuffle, along with the core-to-

shell ratio, on the RMSE of the response from the Long 

Short-Term Memory network.  It was found that the 

network performed better for smaller core to shell ratios 

(less than 0.6) and had the lowest RMSE when the mini-

batch size was 128.  The minimum RMSE found was 

0.00501.   

Keywords—long short-term memory, machine learning, mini-

batch size, phase change materials 

I. INTRODUCTION 

Phase change materials (PCMs) are those that can store 
energy in their latent heat of phase change, and they are being 
studied for applications in energy storage for concentrated solar 
power. While organic and eutectic salt PCMs are widely used 
from low to medium temperature applications, desirable 
materials for future high temperature PCMs are metals like 
copper and aluminum for their high volumetric energy density 
and high thermal conductivity. A microencapsulated phase 
change material (MEPCM) is a small particle of PCM (<50 μm 
radius) with an encapsulating shell (thickness <50 μm).  A 
schematic of a MEPCM can be seen in Fig. 1.  In Fig. 1a, the 
PCM core is in the solid phase; to store energy, the particle’s 
temperature is raised until the core changes to the liquid phase 

(Fig. 1b).  To release the energy, the temperature of the particle 
is lowered and the core returns to the solid phase and releases its 
latent heat.  The shell remains in the solid phase for the entire 
process to contain the core material [1].  

To ensure the performance of the MEPCM, it is desirable to 
monitor the shell thickness during fabrication. However, the 
direct non-destructive measurement of shell thickness on a 
MEPCM particle requires the use of High-speed Synchrotron X-
ray Imaging to distinguish the shell from the core at high frame 
rates, which is only available for research instead of production 
environment. An in-situ sensing method which makes use of the 
temperature history during cooling of the MEPCM to indirectly 
estimate the core-to-shell ratio is therefore proposed. The 
temperature history can be readily captured using a high-speed 
thermal camera [2].  

To study the fundamental feasibility of the proposed method, 
simulated temperature histories of MEPCM during cooling are 
being used as model inputs [3]. Estimating the shell thickness of 
the PCM is expected to be accomplished using the machine 
learning program Long Short-Term Memory (LSTM).  LSTM 
is a recurrent neural network (RNN) that is better equipped to 
handle larger gaps between the supplied information and the 
necessary response.  In a traditional RNN, the error signals tend 
to either blow up or vanish when they have to travel “back in 
time” for information.  To remedy this, Hochreiter and 
Schmidhuber [4] introduced LSTM, which utilizes constant 
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 error flow.  This network consists of a memory cell with several 
gates.  The memory cell is where information is stored for a 
given timestep.  The input gate determines what incoming 
information should be saved and protects the cell from 
unnecessary information, and the output gate decides which 
information currently in the cell’s memory should be passed on 
to the next timestep.  In other words, what new information 
needs to be remembered and what current information can be 
forgotten by the cell.  The cell is updated to reflect the 
information from these gates, and the cycle begins again with 
the new memory cell [4]. 

In LSTM, the training data sets are used to train the network 
to predict the desired results, and later the testing data is used to 
test the accuracy of the network.  While the network is being 
trained, the weights for the algorithms are continuously being 
updated in order to create the most accurate network.  The mini-
batch size is used to define how often these updates take place.  
In batch training, the algorithms are updated only after all of the 
training data sets have been considered.  Opposite batch training 
is the stochastic method, in which the algorithm is updated after 
each individual data set is considered, which is when the 
algorithm is updated most frequently.  Mini-batches fall between 
these two methods by looking at a portion of the training data 
set before updating the algorithm weights.  The mini-batch size 
is typically a power of 2.  Smaller mini-batch sizes (and the 
stochastic method) are more computationally expensive because 
they take more time [5]. 

Within the LSTM framework, the shuffle option goes hand 
in hand with the mini-batch size, and it determines if and when 
the training data is shuffled.  When the number of training data 
sets is not evenly divisible by the mini-batch size, the extra data 
sets are thrown out.  If shuffle is set to never, the training data 
appears in the same order each epoch, and the same data sets are 
discarded each epoch.  When set to every epoch, the training 
data is consistently shuffled so that different data sets are thrown 
out each epoch [6]. 

In this research, a sensitivity study is performed to learn the 
effect of the mini-batch size on the response of an LSTM 
network used to estimate the geometric properties of an 
MEPCM.  Additionally, the effects of the shuffle option are also 
studied.  Because the testing data sets have different core to shell 
ratios, this factor is also considered in the study. 

II. METHODS 

A. Data Collection 

In this study, two set of data were used: first cooling curves 
to be used in the machine learning network and second results 
from different iterations of the network.  The first set of data was 
collected using an OpenFOAM model of a MEPCM particle.  
This model returns the temperature of the particle center, 
surface, and core-shell interface for every millisecond over a one 
second time interval [3].  The temperature histories of the center 
and the surface of the particle were used, and the particle had a 
copper core with a fused silica shell.  The core radius, core to 
shell ratio, ambient temperature, and convective heat transfer 
coefficient were varied to simulate different sized particles as 
well as different operating conditions, shown in Table 1.  The 

core to shell ratio is defined as ϕ = rcore/tshell, with rcore and tshell 

being the core radius and the thickness of the shell, respectively.  
The initial temperature of the particle was assumed to be 2,000 
K, and an example cooling curve is shown in Fig. 2.  A total of 
100 data sets were collected. 

The second set of data was collected using an LSTM 
network in MATLAB.  The network has one LSTM layer with 
500 hidden units.  A dropout layer of 0.1 is used for 1,000 
epochs.  The LSTM layer is a regression layer, so it takes the 
sequence input data and returns a single value, the core to shell 
ratio, which is being estimated.  The mini-batch size in the 
network training was varied to determine its effects on the 
results from the network.  Additionally, for each mini-batch size, 
two cases were run: one with the data being shuffled every epoch 
and the other with it never being shuffled.  Eighty-five percent 
of the data collected from OpenFOAM was used to train the 
network while the remaining 15% was used to test the network.  
All five possible core to shell ratios were represented in the 
testing data.  To train the network, the temperature vs time data 
from the center and the surface of the MEPCM along with an 
associated core to shell ratio were used.  All of the data was 
normalized.  When testing the network, the temperature data was 
the input, and the response was the ratio.  For each test, the 
network was run 10 times and the average response over the 10 
loops was given as the mean response.  Additionally, the root 
mean square error (RMSE) was calculated over the ten loops.  A 
smaller RMSE indicated a more accurate prediction.  There were 
a total of 15 test cases. 

 
Fig. 1. Working principle of MEPCM [1]. 

TABLE I.  PROPERTIES OF STUDIED MEPCM 

Factor Information 

Variable Values Units 

Core Radius, rcore 
10, 20, 30, 40, 

50 
µm 

Core to shell Ratio, φ 
0.2, 0.4, 0.6, 

0.8, 1.0 
n/a 

Ambient Temperature, THF 293, 298 K 

Convective Heat Transfer 
Coefficient, h 

100, 200 W/[m2·K] 

 



B. General Factorial Design 

A general factorial design (Table 2) was used to analyze the 

effects of the mini-batch size and the shuffle setting on the 
RMSE results from the LSTM network.  The levels for the mini-  
batch size were selected as powers of 2k with 1 ≤ k ≤ 7, and the 
shuffle option was set to every epoch or never.  Additionally, the 
core to shell ratio was included as a factor.  The general factorial 
design was used to evaluate which factors and interactions have 
a significant effect on the results, and this information can be 
used to optimize the network.  Minitab was used to analyze this 
data. 

III. RESULTS 

When the general factorial design was run using 5% 
significance, the analysis of variance in Table 3 showed that the 
ratio and shuffle factors were significant, and the interaction 
between these two factors was also significant (P < 0.05).  The 
main effects plot in Fig. 3 indicates that when shuffle is set to 
every epoch, the RMSE is reduced by 43.7% compared to when 
the data is never shuffled.  Additionally, the RMSE was much 
lower for ϕ = 0.2, 0.4, and 0.6.  The highest RMSE for each of 
these ratios was 0.01121, while the smallest value for the larger 
ratios was 0.02933.  This indicates that the network is biased 
towards the cases with a smaller core to shell ratio.  The mini-
batch size of 128 resulted in the lowest RMSE (0.01034).  The 
overall mean RMSE for this design was 0.02016. 

It is also worth noting that from Fig. 4, when the mini-batch 
size was 128, the RMSE was similar whether shuffle was set to 
never or every epoch.  The mini-batch size of 128 represents 
batch training because it is greater than the 85 training data sets.  
Since all of the training data sets are considered before the 
network algorithms are updated, the order that the data sets are 

considered (determined by the shuffle setting) is not as 
important as it is in the mini-batch training.  Fig. 4 also 
graphically shows that the mini-batch size to shuffle interaction 
and the mini-batch size to ratio interaction were not significant 
because each of the curves on these plots follow similar trends. 
The interaction between shuffle and the ratio can be seen to be 
more significant because the curves are not parallel and intersect 
each other.  

Looking at the residual plots in Fig. 5, the residuals do not 
seem to closely follow the normal distribution.  Furthermore, the 
versus fits and versus order plots show an increasing trend.  
These residual plots indicate that the assumptions of normal and 

 
Fig. 2. Example cooling curve, where c, s, h, and T are the core radius, 

shell thickness, heat transfer coefficient, and ambient temperature, 
respectively. 

TABLE II. GENERAL FACTORIAL DESIGN 

Factor Information 

Factor Levels Values 

Mini-Batch Size 7 2, 4, 8, 16, 32, 64, 128 

Shuffle 2 Every Epoch, Never 

Ratio 5 0.2, 0.4, 0.6, 0.8, 1.0 

 

TABLE III. ANOVA TABLE FOR FIRST GENERAL FACTORIAL DESIGN 

Analysis of Variance 

Source DF Adj SS Adj MS F 
p-

value 

Mini-Batch Size 6 0.004289 0.000715 0.66 0.680 

Shuffle 1 0.006670 0.006670 6.18 0.014 

Ratio 4 0.039919 0.009980 9.25 0.000 

Mini-Batch 
Size*Shuffle 

6 0.001908 0.000318 0.29 0.939 

Mini-Batch 
Size*Ratio 

24 0.006477 0.000270 0.25 1.000 

Shuffle*Ratio 4 0.013966 0.003491 3.23 0.014 

Mini-Batch 
Size*Shuffle*Ratio 

24 0.007057 0.000294 0.27 1.000 

Error 140 0.151121 0.001079   

Total 209 0.231406    

 

 
Fig. 3. Main effects plot for first general factorial design. 

 
Fig. 4. Interaction plot for first general factorial design. 



independently distributed error were not followed in the model.  
The R-Squared value for this study was 34.69%, indicating that 
the study was not a good fit for the data.  

 

Because the RMSE was much higher for ϕ = 0.8 and 1.0, a 
new general factorial design was done only including ϕ = 0.2, 
0.4, and 0.6.  The new ANOVA table (Table 4) indicates that 
while the ratio is still a significant factor, the mini-batch size had 
a higher significance (P = 0.018 vs P = 0.000, respectively).  
With the R-Squared value of 59.55%, the data in the second 
study was a better fit for the model.  The residuals for this study, 
shown in Fig. 6, follow a normal distribution closely, with an 
outlier observed on the Histogram at 0.016.  The residual versus 
fits plot shows a slight increasing trend, but both this plot and 
the residual versus order plot are randomly distributed, 
indicating that there were no major violations to the 
assumptions.  The overall mean RMSE was 0.009492 in this 
design, which is 52% lower than the previous design.  This 
further shows the model is more accurate for smaller ratios. 

The main effects plots in Fig. 7 indicate that the larger mini-
batch sizes (32, 64, and 128) have a lower RMSE, with 128 
again showing the lowest RMSE of 0.00501.  In this factorial 
design, the shuffle option was not a significant factor, which can 
be seen in Fig. 7: the mean RMSE changes from 0.009135 to 
0.009849 when shuffle is changed from every epoch to never, a 
7.82% difference.  This is compared to a 69.5% difference 
between the largest RMSE of 0.01642 (for a mini-batch size of 

8) and the smallest RMSE.  Similar to the first general factorial 
design, the cases where the ratio was smaller had a lower RMSE. 

IV. CONCLUSION 

A general factorial design was used to explore the effects of 
mini-batch size and data shuffling on the response accuracy of 
an LSTM network used to estimate the core to shell ratio of 
MEPCM.  The accuracy was measured using the RMSE, which  

 
Fig. 5. Residuals plot for first general factorial design. 

TABLE IV. ANOVA TABLE FOR SECOND GENERAL FACTORIAL DESIGN 

Analysis of Variance 

Source DF Adj SS Adj MS F 
p-

value 

Mini-Batch Size 6 0.001907 0.000318 14.19 0.000 

Shuffle 1 0.000016 0.000016 0.72 0.399 

Ratio 2 0.000189 0.000095 4.22 0.018 

Mini-Batch 
Size*Shuffle 

6 0.000222 0.000037 1.65 0.144 

Mini-Batch 
Size*Ratio 

12 0.000268 0.000022 1.00 0.459 

Shuffle*Ratio 2 0.000014 0.000007 0.32 0.730 

Mini-Batch 
Size*Shuffle*Ratio 

12 0.000154 0.000013 0.57 0.857 

Error 84 0.001882 0.000022   

Total 125 0.004653    

 

 
Fig. 6. Residuals plot for second general factorial design. 

 
Fig. 7. Main effects plot for second general factorial design. 



was calculated over 10 responses for a given set of initial 
conditions.  Because the core to shell ratio varied between 0.2 
and 1.0 in steps of 0.2, the ratio was also included as an 
experimental factor.  It was found that the LSTM network had 
higher accuracy in the test cases with smaller ratios: the ratio 
was a significant factor and the mean RMSE was larger when 
the ratio was larger.  A second general factorial model was 
generated using only the test cases where ϕ ≤ 0.6, which 
increased the fit of the model.  In the new design, the ratio and 
the mini-batch size were considered significant factors.  The 
largest mini-batch size resulted in the smallest RMSE, indicating 
that the batch training is an optimal setting for this network.  
Future study will include sensitivity studies for other factors, 
including the dropout layer and the number of neurons in a 
hidden layer; expanding the LSTM network to include different 
materials; and attempting to increase the network’s accuracy at 
higher core to shell ratios. 

ACKNOWLEDGMENT 

We would like to thank John Goodhue, Julie Ma, and Josh 
Bevan for computational infrastructure maintenance and 
support. Additionally, we used computational resources 
provided by the Northeast Cyberteam project funded by the 
National Science Foundation at the Massachusetts Green High 

Performance Computing Center and the Boston University 
Shared Computing Cluster.  This material is based on work 
supported by the U.S. Department of Energy, office of Energy 
Efficiency & Renewable Energy under award number DE-
EE0009095. 

REFERENCES 

[1] H. Nazir, et al., “Recent developments in phase change materials for 
energy storage applications: a review,” Int. J. of Heat and Mass Transfer, 
vol. 129, pp. 491-523, Feb. 2019. [Online] 
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126. 

[2] B. Whinery, et al., “Thermal image processing for feature extraction from 
encapsulated phase change materials,” Proc. SPIE 11605, Thirteenth 
International Conference on Machine Vision, 116050K, 4 January 2021. 
https://doi.org/10.1117/12.2586979. 

[3] J. Benner, et al., "The effect of micro-encapsulation on thermal 
characteristics of metallic phase change materials," Applied Thermal 
Engineering, vol. 207, in press 
https://doi.org/10.1016/j.applthermaleng.2022.118055. 

[4] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural 
Computation, vol. 9, no. 8, pp. 1735-1780, Feb. 1997. 
https://doi.org/10.1162/neco.1997.9.8.1735. 

[5] D. Masters and C. Luschi, “Revisiting small batch training for deep neural 
networks,” 2018. [Online]. Available: https://arxiv.org/abs/1804.07612. 

[6] “trainingOptions,” MathWorks Help Center, [Online] 
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
#responsive_offcanvas 

 


