Analyzing Data Privacy for Edge Systems
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Abstract—Internet-of-Things (IoT)-based streaming applica-
tions are all around us. Currently, we are transitioning from
IoT processing being performed on the cloud to the edge. The
increasing number of deployed IoT systems generates an ever-
growing volume of data, making edge processing more desir-
able. While moving to the edge provides significant networking
efficiency benefits, IoT edge computing creates significant data
privacy concerns.

We propose a methodology that can successfully privacy
protect the continual data streams generated by sensors on the
edge device. We implement local differential privacy on streaming
data and incorporate Bayesian inference and Gaussian process
to test for privacy policy vulnerability. We demonstrate our
methodology on a real-world smart meter testbed and identify
the optimal privacy protection settings.

Index Terms—privacy, edge, Bayesian, algorithms, streaming
data, IoT

I. INTRODUCTION

We live in the era of Internet-of-Things (IoT). Their benefits
are well understood across a wide range of applications
including healthcare monitoring [29], smart homes [39], and
grid systems [17]. Still, their vulnerabilities and the importance
of data privacy are not taken seriously [26], [41].

IoT has become a primary target for cyberattacks, and
the repeated security incidents on IoT devices represents a
rising trend. The rapid increase of connected devices has
created multiple targets for attackers (e.g., security cameras,
smart TVs, connected printers, smart bulbs, coffee machines,
internet-connected gas stations). Furthermore, recent scandals
of user monitoring through Roku TV and Amazon Fire TV
[31] demonstrate avenues for privacy breach of user personal
information [1]. While the benefit of the vast amount of data
availability is undeniable [20], a better mechanism for privacy
protections is needed.

Usually, security practices are established with passwords
and access point permissions. But, the need to secure data stor-
age, transfer and communicate securely is mainly addressed
by cryptography and other formal approaches [43]. Although
cryptography offers security, it requires a significant amount of
computation which makes it challenging for IoT-based systems
with limited resources to process encrypted data efficiently.
Additionally, there is a risk that unauthorized users could gain
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access to the data after it has been decrypted, giving them full
access to the sensitive details [37]. Privacy algorithms provide
a solution for overcoming these challenges.

Firstly, to clarify, there is a difference between security and
privacy. The fact that our data is securely stored today does
not mean that our privacy is protected, neither today nor in
the future [41]. Cryptography techniques have proven security
guarantees, and while security is established, these techniques
do not necessarily guarantee privacy. Cryptography’s weakness
is that it does not protect endless data streams or as the data
arrives. In contrast, privacy approaches provide mechanisms
for protecting the sensitive information within the data, such
as personal protected information (PII), as soon as the data is
generated and without a key to discover the original raw data.

In the context of IoT-based systems, the data is constantly
streaming. The aim is to privacy protect the streaming data
near the source and before it is sent to the cloud. This approach
requires processing on the edge device, and we need privacy
algorithms that do not require high processing capabilities
[30]. When this privacy mechanism is implemented, it will
increase the trust in the systems and enable more users to use
them with confidence.

This work investigates privacy algorithms for streaming
applications and their performance on the edge-based system.
Mainly the focus is on differential privacy (DP) algorithms
[22]. An algorithm is DP if an observer cannot tell if an
individual’s sensitive information was used in the computation.
One system is considered differential private if when sharing
information about the dataset, it describes the patterns within
the dataset while withholding sensitive information about
individuals or entities in the dataset.

This work looked into privacy techniques used for streaming
applications such as IoT. We experimented with different
privacy algorithms and demonstrated their performance on an
actual testbed using various streaming settings. We explore
the solutions based on local differential privacy [15] (e.g.,
distribution-based techniques) and design their adaptation for
streaming data. We developed a Bayesian inference algorithm
for streaming data to measure the uncertainty bounds of
local differential privacy parameters. Finally, we compare the
methods and let the interested party know which methods are
beneficial for them to use.

We show that combining the distribution-based noise ap-
proach with Bayesian inference widens the privacy assurance
window. We examine the performances for each technique



under different privacy settings and the uncertainty bounds
when only a few samples are available. We also vary different
data frequencies and time windows and present when they are
the most useful.

The outline of the paper is organized as follows. First, we
describe the streaming algorithms in Section III-C and edge
systems in Section II. We explain the testbed and present the
results in Section IV-D3. We report the existing related works
in Section V. Finally we conclude in Section VI.

II. EDGE COMPUTING

Edge computing is a computing pattern that brings data
processing closer to the source or where it is created [12]. It
is a decentralized topology based on keeping data local, at the
edge of the network, as close to the source as possible. Using
the edge directly on or near the source increases the efficiency
and speed of data use and reduces unnecessary network burden
and data traffic waste. The aim is to bring cloud capabilities
closer to the user.

Similar paradigms are fog computing and cloudlets, and
the difference is where the computing power and intelligence
power are placed. In architecture settings, the edge is between
the cloud and devices. The edge collects the data from
local sensors and performs an analysis. Depending on how
computing-intensive the tasks are, the edge can be categorized
as micro, thin, and thick [6].

Edge computing offers a more efficient approach to pro-
cessing data and not overloading the cloud with all processing
steps. In cases when data needs to be transferred over the
network, privacy guarantee is necessary to ensure trustful data
transfer. Integrating privacy algorithms at the edge can provide
confidence in protecting sensitive information and using edge-
based systems.

III. ALGORITHMS
A. Data Streaming Characteristics

Streaming data is generated by video platforms (e.g., Net-
flix), music platforms (e.g., Spotify), intelligent virtual as-
sistants (e.g., Alexa), and any IoT-based system (e.g., Smart
Things). The data type can be video, audio, text, or numerical
format. It is characterized by continuous data generation,
dynamic evolving data, heterogeneous data types, and near
real-time processing.

B. Local Differential Privacy

The goal of privacy algorithms is to protect the sensitive
information in the dataset and guarantee the desired level of
privacy.

In Local Differential Privacy (LDP) [15], the data is per-
turbed first before sending it to an aggregator for analysis
(Fig. 1). The advantage of LDP is that there is no need for a
trusted data aggregator.

Definition: A randomized mechanism F' guarantees e-LDP
(e > 0) for any pair of input values v and v’ € S if and only
if F' satisfies:
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Fig. 1. Local differential privacy (LDP)
Pr[F(v) € O] < e‘Pr[F(v') € O] (1)

Here, O is the subset of output.

There are a few algorithm types for LDP [13]. We focus
on distribution-based techniques and test their performance on
an edge system. We apply four well-known distribution-based
noise mechanisms (e.g., Laplace, Gaussian, Exponential, and
Gamma).

The Laplace distribution with the probability distribution
function [8]:

1
p(z) = % exp(— b
where, b is the scale and p the mean.
The Gaussian distribution with the probability distribution
function [4]:

1 (x —p)?
p(x) - W exp(— 202 )
where, o is the scale parameter and 4 is the mean.

The Exponential distribution with the probability distribu-
tion function [2]:
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The Gamma distribution with the probability distribution
function [3]:

p(x)

o) = 1 20
OkT (k)
where, k is the shape, € is the scale and I' is the Gamma
function.
In our case, the raw data of every reading is perturbed by
adding random noise generated from different distributions.
In the experiments, the scale of the noise (e.g., sensitivity) is

determined by the maximum allowed noise from the utility
(i.e., lower MAE value) and user (see Eq. 8 and Eq. 9).

(&)

C. Bayesian Inference

Bayesian inference is a statistical method for determining
the probability of a hypothesis through the use of Bayes’
theorem. [36].

A common application for Bayesian inference is using
observed data Y to determine the parameter values of the data



generating model M (#), where 6 is the set of model parame-
ters. Here we wish to infer likely values for the parameters 6.
This challenge can be solved by employing Bayes’ theorem.
Prior belief for the value of the parameters € is given by
the probability density function p(6) (or the probability mass
function P(6) if the parameters 6 take on discrete values.) The
probability of observing data Y given particular values for the
parameters is given by p(Y|M (0)). Through the use of Bayes’
theorem, this probability combined with the prior over 6 can
be combined to determine the probability of different values
of 6 given the observed Y. This probability is also called the
posterior and is represented by p(M(6)|Y).

Bayesian inference allows one to employ prior knowledge
over possible values of the parameters 6 and prior knowledge
of the relationship between the observed variable and model
(given by p(Y'|M (#))) to statistically infer a distribution over
the unknown parameters.

In this work, we use Bayesian inference to determine the
accuracy with which a malevolent actor can identify the
privacy policy parameters employed from a compromised data
stream. Then we investigate how well the actor can utilize this
information to estimate originating raw data for other privacy
protected data.

IV. DEMONSTRATION

A. Our Testbed

For our testbed, we decided to focus on a power systems
example. Traditionally, power flows from large power genera-
tion facilities down to consumers. However, with the rise of the
smart grid [23] and renewable energy technologies, the flow of
power has become a two-way exchange. This means the grid
must be able to adapt to not only variable power needs but also
variable power production from the top and bottom. This is
being solved with smart grid technologies such as a two-way
communication infrastructure that allows utility companies to
collect real-time data from customers.

One example of a two-way communication is advanced
metering infrastructure (AMI) described in [32]. AMI includes
a number of technologies, one of which is the collection of
data from smart meters attached to homes and buildings. These
smart meters monitor real-time power usage data that can
be retrieved by the utility company as often as desired. This
presents a privacy issue as others have shown that energy data
can reveal sensitive information about residents and their daily
activities [33].

As such, we designed our test bed to include a smart meter
attached to a group of solar panels. The meter records power
generation of the solar panels when it is being consumed by
the local power grid, as power is generated on demand. The
power usage data is retrieved by a controller at a regular,
configurable interval which records it for operators to view
from a human-machine interface (HMI). In our case, all of
these devices are on a local network, but in a real world
environment, a centralized monitoring station would collect
the data from many controllers remotely across the Internet.

This makes the controller a target for cyber attacks that could
compromise the privacy of customers if the data was stolen.

To introduce a privacy protection algorithm, we installed a
Raspberry Pi with two network interfaces in between the meter
and the controller as shown in Fig. 2. Requests from the con-
troller are forwarded to the meter, while responses are parsed
by the proxy device and passed to the algorithm. The result
is reformed into a response packet and sent to the controller.
Because the proxy device is the only direct connection to the
smart meter, all traffic is handled appropriately, and the total
amount of traffic is low enough that a Raspberry Pi is easily
capable of processing it within a manageable amount of time
as discussed in Section IV-D.
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Fig. 2. A Raspberry Pi acts as a proxy device in between the meter and the
controller to perform the privacy algorithm before responses are sent to the
controller.

B. Dataset Description

The dataset generated by our testbed represents the power
being generated by the solar panels measured in watts at that
moment of time.
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Fig. 3. Original raw smart meter data measured per second.



C. Metrics

Metrics for LDP are grouped as
information-theoretical metrics [42].

Error-based metrics describe the error between the private
observation and the original (real) observation. Typically, mean
absolute error is used (see Eq. 6). Here, x is denoted as the
expected original value, y is denoted as the observed private
value and n is the total number of samples.

error-based and

MAE = E'L:l‘y’b_‘rl‘ (6)
n

Information-theoretical metrics are adopted to quantify
the error between the original data and private data. Typi-
cally, Kullback—Leibler divergence is used (see Eq. 7). The
Kullback-Leibler divergence (KL divergence) is commonly
adopted to measure the similarity between distributions. The
KL divergence between X and Z is

(oo}

x

DuPlQ) = [~ pogEha @)
—oo q(x)

where P and (Q denote the original distribution and private

distribution [7].

D. Experiments

Privacy algorithms were implemented using Python 3.7 with
standard python packages [11] and the SciPy [10] library.
Bayesian inference was implemented with Python 3.7 and with
the Pyro package [9] using the NUTS solver and 5,000 steps.
Gaussian process was implemented using GPy library [5]. All
experiments are repeated 5 times and the average reported.

The methodology in Fig. 4 shows the flexibility of choosing
user preferred settings we have developed.

Uncertainty settings
No of samples No of simulations

Privacy settings
Data pick Tolerance

Algorithm type & settings
Distribution-based

Data settings
Frequency Time window

Fig. 4. Privacy framework for streaming data on the edge.

1) Measuring the Impact of Algorithm Type: We evaluate
the distribution-based techniques to measure their performance
for the edge device. In Fig. 5, we present the impact of
different noise-base distributions varying the privacy loss.
Results show that Gamma distribution shows comparatively

lower relative error, and Exponential distribution shows a
higher relative error under different e. This was shown by
using the KL metric with Gamma being close to zero and
other distributions between ten and thousand.
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Fig. 5. Comparison of different distribution based noise varying privacy
parameter.

When we look closer into the results per distribution, it
shows that changing the value of § and e changes the error
level as well, as expected due to the inverse relationship
between the parameter values and the generating additive noise
standard deviation o, see Figure 6.
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Fig. 6. Gaussian noise label varying delta and epsilon.

We observe the expected result that a higher value of ¢
results in higher utility (lower MAE), and a lower value of §
results in a higher level of privacy.

2) Measuring the Impact of Streaming Properties: We
performed two sets of experiments based on data streaming
properties.

a) Impact of data collection frequency These experiments
evaluate the difference in performance when configuring the
rate at which data is collected from the smart meter. We tested
what we determined to be reasonable collection frequencies of
1, 5, 10, 15, and 20 seconds.

In our settings, we noticed that the data frequency impacts
the algorithm performance (see Fig. 7). Results show that
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Fig. 7. Evaluation of Laplacian approach with different frequencies.

when data is collected every second, the relative error is
highest, while for the other cases is significantly lower.

b) Impact of time window We ran experiments when the
privacy algorithm is not processing the data as it comes, but
instead collects it and processes it periodically (e.g., every 1,
5, 10, 15, 20 seconds).
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Fig. 8. Evaluation of Laplacian approach varying different time window
processing.

The results show that the time window does not impact the
results significantly. The time window of 5 seconds is slightly
better for 0.1 and 0.25.

3) Measuring Privacy Vulnerability: We performed
Bayesian inference experiments to determine the privacy
policy and privacy policy parameters used for privacy
protection.

We assume that the target data stream is privacy protected
using the equation: y; = y; + n; with data index ¢ and noise
n; given by either the Gaussian or Laplacian distribution with
mean of zero and scale (or standard deviation) given by the
following equations:

sensitivity

1.25
0 =1/2xlog(—=) * 8 ®)
[ MaxAE?
sensitivity = % ®

where MaxAE is maximum allowed error calculated based on
original raw data signal divided by maximum allowed noise
by utility and user.

The malevolent actor is able to obtain data samples prior to
privacy protection (e.g., through hacking the data source) along
with the same data after privacy protection. Using Bayesian
inference and analysis, the actor attempts to determine which
of the two privacy policies is employed and the value of the
policy parameters. Here the actor targets parameters epsilon
and delta.

a) Parameters determination: We evaluate the impact of
different Bayesian inference settings and data samples on
discovering the privacy parameters § and e.

The results show (see Figures 9 and 10), that as expected,
with a greater number of data points, one can better identify
the generating model parameter values of epsilon and delta.
As variance of the added noise is dependent on the data point
intensities, it is likely that inference performance will increase
as the analyzed data becomes more representative of the full
range of data stream values.
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Fig. 9. Bayesian inference on Gaussian approach with 10 samples.
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Fig. 10. Bayesian inference on Gaussian approach with 50 samples.

Using equation 8 and the expected value for ¢ and 4,
computed from the posterior, we can then estimate the noise
variance at each timestamp. Here we use the noisy data
as an approximation for the original data in computing the
sensitivity. Knowing the noise variance, we can then apply a
heteroscedastic Gaussian process to estimate the value of the
data prior to privacy protection for new privacy protected data.
In Figure 11 the data prior to privacy protection (black dots)
and the data after privacy protection (black crosses) are shown.
The Gaussian process model properly identifies the trend in
the originating data as shown by the Gaussian process mean
(blue line).

b) Model determination: In this demonstration, model
determination succeeds in both cases - when the privacy policy
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Fig. 11. Determining pattern of original data.

is Gaussian or Laplacian, as shown by the log likelihood values
in Table I. Interestingly the log likelihood values are quite
similar for the Gaussian and Laplacian model hypotheses when
the data is generated with the Gaussian model. This suggests
possible difficulty in differentiating between privacy models
for additive Gaussian noise. This is positive as it serves to
confound a potential malevolent actor. Success and failure
may depend on the particular parameter values chosen and
the range of data point values used in the study.

Data/Model Gaussian data | Laplacian data
Gaussian model -5.29 -4.83
Laplacian model | -5.39 -3.78

TABLE I

COMPARISON BETWEEN BAYESIAN MODELS UNDER GAUSSIAN AND
LAPLACIAN PRIVATE DATASETS.

V. RELATED WORK

There is a lot of work for privacy in streaming applications
but for the purpose of this study we focused on local differ-
ential privacy approaches. Event-level differential privacy was
used by Perrier et al. [35], Joseph et al. [27]. PeGaSus [19]
took a data stream and perturbed the data using Laplace noise.
They utilized a grouper module that partitions the streaming
data to apply smoothing on the perturbed data. Hassan et
al. [25] proposed instantaneous data reporting with peak value
preservation using Laplace noise. Fang et al. [24] and Nguyén
et al. [34] proposed a local differential private streaming
(LDPS) protocol for numerical and categorical attributes.

An aggregated data stream approach was proposed by Huo
et al. [26], where they applied event-level differential privacy
model based on the Laplacian distribution. While the aggre-
gated approaches have their benefits they are not applicable to
some real scenarios. In those cases sliding window approaches
are more appropriate, for instance Cao et al. [18] explored
a stream-based management system for simultaneous queries.
Kellaris et al. [28] presented a sliding window model that com-
bines user-level and event-level differential privacy to capture
a wide range of multiple events occurring at continuous time
segments.

Others works focused on using local differential privacy and
execution on the edge. Bi et al. [16] proposed local collection
method based on Voronoi grid and random disturbance mecha-
nism. Wang et al. [40] designed a framework for automatically
protecting the sensitive features using local differential privacy.
Bao et al. [14] demonstrated successful use of local differential
privacy on mobile edge system for voting systems before the
data is sent to the cloud for processing. A similar approach
was presented by Usman et al. [38] to preserve the privacy
of end-devices. However, they do not have deployment on a
real-world testbed, which we have demonstrated.

Closest to our application system is the work by Dong
et al. [21] who developed a differential private model based
on Laplacian noise for solar generators. However, they used
only the usual error measurement metric while we incorporate
Bayesian inference to show the strength of the privacy algo-
rithms. We have not found a work that uses Bayesian inference
to characterize local differential privacy algorithms.

VI. CONCLUSION AND FUTURE WORK

The importance of data privacy integration for internet-
connected systems is clear and is slowly becoming an integral
part of system software. In this work, we presented algorithms
that can be used for privacy protecting streaming data on the
edge and demonstrated their capabilities in real-world testbed
settings. Results show that data frequency impacts the results
while time window is more linear across the techniques. We
also demonstrated the use of Bayesian inference to determine
the venerability of the distribution techniques. We show that
Bayesian inference can be used identify privacy policies that
are more resilient to cyber attack.

In the future we aim to integrate local differential privacy
in federated machine learning algorithms and demonstrate
functionality on the edge system. We aim to also extend the
capabilities of the described methodology to support a wider
range of privacy algorithms and data types.
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