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Polyurethane Foams

Key reactions:

Isocyanate and Polyol ‐> polyurethane formation

Isocyanate and Water ‐> 𝐶𝑂ଶ and an amine

Polyurethane foams are widely used in manufacturing 
due to ease of use and useful material properties

We are focusing on modeling PMDI‐10 a foam which 
is used for structural parts



Experimental Data

Experimental data of foam rising in 
bar mold.

• rise over time
• bubble size over time from 
cameras

• X‐ray CT data of final bar density
• SEM data of final bubble sizes. 
• Diffusion wave spectroscopy (DWS) 
of bubble diameters over time.

• Various other experiments for 
measuring density and reactions 
over time

Experimental Setup SEM near middle camera

Mondy et al. (Submitted 2021 AIChE Journal)
Mondy et al. 2014 Tech. Report SAND2014‐3292
Roberts et al. 2016 Tech. Report SAND2016‐5445



Momentum and Mass Conservation

Continuity
𝜕𝜌
𝜕𝑡 ൅ 𝒖 ⋅ ∇𝜌 ൅ 𝜌∇ ⋅ 𝒖 ൌ 𝟎

Continuity is the main driver of flow in our problems as the density is decreasing over time 
due to foaming reactions
Conservation of Momentum

𝜌
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Rao et al. 2018 Computers & Fluids
Ortiz et al. (Submitted 2021 AICHe Journal)



Polymerization

We track polymerization as an extent of reaction as our isocyanate is 
always in excess for our foam

𝜕𝜉
𝜕𝑡 ൅ ∇ ⋅ 𝒖𝜉 െ 𝐷క∇ଶ𝜉 ൌ 𝑘 𝑏 ൅ 𝜉௠ 1 െ 𝜉 ௡

Where k is an Arrhenius type equation with a Williams‐Landal‐Ferry 
shift factor:

𝑘 ൌ
1

1 ൅𝑤𝑎் ఉ 𝑘଴𝑒ா഍ ோ்⁄

Where 𝑇௚ is the glass transition temperature following the Di Benedetto 
form.

Details can be found in Rao et al. 2018 Computers and Fluids
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ሺ1 െ 𝜉 ൅ 𝐴𝜉ሻ



Energy Balance

We treat heat capacity and density as constants in our energy balance 
equation

Temperature increases as our foam reacts.

𝜌𝐶௣
𝜕𝑇
𝜕𝑡 ൅ 𝒖 ⋅ ∇𝑇 െ ∇ ⋅ 𝑘∇𝑇 ൌ Δ𝐻௥௫௡𝑌𝜌

𝜕𝜉
𝑑𝑡

Δ𝐻௥௫௡, Heat of Reaction
𝑌, liquid mass fraction
𝜉, extent of polymerization

Heat Capacity, 𝐶௣, and conductivity 𝑘 are 
dependent on the foam gas liquid makeup and 
are fit using a mixture theory model

Rao et al 2018. Computers and Fluids



Population Balance

Bubble size distribution (BSD) is described by a number density function, 
𝑛ሺ𝑣ሻ, representing the number of bubbles per unit volume of liquid in 
volume between the range 𝑣 and 𝑣 ൅ 𝑑𝑣 (Karimi et al. 2017, Computer 
Physics Communications)

Evolution of the BSD is governed by the following Population Balance 
Equation (Karimi et al. 2016 Macromolecular Symposia, Karimi et al. 
2017 Computer Physics Communications):
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Where 𝛽 vᇱ, v represents a coalescence kernel, and 𝐺ሺ𝑣ሻ represents 
the growth rate of bubbles.

Growth Rate Kernel, 𝐺ሺ𝑣ሻ

Coalescence Kernel,  𝛽ሺ𝑣, 𝑣′ሻ



Population Balance: Quadrature Method of Moments
Transformation into moments:

𝑚௞ 𝑡, 𝑥 ൌ න 𝑛 𝑣 𝑣௞𝑑𝑣
ஶ

଴

Transformed PBE:
𝜕𝑚௞

𝜕𝑡 ൅ ∇ ⋅ ሺ𝒖𝑚௞ሻ ൌ 𝐺௞ ൅ 𝑆௞  ,   𝑘 ൌ 0,1,2, … ,𝑁௠௢௠௘௡௧௦

• 𝐺௞ is a growth rate source

• 𝑆௞ is a source from coalescence of bubbles

• Quadrature method of moments (QMOM) is used to compute the source terms

• We use the first 4 moments to represent our PBE

• Moments offer useful information:

𝑚଴, total number of bubbles per unit liquid volume

𝑚ଵ, total bubble volume per unit liquid volume

𝑚ଶ and 𝑚ଷ related to the variance and skewness of the BSD

• Quadrature nodes/weights computed using Yuan and Fox’s adaptive‐Wheeler algorithm 
(Yuan, C., and R.O. Fox. 2011 Journal of Computational Physics)

Volume fraction of gas

𝑚ଵ
1 ൅𝑚ଵ

Mean bubble volume

𝑚ଵ
𝑚଴

𝐺௞ ≅෍𝑤௜𝐺 𝑣௜ 𝑣௜௞ିଵ
ே

௜ୀଵ

𝑆௞̅ ≅
1
2 ෍෍𝑤௔𝑤௕ 𝑣௔ ൅ 𝑣௕ ௞ െ 𝑣௔௞ െ 𝑣௕௞ 𝛽ሺ𝑣௔,𝑣௕ሻ

ே

௕ୀଵ

ே

௔ୀଵ

Useful information from moments:



Growth and Coalescence Kernels

We try to capture variations in density along the height of 
experimental data by adding pressure and viscosity dependence to 
kernels from Karimi et al. 2017 (Computer Physics 
Communications) borrowing ideas from single bubble models

Our pressure scaling is based on system pressure as we do not 
track bubble pressure.

This seems to improve overall results while still being a pseudo 
bubble pressurization term.

Bubble growth and Coalescence are slowed by scaling with the 
inverse of the foam viscosity 𝜇

Karimi et al. 2017 Pressure and Viscosity Dependent
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Simplified Rayleigh‐Plesset Equation

Coalescence of 𝛽 𝑣ᇱ,𝑣 ൌ 𝛽଴ 𝑣 ൅ 𝑣ᇱ
represents bubbles of volume v and v’ 
coalescing and creating a bubble of volume 
𝑣 ൅ 𝑣′ at a rate 𝛽଴

𝐶଴,𝛽଴ constant coefficients
𝑤௠௔௫ maximum solubility
𝑃௥௘௙ reference pressure (often atm.)
𝜇௥௘௙ reference viscosity



Governing Equations: Kinetics

𝜕𝐶ுమை
𝜕𝑡 ൅ 𝒖 ⋅ ∇𝐶ுమை െ 𝐷ுమை∇

ଶ𝐶ுమை ൌ െ𝑘ுమை𝐶ுమை
௣

𝜕𝐶஼ைమ
௟௜௤

𝜕𝑡 ൅ 𝒖 ⋅ ∇𝐶஼ைమ
௟௜௤ െ 𝐷஼ைమ

௟௜௤ ∇ଶ𝐶஼ைమ
௟௜௤ ൌ 𝑘ுమை𝐶ுమை

௣ െ 𝐺ଵ
𝑃
𝑅𝑇

𝜕𝐶஼ைమ
௚௔௦

𝜕𝑡 ൅ 𝒖 ⋅ ∇𝐶஼ைమ
௚௔௦ െ 𝐷஼ைమ

௚௔௦∇ଶ𝐶஼ைమ
௚௔௦ ൌ 𝐺ଵ

𝑃
𝑅𝑇

To account for growth rates of bubbles we have equations for both 
concentrations of liquid 𝐶𝑂ଶ and gaseous 𝐶𝑂ଶ and relate these based on 
growth rate determined by the QMOM

1

1

( ) k
k i i i

N

i

w G v vG 



 

Where 𝑤஼ைమ and 𝑤௠௔௫ are 
mass fraction of liquid 𝐶𝑂ଶ
and mass fraction related 
to the maximum solubility 
of liquid 𝐶𝑂ଶ

𝐺ଵ is the source for 𝑚ଵ
(total bubble volume per 
unit liquid volume)

𝑘ுమை ൌ 𝐴ுమை 𝑒ିாಹమೀ/ோ்



Material Model: Density

We represent the density as a combination of the liquid and gas density found in the foam

𝜌௙௢௔௠ ൌ 𝜌௚௔௦𝜓 ൅ 𝜌௟௜௤௨௜ௗ 1 െ 𝜓

Where 𝜓 represents a volume fraction of gas

𝜈 ൌ
𝑉௚௔௦
𝑉௟௜௤௨௜ௗ

ൌ
𝑀஼ைమ𝐶஼ைమ
𝜌௚௔௦

𝜓 ൌ
𝜈

1 ൅ 𝜈
The density of gas is based on the ideal gas law

𝜌௚௔௦ ൌ
𝑃𝑀஼ைమ
𝑅𝑇

11Rao et al. 2018 Computers and Fluids
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Material Model: Viscosity

Extra stress tensor:

𝝉 ൌ 𝜂 ∇𝒖 ൅ ∇𝒖் െ
2
3 𝜂 െ 𝜅 ∇ ⋅ 𝒖 𝑰

The viscosity follows a Taylor‐Mooney form derived from emulsion experiments

𝜂 ൌ 𝜂଴exp
𝜓

1 െ 𝜓

𝜂଴ ൌ 𝜂଴଴ exp
𝐸ఎ
𝑅𝑇

𝜉௖
௣ െ 𝜉௣

𝜉௖
௣

ି௤

𝜅 ൌ
4
3 𝜂

1 െ 𝜓
𝜓

More details on the model can be found in Rao et al. 2018 Computers and Fluids
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Level Set Boundary

13

Level Set Method
A signed distance function 𝜙 represents our interface at 𝜙 ൌ 0

𝜕𝜙
𝜕𝑡 ൅ ∇ ⋅ 𝒖𝜙 ൌ 0

Foam and gas phases are tracked, properties and source terms need to be 
smoothed to avoid instabilities

𝜌 𝜙 ൌ 𝜌௔௜௥𝐻 𝜙 ൅ 𝜌௙௢௔௠ 1 െ 𝐻 𝜙  

 𝑆௧௘௥௠ → 𝑆௧௘௥௠ሺ1 െ 𝐻 𝜙 ሻ

Where Hሺ𝜙ሻ is a smoothed Heaviside and 𝑆௧௘௥௠ is a source term for our 
species or moment equations

Nicoguaro [CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0)

 0

H
ea

vi
si

de

foam air

1 െ 𝐻 𝜙 𝐻 𝜙

𝐻 𝜙 ൌ

𝑜                                        𝑖𝑓 𝜙 ൏ 𝛼

0.5 1 ൅
𝜙
𝛼 ൅

sin 𝜋𝜙
𝛼

𝜋     𝑖𝑓 𝛼 ൑ 𝜙 ൑ 𝛼

1                                        𝑖𝑓 𝜙 ൐ 𝛼



Discretization
We discretize our equation using the finite element method in open source 
software Goma (gomafem.com)

All elements are discretized using equal order P1 Tetrahedrons or Q1 Hexahedral 
elements depending on the mesh.

As we are using equal order we employ Pressure‐Stabilizized Petrov‐Galerkin
(PSPG) stabilization for momentum and continuity

All convective‐diffusion‐reaction equations and momentum are stabilized using 
Streamwise‐Upwind Petrov‐Galerkin (SUPG)



Time integration

We employ a segregated approach to advance our solution in time

All terms are treated implicitly except for QMOM source terms which require a non‐linear 
algorithm to compute the quadrature

Momentum
+

Continuity
EnergyLevel Set

Concentration Eq.’s
+

Polymerization
Moment Eq.’s

Reinitialize Level Set
Increase time step 𝑡 ൅ Δ𝑡



Boundary Conditions and Initialization

Mold walls are restricted by a no penetration condition
𝒖 ⋅ 𝒏 ൌ 0

And a slip condition due to foam typically slipping along 
walls

𝒏 ⋅ 𝑻 ൌ
1

𝛽 𝜙 𝒖

Molds are often preheated so we impose a constant 
Process Temperature on those walls and Adiabatic 
conditions elsewhere

𝑇 ൌ 𝑇௣௥௢௖௘௦௦

Foam is initialized to an initial foam state with many very 
small bubbles at an initial height 

Foam is initialized uniformly with zero initial velocity

Initial 
Foam

Side wall

ALE Version: Ortiz et al. (Submitted 2021 AICHe Journal)



3D Bar at Two Process Temperatures

30∘ 𝐶 40∘ 𝐶



Level Set Model compared to Experimental Data

30∘𝐶

40∘𝐶

Final Bar Density at 30∘𝐶Density over time

Simulation Bubble Diameter vs DWS+SEM

Simulation Bubble Area vs Camera



Future Work
• Complex mold comparisons
• Adaptive Meshing to alleviate level 
set issues like poor mass 
conservation
• More generic foam model which 
does not assume excess isocyanate
• Alternatives/Advances to Quadrature 
Method of Moments for tracking 
bubble distributions



Conclusion
Presented a model for predicting polyurethane 
foam rise and final densities using a level set finite 
element method

We found good predictions when compared with 
experimental data

We plan to expand usage of this model to 
complex molds and exploring other techniques 
for tracking bubble distributions

Simulation Bubble Diameter vs DWS+SEM
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Material Model: Heat Capacity and Conductivity

For Heat Capacity mixture theory is used to account for the effect of evolving gas

𝐶௣ ൌ  
𝐶௣,௟௜௤௨௜ௗ𝜌௟௜௤௨௜ௗ 1 െ 𝜓 ൅ 𝐶௣,஼ைమ𝜌௚௔௦𝜓

𝜌௙௢௔௠

Conductivity

𝑘 ൌ
2
3

𝜌௙௢௔௠
𝜌௟௜௤௨௜ௗ

𝑘௟௜௤௨௜ௗ ൅ 1 െ
𝜌௙௢௔௠
𝜌௟௜௤௨௜ௗ

𝑘௚௔௦
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Governing Equation: Concentrations
Concentration of water and carbon dioxide in the foam mixture:

𝜕𝐶ுమை
𝜕𝑡 ൅ 𝒖 ⋅ ∇𝐶ுమை െ 𝐷ுమை∇

ଶ𝐶ுమை ൌ െ𝑁𝑘ுమை𝐶ுమை
௣

𝜕𝐶஼ைమ
𝜕𝑡 ൅ 𝒖 ⋅ ∇𝐶஼ைమ െ 𝐷஼ைమ∇

ଶ𝐶஼ைమ ൌ 𝑁𝑘ுమை𝐶ுమை
௣

Where
𝑘ுమை ൌ 𝐴ுమை𝑒

ିሺாಹమೀ/ோ்ሻ

𝑁 ൌ 0.5 1 ൅ tanh 
𝑡 െ 𝑡௡௨௖௟௘௔௧௜௢௡
𝑡௡௨௖௟௘௔௧௜௢௡
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Moment equations source terms
The source terms after transformation are as follows, for Growth rate

𝐺௞ ൌ න 𝐺 𝑣 𝑛 𝑣 𝑣௞ିଵ𝑑𝑣
ஶ

଴
For Coalescence

𝑆௞̅ ൌ
1
2
න න 𝑣 ൅ 𝑣ᇱ ௞ െ 𝑣௞ െ 𝑣ᇱ௞ 𝛽 𝑣, 𝑣ᇱ 𝑑𝑣𝑑𝑣′

ஶ

଴

ஶ

଴
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Quadrature Method of Moments (QMOM)

Approximation of the integrals is performed with Gaussian quadrature (McGraw 
1997 Aerosol Science and Tech.)

𝑘න 𝑣௞ିଵ𝜙 𝑣 𝑛 𝑣 𝑑𝑣 ൌ 𝑘෍𝑣௜௞ିଵ𝜙 𝑣௜ 𝑤௜

ே

௜ୀଵ

ஶ

଴

For moments 𝑘 ൌ 0 through 2𝑁 െ 1 our moment equations become

𝑚௞ ൌ න 𝑛 𝑣 𝑣௞𝑑𝑣 ≅෍𝑤௜𝑣௜௞
ே

௜ୀଵ

ஶ

଴

Using this approximation quadrature points and weights are computed with 
Wheeler’s algorithm (Wheeler 1974 Journal of Mathematics)
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Quadrature applied to moment source terms

The quadrature approximation transform is also applied to the moment 
source terms (Karimi et al. 2016 Macromolecular Symposia)
Term for bubble growth rate

𝐺௞ ൌ න 𝐺 𝑣 𝑛 𝑣 𝑣௞ିଵ𝑑𝑣 ≅෍𝑤௜𝐺 𝑣௜ 𝑣௜௞ିଵ
ே

௜ୀଵ

ஶ

଴

Term for bubble coalescence

𝑆௞̅ ൌ
1
2
න න 𝑣 ൅ 𝑣ᇱ ௞ െ 𝑣௞ െ 𝑣ᇱ௞ 𝛽 𝑣, 𝑣ᇱ 𝑑𝑣𝑑𝑣

ஶ

଴

ஶ

଴

      ≅
1
2 ෍෍𝑤௔𝑤௕ 𝑣௔ ൅ 𝑣௕ ௞ െ 𝑣௔௞ െ 𝑣௕௞ 𝛽ሺ𝑣௔, 𝑣௕ሻ

ே

௕ୀଵ

ே

௔ୀଵ
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𝐺 𝑣௜ ൌ 𝐺଴ሺ𝑤஼ைమ െ 𝑤௠௔௫ሻ/𝑤௠௔௫

Where 𝑤஼ைమ and 𝑤௠௔௫ are mass 
fraction of liquid 𝐶𝑂ଶ and mass 
fraction related to the maximum 
solubility of liquid 𝐶𝑂ଶ

𝛽 𝑣௔,𝑣௕ ൌ 𝛽଴ 𝑣௔ ൅ 𝑣௕

Constant coalescence rate kernel



What is a rotated boundary condition (2D)

no penetration conditions, 𝑣 ⋅ 𝑛 ൌ 0

We still want to be able to slip so we cannot use 
Dirichlet on something like a rotated domain:

So instead we use a rotated coordinate system to 
apply our boundary conditions

Then we will be able to specify slip in the 
tangential direction

Use a rotation matrix to change coordinate 
systems:

𝑅௡
𝑅௧

ൌ 𝑛்
𝑡்

𝑅௫
𝑅௬

Now when we apply 𝑣 ⋅ 𝑛 ൌ 0 we still have 
freedom in the tangential direction which we can 
apply Navier slip boundary conditions (or free slip)



Solving the moment quadrature

Moment quadrature points and weights are dynamically calculated at each 
node at every time step.

A well behaved algorithm has proven essential to solution of these moment 
equations.

Yuan and Fox introduced an adaptive 1D quadrature algorithm which gives 
much better behavior in calculating moment quadrature weights and nodes.

Using Yuan and Fox’s quadrature algorithm and following recommendations on 
parameters greatly reduces solution blow‐up

Yuan, Cansheng, and Rodney O. Fox. "Conditional quadrature method of 
moments for kinetic equations." Journal of Computational Physics 230.22 
(2011): 8216‐8246.


