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Abstract—Microencapsulated phase change materials are
being studied for applications for thermal energy storage in
concentrated solar fields. During fabrication, the thickness
of the encapsulation cannot be readily measured for real-
time control. Therefore, a machine learning network,
specifically a Long Short-Term Memory network, is being
developed to estimate the ratio of the shell radius to core
radius based on a one second temperature history. The
mini-batch size determines how often the algorithm weights
are updated during network training, and shuffle indicates
whether the training data is shuffled during training. A
general factorial design is used to analyze the effects of
varying mini-batch size and shuffle, along with the core-to-
shell ratio, on the RMSE of the response from the Long
Short-Term Memory network. It was found that the
network performed better for smaller core to shell ratios
(less than 0.6) and had the lowest RMSE when the mini-
batch size was 128. The minimum RMSE found was
0.00501.

Keywords—Ilong short-term memory, machine learning, mini-
batch size, phase change materials

I. INTRODUCTION

Phase change materials (PCMs) are those that can store
energy in their latent heat of phase change, and they are being
studied for applications in energy storage for concentrated solar
power. While organic and eutectic salt PCMs are widely used
from low to medium temperature applications, desirable
materials for future high temperature PCMs are metals like
copper and aluminum for their high volumetric energy density
and high thermal conductivity. A microencapsulated phase
change material (MEPCM) is a small particle of PCM (<50 pm
radius) with an encapsulating shell (thickness <50 pm). A
schematic of a MEPCM can be seen in Fig. 1. In Fig. la, the
PCM core is in the solid phase; to store energy, the particle’s
temperature is raised until the core changes to the liquid phase
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(Fig. 1b). To release the energy, the temperature of the particle
is lowered and the core returns to the solid phase and releases its
latent heat. The shell remains in the solid phase for the entire
process to contain the core material [1].

To ensure the performance of the MEPCM, it is desirable to
monitor the shell thickness during fabrication. However, the
direct non-destructive measurement of shell thickness on a
MEPCM particle requires the use of High-speed Synchrotron X-
ray Imaging to distinguish the shell from the core at high frame
rates, which is only available for research instead of production
environment. An in-situ sensing method which makes use of the
temperature history during cooling of the MEPCM to indirectly
estimate the core-to-shell ratio is therefore proposed. The
temperature history can be readily captured using a high-speed
thermal camera [2].

To study the fundamental feasibility of the proposed method,
simulated temperature histories of MEPCM during cooling are
being used as model inputs [3]. Estimating the shell thickness of
the PCM is expected to be accomplished using the machine
learning program Long Short-Term Memory (LSTM). LSTM
is a recurrent neural network (RNN) that is better equipped to
handle larger gaps between the supplied information and the
necessary response. In a traditional RNN, the error signals tend
to either blow up or vanish when they have to travel “back in
time” for information. To remedy this, Hochreiter and
Schmidhuber [4] introduced LSTM, which utilizes constant
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Fig. 1. Working principle of MEPCM [1].

error flow. This network consists of a memory cell with several

gates. The memory cell is where information is stored for a
given timestep. The input gate determines what incoming
information should be saved and protects the cell from
unnecessary information, and the output gate decides which
information currently in the cell’s memory should be passed on
to the next timestep. In other words, what new information
needs to be remembered and what current information can be
forgotten by the cell. The cell is updated to reflect the
information from these gates, and the cycle begins again with
the new memory cell [4].

In LSTM, the training data sets are used to train the network
to predict the desired results, and later the testing data is used to
test the accuracy of the network. While the network is being
trained, the weights for the algorithms are continuously being
updated in order to create the most accurate network. The mini-
batch size is used to define how often these updates take place.
In batch training, the algorithms are updated only after all of the
training data sets have been considered. Opposite batch training
is the stochastic method, in which the algorithm is updated after
each individual data set is considered, which is when the
algorithm is updated most frequently. Mini-batches fall between
these two methods by looking at a portion of the training data
set before updating the algorithm weights. The mini-batch size
is typically a power of 2. Smaller mini-batch sizes (and the
stochastic method) are more computationally expensive because
they take more time [5].

Within the LSTM framework, the shuffle option goes hand
in hand with the mini-batch size, and it determines if and when
the training data is shuffled. When the number of training data
sets is not evenly divisible by the mini-batch size, the extra data
sets are thrown out. If shuffle is set to never, the training data
appears in the same order each epoch, and the same data sets are
discarded each epoch. When set to every epoch, the training
data is consistently shuffled so that different data sets are thrown
out each epoch [6].

In this research, a sensitivity study is performed to learn the
effect of the mini-batch size on the response of an LSTM
network used to estimate the geometric properties of an
MEPCM. Additionally, the effects of the shuffle option are also
studied. Because the testing data sets have different core to shell
ratios, this factor is also considered in the study.

II. METHODS

A. Data Collection

In this study, two set of data were used: first cooling curves
to be used in the machine learning network and second results
from different iterations of the network. The first set of data was
collected using an OpenFOAM model of a MEPCM nparticle.
This model returns the temperature of the particle center,
surface, and core-shell interface for every millisecond over a one
second time interval [3]. The temperature histories of the center
and the surface of the particle were used, and the particle had a
copper core with a fused silica shell. The core radius, core to
shell ratio, ambient temperature, and convective heat transfer
coefficient were varied to simulate different sized particles as
well as different operating conditions, shown in Table 1. The

TABLE I. PROPERTIES OF STUDIED MEPCM

Factor Information
Variable Values Units
Core Radius, reore 10, 20;30’ 40, pm
. 0.2,0.4, 0.6,

Core to shell Ratio, ¢ 0.8.1.0 n/a
Ambient Temperature, Tyr 293, 298 K
Convective Heat Transfer 2.

Coefficient, h 100,200 W/m™K]

core to shell ratio is defined as ¢ = reore/tshei, With Teore and tshen
being the core radius and the thickness of the shell, respectively.
The initial temperature of the particle was assumed to be 2,000
K, and an example cooling curve is shown in Fig. 2. A total of
100 data sets were collected.

The second set of data was collected using an LSTM
network in MATLAB. The network has one LSTM layer with
500 hidden units. A dropout layer of 0.1 is used for 1,000
epochs. The LSTM layer is a regression layer, so it takes the
sequence input data and returns a single value, the core to shell
ratio, which is being estimated. The mini-batch size in the
network training was varied to determine its effects on the
results from the network. Additionally, for each mini-batch size,
two cases were run: one with the data being shuffled every epoch
and the other with it never being shuffled. Eighty-five percent
of the data collected from OpenFOAM was used to train the
network while the remaining 15% was used to test the network.
All five possible core to shell ratios were represented in the
testing data. To train the network, the temperature vs time data
from the center and the surface of the MEPCM along with an
associated core to shell ratio were used. All of the data was
normalized. When testing the network, the temperature data was
the input, and the response was the ratio. For each test, the
network was run 10 times and the average response over the 10
loops was given as the mean response. Additionally, the root
mean square error (RMSE) was calculated over the ten loops. A
smaller RMSE indicated a more accurate prediction. There were
a total of 15 test cases.



B. General Factorial Design
A general factorial design (Table 2) was used to analyze the
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Fig. 2. Example cooling curve, where c, s, h, and T are the core radius,
shell thickness, heat transfer coefficient, and ambient temperature,

respectively.

TABLE II. GENERAL FACTORIAL DESIGN

Factor Information
Factor Levels Values
Mini-Batch Size 7 2,4,8,16,32,64, 128
Shuffle 2 Every Epoch, Never
Ratio 5 0.2,0.4,0.6,0.8, 1.0

effects of the mini-batch size and the shuffle setting on the
RMSE results from the LSTM network. The levels for the mini-
batch size were selected as powers of 2% with 1 <k <7, and the
shuffle option was set to every epoch or never. Additionally, the
core to shell ratio was included as a factor. The general factorial
design was used to evaluate which factors and interactions have
a significant effect on the results, and this information can be
used to optimize the network. Minitab was used to analyze this
data.

III. RESULTS

When the general factorial design was run using 5%
significance, the analysis of variance in Table 3 showed that the
ratio and shuffle factors were significant, and the interaction
between these two factors was also significant (P < 0.05). The
main effects plot in Fig. 3 indicates that when shuffle is set to
every epoch, the RMSE is reduced by 43.7% compared to when
the data is never shuffled. Additionally, the RMSE was much
lower for ¢ = 0.2, 0.4, and 0.6. The highest RMSE for each of
these ratios was 0.01121, while the smallest value for the larger
ratios was 0.02933. This indicates that the network is biased
towards the cases with a smaller core to shell ratio. The mini-
batch size of 128 resulted in the lowest RMSE (0.01034). The
overall mean RMSE for this design was 0.02016.

It is also worth noting that from Fig. 4, when the mini-batch
size was 128, the RMSE was similar whether shuffle was set to
never or every epoch. The mini-batch size of 128 represents
batch training because it is greater than the 85 training data sets.
Since all of the training data sets are considered before the
network algorithms are updated, the order that the data sets are

TABLE III. ANOV A TABLE FOR FIRST GENERAL FACTORIAL DESIGN

Analysis of Variance
Source DF | AdjSS Adj MS F p-
value
Mini-Batch Size 6 0.004289 | 0.000715 0.66 0.680
Shuffle 1 0.006670 | 0.006670 6.18 0.014
Ratio 4 0.039919 | 0.009980 9.25 0.000
Mini-Batch
Size*Shuffle 6 0.001908 0.000318 0.29 0.939
Mini-Batch 24 | 0006477 | 0.000270 | 025 | 1.000
Size*Ratio
Shuffle*Ratio 4 0.013966 | 0.003491 323 0.014
Mini-Batch
Size*Shuffle*Ratio 24 0.007057 | 0.000294 0.27 1.000
Error 140 | 0.151121 0.001079
Total 209 | 0.231406
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Fig. 3. Main effects plot for first general factorial design.
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Fig. 4. Interaction plot for first general factorial design.

considered (determined by the shuffle setting) is not as
important as it is in the mini-batch training. Fig. 4 also
graphically shows that the mini-batch size to shuffle interaction
and the mini-batch size to ratio interaction were not significant
because each of the curves on these plots follow similar trends.
The interaction between shuffle and the ratio can be seen to be
more significant because the curves are not parallel and intersect
each other.

Looking at the residual plots in Fig. 5, the residuals do not
seem to closely follow the normal distribution. Furthermore, the
versus fits and versus order plots show an increasing trend.
These residual plots indicate that the assumptions of normal and



independently distributed error were not followed in the model.
The R-Squared value for this study was 34.69%, indicating that
the study was not a good fit for the data.
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Fig. 5. Residuals plot for first general factorial design.

Because the RMSE was much higher for ¢ =0.8 and 1.0, a
new general factorial design was done only including ¢ = 0.2,
0.4, and 0.6. The new ANOVA table (Table 4) indicates that
while the ratio is still a significant factor, the mini-batch size had
a higher significance (P = 0.018 vs P = 0.000, respectively).
With the R-Squared value of 59.55%, the data in the second
study was a better fit for the model. The residuals for this study,
shown in Fig. 6, follow a normal distribution closely, with an
outlier observed on the Histogram at 0.016. The residual versus
fits plot shows a slight increasing trend, but both this plot and
the residual versus order plot are randomly distributed,
indicating that there were no major violations to the
assumptions. The overall mean RMSE was 0.009492 in this
design, which is 52% lower than the previous design. This
further shows the model is more accurate for smaller ratios.

The main effects plots in Fig. 7 indicate that the larger mini-
batch sizes (32, 64, and 128) have a lower RMSE, with 128
again showing the lowest RMSE of 0.00501. In this factorial
design, the shuffle option was not a significant factor, which can
be seen in Fig. 7: the mean RMSE changes from 0.009135 to
0.009849 when shuffle is changed from every epoch to never, a
7.82% difference. This is compared to a 69.5% difference
between the largest RMSE of 0.01642 (for a mini-batch size of

TABLE IV. ANOVA TABLE FOR SECOND GENERAL FACTORIAL DESIGN

Analysis of Variance

Source DF Adj SS Adj MS F p-
value
Mini-Batch Size 6 0.001907 0.000318 14.19 | 0.000
Shuffle 1 0.000016 0.000016 0.72 0.399
Ratio 2 0.000189 0.000095 422 0.018
Mini-Batch
Size*Shuffle 6 0.000222 0.000037 1.65 0.144
Mini-Batch 12 | 0000268 | 0000022 | 1.00 | 0.459
Size*Ratio
Shuffle*Ratio 2 0.000014 0.000007 0.32 0.730
Mini-Batch
Size*Shuffle*Ratio 12 0.000154 0.000013 0.57 0.857
Error 84 0.001882 0.000022
Total 125 0.004653
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Fig. 6. Residuals plot for second general factorial design.
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Fig. 7. Main effects plot for second general factorial design.

8) and the smallest RMSE. Similar to the first general factorial
design, the cases where the ratio was smaller had a lower RMSE.

IV. CONCLUSION

A general factorial design was used to explore the effects of
mini-batch size and data shuffling on the response accuracy of
an LSTM network used to estimate the core to shell ratio of
MEPCM. The accuracy was measured using the RMSE, which



was calculated over 10 responses for a given set of initial
conditions. Because the core to shell ratio varied between 0.2
and 1.0 in steps of 0.2, the ratio was also included as an
experimental factor. It was found that the LSTM network had
higher accuracy in the test cases with smaller ratios: the ratio
was a significant factor and the mean RMSE was larger when
the ratio was larger. A second general factorial model was
generated using only the test cases where ¢ < 0.6, which
increased the fit of the model. In the new design, the ratio and
the mini-batch size were considered significant factors. The
largest mini-batch size resulted in the smallest RMSE, indicating
that the batch training is an optimal setting for this network.
Future study will include sensitivity studies for other factors,
including the dropout layer and the number of neurons in a
hidden layer; expanding the LSTM network to include different
materials; and attempting to increase the network’s accuracy at
higher core to shell ratios.
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