

Efficient Computation of Higher Order Moment Tensor

CSRI Summer Proceedings 2021

Presented by: Zitong Li

SAND2021-XXXX

Sandia
National
Laboratories

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

This work describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Efficient Computation of Higher Order Moment Tensor

Intern: Zitong Li, Wake Forest University, **Virtual at:** Winston Salem, NC

Mentor: Hemanth Kolla, 8753 Department of Scalable Modeling & Analysis

Abstract The tensor decomposition of the cumulant tensor of time series data can be used to effectively detect and analyze anomalies. However, computing the cumulant tensor can be very expensive. One of the most expensive steps is to compute the moment Tensor. The current state-of-art algorithm takes advantage of the symmetric nature of the moment tensor by dividing it into smaller cubic tensor blocks and only compute the blocks with unique values and thus reducing computation. We designed a new algorithm that poses the computation of the moment tensor in terms of matrix operations (Khatri-Rao product and matrix multiplication). Because this approach is much more cache efficient, we were able to achieve a 5x speedup over the state-of-art with typical input data dimensions on a single processor. Ongoing efforts include implementing this algorithm with Kokkos to make it scalable.

Problem Domain

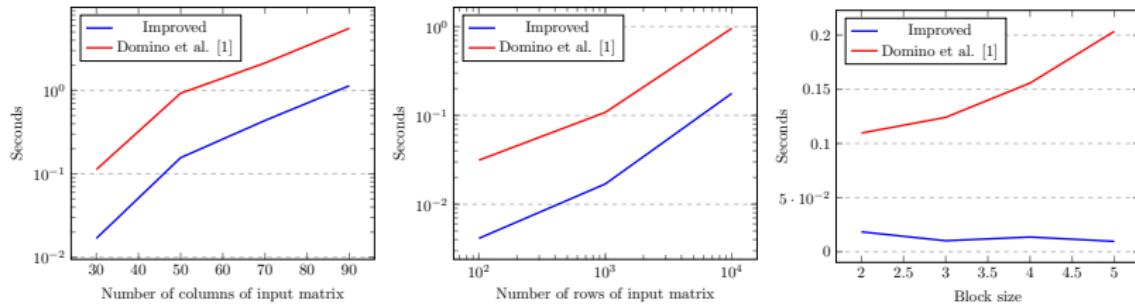
Moment Tensor
Computation

Technical Approach

Khatri-Rao product

Mission Application

Combustion


Efficient Computation of Higher Order Moment Tensor

Intern: Zitong Li, Wake Forest University, **Virtual at:** Winston Salem, NC

Mentor: Hemanth Kolla, 8753 Department of Scalable Modeling & Analysis

The following experiment is run with synthetic random matrices (1000x30 with a block size of 2). Controlling other parameters, we varied the number of columns and rows of the input matrix and the block size. Our performance is in blue while the red lines represent that of the existing approach by Domino et al.¹.

As we can see, the speedup is consistent around 5x across the different number of columns and rows. The block size also has an impact on the performance. Our approach prefers a larger block size, which results in less saving in terms of memory. However, we are outperforming the existing approach even with smaller block sizes.

¹K. Domino, P. Gawron, and L. Pawela, "Efficient Computation of Higher-Order Cumulant Tensors," SIAM J. Sci. Comput., vol. 40, no. 3, pp. A1590–A1610, Jan. 2018, doi: 10.1137/17M1149365.