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Abstract—System administrators set default storage-system
configuration parameters with the goal of providing high per-
formance for their system’s I/O workloads. However, this gener-
alized configuration can lead to suboptimal I/O performance for
individual workloads. Users can provide parameter settings to
the storage system to obtain better performance for individual
applications, but it can be very challenging to determine which
parameters to set and to what values. This problem is further ex-
acerbated by the increased complexity of modern storage systems.
In this work, we move towards solving this problem by providing
a systematic categorization of workload-related information that
users or middleware libraries can pass to the storage system to
optimize I/O performance for specific workloads. We study appli-
cations and workflows from different scientific domains to cover
a broad range of HPC use cases. Through our categorization, we
find that a) workload features differ based on the hardware,
software, and data components involved in the execution of
workloads and b) multiple workload features together drive I/O
optimizations. The methodology proposed in this work optimizes
complex scientific workloads by 2.2×-8×, using workload-aware
I/O optimizations. Using the proposed methodology, users can
pragmatically characterize their workload, and this characteriza-
tion can assist the storage system in configuring itself to optimize
I/O performance for individual workloads in HPC systems.

Index Terms—I/O characterization, workflow I/O, Montage,
Simulation, LBANN, Workload-aware, Pegasus

I. INTRODUCTION

Modern HPC workloads that generate, process, and store
large amounts of data [1] are known as data-intensive work-
loads. These workloads consist of individual applications [2],
such as simulation, analysis, and artificial-intelligence (AI)
applications, and collections of applications that execute
cooperatively in a workflow [3], [4], such as simulations
coupled with big data or AI analytics. The diversity of HPC
workloads has led to the high-configurability of storage
software to cater to the different requirements of individual
workloads [5]. Examples of these configurations are the Lustre
file system, which allows setting the stripe size and -count
parameters for configuring data distribution [6], and the HDF5
I/O library, which can be configured to optimize I/O operation
granularity based on the application’s access pattern, using a
technique called “chunking” [7]. Typically, these configuration
parameters are set to empirically-evaluated default values
(e.g., the Lustre stripe size is 1MB and stripe count is 4, and
the HDF5 chunk cache size is 4KB) to provide reasonable
I/O performance for target workloads on an HPC system.

Default storage-system configurations are available for
domain scientists who are not I/O experts [8], but using these

defaultsmay lead to poor performance. For instance, a study at
the Argonne Leadership Computing Facility (ALCF) revealed
that 90% of workloads on Mira do not use the storage system
efficiently and achieve a low aggregate bandwidth that is
1% of peak bandwidth [8]. Storage-system configuration
parameters significantly affect the underlying I/O performance
of the storage system. As an example, a stripe size of 1 MB
for workloads that access data in the 256 KB range would
reduce bandwidth achieved from the parallel file system by
2.2× [9]. Another example is that applying data compressions
on data sets with certain data distributions can increase data
size by 12% and increase overall time (compression + I/O
time) by 1.5× [10]. Therefore, default configurations can
often lead to nonoptimal I/O performance for workloads.

While setting workload-specific configurations for optimiz-
ing I/O can yield significant performance benefits, determining
which parameters to set and to what values is a complex task.
First of all, the workload features that should be examined to
determine storage-system configurations are not well defined
in the literature, so application users typically need help from
I/O experts to identify the critical features of the target work-
load. Second, once the workload features have been identified,
figuring out the configuration settings requires additional help
from I/O experts and, even then, the settings are typically
specific to the target storage system and may require trial
and error to find the right settings. For example, I/O buffering
middleware [11], [12], [13] typically allows configuration of
the size of the buffer used. The buffer size can be derived from
multiple workload features such as node memory, number of
cores, transfer sizes, and dataset size. Due to the large number
of factors that can affect the determination of the optimal
buffer size, finding the right setting can be a Herculean task
for non-I/O experts and challenging even for experts.

We need to move away from users’ defining storage config-
urations because of the burdensome challenges in setting the
correct parameters for I/O performance. Our vision is a new
paradigm where users need only describe their workload’s I/O
behavior and the storage system automatically configures itself
based on this description. There are two steps in reaching this
goal. First, we need a methodology for systematic character-
ization of the I/O behavior of user workloads. Second, we
need to enhance existing storage systems such that they can
perform workload-specific optimizations when provided with
characterization information. In this work, we focus on the first
step towards our vision and develop a pragmatic methodology



to characterize, extract, and map workload features that the
user can pass into storage systems for performing workload-
aware optimizations. We demonstrate the benefits of our
approach by performing a characterization study of exemplar
HPC workloads and show how the storage system can use
characterization information to improve performance, citing
two case studies. We characterize exemplar workloads from
geology, fluid dynamics, cosmology, high-energy physics, as-
trophysics, and medicine and represent common I/O behaviors,
including scientific simulations, checkpoint-restart, scientific
AI workloads, and image processing, as well as complex work-
flows. We use conclusions from an existing I/O-behavior study
from the literature [9], [14], [15], [16], [17], [18] and our own
collected I/O profiles of the workloads to build a workload-
feature characterization that holistically defines common I/O
behaviors. These features are then automatically extracted
using the Vani tool suite [19], a collection of tools and libraries
that contains system-, job-, and workload-level information.
We categorize the features into our workload-feature character-
ization and, finally, present the mapping of workload features
into storage configurations that the storage system itself can set
to optimize I/O performance. We demonstrate the effectiveness
of our approach with two use cases of complex scientific
workloads. The contributions of this work are
1) A methodology for systematic characterization of workload

features that represent the I/O behavior in HPC workloads
2) A characterization of the I/O features of exemplar HPC

workloads and mapping to storage parameter settings
3) Two case studies demonstrating how our approach identi-

fies workload features and maps them to storage optimiza-
tions by the storage system to improve I/O time

II. BACKGROUND

In this section, we discuss the complexities of achieving I/O
performance on modern HPC systems, which stem from the
high configurability of the software stack at multiple levels.

A. Modern storage-stack hierarchy

The diversity of HPC workloads has led to multiple software
abstractions on modern storage systems, to support different
I/O needs [13]. We currently have abstractions at three levels
of the software stack: workload, middleware libraries, and
storage software. These different levels, each with multiple
storage interfaces and library options, make the configuration
of the HPC storage stack a complex process for users.

At the workload level [16], abstractions provide different
logical representations to meet different I/O requirements. At
this level, we have user-facing high-level I/O libraries, generic
I/O libraries, and lower-level primitives to access different
storage devices. For instance, scientists have proposed sev-
eral high-level libraries such as HDF5 [20], pNetCDF [21],
and ADIOS [22]. Similarly, more generic, lower-level I/O
libraries include MPI-IO [23] and STDIO [24]. Finally, at
the kernel level we have primitives defined using the POSIX
interface [25] or key-value store interfaces such as DAOS [26]
and CephFS [27].

At the middleware level, researchers have proposed software
that transparently accelerates I/O using optimizations such as
buffering [12], [28], [11], prefetching [29], [30], [31], and
compression [10], [32], [33]. Middleware libraries intercept
I/O calls and use storage accelerators such as node-local and
shared burst buffers to optimize I/O operations.

Finally, the storage layer at the lowest level is the final
resting place for all data accessed across projects in an HPC
system. In this level, we use long-term and highly-reliable
storage devices such as raid-HDD, parallelized using parallel
file systems such as Lustre [34], GPFS [35], DAOS [26], and
BeeGFS [36].

B. Configurability of HPC storage stack

The storage software stack provides user-level configura-
tions to support diverse workloads and often directly affects
the performance of workloads on HPC systems [9].

In the case of parallel file systems (PFSs), each software
solution provides a configuration based on its architecture.
Some example configurations are as follows: a) GPFS [35],
which allows users to configure the ROMIO driver to optimize
for independent data accesses (locking) and enable collective
I/O; b) the Intel MPI-IO library, which can be configured
for an application using cb_nodes for setting a number
of aggregators to collect small I/O into bigger buffers and a
cb_config_list option to limit the number of processes
used for collective buffering [37], c) Datawarp [38], [39] burst
buffers as deployed in the Cori supercomputer to provide
configurations for users to disable persistence, enable privacy
of data, and define buffer capacity; and d) the DAOS [40],
[26] storage system by Intel, which enables users to configure
multiple tiers of storage and page-cache size.

In the case of middleware I/O libraries, each library provides
optimization-specific parameters for users to optimize I/O for
their workload. Some examples of these configurations are a)
hierarchical buffering softwares [10], [29], [41], [13], [42] to
configure parameters such as the buffer size of tiered buffering
resources, placement policy, element eviction policies, etc.; b)
UnifyFS [12], which allows users to set cleanup strategies,
workload-specific consistency models, and synchronization
options for maximizing performance; and c) Univistor [43] to
enable users to configure FSTYPE for different PFS, the ca-
pacity of each buffering tier, and distribution policies for data.

Tuning configurations of system software and middleware
libraries can improve I/O performance by orders of
magnitude [9]. Therefore, we need the ability to extract
workload features and configure the storage system to
maximize I/O performance in HPC systems.

III. METHODOLOGY FOR I/O CHARACTERIZATION

Our vision is a new paradigm for I/O, where users are no
longer burdened with the challenges of configuring storage
systems for high performance. Instead, they need only specify
the features of their workload at a high level and storage
systems will automatically determine the best configurations
for the workload. Currently, users have to instrument their



application and manually-correlated instrument data to
optimizations. In this paper, we describe the first step towards
characterizing workload features. Our approach requires
that we broaden our scope for I/O understanding beyond
traditional scientific simulations and extract and classify the
features that define modern HPC workloads. In this section,
we describe our methodology, tools, and terminology and
demonstrate it with exemplar HPC workloads.

A. Hardware and Software

1) Testbed: We run workloads on the Lassen
supercomputer at Lawrence Livermore National Laboratory
(LLNL) [44]. It is a 23-petaflop IBM Power9 system and the
twenty-sixth supercomputer in the world (as of November
2021), based on the TOP500 list [45]. Lassen has 795 nodes
connected with a Mellanox 100 Gb/s enhanced data rate (EDR)
InfiniBand network and a 24 PiB IBM Spectrum Scale file
system (also known as GPFS). Individual Lassen nodes consist
of two IBM POWER9 CPUs (IBM AC922 servers) with
256GB of system memory and four Nvidia Volta V100 GPUs
with 64GB of HBM2 memory. The Lassen supercomputer
is a smaller and unclassified version of LLNL’s larger Sierra
system [46], the third-fastest supercomputer in the world,
based on the TOP 500 list [45]. The Sierra supercomputer
has a peak performance of 125 petaflops, with 4,474 nodes.

2) Tools: We chose Recorder [47] to gather comphrensive
traces of the workloads because Recorder is the only tracing
tool that provides multilevel I/O traces along with CPU and
GPU calls. We use multicomponent traces (I/O, CPU, and
GPU) to perform complex data-dependency analysis on appli-
cations and workflows. For instance, the I/O behavior depends
not only on the I/O trace of the application, but also on the
use of computing elements such as CPU and GPU, owing to
the potential use of overlapped and parallel I/O [9]. Capturing
detailed information adds overhead to workload runtime. This
study notes an overhead of 8% on the workload runtime, due
to trace collection by the Recorder. Additionally, we use the
Vani tool suite [19] and extend it to build analysis scripts
to extract workload features from Recorder traces. All the
results described in this paper are the outcome of the analysis
produced by the Vani tool suite with our extensions (available
at https://bit.ly/3OXolnm). The features extracted by the Vani
suite are used to manually reconfigure I/O for storage systems.

3) Terminology: In this work, a workload expresses a job
running on an HPC system. This job could execute a single
application or a multi-application workflow. For the charac-
terization, we define an Entity that expresses the hardware,
software, and data components of the system. The entity
abstraction enables us to group several workload features that
belong to the same component in the system. We specifically
focus on I/O-related entities. Finally, we define Attributes as
features of an entity.

B. Exemplar HPC Workloads

To extend the understanding of modern HPC workloads,
we need a group of representative workloads from different

scientific domains. The workloads should encompass diverse
I/O behaviors in modern HPC systems that are not included
in existing characterization work in the literature, such as
scientific AI applications and complex multistage workflows.
For completeness, we include detailed understanding
of popular scientific simulations, checkpoint-restart, and
image-processing workloads. These include CM1, an
atmospheric-simulation model [48], HACC-I/O, an I/O kernel
for hardware/hybrid accelerated cosmology [49], CosmoFlow,
a deep-learning application for cosmological simulation [50],
the JAG ICF model [51], and two workflows using the
Montage mosaic engine (one with MPI [52], the other with
Pegasus [53], [52]). These applications and workflows are
large-scale HPC workloads that we execute over 32 nodes to
understand their I/O behavior.

1) CM1: is an atmospheric-simulation workload that
models phenomena such as thunderstorms and tornadoes. It
simulates a part of the atmosphere as a fixed 3D array in
which each point is characterized by a set of variables such as
temperature, pressure, and windspeed. The simulation occurs
over 193 steps to generate different pieces of the atmosphere.
The application primarily generates data using a set of
configuration files. These files are 16MB in size, and the model
generates more than 750 files for different simulation steps.
Each step generates files with a total size of around 128MB.

2) HACC: is a cosmology workload that simulates the
universe’s evolution using particle-mesh techniques. HACC-
IO is an isolated I/O kernel of the workload, released within
the CORAL benchmark suite and representing a typical I/O
workload as found in scientific simulations. The application
runs with 16M particles as input, and each process writes
nine variables. The benchmark writes the simulation data as a
checkpoint and emulates restart by reading the checkpointing
data back. We select the File-Per-Process version (using
POSIX) of the benchmark as shared MPI-IO reads are
represented in the CosmoFlow application. The benchmark
generates and reads files per process. Every process reads
and writes 632MB; the total data generated is 790GB.

3) CosmoFlow: estimates the values of critical
cosmological parameters from a 3D cosmological simulation
using deep learning. A singleton application, it uses AI,
rather than simulation, to constrain the effects of systematic
falls, which are computationally-expensive simulations.
Creating surrogates for these simulations is necessary
to generate the staggering statistical numbers needed to
control the systematics, and therefore it is part of the
MLPerf-HPC benchmark. The CosmoFlow dataset labeled
”2019 05 4parE” contains 10K simulated universes with
four redshifts (channels) and 5123 voxels, stored as 16-bit
integers, with the four cosmological parameters used by
the workload to generate the universe. The 1.5TB dataset
contains 50K samples of 32MB each, stored as an HDF5 file.

4) JAG ICF: is a semi-analytic AI model of ICF implosions
in 3D. This singleton application uses AI instead of simulation
to evolve an ICF capsule through the final stages of a NIF
experiment. The application produces scalar, time-series, and



hyperspectral ray-traced images of the implosion, which are
directly compared to experiments. The dataset is formatted
as a 200MB NumPy array (npy) consisting of 100K samples.
The application consumes this dataset with a batch size of 128
samples over hundred epochs and a learning rate of 0.0001.

5) Montage using MPI: is a mosaic engine that converts
sky-survey data formatted as Flexible Image Transport
System (FITS) files into a PNG image for survey NGC 3372.
In this version, the workflow consists of six stages with a
data-parallel mosaic building. The collection of FITS images
is divided into multiple segments, where a compute-node
processes each one. Different segments are processed in
parallel and each segment of the sky creates a PNG image
of the survey. 1024 FITS files were divided among 32 nodes,
with each node having one segment of sky containing 16
FITS files. The workflow consists of three logical steps per
node, that is, sequential, parallel, and sequential jobs.

6) Montage using Pegasus: This workflow uses the same
mosaic engine as our previous workload, but instead of simply
converting sky-survey data into a png, it transforms all the
images in the surveys to a common pixel scale of 1 second
or arc, where all the pixels are co-registered on the sky and
represented in galactic coordinates and Cartesian projection.
The output of this workflow covers the 10◦ of the sky along
the galactic plane where each mosaic image is 5◦ by 5◦ and
has an overlap of 1◦ with the neighboring tiles. The workflow
uses nine kernels of the mosaic engine in a complex workflow
to build these patches of sky. The workflow is executed over
32 nodes using the Pegasus workflow manager [54] with
pegasus-mpi-cluster [55]. The pegasus-mpi-cluster schedules
these nine kernels over 1280 mpi processes to execute a
distributed and parallel workflow job.

C. Generalization of characterization

The characterization of I/O behavior is inspired not only
by our “I/O behavior for workloads”, as described in the
next section, but also on I/O characterization performed in
the literature [9], [14], [15], [16], [17], [18], [2], [56], [57],
[58], [59]. The two main reasons for performing I/O analysis
in this work are a) to extend the applications represented
with new HPC workloads such as AI using LBANN and
complex workflows using Pegasus and b) to provide the level
of analysis needed to perform the characterization required
by new tracing tools such as Recorder [47] (as opposed to
Darshan [58]). Recorder provides more detailed I/O tracing, as
decribed in the tools section of the characterization. In addition
to using a diverse set of characterizations from the literature,
we also diversify our HPC system configurations based on
modern supercomputers such as Cori [60], Summit [61],
Aurora [62], and El Capitan [63]. In the systems context, we
include concepts such as node-local burst buffers, shared burst
buffers, and heterogeneous CPU–GPU architectures, which
are present in the different architectures of these systems. For
better generalization of the ideas presented in this work, we
also provide a collection of tools to extract the characterized
features automatically from the tracing provided by Recorder.
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Fig. 1: I/O behavior of CM1: Figure a) shows that large
reads achieve 64GB/s aggregate bandwidth compared to small
writes, which achieve 64MB/s. Figure b) shows the file
(80MB) opened by many processes, but only rank 0 writes
to it. Figure c) shows that rank 0 writing the simulation data
achieves low bandwidth (95% of I/O time).

These features can be loaded by any storage system and
perform automatic configurations for optimizing I/O.

IV. I/O CHARACTERIZATION FOR WORKLOADS

In this section, we present the results of our characterization
methodology on our exemplar workloads.

A. I/O behavior for workloads

A high-level summary of workloads is presented in Table I,
followed by a detailed analysis of I/O behavior.

TABLE I: High-Level I/O behavior of applications.

I/O Behavior CM1 HACC
(FPP)

Cosmoflow
(HDF5) JAG Montage

MPI
Montage
Pegasus

job time (sec) 664 33 3567 1289 247 1038
% of I/O time 11% 75% 12% 13% 12% 21%
Write I/O 1GB 750GB 20MB 2MB 24GB 32GB
Read I/O 20GB 750GB 1.5TB 25GB 28GB 106GB
CPU Cores/node 40 40 40 40 1-40 1-40
# files used 774 1280 50K 1 1040 5738
Shared File access 37 0 50K 1 80 960
File per process
(FPP) access 737 1280 0 0 960 4778

Access Pattern Sequential
I/O Interface POSIX POSIX HDF5-MPI-IO STDIO STDIO STDIO

1) CM1 [Figure 1]: In this application, 20GB is for reading
the 16MB configuration files by all ranks and 1GB is for
writing simulation data by rank 0 [Figure 1(a)]. For the writes,
every first rank per node (i.e., 40, 80,...,1240) opens and closes
the file, but only rank 0 writes the simulation data [Fig-
ure 1(b)]. The application has separate read, write, and com-
pute phases. The application initially reads the configuration
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Fig. 2: I/O behavior of HACC: Figure a) shows that large
16MB reads achieve 1.5GB/s bandwidth/process. Figure b)
shows the checkpoint file (632MB) written and read by a
single process, with multiple opens and closes. Figure c) shows
all ranks achieve a high bandwidth of 7GB/s for writing and
3.8GB/s for reading checkpoint data.

files (20GB in 3 sec in Figure 1(c)) and then performs compu-
tation and writing of simulation data (1GB in 10 sec) alternat-
ing [Figure 1(a)]. The application presents the simulation data
in a 3D representation in memory and writes it to the file with
transfer sizes of 4KB in a sequential-access pattern. The small
transfer size issued for the writes by rank 0 dominates time
spent in I/O with a low aggregate bandwidth of 64MB/s. Ad-
ditionally, 87.5% of the time is spent in metadata operations.

2) HACC [Figure 2]: In this workload, 50% I/O time is
spent on metadata operations (4× more metadata operations
than read or write operations). This large percentage of
metadata operations is unexpected, as the application performs
large sequential I/O [Figure 2(a)]. Upon investigating the
process/data dependency, we observe that the files are
opened and closed multiple times for each checkpoint and
restart process. The application first generates the variables in
memory then writes 750GB of data using ten write operations,
and finally reads back the 750GB data as a part of restart
[Figure 2(b)]. The simulation data used in the checkpoint is
presented as single-dimensional variables, and each write is
performed in 16MB granularity in a sequential pattern. Even
with a consistent I/O access pattern, each rank achieves a
different GPFS bandwidth [Figure 2(c)]. This inconsistency
in bandwidth is due to contention for parallel file-system
resources, owing to the high parallelism of requests occurring
during checkpointing.

3) CosmoFlow [Figure 3]: The application performs I/O
on the CPU while the computation runs on the GPU. The
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Fig. 3: I/O behavior of Cosmoflow: Figure a) shows that small
accesses achieve a low bandwidth of 100KB/s and 1MB data
reads achieve 3.5MB/s aggregate bandwidth. Figure b) shows
the input file is read by all processes using HDF5 with MPI-
IO. Figure c) shows all ranks achieve a low bandwidth of
3.5MB/s for reading simulation input data.

application uses four processes per node to allocate GPU for
the deep-learning (DL) computations and uses 40 CPU cores
for performing I/O. Each process gets a low I/O bandwidth
[Figure 3(a)]. The application achieves a maximum aggregated
read bandwidth of 7.4MB/s [Figure 3(c)]. This low bandwidth
results from the collective MPI–IO accesses on 32MB files
with 1MB transfer size per process, which hurt the overall per-
formance owing to the number of files accessed [Figure 3(b)].
There is no file chunking (i.e., the file is represented as a one
big chunk of 1D bytes instead of chunks of data) in HDF5
files [7], which slows down the multiple metadata accesses
(4× more than read operation) on the dataset, due to collective
I/O. This is apparent in that 98% of the I/O time is spent
in metadata ops and only 2% in data ops. The application
writes 20MB checkpoint files with small 40K operations
periodically during DL computations. Both reads and writes
on the data occur sequentially, without any seek operations.

4) JAG ICF [Figure 4]: performs I/O using the STDIO in-
terface used by NumPy array Python files. The application per-
forms computations on GPU while executing the input pipeline
on the CPU. Every rank reads 2MB’s worth of samples (a
portion of the complete 200MB dataset) during the first epoch
and then caches the result for later epochs [Figure 4(c)]. The
application performs validation at the end of the application,
which is the second I/O phase at the end. Each epoch writes
20KB of checkpoint files to GPFS. Each access is less than
4KB transfer size, due to the small samples in the dataset
[Figure 4(a)]. Additionally, 70% of the operations are metadata
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Fig. 4: I/O behavior of JAG ICF: Figure a) shows that JAG
performs many small accesses with a low bandwidth of 8MB/s.
Figure b) shows the input file is read by all processes using
the Numpy API. Figure c) shows all ranks achieve a low
bandwidth of 20MB/s for reading input data at start and end.

operations (80% of job time); every rank opens and closes the
file once and reads multiple chunks of samples from the file.

5) Montage using MPI [Figure 5]: The first rank on every
node performs 40× more I/O than the rest of the processes
because of the sequential parts in every node of the workflow.
Of six stages, only one uses a parallel job to process the pro-
jected files [Figure 5(b)]. In the workflow, 960 files are input
FITS images, whereas 80 files are intermediate files produced
and consumed by the workflow. The workflow performs 21GB
I/O on the input FITS files. However, the I/O time is primarily
dominated by data operations on the files, with a small number
of metadata operations [Figure 5(b)]. The workflow performs
4M read operations and 1M write operations. The data is
represented as a 1D array in memory and written/read sequen-
tially using less than 4KB transfer size (90%) for intermediate
files. The input files are read with 64KB transfer size, which
constitutes the other 10% of operations [Figure 5(a)]. However,
the bandwidth distribution throughout the execution of the
program varies widely [Figure 5(c)]. The average bandwidth
per request for read and write operations is low (5MB/s and
91MB/s, respectively), but the application for certain specific
durations (<20%) has a high I/O bandwidth of 600–1300MB/s
for writes and 400–1200MB/s for reads. This spike occurs
because of some buffering effects of the client nodes where
data was written and immediately read by the next process.

The workflow consists of five applications that produce
data which is consumed by the next step. The workflow
generates small metadata files with extensions .hdr and .tlb.
The mAddMPI is a parallel job using MPI, running with
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Fig. 5: I/O behavior of Montage using MPI: Figure a) shows
that a lot of small access are made with a low bandwidth
of 0.1MB/s. Figure b) shows the multistage execution of
workflow. Figure c) shows all ranks achieve a average/request
bandwidth of 5MB/s for read and 91MB/s for write ops.

1280 processes on 32 nodes. The remaining executables are
executed in parallel using a shell script with one process per
node. The distribution of I/O operations per application shows
that the majority of read/write operations in the workflow
is from the mAddMPI and mViewer (2.45M and 1.1M,
respectively) which is 1000× more than other processes. The
bulk of I/O performed is by mAddMPI (3.7GB reads and
25GB writes) and mViewer (24GB reads and 115MB writes),
which consititutes 98% of I/O operations.

6) Montage using Pegasus [Figure 6]: performs 138GB of
I/O, of which 60% is performed by mDiff reading data, 12%
by mBackground for reads and writes, and 10% by mProject
writing data. In the workflow, 4778 files are initial-input files
read by mProject, mConcatFit, and mBgModel to generate
the next step of data and metadata files for the workflow
[Figure 6(b)]. The other 960 files are intermediate files
produced and consumed during the workflow. In the first 20
seconds of the workflow, 80GB of I/O is performed by the
mDiff and mProject applications. The workflow subsequently
performs 400MB–7GB I/O by mProject and mBackground for
the next 150 seconds and finally 67–114MB by mFirPlane,
mConcatFit, mViewer, mImgTbl, mAdd, and mBgModel for
the rest of the time [Figure 6(c)]. The workflow creates and
accesses data with a small 64KB or less transfer size. This
results in a small aggregate bandwidth of 140MB/s for <4KB
and 1.3GB/s for 64KB transfer sizes. The mViewer performs
two large requests of >16MB, which get a high I/O bandwidth
of 10GB/s [Figure 6(a)]. The nine kernels are executed by
the pegasus-mpi-cluster and spawn 6039 processes (of which
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Fig. 6: I/O behavior of Montage with Pegasus: Figure a) shows
small accesses achieve a low bandwidth of 130MB/s for 4KB
and 1.4GB/s for 64KB. Figure b) shows the data dependency
of various executables with the workflow. Figure c) shows the
workflow perform more I/O initially and thus get better I/O
bandwidth.

5209 processes are of mDiff) that consume and produce data
for building the mosiac engine. The largest data generated was
by mViewer, generating mosaic images of 1.5GB. However,
the workflow spends more time on smaller files, as data is
accessed using smaller transfer sizes of <4KB. Finally, across
the kernels of the workflow, 65% of the time was spent on
read/write operations and 35% on metadata operations.

B. Systematic characterization of I/O in workloads

Based on our investigation of different features of the
workloads, above and in the literature, we aim to build a
characterization of modern HPC workloads using high-level
groups of entities. Each characterization in this section is
developed for a single workload running on a specific instance
of software and storage stack. In the categorization, the work-
load uses a particular collection of software, a collection of
allocated hardware resources, and uses/produces a collection
of data. At the highest level of abstraction, we propose three
main types of entities for a given instance of a workload: a)
job entity type, b) software entity type, and c) data entity
type. These entities encapsulate different aspects of a job
executed in a HPC system, such as job allocation from the
scheduler, the software stack available to execute for the job,
including various storage systems, and the data itself that the
job produces/consumes.

The Job entity type describes the various aspects related to
job submission of the workload. These aspects include a) job-
configuration entity type (Table II): attributes of a workload
corresponding to job scheduling and allocation of resources;

TABLE II: Attributes for Job Configuration Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

# nodes 32
# cpu cores
per node 40

#gpu/node 4
# Node-local
BB dir /dev/shm

# Shared
BB dir NA

PFS dir /p/gpfs1
Job time 2hr 2hr 6hr 6hr 2hr 12hr

TABLE III: Attributes for Job Configuration Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

# CPU cores
used/node 40 40 4 4 40 40

# GPUs
used/node 0 0 4 4 0 0

# apps 1 1 1 1 5 5
App data
dependency NA NA NA NA Fig 5(b) Fig 6(b)

FPP/shared
file access

737/
37

1280/
0

0/
49664

0/
2

960/
80

4778/
960

I/O amount 21GB 1.5TB 1.5TB 200MB 53GB 139GB
I/O ops dist
(data, meta)

30%,
70%

50%,
50%

2%,
98%

30%,
70%

99%,
1%

65%,
35%

Runtime (sec) 664 33 3567 1289 247 1038

TABLE IV: Attributes for Application Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

# processes 1280 1280 128 128 1280 2
Process data
depedency Fig 1(b) Fig 2(b) Fig 3(b) Fig 4(b)

FPP/shared
file access

737/
37

1280/
0

0/
49664

0/
2

850/
0

1028/
0

I/O amount 21GB 1.5TB 1.5TB 200MB 53GB 139GB
I/O ops dist
(data, meta)

30%,
70%

50%,
50%

2%,
98%

30%,
70%

99%,
1%

85%,
15%

Interface POSIX POSIX HDF5 STDIO STDIO STDIO
Runtime 664sec 33sec 3567sec 1289sec 112sec 43sec

TABLE V: Attributes for I/O Phase Entity Type. First Phase.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

I/O amount 20GB 725GB 1.5TB 200MB 1.5GB 2.08GB
I/O ops dist
(data, meta)

99%/
1%

100%/
0%

2%,
98%

30%,
70%

99%/
1%

99%/
1%

Frequency 1 op 7 ops/
rank

Iterative
(1MB)

Iterative
(4KB)

Bulk
(64KB)

Bulk
(64KB)

Runtime 0.3sec 18.3sec 392sec 167sec 0.3sec 10.24sec

b) workflow entity type (Table III): attributes of a workload
corresponding to workflow behavior and interactions at a
high level; c) application entity type (Table IV): attributes
of a workload corresponding to an individual application in
the workload and the relationships among its processes; and
d) I/O-phase entity type (Table V): attributes of a workload
corresponding to each I/O phase within an application
defined using a threshold between two I/O calls. These
aspects describe the different scopes of job entities to capture
attributes at different workload levels.

The Software entity type encompasses the different software
layers of a modern HPC storage system. These layers include
a) high-level I/O entity type (Table VI): attributes of a
workload that describe the features of high-level libraries used
within the workload; b) middleware-libraries type (Table VII):
attributes of the workload that define the behavior of each



TABLE VI: Attributes for High-Level I/O Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

Data repr 3D 1D 3D 3D 4D 2D
Granularity
(data, meta) 4KB-16MB 16MB 1MB

4KB 4KB 64KB 64KB

Access
pattern Seq Seq Seq Seq Seq Seq

Data dist normal uniform gamma normal uniform uniform

TABLE VII: Attributes for Middleware I/O Entity Type. As
the workload used no middleware library, I/O granularity and
access pattern do not change.

Attribute CM1 HACC Cosmoflow JAG Montage
MPI

Montage
Pegasus

# extra cores
for I/O/node 0 0 36 36 0-39 0-39

Granularity
(data, meta) 4KB-16MB 16MB 1MB

4KB 4KB 64KB 64KB

Memory/
node 128GB 200GB 196GB 200GB 196GB 128GB

Access
pattern Seq Seq Seq Seq Seq Seq

TABLE VIII: Attributes for Node-Local Storage Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

# parallel ops
(controller) 64

Capacity
/node 128GB 200GB 196GB 200GB 196GB 128GB

Max I/O
bw/node 32GB/s

Dir /tmp

TABLE IX: Attributes for Shared-Storage Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

# parallel
servers >2000

Capacity
/node 20PB

Max I/O
BW 64GB/s using 32 node IOR

Dir /p/gpfs1

middleware library used directly or indirectly (through
interception) within the workload; and c) storage-system
entity type, such as the node-local storage-system entity type
(Table VIII) and shared storage-system entity type (Table IX):
attributes that define the characteristics of the storage system,
including hardware and driver-level information accessible by
the user of the workload. These layers cover all the complex
layers of the storage software stack in modern HPC systems.

Finally, the Data entity groups the attributes that describe
workload data. This entity is further divided into two entity
types: a) dataset (Table X) and b) file (Table XI). The
attributes of the dataset entity describe the complete data
produced/accessed by the workload at a high level. The
attributes of the file entity correspond to individual files
created/accessed by the workload. These attributes expand on
different properties of the dataset in storage systems.

C. Automatic workload characterization

The attributes described in previous subsections can be
extracted using the Vani tool Suite. The suite consists of the
JobUtility and Analyzer tools, which extract information from

TABLE X: Attributes for Dataset Entity Type.
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

Format bin bin HDF5 bin bin bin
Size (GB) 20.32 750 1.5TB 0.2 30 37
# of files 774 1280 49664 2 1040 5738
I/O (GB) 21 1.5TB 1.5TB 0.2 53 139
Time (sec) 73 24 392 167 29 218
I/O ops dist
(data, meta)

30%,
70%

50%,
50%

2%,
98%

30%,
70%

99%,
1%

99%,
1%

File size dist
(data,config)

1GB
16MB 160MB 32MB 200MB 20GB 37GB

TABLE XI: Attributes for File Entity Type. Data File
Attribute CM1 HACC Cosmoflow JAG Montage

MPI
Montage
Pegasus

Format bin bin HDF5 bin bin bin
Size (GB) 0.1 0.6 0.03 0.200 0.03 3.8
I/O (GB) 0.1 1.2 0.03 0.2 0.03 3.8
Time (sec) 12 24 0.007 167 0.02 3.28
I/O ops dist
(data, meta)

30%,
70%

50%,
50%

2%,
98%

30%,
70%

99%,
1%

99%,
1%

Format
attributes NA NA

- chunk:NA
- #datasets: 1
- #dims: 3

- type: float
- #datasets: 1
- #dims: 3

- type: int
- #dims: 3
- enc:FITS

- type: int
- #dims: 2
- enc:FITS

the workloads and then build the workload attributes. We
attach a Recorder profiler [47] to trace the application for CPU
function calls, GPU function calls, MPI communication calls,
and multilevel I/O information during the workload execution.
After execution, we run our JobUtility tool to extract job-
level information such as system-specific information (e.g., the
total number of nodes and # cpu and GPU cores allocated
per node) and data-specific information (e.g., number and
format of files in the dataset and size of each file). The
Recorder and utility logs are collected and stored in a global
file syste such as GPFS. After job execution, we use the
Analyzer tool to convert the Recorder logs into parquet
format. This is a necessary first step, as Recorder logs are
in row-major format and filtering and aggregation operations
in memory are highly inefficient for this format. The parquet
file stores data in column-major format, which can be pro-
cessed in an out-of-core fashion using the DASK tool [64].
The DASK library is used within the Analyzer to extract
application information and generate a YAML file of entities
and attributes with workload-specific values. We illustrate the
working of our Analyzer using Jupyter notebooks (available
at https://bit.ly/3OXolnm).

D. Optimizing workloads based on characterization

After characterizing different aspects of the workload as in
the previous section, let’s explore the potential optimizations
that storage systems can achieve with this user-provided infor-
mation from the workloads. Note that this list is incomplete
and depends on the system, available middleware libraries,
and the nature of the workloads. We provide these guidelines
to drive more workload-aware optimization in HPC systems.

1) I/O acceleration through software techniques: The liter-
ature demonstrates that accelerating I/O using software tech-
niques such as aggregation [65], buffering [13], caching [66],
compression [10], and prefetching [29], [30] is extremely
common within modern HPC systems. These optimizations
may use attributes across all entities of a workload. The



attributes that can be used based on the study of the opti-
mizations mentioned above are # nodes, to identify the scale
of application and deploy I/O services appropriately; # cpu
cores/node, to decide the scale of I/O services per node; #
gpu/node, to use GPU for accelerating data operations such
as compression; # of apps in workflow & # of processes
in application, to identify various apps within the workload
for scheduling I/O; data dependency for apps & processes,
to optimize the data path of the workload; I/O amount, to
identify the critical data path in the workload; I/O Phase
Frequency, to handle critical phases of the workload with more
resources; I/O granularity, to determine cache line size and
buffer granularities in algorithms; I/O access pattern, to tune
eviction policies and buffering strategies to match workload
pattern; % of memory used, for configuring buffering and
caching resources; # parallel operations supported, to identify
parallelism of operations for ideal I/O; # parallel I/O servers,
to identify parallelism of operations for ideal I/O; and distri-
bution of I/O per file, to identify important files in a workload.

2) Async I/O Optimization: To perform asynchronous I/O
inherently for workloads, storage systems and middleware
libraries require workload attributes to enable these optimiza-
tions and still maintain correctness [12]. Some examples of
these attributes are # nodes in job, to maintain coherency flags;
node-local/shared BB dir, to use BB as a buffering resource
for data; I/O amount and ops per file. to identify important
files; I/O phase frequency, and runtime bound, to identify
overlapping I/O with compute; and data dependency between
processes, to identify synchronization points for the workload.

3) Optimize software systems for workloads: Users and
middleware libraries can use this workload attribute to
optimize storage systems such as PFS and burst buffers. For
instance, we can optimize the Lustre filesystem by setting
the stripe size [34] using # I/O ops in workload per file to
identify the important files and I/O granularity per operation
to identify the transfer size for important files. The transfer
size selected would be set to stripe size to optimize the most
important accesses. Another example is GPFS, where users
can set the lock in ROMIO driver [35] to false if there is
no data dependency in apps and processes. In Datawarp
burst buffers, users can disable data persistency using the
DisablePersistent flag. This flag can be set based
on data dependency between apps and I/O granularity to
understand whether any data needs to be stored at the end or
all data is temporary.

4) Process placement for workflow emulators: Workflow
emulators are often required to place various applications
and processes in the workflow on specific nodes to maximize
data locality and reduce I/O cost [3]. To achieve this, we
use attributes such as data dependency between apps &
processes to identify data locality, # nodes to set the scale
for the workflow, # cpu cores/node & # gpus/node to identify
available resources, and dirs for node-local and shared BB to
optimize workflow I/O using accelerators.

5) Optimize dataset: Users can optimize their workloads
by improving the layout and attributes of the dataset they

consume [9], [10]. To enable these optimizations, we use
attributes from the workload such as format of the dataset
to enable format-specific optimizations such as chunking
and compression in HDF5, size of the dataset to enable
storage-level preloading or caching, # samples to understand
the granularity of I/O, I/O amount & time spent to identify
important files, and distribution of I/O operations to identify
which operations are most important, such as data or metadata.

The attributes for each optimization are not exhaustive but
are to be used as a guideline to make the HPC storage system
workload-aware.

V. USE CASES

Based on the characterization of entities and attributes for
modern HPC workloads, we can define entities and attributes
for each workload and explore potential optimizations the
storage system can perform to optimize workloads. To illus-
trate the benefit of this characterization, we use the workloads
Cosmoflow and Montage as use cases to identify the attributes
(shown in Section IV-B) with which users can optimize the
workloads on the Lassen supercomputer (described in Sec-
tion III) at LLNL. In all cases, we demonstrate the automatic
characterization of workload through the Vani tool suite,
storage reconfiguration for optimizing workload’s I/O, and the
impact of these reconfigurations on the workload’s runtime.
Currently, reconfiguration is performed manually, but we envi-
sion storage-system software can automatically perform these
optimizations based on the attributes of the workload provided.

A. Cosmoflow workload

1) Automated characterization: We extract the features of
the workload using the Vani tool suite, with results as follows:
We observe that workload consumed 49K files each of size
32MB (1.5TB total size) in a shared, accessed pattern across
all processes. Due to the small file size and the MPI–IO driver
in HDF5, we see many metadata calls in the applications.
As a result, 98% of I/O time is spent on metadata calls.
This behavior is further supported by the distribution of I/O
operations in the workloads read (390K), write (38K), and
metadata (1.3M). All data was accessed sequentially across
the workload, with 391K read operations for 1.5TB data.

2) Optimizing workload through storage reconfiguration:
Based on the workload features extracted, we need to minimize
the cost of metadata access in HDF5 files. To achieve this, we
preload the data initially into the shared memory of the appli-
cation, as 196GB of memory is not utilized in each node. We
can fit 1/32 of the dataset on each shared memory and perform
the read directly from there. The use of shared memory would
reduce the cost of I/O and limit the aggregation of files using
MPI–IO to a node. We expect this optimization to reduce the
two bottlenecks we identified using workload attributes (i.e.,
metadata access of the HDF5 file and the aggregation of small
files across many processes). To perform the preloading, we
use MPIFileUtils to load dataset pieces in parallel into each
node’s shared memory within the job and configure LBANN
to read the dataset from the shared memory location.
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Fig. 7: Optimizing Cosmoflow using workload attributes
demonstrates that GPFS cannot support highly concurrent
MPI-IO accesses on small 32MB files, due to the high cost
for metadata and I/O interference. We preload the data into
shared memory and reduce parallel access to files to optimize
this behavior and improve I/O performance up to 4.6×

3) Experimental results: For testing the benefits of
reconfiguration, we strong scale the workload from 32–256
nodes in powers of two [Figure 7]. For the baseline (B
in the figure), we run the Cosmoflow app over GPFS. As
the scale increases, we observe a decrease in I/O time.
However, this improvement is sublinear to ideal scaling (i.e.,
1.25×-1.4×), due to the metadata access on HDF5 on GPFS
and interference of MPI–IO on small HDF5 files on the
PFS. For the optimized version (O in the figure), we preload
the data using an MPI job (using MPIFileUtils) into shared
memory and then run Cosmoflow over that dataset. Here the
data preloading scales linearly with an increase in scale as
#files >> #nodes. Additionally, the I/O in this optimized
version scales almost linearly, due to the optimized local
access to HDF5 metadata and node-level sharing of files using
MPI–IO. The preloading of data into shared memory increases
the overall performance of the workload by 2.2×-4.6×.

B. Montage with MPI workload

1) Automated characterization: The attributes of the
workflow are presented as follows. We observe that 1024
input fits files were consumed by the initial step, accounting
for 1.5Gb of I/O, and that the final png file generated is 5MB
in size. However, the workload generated and consumed 53GB
of data. This large I/O size is due to the generation and subse-
quent consumption of intermediate files, which the workflow
need not store on the GPFS. We see the majority of operations
performed were pure data operations (i.e., 99%), and these op-
erations are skewed towards reads rather than writes (i.e., 4M
reads vs. 1M writes). Also, 90% of the operation are small I/O
from the access of intermediate files. The I/O on intermediate
files accounts for 95% of I/O time. Finally, intermediate files
are generated and accessed locally to processes in a node.

2) Optimizing workload through storage reconfiguration:
Based on the extracted workload attributes, we need to
accelerate I/O for intermediate files, which would optimize
95% of I/O time. We can store and access these intermediate
files using a node-local burst buffer to achieve this. To emulate
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Fig. 8: Optimizing Montage using workload attributes demon-
strates that a large number of intermediate files accessed
through GPFS are not optimal, due to small transfer sizes
on these files. We use shared memory for these accesses and
improve I/O up to 8× on larger scales.

a node-local burst buffer in Lassen, we use shared memory,
as the application uses only a small amount of memory for
its execution. Given the size of generated intermediate files
(800MB per node), we can easily fit all the intermediate
files on node-local shared memory and optimize small
accesses. To perform this optimization, we use the application
parameters to change the directory location where the files are
produced/accessed in the job script and perform optimized I/O.

3) Experimental results: For testing these optimizations,
we strong scale the workload on 256 nodes [Figure 8]. For
the baseline (B in the figure), we run Montage workflow
over GPFS. As the scale increases, we observe that I/O
time decreases. However, I/O improves sublinearly (i.e.,
1.35×-1.5×), as 95% of the I/O time is still dependent on
intermediate files, accessed using small transfer sizes on
the GPFS. For the optimized version (O in the figure), all
the steps of the workload store intermediate files on shared
memory and read it for the consumer steps. As all stages
depend on previous stages, the intermediate files created
are consumed by the next step and the small accesses are
optimized through local shared memory. The use of shared
memory for intermediate files optimizes the I/O significantly,
with an overall improvement in workload of 3.9×-8×.

VI. RELATED WORK

A. Understand, characterize, and optimize I/O behavior

The process of optimizing I/O workloads has been
developed extensively over the past decade. The process
involves understanding I/O behavior [67] through profiling
and analysis, characterizing I/O behavior using clustering
and generalization, and finally, optimizing workloads to
match the designs of the storage system. To facilitate this
process, scientists have developed several tools that acquire
information from workloads, analyze the data, and optimize
the workload based on this analysis. The primary target
of these tools is to extract I/O information from interfaces
such as STDIO [24], POSIX [25], and MPI-IO [23], or
higher-level I/O libraries such as HDF5 [20], pNetCDF [21],
and ADIOS [22]. For acquisition, we have a plethora of



profiling [16], [68], [69] and tracing tools [47], [67], [16],
[70] to extract different levels of detail from the workload.
For analysis, these tools form companion tools to existing
acquisition tools [67], [71], [19], [72]. However, their goal
is to improve I/O behavior themselves. By contrast, our work
focuses on making the storage system workload-aware and
transparently optimizing diverse workloads.

B. Workload-aware I/O optimizations

In response to the diversity of workloads, storage systems
have begun providing mechanisms for workload awareness.
Examples include a) buffering software [13], [11], [12] that
requires users to configure allocated buffering resources, data
placement policies, etc.; b) prefetching software [30], [29],
[31] that uses the data-access pattern information collected
during runtime to build prefetching schemes; c) compression
libararies [10], [73] that use data distribution, type, and format
to apply the most appropriate compression library at runtime;
d) high-performance object stores [26], [74] that require users
to configure sharding policies and replication servers for
objects to match workload behavior; and e) PFSs [35], [34]
that require users to configure stripe size, stripe count, and
collective I/O to match the workload’s data-access pattern
and data distribution. These software solutions demonstrate
the effectiveness of workload information for maximizing I/O
performance for HPC workloads. As shown, however, each
software solution employs its feature set to optimize I/O. Our
work agrees with these solutions to build workload-aware
storage and moreover advocates the standardization of
workload features for easy adoption in HPC environments.

VII. CONCLUSION

Modern scientific workloads contain several related and un-
related features that can assist storage systems in optimizing
I/O for workloads. In this work, we characterized workflow
features into entities and attributes that can be utilized by
storage systems to perform workload-aware I/O optimizations.
Our investigation of workloads and systems has uncovered
three key workload features in modern HPC systems. First,
workload features differ based on hardware, software, and
data components involved in the execution of the workload.
Second, workload features need to be extracted at different
stages of the workload, such as offline, job allocation, and job
execution. Finally, the multiple workloads featured together
drive I/O optimizations through storage configurations. We
demonstrate the effectiveness of workflow-aware I/O optimiza-
tions on complex scientific workloads such as Montage and
CosmoFlow (gaining a 2.2x–8x speedup in I/O performance)
and provide a systematic approach to extracting workload fea-
tures and optimizing I/O performance for individual workloads
in HPC systems. We plan to use these attributes to enhance
storage software stacks with workload-aware optimizations.
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