Forensic Science International: Digital Investigation 40 (2022) 301339

Contents lists available at ScienceDirect

I
Investigati,0'1

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

DFRWS 2022 EU - Selected Papers of the Ninth Annual DFRWS Europe Conference

l.)

Check for
updates

Memory forensic analysis of a programmable logic controller in
industrial control systems

Muhammad Haris Rais **, Rima Asmar Awad °, Juan Lopez Jr. b Irfan Ahmed ®

2 Virginia Commonwealth University, Richmond, VA, 23 284, USA
b Oak Ridge National Laboratory, Oak Ridge, TN, 37 830, USA

ARTICLE INFO ABSTRACT

Article history: In industrial control systems (ICS), programmable logic controllers (PLCs) are used to automate physical
processes such as nuclear plants and power grid stations, and are often subject to cyber attacks. As in
conventional IT domain, the memory analysis of the PLCs can help answer important forensic questions
about the attack, such as the presence of malicious firmware, injection of modified control logic (the
program running on the PLC), and manipulation of I/O devices (e.g., sensors and actuators). Unlike

conventional IT domain, PLCs have heterogeneous hardware architecture, proprietary firmware and

Keywords:
CPS forensics
Memory forensics

JSTC/?\GDA control software, making it challenging to employ a unified framework for their memory forensics. For
PLC merely extracting artifacts of forensic importance, reverse-engineering the firmware is a tedious task,
Ics and the effort needs to be repeated for every PLC model. As a community, a step-wise approach to tackle

this challenge is to analyze the memory of specific PLCs, and subsequently find a generic framework
applicable to all PLCs. Our work is a step forward in this direction. By following a methodology that
focuses on the functional layer of PLCs instead of reverse engineering the firmware, we analyze the
digital forensic artifacts available in a common PLC, Allen-Bradley ControlLogix 1756-L61. Before diving
into the memory dump, we analyze the PLC control software to create a list of important artifacts that are
sure to exist in the PLC memory dump. The approach employs a setup where PLC control software
RSLogix-5000 is connected to the PLC, and the memory dump can be obtained as and when needed. We
create test cases that sequentially highlight each category of artifacts, followed by an examination of the
resultant impact on memory. After attaining the listed artifacts, we employ conventional string and
known data searches to extract interesting information present in this PLC's memory. The memory
analysis profile, presented as a Python library and shared with the community, can help a forensic
investigator to readily extract forensic artifacts from the same model's controller. The adopted approach
may help researchers in creating memory profile of other PLCs, and ultimately formulating a generic PLC

memory analysis framework.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Embedded devices

1. Introduction

In industrial control systems (ICS), programmable logic con-
trollers (PLCs) are intelligent and rugged embedded systems
running control applications to monitor and control a physical
processes such as gas pipelines, nuclear plants, and wastewater
treatment facilities. Attackers target PLCs to sabotage physical
processes (Garcia et al., 2017; Kalle et al., 2019; Senthivel et al.,
2018; Yoo et al., 2019; Ayub et al., 2021; Qasim et al., 2021). For
example, an attacker can change the condition to operate the safety
release valve causing the internal pressure of a boiler to exceed

* Corresponding author.
E-mail address: raismh@vcu.edu (M.H. Rais).

https://doi.org/10.1016/.fsidi.2022.301339

beyond safety limits resulting in an explosion. A sophisticated
attacker can also engineer the feedback sent by the PLC to avoid
early warning to the operator. Although researchers have recom-
mended independent monitoring techniques to attain authentic
state of an industrial process (Rais et al., 2021a, 2021b; Qasim et al.,
2019), attacks that manipulate inline feedback have higher chances
to succeed. Conventional IT forensic analysis of the control software
may not provide the required details. However, the forensics of the
PLC's memory can provide important information about the attack,
such as the attacker's details, modifications in the firmware and the
application, and the actual state of the controlling Input/Output
(I0) devices (Ahmed et al., 2012, 2017).

2666-2817/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:raismh@vcu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2022.301339&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2022.301339
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2022.301339

M.H. Rais, RA. Awad, . Lopez]r. et al.

PLC memory forensics is challenging since PLCs have proprietary,
legacy hardware with heterogeneous architectures, firmware, and
programming applications. Currently, there is no memory forensics
methodology that provides comprehensive coverage of the mem-
ory contents in a PLC. The existing forensic efforts are mostly
limited to extracting and analyzing firmware from a PLC such as
Basnight (2013), Avatar (Zaddach et al., 2014), Zhu et al. (2017), and
Mulder et al. (2012).

Analyzing PLC's memory by reverse-engineering the proprietary
firmware is not a simple and replicable task. Moreover, a forensic
investigator is not interested in the firmware detailed working. A
methodology is required to cut down the time and efforts by
focusing on extracting the forensically interesting information. In
this paper, we employ a differential analysis based methodology to
extract and analyze digital forensic artifacts in Allen-Bradley Con-
trolLogix 1756-L61 controller's memory dump. We successfully
extract the running firmware, the control application (commonly
called Control-logic), the physical process state information
measured through the input from sensors and output to actuators,
the PLC operational configuration data, and important event logs.
By employing a sequence of planned test cases and analyzing the
resultant memory variations, we generate a memory profile
comprising a set of rules to extract artifacts from a memory dump.
The profile generation task includes identifying data structure
definitions, searching data structure instances in a memory dump,
and formulating the rules. The resultant profile embedded in a
Python library can be used by the community to instantly acquire
forensic artifacts from an unseen memory dump.

The rest of the paper is organized as follows. Section 2 covers the
background and the related work, followed by the experiment's
setup presented in section 3. Section 4 describes the proposed
methodology and its implementation. In section 5, we present the
extracted forensic artifacts, followed by the discussion, and the
conclusion.

2. Background and related work
2.1. Background

Fig. 1 presents a simplified architectural view of a PLC
comprising three layers: the hardware, the firmware, and the
application layer. The rugged hardware is augmented with a variety
of Input/Output modules connecting the PLC to the corresponding
physical process. Typically, a PLC runs the control application in an
infinite loop. During each cycle, the PLC firmware acquires the
physical process state through connected sensors, employ the
control logic to find the new output states, and push them to the
actuators through the output module.

S Physical process

@c@ Co”ﬂb")x being controlled
(= . B\ |
£ application =-\ u % ‘
— \ /
S layer SA e =
S, v &@ : KR X
480y o 3 @18)
S) P £
0 I\
y L k. W78
. firmware \aY*=__- s = &
Output y—
Actuators
Module L—J

Aardare \aye" i

Fig. 1. PLC architecture.

Forensic Science International: Digital Investigation 40 (2022) 301339

2.2. Related work

Although no existing work focuses on the PLC memory forensic
analysis, researchers have attempted to extract a specific artifact
from the memory, or find forensic artifacts from the captured
network traffic.

Zhu et al. (2017) proposed an automated method to determine
the image base of firmware based on the jump tables data in the
firmware. The authors collect ten firmware from vendors' websites
to identify the firmware's jump table and calculate the image base
to evaluate the algorithm. The experimental results show that the
proposed algorithm is effective for the firmware that stores the
absolute addresses in the jump table.

In (Basnight, 2013), Basnight presents a firmware modification
attack scenario, where the PLC's firmware is extracted, analyzed,
and reverse engineered to derive the firmware update validation
method. The vulnerabilities of the validation algorithm are
exploited, and a firmware modification attack was conducted. The
author discusses that the firmware validation algorithm suffers
form design weaknesses making firmware modification feasible for
the attackers.

Mulder et al. (2012) analyzed the internals of control system
field devices. They explained that the analysis of ICS field devices'
firmware is more difficult because SOCs and custom components
are potentially unique, poorly documented, and few analysts have
experience with them. The authors analyzed the PLC hardware for a
deeper understanding of the device's design. The study outlines
few techniques and challenges for the firmware extraction. Due to
excessive time required in firmware reverse-engineering, the au-
thors also proposed to analyze PLC's backplane communication,
instead.

Wau et al. (Wu and Nurse, 2015) investigates the possibility of
using the PLC debugging tools to acquire memory data. The results
of their experiment indicate that PLC Logger can be used to
communicate and acquire data from the memory addresses of the
PLC. However, the PLC logger authors indicate that the approach is
limited to the use of a specific brand of Siemens PLC and one
debugging tool.

Denton et al. (2017) examines the GE-SRTP network protocol, a
proprietary protocol developed and used by General Electric. The
protocol is reverse-engineered and then analyzed in relation to the
PLC requirements. The authors are able to change the logic of the
program running on the PLC. The developed tool is also able to
communicate directly with the PLC, and access memory registers.

Findrik et al. (Findrik et al., 2018) introduces PLCBlockMon, a
functional block for Siemens S7 controllers implemented in ladder
diagram to provide data logging and memory acquisition capability.
Since PLCBlockMon runs in the device's memory, it is only as secure
as the load memory of the PLC, and further memory verification is
required.

Sushma et al. (Kalle et al., 2019) utilizes the network traffic to
extract and manipulate the control logic transferred from the en-
gineering software to the PLC. The approach is used for control logic
extraction, while other forensic artifacts, such as a compromised
firmware, are not covered. Even for the control logic extraction
from the network traffic or the memory dump, a fundamental
difference is that the network traffic of transferring a program can
be precisely pointed out and analysed. Searching and examining
few KBs of control logic in a typically few hundred MBs of highly
dynamic memory dump is not simple. The challenge is further
augmented as firmware may organize the control logic in sections
distributed across the memory. Qasim et al. (Qasim et al., 2020)
extract the control logic from the captured network traffic of an
attack instance by utilizing the built-in decompiler available with
the Engineering software.

M.H. Rais, RA. Awad,]. Lopez]r. et al.

Forensic Science International: Digital Investigation 40 (2022) 301339

Exploring Control Software

Memory Dump Generation

(application, configuration, [—]_.[ﬁ PLC Profile
organization, protocols, efc.) PLC Gomgeiis Tesi Cases Al Mgy

b 1
! 1
b 1
H 1
b 1
i 1
i 1
! 1
: ! :
1 o . .
f Identification of Data Structure Definitions Memory Dump Analysis Rules Formalization i
| (control sofiware, PLC firmware, eic.) (application, firmware, configuration, etc.) 1
| —> Create Rules |
E Binary and Source-code Analysis, Reviewing Data Structure (I l?urisiicsf Carving, {
|| Vendor Documents, Using Debug Symbols, etc. Instances List-walking, etc.)]
|
! 1

Fig. 2. PLC memory analysis methodology.

Most of the related work focuses the firmware extraction and
analysis, and does not deal with other useful forensic information
in the memory dump. While firmware is an important artifact,
finding the control-logic running on the PLC, and IO data states are
also important and highly relevant in an attack scenario. Other
relevant work analyzes PLC data remotely using ICS protocols,
which is limited to specific PLCs, and only covers control-logic
extraction. As their approach is based on application layer, the
authenticity of the acquired data from a compromised PLC may be
questioned.

Our study is focused on the forensic analysis, and endeavors to
make the maximum use of the available memory dump in
answering the forensic questions, such as:

e [s the extracted firmware unmodified?

o Are there any changes in the control-logic? If yes, what are those
changes?

e Are the sensors and actuators states captured in the memory
dump as expected by the user?

e Are there any traces of the attacker?

e Has PLC's operational mode been changed recently? (The state
changes from Run to Program mode to update the control-logic)

3. Experiment's Setup

The experiment's setup presented in Fig. 4 comprises the PLC,
the engineering software, a memory acquisition setup and the
proposed analysis software. As our analysis strategy works on
iteratively programming the PLC with a series of programs and then
analyzing the memory, a reliable memory acquisition setup is a
requirement in this experiment. While the memory analysis is
discussed in detail ahead, we give a short overview of the
remaining components in this section. The list of the equipment
and software used in the study is outlined in Table 1.

Table 1
List of equipment and software used in the case-study.
S/No Equipment/ Details
Software
1 PLC Allen-Bradley 1756 A10 with modules L61
ControlLogix 5561, HSC/A, IF8, 2x OB32/A,
DNB B, ENBT A
2 PLC Control PC core i7-8700/16 GB RAM/Windows 10 for PLC
control software: connected to PLC over Ethernet
3 JTAG Debugger Segger J-Link ARM V8.00
4 Power Supply Tekpower TP-3005D-3 Digital Variable DC

Power Supply (any 24V DC 3A will work)

5 PLC control software RSLogix 5000 version 20.05.00 (CPR 9 SR 10),
FactoryTalk Activation Manager v 4.05.01

6 Debugger software SEGGER -J-Link V6.80d suite

7 Python library PyLink Python library by Square Inc. for debugger

3.1. Allen-Bradley ControlLogix 1756-A10 PLC

Allen-Bradley is a reputed brand in industrial automation
equipment with PLC market share of around 22% (Statista, 2017).
Depending upon the requirements and scale of the underlying
physical process, Allen-Bradley categorizes their programmable
controllers as MicroLogix, CompactLogix, and ControlLogix. Con-
trolLogix 1756 is one of the largest control systems manufactured
by Allen-Bradley for high availability and high performance appli-
cations. We use a 10 slot modular chassis (ControlLogix 1756-A10)
for our study as shown in Fig. 3, running the latest firmware version
20.019. The chassis is populated with a power supply and a
controller module, two digital and one analog /O modules, one
Ethernet and one DeviceNet communication module, and one
counter module. The controller module (1756-L61) is the brain of
the system, and runs the control application programmed through
the engineering software- RSLogix 5000.

3.2. Control software- RSLogix 5000

The engineering software provides a programming environ-
ment for the PLCs through a simple GUI-based programming lan-
guage, called Ladder logic. RSLogix 5000 also communicates with
the PLC over a serial or IP channel to upload or download the
control logic, and monitor the PLC status.

3.3. JTAG based memory acquisition setup

PLC's memory acquisition is not a well researched subject with
very few options available. We selected Allen-Bradley 1756-A10
PLC due to the availability of a reliable hardware based memory
acquisition system (Rais et al., 2021c¢) using the Joint Test Action
Group (JTAG) port. Later standardized by IEEE 1149.1, JTAG is an
industry initiative to simplify the testing of complex circuit boards
by adding a small functionality in the integrated circuits (IC). JTAG
interface is also used for debugging and programming tasks, and
can read and write to the processor's controlled memory. To
communicate between a PC and a PLC's processor through JTAG
interface, an intermediate device is required to convert a standard
PC interface (Serial, Ethernet, or IP) signals to JTAG compliant sig-
nals. In our setup, we employ Segger Microcontroller System's J-
Link debugger to read the memory contents of the PLC.

4. PLC memory analysis methodology

Fig. 2 presents the proposed methodology to analyze the
memory dump of the PLC.

4.1. Exploring the engineering software

The PLC engineering (programming) software is typically a
vendor's proprietary software that provides an interface for

M.H. Rais, RA. Awad, J. Lopez Jr. et al.

Forensic Science International: Digital Investigation 40 (2022) 301339

Fig. 3. Allen-Bradley ControlLogix 1756-A10 modular controller.

é)
TAG_1_CONTS

| TEEF

TAG_2_P_MAN 14 TAG_1_P_MAIN.4

Tocars:0.0ata.0
Tl

0801éc

Memory Analysis 1

USB serial interface)‘1

660800

JTAG interface

(Memory Acquisition

Software J e
0801 6c

00000t

L Software

Fig. 4. Experiment setup for memory acquisition and analysis.

configuring, monitoring, and upgrading a PLC. Acquaintance with
the engineering software serves two purposes: 1) Recognizing
forensically essential data to search in a memory-dump, and 2)
understanding the PLC configuration process required for gener-
ating test programs. Both of these aspects are required for the
differential analysis. An efficient way to familiarize with the soft-
ware is to connect it to a test PLC and explore the features.
Following aspects should be given consideration during control
software study.

Project Organization. The vendors organize the project
running on the PLC (referred to as “control logic” (Kalle et al., 2019))
in various ways. The understanding of the organization helps in
assessing data structures instances, child—parent relationships, and
their links with other structures. For instance, if the control-logic
exists in a known hierarchical model (an example discussed in
the case study), one can estimate the types and the count of data
structures to be seen in the dump against a particular program.

Allen-Bradley uses a hierarchy of tasks, programs, and routines
to configure a project that runs on the PLC. Fig. 5a presents the
project organizational hierarchy. Every project (also called control
application) has at least one task. A task may consist of one or more
programs with multiple routines comprising multiple rungs and
instructions. An instruction has a type and one or more operands.
These operands, described as “tags”, can be defined under various
scopes. The physical 10 tags representing the 10 modules’ actual
pins connected to the physical sensors and actuators are defined
under controller scope accessible to all programs. In contrast,

logical tags (or variables) can be defined within a restricted scope
applicable to a single program. The 1756-L61 controller supports 32
tasks with up to 100 programs per task.

Named Structures. A PLC project consists of few structures that
can be named. For example, the physical 10 pin groups, the logical
variables, routines, programs, and tasks usually contain a name
associated with each instance of the data structure. If a name can be
configured in the program, it is likely to be seen in the memory
dump. Rungs are numbered sequentially, and are not named. While
doing the control software analysis, all named structures are
marked for further analysis.

Unique Data Patterns. An essential part of every PLC is the
Input and Output pins groups. A user programs the PLC to ensure
particular status of output pins under certain logical conditions. To
facilitate complex control flow of the program, logical variables are
also supported in RSLogix 5000. If these groups of variables are set
in a planned manner, corresponding locations in the memory dump
can be identified.

PLC Configuration Data. Engineering software's study also
helps in identifying different services (web/SMTP), open ports,
network addresses, authentication schemes and databases, and
logging information that should be searched in the memory dump.
ControlLogix 1756-L61 can be configured to keep a backup project
in the available SD-card and use it as per user-configured options.
Fig. 5b presents a snapshot of RSLogix controller settings, showing
the firmware image in the SD-card and the controller, alongside the
backup activation settings. Through the license manager installed

M.H. Rais, RA. Awad, . Lopez]r. et al. Forensic Science International: Digital Investigation 40 (2022) 301339

Image in Nonvolatie Memary Controller
[Program | [Program | == [Program | Name: contioller2 Name: controller2
— T T ™ Type: 1766.L61 ConlrolLogi5561 Contioler Type: 1766.L61/B ControlLogiS561 Controller
= —— Revision: 019 Revision 2019

| RSLogix 5000 |

‘ Routine ‘ ‘Roulmel = ‘ Routine ‘

User Initisted
On Power Up

On Corrupt Memory
*User Initiated

Load Image: User Initiated Load Image:

Instruction ‘ = = [Instruction

Load Mode: Program (Remote Only) Load Mode:

Rung

Ladder-logi¢ project
to PLC via
Ethernet

Ladder-logic project
configured using
RSLogix 5000

Image Note: Image Note:

4-{ Instruction | — — | Instruction

(a) Project Organization in RSLogix 5000

1/0 Memory Data and Logic Memory
i Total: 505856 bytes Total: 2,097.152 bytes
[] Free: 486,652 bytes i [Free: 1.687.496 bytes|
- Used: 19,204 bytes = Used: 409,656 bytes|
A Max Used: 19,204 bytes A Max Used: 409,656 bytes|
Largest Block Free: 486,652 bytes Largest Block Free:

(c) utilization of Logic and I/O Memory from RSLogix 5000

(b) PLC setting for loading backup project in SD-card

Directory: Network

Logon Information
l [DESKTOP-RSRBUGJASAFE] Fs logged on to directory Network.

(d) Logon details from Rockwell Licensing Application

Fig. 5. Information found through exploring RXLogix 5000.

with RSLogix, we can find the login information of the RSLogix user
as shown in Fig. 5d. If found in the memory dump, the information
can have forensic significance.

Logs and Other Important Data. Other interesting information
provided by RSLogix 5000 includes the PLC's operational mode,
connected user's details, session duration, error logs etc. During the
engineering software study, we explore the possible logs that PLC is
providing to the control software. After seeing the logs structure in
the engineering software, locating them in the memory dump gets
easier.

4.2. Memory dump generation

Generate Test Cases. After understanding the organizational
hierarchy in Fig. 5a, a set of test cases is created containing a varying
number of instances of the identified parameters. The test cases
cover the interesting information spectrum from the control-logic
to the logging data.

Acquire the Memory. The PLC is configured using RSLogix 5000
software installed on the control PC connected over Ethernet to the
PLC. The experiment uses a Joint Test Action Group (JTAG) interface
based memory-acquisition system for the test PLC. After identifying
the memory regions in the initially acquired complete memory
dump, we focus on partial acquisition of the interesting zone for
each iteration, to cater for JTAG's slow acquisition speed. For
instance, memory-region hosting the firmware is not acquired
repeatedly during the control-logic recovery exercise.

4.3. Identification of data structure definitions

Data structure definitions may be acquired through vendor's
documentation. We could not find any documentation at Allen-
Bradley official website specifying the data structure definitions.
The other option of PLC's firmware reverse-engineering has been
partially conducted in the past (Basnight et al., 2013; Garcia et al.,
2017). This experiment focuses on extracting the data structure
definitions through dynamic differential analysis without reverse-
engineering the firmware or control software binary files.

Dynamic Differential Analysis. The primary method used for
finding relevant data structures definitions is the dynamic differ-
ential analysis of the control software. The approach involves
setting a unique pattern, searching it in the memory, and applying
manual analysis to figure out the data structure boundary and

definition. For large data structures, the effort is focused on finding
only the forensics-related fields aligned with the study's goals.

Control-logic related Structures. To find the control-logic
associated data structures, a set of programs (called projects in
RSLogix 5000) is created. Starting with a single input and output
instruction project, the projects gradually get more complex to
include all boolean instructions, multiple rungs, routines, and
programs. To utilize string searches, unique and conspicuous
names are used for all the projects’ configurable named fields. We
successfully identified the definitions of all boolean instructions,
rung, branching, routine, and program structure.

10 Data related Structures. To identify 10 data-related struc-
tures, the test program's logic is set to produce conspicuous ASCII
characters for the tags. For example, a 4 bytes (32 pins) tag
configured to produce the hex value “41 42 41 42" is shown as
“ABAB” in the dump. We identify the definitions of various types of
physical and logical 1O structures.

Configuration-related Structures. We can identify
configuration-related data structures, including the time, time-
zone settings, IP address, controller name, project's name, backup
settings, backup files, etc.

4.3.1. Extracting the data structure definitions for the named
structures

The named structures identified in section 4.1 are string
searched in the memory dump to identify their location. The name
or description may exhibit one or more of the following features.

e Name describes the complete structure
e Name is part of a bigger contiguous data structure
e Name is part of a spatially staggered, linked data structure

For instance, the name assigned to the controller is a complete
structure. The string “time zone” is followed by the time zone data.
In case of staggered data structure, the data fields or groups at
different locations are linked together. To extract the complete data
structure definition, we perform the following analysis on the
“string” command's output.

e Analyze the preceding and succeeding data to identify the
boundary markers of the structure

e Analyze the potential forward links available in the vicinity of
the description data

M.H. Rais, RA. Awad,]. Lopez]r. et al.

o Identify and analyze the reverse links in the memory pointing to
the description data being analyzed.

From software perspective, the functional task of a PLC is not
very complex, and we do not expect deeply nested chained data
structures in the memory dump. Therefore, the above analysis can
be performed conveniently in a semi-automatic manner.

4.3.2. Utilizing unique patterns for I0 data structure identification

The states of IO data pins or the logical tags are set in groups of
bits. For example, the physical pins groups representing the digital
10 blocks are usually defined as one byte, two bytes, four bytes
structure etc., where each bit is representing a unique pin. The
logical variables can also be defined in a similar fashion. A unique
pattern (such as ABABABAB) assigned to a tag group can be easily
searched in the memory dump. In few iterations of test programs,
the tag locations can be confirmed. The analysis of the vicinity,
forward and reverse links should be conducted to identify the
starting and ending patterns (if any), and other fields associated
with the tag group data structure.

4.4. Identifying data structure instances through memory dump
analysis

Once the data structure definitions are finalized, we apply them
to identify their instances in a memory dump. In this section, we
discuss some useful forensic artifacts created by finding connec-
tivity among the constituent smaller structures. The detailed arti-
facts are presented in section 5.

4.4.1. Identification and recovery of control logic

Technically, the control logic can be termed as a comprehensive
data structure that represents the project running on the PLC. It
contains a set of pairs of instructions and applied operands whose
sequence is defined by the user in the control application.

The first step in the control logic extraction is identifying its
location in the memory. As control logic uses references to the in-
structions and operands, an effective way is to generate a sequence
of programs by repeating and atomically modifying the instructions
and the operand groups, and conducting differential analysis to
identify the locations of expected changes in the memory.

Once the location is identified, the next step is to correlate the
project structure defined in the control software with the iden-
tified zone. For instance, we configure two routines in the control
logic, one with two rungs, and one with three rungs. we expect
to see two structures corresponding to routine, one comprising of
two and other three structures corresponding to rungs. This type
of analysis provides us the information of the project structure
elements. Last step is to verify the identifiers used for each type
of instruction.

4.4.2. Forensically important Logs Recovery

The control software study suggests the types of logs generated
by the PLC. Manually triggering the log generating events, and
searching them in the memory identifies the location and seman-
tics of the logs. We observed that specific structures, when amen-
ded, do not overwrite the previous instances. Information
displacement analysis over multiple calculated iterations helps
identify the past activity information pattern (or log) that can be of
great value in the forensic investigation. Carved data instances that
are not linked anymore are retained for investigation.

4.4.3. Extracting the firmware
In the PLC's memory dump, we can expect more than one copy
of the firmware, in the non-volatile memory and in the RAM. There

Forensic Science International: Digital Investigation 40 (2022) 301339

can be situations when an attacker is able to modify only the RAM
contents, thus both the copies are distinct forensic artifacts. Using
the reference firmware from the vendor and applying the longest
pattern matching techniques, we can identify the firmware loca-
tions, and extract it. Another way is to identify the image base
addresses through PLC documentation or existing techniques in the
literature, and fetch the file.

4.5. Rules formalization

The information extraction process is formalized into a set of
rules applied to an unknown dump to extract the forensic infor-
mation. The process involves rules creation and verification.

Creating Rules. The analysis phase is carried out based on the
prior knowledge of the test cases. On the other hand, the rules
generation process addresses how to search a new memory-dump
for user-required information in a reliable manner. If multiple ways
lead to the same information in the test cases, which one/ones
should be considered in the rule creation? List-walking is preferred
over data-carving in rule selection. To break a tie among the walks
to the same destination, a heuristic search may be conducted to find
a reliable beginning to start the walk towards each type of desired
information.

Another critical aspect in rules creation is to extract and
distinguish between the current and obsolete information. Even if
required information is wholly recovered through list-walking,
data-carving-based rules should be incorporated to extract foren-
sically useful (de-linked) past information.

Verifying Rules. Representative and unused test cases are
generated to verify the rules created above. The verification is
carried out for all information categories and their constituents. If
certain rules occasionally failed the verification standard and could
not be rectified, they are still incorporated with a reduced confi-
dence metric. We tested the offline and online modules with fifty
different test cases to verify the performance for the recovered
firmware, control-logic, physical and logical IO pins state, config-
uration data, and the mentioned logs. The finalized memory anal-
ysis profile passed all the test cases. For the interested researchers,
we have shared a variety of memory dumps (and adding more), the
corresponding engineering software project files, the extracted
artifacts files along with the complete source code for the memory
analysis.

The outcome of the rules formalization step is a set of rules that
specify the “Memory Analysis Profile” for the particular PLC. A
useful and efficient implementation of the profile is to incorporate
the rules in a software tool. The profile can be readily used for the
same PLC specifications for future requirements and further
research.

5. Digital artifacts in ControlLogix 1756-L61

Table 2 presents ten important data structures out of the twenty
two identified in the PLC memory. We have named them as per
their purpose. Due to space constraint, we explain “Asg_DT” shown
in Fig. 6, “Tag_desc_DT” shown in Fig. 7, “Asg_DT_LinkedList”, and
“Mem_block_DT” as few interesting examples.

Asg_DT. This 40-bytes data structure is a generic assignment
data structure used for the tasks, programs, routines, and physical
and logical IO tags. It always has starting and ending dwords as”80
00 00 0A”, where 0A represents its size in dwords. We identify the
following important fields in Asg_DT:

e pointer to a firmware routine
e pointer to the next instance of Asg_DT
e memory location that the tag is representing

M.H. Rais, RA. Awad,]. Lopez]r. et al.

Forensic Science International: Digital Investigation 40 (2022) 301339

Table 2
Important data structures found in the PLC memory.
Sr. Name (Given) Purpose of data structure Starting
Marker

Ending size Important Fields/Remarks

Marker (dwords)

1 Asg DT Main DT defining physical/logical tags, programs, 80 00 00 0A

routines etc.

2 Tag_desc_ DT Defines the name of the data structure instances

3 Program_DT Defines program's structure 80 00 00 58
One occurrence per program
4 Routine_DT Defines routine's structural composition 80 00 00 32

One occurrence per routine

5 Control_ Represents the configured project running on the 80 00 OF AC *
Logic PLC

6 Routine_Logic Main data structure of control logic; shows the 80 00 00 xx
routine's configuration

7 Rung Child data structure of Routine_Logic; 78 09
Shows rung's configuration

8 Branching Child data structure of Rung 70 00 00 00

9 Instruction Represent instruction and operand Nil

10 Mem_block_DT Specify in-use memory start and end 80 00 00 01

80 00 00 xx yy

80 00 00 0A 10 Pointers to: Description

Definition, Next Asg_DT instance pointer (as liked-
list)

xx defines dt's length in dwords

yy defines name's length (bytes)

followed by name (in ASCII)

Specifies the routines and the tags associated with

80 00 00 xx variable

80 00 00 58 88

this program

80 00 00 32 50 Pointer of the routine's definition in the control-
logic

— variable A group of DTs containing the entire project defined
in RSLogix 5000.
* Starts after this marker

80 00 00 xx variable Contains a series of rungs of the routine as
configured by user
xx is the number of dwords

7A27 variable Contains instructions and branching as configured
by the user

73 00 00 00 variable For parallel conditions in control-logic
71 00 00 00 represents next branch

Nil variable For most boolean instructions, one dword for
instruction & tag;

80 00 00 01 variable 2 blocks in code & data memory region and

2 blocks in I0 memory region

e pointer to the tag description (name)

Asg_DT Linked-List. Multiple instances of Asg_DT data struc-
tures are connected in a singly linked-list. Fig. 6 presents a list
showing all the tags assignments instances for one program (only
selected fields are shown). The last assignment has a next pointer
field set to “Null”.

Tag_desc_DT. This data structure is used for setting the names of
different data structure instances. For example, the names given to
routines, programs, tags in the engineering software are assigned
using this data structure. We name it as “Tag_desc_DT”. The length
of the structure depends upon the characters in the configured
name. The last byte of the first and the last dword (in little-endian
format) represents the number of dwords in the data structure,
while the first three bytes are always “80 00 00”. The first byte of
the second dword represents the character-length of the name
field. If the last character does not coincide with the dword
boundary, we can expect up to three unused bytes. Fig. 7 shows one
instance of “Tag_desc_DT” with the configured name as “TAG1”,

| Asg_DT List for one program ‘

Mem Address ‘ | Next DT Ptr ‘ Tag value Ptr

Defined Names
@[Des_DT Ptr]

[Tag Name Ptr ‘

00279D8C: |[B49D2700]| [CO000800] [c89c2700 |4—| rrosram ez |
00279084 |[DC9D2700] [049c2700] [€0 9¢ 27 00 || Routinemaingoutine |
002790 0c: | [049E2700 | [88000800] [Fcac 2700/ || OO EMER |
c0279€ 04| [2c9E2700 | 50000800 | [189D2700 |4 rrosmes |
w0279 2c:" | [54962700 | [6C000800] [2c9D 2700 |+ rrocramM e |

0027 98 5. [7coE2700 | [A4000800] [449D 2700 |4—| Prosmenos |

002798 7¢:" | [A49E2700] [18000800 | [5C9D 27 00 || prosaav_tac01 |

0027 9EA4: [[00000000 | [34000800 | [749p2700 |4 rroemos |

END

Fig. 6. Linked List of Asg_DT data structure for one program.

and having three unused bytes. It is a simple example where
carving using boundary markers may not provide the correct result.

Mem_block_DT. As shown in Fig. 5c, ControlLogix-5561 uses
distinct memory zones for Data, logic memory hosting for the
control logic, and 10 memory for the physical I0 data. We find that
each of the memory types is split into two parts. The first part starts
at the beginning of the zone, while the second part ends at the
memory zone's last byte. The first part's ending and the second
part's starting addresses are floating to accommodate variation in
the memory usage. The beginning and the end of each part have a
fixed marker -“80 00 00 01” in little-endian format. We name each
part as “Mem_block_DT”. As mentioned, this data structure's size is
variable, but a markers-based signature is reliable and consistent
throughout the experiment.

Connecting Graphs. The main data structure used for assign-
ment of any data structure instance in “Logic and Data memory” is
“Asg_DT". Every instance of Asg_DT has links to the description of
the instance, its definition and the value. For example, for every
program, routine or IO tag in the project, there is one instance of
Asg_DT. As we traverse, the graphs differ for different types of data.
Fig. 8a and b represent graphs for data structures of type “Routi-
ne_DT” and “Logical 10 tag” respectively, showing one extra level
for “Routine_DT".

In the succeeding paragraphs, we mention some of the infor-
mation artifacts found in the memory.

Firmware base-address. The firmware is identified at two lo-
cations in the memory dump. First instance occurs at address
0x00D00000 and ends at OxOOFAD1AF (in the volatile memory),
and the second instance is based at address 0xOA1A0000 up to
0x0A44D1AF (in the non-volatile memory). Both instances match
with the downloaded firmware. Zhu et al. (2017) also found same
base-address for another controller from the same vendor.

PLC Backup in SD-Card. The SD-Card installed on the PLC for
program backups also stores the firmware file. The firmware stored
in the SD-card under “Executive.bin” filename contains a padding
of “FF” until the last 4 hex digits of the address are all Fs making the
size to 2,883,583 (or 0x2BFFFF) bytes. The two extracted firmware
from the previously mentioned starting locations using the upda-
ted file-size results in perfect match with an exception of one

M.H. Rais, RA. Awad,]. Lopez]r. et al.

Forensic Science International: Digital Investigation 40 (2022) 301339

\ dword 1 | | dword 2 || dword 3 | | dword 4 ‘
[04) 00 00 80| [04][54 41 47 31|[o0 00 00| [04 00 00 80
|/
TAGT
No. of Starting No of Characters Alignment with Ending
dwords Marker in name TagName dword boundary Marker

Fig. 7. Tag_desc_DT: data structure defining the tag's name.

3)
(
(Routine_DT) C

w
(Routine Logic)

(a) Routine’s Graph

(

2)
Pointer
)

Description
DT

Asg DT
) (2)
Firmware
Next Asg D
)

(Tag Value DT> (

(b) Logical-Tag’s Graph

i
(

4)

Description
DT

Fig. 8. Connecting graphs of data structures.

dword. The 7th dword from the beginning of the “Executive.bin”
file is “3609”, while the memory instances and the vendor's web-
site image contains “0000” at this location. If the backup is restored,
the memory still shows “0000” at that location, indicating it to be a
planned change for storing backup file on SDcard.

Memory Utilization. An unexpected change in memory utili-
zation may point to some anomaly in the code. The sum of the sizes
of both the Mem_block_DTs is exactly same as the memory utili-
zation value mentioned in the engineering software. This finding
also significantly reduces the search-zone for the control-logic and
the 10 data tags.

Control-logic Extraction. Recovery of the control-logic running
on the PLC is an important goal of forensic investigation. Our code
can identify the complete control logic in binary format. The code
can successfully reverse-engineer multiple rungs, routines, pro-
grams and tasks. During project configuration, the routines are
defined under programs. However, in the control-logic section in
the memory-dump, the routines from all the programs are stacked
together. Fig. 9a shows the RSLogix 5000 snapshot for a test
configuration, while Fig. 9b shows the binary data of the same logic
in the memory. The color-coded memory-dump of the control-logic
perfectly correlates to the engineering software snapshots. Our
analysis code's output for the same logic program is presented in
Fig. 9c.

Decoding of Single-dword Instruction. Our experiment
shows that most of the frequently used boolean instructions
(such as Examine-if-closed XIC, Examine-if-open XIO etc) use
single dword to jointly represent the instruction and the operand
(say it as I&T dword). Algorithm 1 presents the decoding process
for 1&T dword. Consider the first I&T dword “4608016D” in the
“mainRoutine” in Fig. 9. Line 3 outputs 40 which is the instruc-
tion code for “XIC”. The address “0008016C” represents the tag
“TAG_1_CONT”. In line 7, the pin number is calculated as 14
implying the “tag_string” value to be “TAG_1_CONT.14". The joint

I&T dword is decoded as XIC—TAG_1_CONT.14 as shown in the
analysis code's output, and confirmed through the engineering
software snapshot in Fig. 9a.

We have successfully decoded all instructions defined under
“Bit” category in the engineering software. Some of these in-
structions have variable length that may extend up to 12 dwords.
The maximum pins/bits of a tag supported in our code is 32.

Algorithm 1. Decode single dword boolean instruction

Algorithm 1 Decode single dword boolean instruction

1: procedure INsT_01_DECODE(I&Tdword, core_DT')

2: [B3B2Bl Bo] <+ I&Tdword

3: inst_code = B3/ 8

4: inst_str = Inst_Dict.get(inst_code)

5: bit.no = Bs% 8

6: byteno = Bo% 4

7 tag-pin-no = byte_no x 8 + bit-no * 4

8: if (thenBy == 08)

9: tag-addr = [00 08] + str(B1.0)

10: else

11: tag-addr = [0C 00] + str(Bi1:0)

12: end if

13: for x in core_ DT: do

14: if 0> (x.addr - tag-addr) > byte_no: then
15: tag_str = x.tag-name +7.” + tag_pinyno
16: end if

17: end for

18: return (inst_str +' — —' +tag_str)

19: end procedure

M.H. Rais, RA. Awad, J. Lopez Jr. et al. Forensic Science International: Digital Investigation 40 (2022) 301339

TAG_1_CONT.0 TAG_1_PROG26 TAG_1_PROG2.22 [8000000A [7809E1EF 000B6462 4808016C
0 [— — 660800A4 660800A6 7A2787BC| 78000000
[apptine1_@v.xainaoutine [1 < 380D3000 8000000A| [8000003Z [7809E20F
2 00000F83 4608016D [70000000 4E08016C
TAG_1_CONT.14 TAG_1_CONT6 OSF- TAG_2_P_MAMN.S 00458014 ACFD1950 1AA51008 17A9440F

0 F——E]IF— One Shot Fallin)
:] Storage Bit T,fs_z_p_,,mw_u lcser— 8E06000C 92001019 8F040C00 8E02000E
\ Output Bt Local:5:0.Data.12 [<(0B)— 9002001B 3C001075 1BA32008 S8DE91A48
71000000] 46080035 [70000000 44080050

TAG_2_P_MAIN.14 TAG_1_P_MAIN.4 TAG_4_MP.4
I JE JE 48804064 73000000] 44080018
Rung No.

g e T 73000000] 59080035 7A27883C|[7809E221
2 Program Name i 000EF335 4E08006C 4008006C 00458013
ACFD1950 1AA51008 17A9440F 8E060004
TAG_3_P_MAIN.G\ TAG_3_P_MAIN.0 R TAG_1_CONT.8 92001019 8F040C00 8E02000C 90020006

1 |/ One Shot Rising L.
Storage Bt TAG_4 MP.A2 |<58)— 3C001071 1BA32008 8DE91A48 5008016D
Output Bit Local:5:0.Data.4 [=(0B)== 7A278884] 78000000 380D3000_80000032]
Routine Starts Routine Ends| [Rung Starts _Rung Ends
DROU!I"E1_PROGZ[MﬂiﬂROuliﬂEJ’ = [Routine s Routne B 5|rung arts ung Ends|

. Branch Starts _|Next Branch| Branch Ends| Instruction
(a) Control-logic snapshot from RSLogix 5000 (b} Clontrol-logic insthe memory-dump

Program Name Routine Name Rung No. Instruction Operand / Tag ID
L 4 £l

1 X
Program:PROG_2| [Routine:Routine1_PROGZ [, AG_1_CONT.OY, 'OTE-TAG_1 PROG2.6' , 'OTE-TAG_1 PROG2.22'|

Program:MainProgram Routine:MainRoutine ['rung 0' , 'XIC--TAG_1_CONT.14' , 'BST', 'XIO--TAG_1_CONT.6', 'OSF--outputBit=Local:5:0.12" , 'OSF--
outputBit=Local:5:0.12--storageBit=TAG_3_P_MAIN.14' , 'NXB', 'XIC--TAG_2_P_MAIN.14' , , 'XIC--TAG_1_P_MAIN.4' , |NXB/ , 'XIO--Local:5:0.0'

, 'BND', 'XIC-TAG_4_MP4' , - . 'OTU--TAG_2_P_MAIN.9'] -

» Branch Ends * Branch Starts “* Next Branch
Program:MainProgram Routine:MainRoutine ['rung 1' , 'XIO--TAG_3_P_MAIN.6' , 'XIC--TAG_3_P_MAIN.0' , 'OSR--outputBit=Local:5:0.4--
storageBit=TAG_4_MP.12' , 'OTL--TAG_1_CONT.8']

(c) A snapshot presenting recovered control-logic recovered from the memory matches the RSLogix 5000 view

Fig. 9. Programmed control-logic with corresponding memory-dump and analysis tool's output.

['Device Catalog Name:', '1756-L61/B LOGIX5561"']

[*Revision No:*, '20.019.098%]

['SD Card Files: ', '\\Logix\\CurrentApp\\controller2.p5k’,
['SD Load Mode', 'PROGRAM']

['SD_Load Image', 'USER _INITIATED']

['Desktop Name: ', 'I-AM-ATTACKER\\unsafe']

['xml file', ['<?xml version="1.0" encoding="UTF-8" 2>\n<Coj

Fig. 10. Analysis tool shows the attacker's machine and username.

Scope (Controller / Size
Tag Name specific program) (bytes) Tag value in Hex
Local:5:0 , controller , 4 , ['10','0','0','0]
TAG_1 CONT , controller , 4 , ['0','41','0", '0"]
TAG_2_P_MAIN , Program:MainProgram , 4 , ['0,'8','0','0']
TAG_4_MP , Program:MainProgram , 2 , ['0,'01
TAG_1_P_MAIN , Program:MainProgram , 4 , ['0','0%,'0','0"]
TAG_3_P_MAIN , Program:MainProgram , 4 , ['1','0%,'0','0"]
TAG_1_PROG2 , Program:PROG_2 , 4 , ['46','46','46', '46']
TAG_2_PROG2 , Program:PROG_2 , 4 , ['0,'0','0','0"]

Fig. 11. Physical and Logical IO tags values.

10 Data Values. A PLC communicates with the physical world program's flow-control. Both, physical and logical tags can be
through 10 modules. The state of IO pins in the memory-dump is an assigned to the instructions in the control-logic. Identification of
important forensic information, as an attacker can modify them the tags' location helps in the decoding and rules-generation pro-
and manipulate a physical process. In addition to the physical 10 cess. Fig. 11 presents the physical and logical tags values extracted
tags, a user can define logical tags in the control-logic for the from the memory-dump. For instance, TAG_1_CONT with second

M.H. Rais, RA. Awad,]. Lopez]r. et al.

Forensic Science International: Digital Investigation 40 (2022) 301339

Controllerlogs:

[1, "Project Download Event :
[2, "PLC mode change event:
[3, "PLC mode change event:
[4, "PLC mode change event:
[5, "Project Download Event :
[6, "PLC mode change event:
[7, "PLC mode change event:
[8, 'Project Download Event :
[9, "PLC mode change event:

Controller Name is CONTR1_P@@@1 Jan21 2°]
New mode is RUN®]

New mode is TEST']

New mode is PROG']

Controller Name is CONTR_2_P8882 Jan2l"]
New mode is RUN"]

New mode is PROG']

Controller Mame is CONTR_3_NEW PROJECT']
New mode is RUN"]

Fig. 12. Controller logs extracted by the analysis tool.

'Time Zone:',
'IP Address:',
'Current Project Name:',

'Revision No:',
'SD Card Files: ',

['SD_Load Mode',
['SD Load Image',
['Time since PLC restart:
['Desktop Name: ',

["GMT+00:00"]

[v O 168 0. 2™ Y]

[

['Device Catalog Name:','1756-L61/B LOGIX5561"']

['20.019.098"]

[

"\\Logix\\CurrentApp\\project2.pbk',
"\\Logix\\CurrentApp\\Executive.bin']

' PROGRAM']
"USER INITIATED]

'DESKTOP-RSRBUGJ\ \safe']

'projeet2”]

', 889]

Fig. 13. PLC configuration related logs extracted from the memory.

byte as 41 indicates that pin 8 and pin 14 are HIGH. The observation
is confirmed in the engineering snapshot in Fig. 9.

Configuration Parameters. Engineering software also controls
configuration parameters such as PLC backup settings, filenames,
time-zone information, controller name, etc. For configuration data
extraction, unique names of the project and the controller are used
to track through the strings search. Fig. 13 presents configuration
data extracted from the memory-dump. One of the extracted fields
shows information about the last computer's and user's name that
connected to the PLC through the engineering software. The in-
formation reconciles with the licensing application's snapshot in
Fig. 5d. Another interesting data is the PLC up-time information.
PLC generates and maintains numerous counters. We found a 6
bytes increasing counter that only resets after PLC restart, and can
be used as the up-time estimate to find a concealed reboot event.

Logs Recovery. As per the vendor, there are no logs available for
this controller, except for the diagnostic fault-dump generated if
the PLC goes into a non-recoverable state. During our analysis, we
find forensically important logs for two critical events. First event is
the downloading of a new project, and the second one is the change
of PLC's mode of operation (RUN/PROGRAM/TEST). The logs are
available for all the occurrences of above events after the last
reboot. Although we could not find the log's creation time, the in-
formation is still helpful for the forensic investigation. Fig. 12 shows
the logs generated after manually triggering few change events.

5.1. Memory analysis of the suspect PLC
Once the analysis profile phase is completed, the software can

be readily used to extract the running firmware, the control-logic,
10 data pins state, configuration details and few critical logs. The

10

artifacts can be compared with the reference data to identify the
anomalies. For example, the controller logs presented in Fig. 12
show two instances of PLC mode changes that may not reconcile
with user activity logs. The tool is also able to find out the machine
and user ID as presented in Fig. 10, which is different from the
expected output seen in the RSLogix 5000 view presented in
Fig. 5d.

6. Discussion and future work

Although reverse-engineering the firmware and control appli-
cation binary is a systematic approach to analyze the memory
dump, it is a tedious, time-consuming and superfluous task for
forensic analysis. PLC market has a variety of hardware architecture,
proprietary firmware and control applications, making the reverse-
engineering of the firmware and control application binaries diffi-
cult. In our differential analysis based approach, we use the appli-
cation layer interaction to extract the control-logic, IO data states
and other artifacts through a much simpler and potentially repli-
cable methodology. One overhead of our approach is the require-
ment of a PLC for the profile generation exercise. Organizations
usually have more than one PLC of the same model, and it is feasible
to spare one.

The expansion of our work includes studying more PLCs to
generate their memory analysis tool, and ultimately formalizing a
generic framework for PLC memory analysis.

7. Conclusion

The study presents the memory forensic analysis of Allen-
Bradley PLC 1756-A10 (1756-L61 controller). Dealing with the

M.H. Rais, R.A. Awad, J. Lopez Jr. et al.

proprietary hardware, firmware, and control software, the meth-
odology outlines the important steps involved in PLC's memory
forensic profile creation. The profile is developed through a closed-
loop analysis using a planned memory loading profile set. During
each iteration, the resultant memory dump is analyzed through a
series of rules based on a combination of carving, list-walking, and
heuristics. We identify more than twenty relevant data structures
including connecting graphs and linked lists, and successfully
recover the firmware, the control-logic, the physical process state,
and other forensically important information in the memory
dumps. Our solution can be used to instantly acquire these artifacts
from any unseen memory dump of the mentioned PLC. As our
approach targets the functional layer interaction between the PLC
and the engineering software, it can potentially apply on a variety
of PLCs with proprietary firmware. This is the first effort to analyze
a PLC's complete memory for extracting digital forensic artifacts,
and we consider it as a step toward a unified memory analysis
framework for PLCs.

Acknowledgement

This work was supported, in part, by the Virginia Common-
wealth Cyber Initiative, an investment in the advancement of cyber
R&D, innovation, and workforce development. For more informa-
tion, visit www.cyberinitiative.org.

References

Ahmed, I, Obermeier, S., Naedele, M., Richard III, G.G., 2012. SCADA systems:
challenges for forensic investigators. Computer 45 (12), 44—51.

Ahmed, 1., Obermeier, S., Sudhakaran, S., Roussev, V., 2017. Programmable logic
controller forensics. IEEE Secur. Privacy 15 (6), 18—24.

Ayub, A., Yoo, H., Ahmed, 1., 2021. Empirical study of plc authentication protocols in
industrial control systems. In: 15th I[EEE Workshop on Offensive Technologies
(WOOT). IEEE.

Basnight, Z.H., 2013. Firmware Counterfeiting and Modification Attacks on Pro-
grammable Logic Controllers, Tech. Rep. AIR FORCE INST OF TECH WRIGHT-
PATTERSON AFB OH GRADUATE SCHOOL OF.

Basnight, Z., Butts, J., Lopez,]., Dube, T., 2013. Firmware modification attacks on
programmable logic controllers. Int. J. Critical Infrastruct. Protect. 6 (2), 76—84.
https://doi.org/10.1016/j.ijcip.2013.04.004. http://www.sciencedirect.com/
science/article/pii/S1874548213000231.

Denton, G., Karpisek, F, Breitinger, F., Baggili, I., 2017. Leveraging the srtp protocol
for over-the-network memory acquisition of a ge fanuc series 90-30. Digit.
Invest. 22, S26—-S38.

Findrik, M., Smith, P., Quill, K., Kieran, M., 2018. Plcblockmon: data logging and

1

Forensic Science International: Digital Investigation 40 (2022) 301339

extraction on plcs for cyber intrusion detection. In: 5th International Sympo-
sium for ICS & SCADA Cyber Security Research 2018, vol. 5, pp. 102—111.

Garcia, L., Brasser, F,, Cintuglu, M., Sadeghi, A.-R., Mohammed, O., Zonouz, S., 2017.
Hey, My Malware Knows Physics! Attacking Plcs with Physical Model Aware
Rootkit. https://doi.org/10.14722/ndss.2017.23313.

Kalle, S., Ameen, N., Yoo, H., Ahmed, 1., 2019. CLIK on PLCs! Attacking control logic
with decompilation and virtual PLC. In: Proceeding of the 2019 NDSS Workshop
on Binary Analysis Research. BAR).

Mulder, J., Schwartz, M., Berg, M., Van Houten,]., Urrea,].M., Pease, A., 2012.
Analysis of field devices used in industrial control systems. In: International
Conference on Critical Infrastructure Protection. Springer, pp. 45—57.

Qasim, S.A., Lopez, J., Ahmed, 1., 2019. Automated reconstruction of control logic for
programmable logic controller forensics. In: Information Security. Springer In-
ternational Publishing, Cham, pp. 402—422.

Qasim, S.A., Smith, J.M., Ahmed, 1., 2020. Control logic forensics framework using
built-in decompiler of engineering software in industrial control systems.
Forensic Sci. Int.. Digit. Invest. 33, 301013. https://doi.org/10.1016/
j.fsidi.2020.301013. http://www.sciencedirect.com/science/article/pii/
$2666281720302626.

Qasim, S., Ayub, A., Johnson, J., Ahmed, I., 2021. Attacking iec-61131 logic engine in
programmable logic controllers. In: Staggs, J., Shenoi, S. (Eds.), Critical Infra-
structure Protection XV. Springer International Publishing, Cham.

Rais, M.H,, Li, Y., Ahmed, 1., 2021a. Spatiotemporal g-code modeling for secure fdm-
based 3d printing. In: Proceedings of the ACM/IEEE 12th International Confer-
ence on Cyber-Physical Systems, ICCPS '21. Association for Computing Ma-
chinery, New York, NY, USA, pp. 177-186. https://doi.org/10.1145/
3450267.3450545. https://doi.org/10.1145/3450267.3450545.

Rais, M.H., Li, Y., Ahmed, 1., 2021b. Dynamic-thermal and localized filament-kinetic
attacks on fused filament fabrication based 3d printing process. Add. Manufact.
46, 102200. https://doi.org/10.1016/j.addma.2021.102200. https://www.
sciencedirect.com/science/article/pii/S2214860421003614.

Rais, M.H., Awad, R.A,, Lopez,]., Ahmed, L., 2021c. Jtag-based plc memory acquisition
framework for industrial control systems. Forensic Sci. Int.: Digit. Invest. 37,
301196. https://doi.org/10.1016/].fsidi.2021.301196. https://www.sciencedirect.
com/science/article/pii/S2666281721001049.

Senthivel, S., Dhungana, S., Yoo, H., Ahmed, 1., Roussev, V., 2018. Denial of engi-
neering operations attacks in industrial control systems. In: Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy, CODASPY
"18. ACM, New York, NY, USA, pp. 319—329.

Statista. Global plc market share as of 2017, by manufacturer. URL. https://www.
statista.com/statistics/897201/global-plc-market-share-by-manufacturer/.

Wu, T., Nurse, J.R., 2015. Exploring the use of plc debugging tools for digital forensic
investigations on scada systems. J. Digital Foren. Secur. Law 10 (4), 7.

Yoo, H., Ahmed, I., 2019. Control logic injection attacks on industrial control sys-
tems. In: Dhillon, G., Karlsson, F., Hedstrom, K., Zaquete, A. (Eds.), ICT Systems
Security and Privacy Protection. Springer International Publishing, Cham,
pp. 33—48.

Zaddach,]., Bruno, L., Francillon, A., Balzarotti, D., et al., 2014. Avatar: a framework
to support dynamic security analysis of embedded systems' firmwares. NDSS
23,1-16.

Zhuy, R, Zhang, B., Mao, J., Zhang, Q., an Tan, Y., 2017. A methodology for determining
the image base of arm-based industrial control system firmware. Int. J. Critical
Infrastruct. Protect. 16, 26—35. https://doi.org/10.1016/j.ijcip.2016.12.002.
https://www.sciencedirect.com/science/article/pii/S1874548216300014.

http://www.cyberinitiative.org
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref1
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref1
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref1
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref2
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref2
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref2
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref3
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref3
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref3
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref4
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref4
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref4
https://doi.org/10.1016/j.ijcip.2013.04.004
http://www.sciencedirect.com/science/article/pii/S1874548213000231
http://www.sciencedirect.com/science/article/pii/S1874548213000231
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref6
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref6
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref6
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref6
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref7
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref7
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref7
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref7
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref7
https://doi.org/10.14722/ndss.2017.23313
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref9
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref9
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref9
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref10
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref10
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref10
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref10
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref11
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref11
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref11
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref11
https://doi.org/10.1016/j.fsidi.2020.301013
https://doi.org/10.1016/j.fsidi.2020.301013
http://www.sciencedirect.com/science/article/pii/S2666281720302626
http://www.sciencedirect.com/science/article/pii/S2666281720302626
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref13
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref13
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref13
https://doi.org/10.1145/3450267.3450545
https://doi.org/10.1145/3450267.3450545
https://doi.org/10.1145/3450267.3450545
https://doi.org/10.1016/j.addma.2021.102200
https://www.sciencedirect.com/science/article/pii/S2214860421003614
https://www.sciencedirect.com/science/article/pii/S2214860421003614
https://doi.org/10.1016/j.fsidi.2021.301196
https://www.sciencedirect.com/science/article/pii/S2666281721001049
https://www.sciencedirect.com/science/article/pii/S2666281721001049
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref17
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref17
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref17
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref17
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref17
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref19
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref19
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref20
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref21
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref21
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref21
http://refhub.elsevier.com/S2666-2817(22)00008-7/sref21
https://doi.org/10.1016/j.ijcip.2016.12.002
https://www.sciencedirect.com/science/article/pii/S1874548216300014

	Memory forensic analysis of a programmable logic controller in industrial control systems
	1. Introduction
	2. Background and related work
	2.1. Background
	2.2. Related work

	3. Experiment's Setup
	3.1. Allen-Bradley ControlLogix 1756-A10 PLC
	3.2. Control software- RSLogix 5000
	3.3. JTAG based memory acquisition setup

	4. PLC memory analysis methodology
	4.1. Exploring the engineering software
	4.2. Memory dump generation
	4.3. Identification of data structure definitions
	4.3.1. Extracting the data structure definitions for the named structures
	4.3.2. Utilizing unique patterns for IO data structure identification

	4.4. Identifying data structure instances through memory dump analysis
	4.4.1. Identification and recovery of control logic
	4.4.2. Forensically important Logs Recovery
	4.4.3. Extracting the firmware

	4.5. Rules formalization

	5. Digital artifacts in ControlLogix 1756-L61
	5.1. Memory analysis of the suspect PLC

	6. Discussion and future work
	7. Conclusion
	Acknowledgement
	References

