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31 Problem Formulation Inifinite-Dimensional Convex-Constrained Optimization
We consider the optimization problem

min f(x) subjectto x€C,
xeH

where:
» H is a Hilbert space;
» C C H is a nonempty, closed, and convex set;
> f:H — R is a Fréchet differentiable function with Lipschitz continuous gradient.

Assumption: There exists v € R such that the level set L, is bounded, where

Ly = {xeC|f(x) <7}
= The problem has a solution and we can replace C by the closed convex hull of L,.

Notation: P.(x) is the (unique) projection of x € H onto C and is given by

Pc(x) := argmin |x —y||g.
yel
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4 Motivating Applica’[ion Elastic Topology Optimization

Given a domain © C R and a volume fraction v € (0, 1),

min / T(x) - [S(p)](x) dx

u=0 PELZ(Q)

subject to / px)dx <9, 0<p<1 ae,
Q

where S(p)) = u € (H*(Q))? solves

K(p):en=T

-V -(K(p):e)=0 in Q
€= %(W+WT) in Q
K(p) :en=T on I
u=20 onTy

Goal: Determine a binary p that is maximally stiff and that satisfies the volume constraint.
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5 Motivating Applica’[ion Elastic Topology Optimization

Challenges:

1. Binary solutions are difficult to compute (i.e., mixed integer PDE-constrained
optimization);

2. Continuous (grey) solutions can be challenging to interpret (i.e., micro-structure,
alloys, etc.);

3. PDE can be extremely expensive to solve—difficult to prove convergence to
infinite-dimensional problem.

Common Solution: Solid Isotropic Material with Penalization
K(p) := Ko + (K7 — Ko)p? for p>1

SIMP problem is highly nonconvex and has infinitely many solutions!
After discretization, SIMP can lead to checkerboard (i.e., mesh-dependent) designs!

Filtering: To enforce a length scale in the design, it is common to filter p < F(p),
where F : L?(Q2) — L*(Q2) is a compact operator that perserves volume.
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6 Mot|Vat|ng Appllca’[lon An lllustrative Example

Consider the optimization problem

min T[S(p)](1) subject to so14p) <o, 0<p,pp <1,
pe

where S(p) = u solves
[K(p') =0 in(0,1),  u(0)=0, [K(pu'](1)=T,

and
ko + (1 — ko)plp if x < 0.5
(P](x) = P -
ko + (1 — ko)p2 if x > 0.5

For this problem, S(p) can be computed analytically as

Tx i
T e
[S(p)](x) = 0.5 _T(=05) 4, 05"
ko+(1—ko)py  kot+(1—ko)Ph '
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7| Motivating Application  aniustrative Example
Substituting the PDE solution into the objective function yields the optimization problem

T? 1 1
min — + subject t Lpi+m) <v, 0<p, pp<1.
min - (ko Ak T RTa —ko)pé’) ject to z(p1tp2) < <p, ;<

p=1 p=3

10 10

8 9
—~ 6 —~ 8
U U
= 4 = 7

2 6

0 0

Py P ry P

p =1is convex — p = 3 produces multiple local minima!
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s | Motivating Application  existing Metnods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a
projected gradient method.

Bendsge and Kikuchi, Generating optimal topologies in structural design using a homogenization method,
CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that
uses rational approximations of the objective and constraints. The dual subproblem is
commonly solved using nonlinear CG. This method is inherently finite dimensional.

Svanberg, The method of moving asymptotes—A new method for structural optimization, [JNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each
iteration can be expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully.
However, nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!
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9 | Trust-Regions for Convex Constraints  susprobiem

Trust-Region Subproblem: At each iteration, we approximately solve

min m(x) subjectto x €C, ||x— x| < A,
x€H

where A, > 0 is the radius and m; : H — R is a model of the f near the iterate x;.

Generalized Cauchy Point: A point along the projected gradient path
SkGCP = dk(tk) where dk(t) = Pe (xk — i’gk) — X

and g, := Vmy(xx), that satisfies both
1. Trust-Region Feasibility:  [|sC<7|| < 1A,
2. Sufficient Model Decrease: 1 (sP") — my(xi) < pu1 (g, STF)
and at least one of the following conditions
1. Sufficient Step Length:  t > vot;  with  my(xy + di () — me(x) > p2(8k, di(ty))
2. Sufficient Step Length:  # > min{vsA/||gkl|, va}-
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10 | Trust-Regions for Convex Constraints  aigorithm

Require: An initial guess x( € C, initial trust-region radius Ay > 0,0 < < <1 and
0<m<yn<l
1: fork=1,2,...do
2. Cauchy Point Computation: Compute a generalized Cauchy point x> € C
3: Step Computation: Compute a trial step x;,; € C that satisfies

mye(xi) — (X)) > pa(me(xi) — mi(ag<h))

4. Step Acceptance: Compute ratio of actual and predicted reduction:

S () = f (1)

my(xx) — mg(Xey1)

Pk = <m == X1 € Xk
(V1A% 7244 if pr <m
5. Update Trust-Region Radius: A, € { [v2Ac, Ak if px € [1,72)
[A, 00) if pr > m
6: end for
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11 TrUSt'RegionS for Convex Constraints Convergence Theory and Inexactness

Convergence of the form
liminf [[Pe(x — Vf(x) — %] = 0

was proved in Theorem 10 of

Toint, Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space, IMA
Journal of Numerical Analysis, 1988.

This theory permits inexact model gradients that satisfy, e.g., 3x > 0 such that

IVf (k) — gl < xmin{||Pe(xx — gk) — xll, Ax}-

However, it does not account for inexact objective function evaluations!
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12 TrUSt'RegionS for Convex Constraints Convergence Theory and Inexactness

In many applications, we can only hope to compute

fie(xi) — fie(Xet1)

iy (x) — me(xeq1)

fi)~fx) and =

Fortunately, the inexact objective function criteria

(F (k) — F (k1)) — () — fi(xg1))| < K(mmin{my(xe) — my (i), me})

where K > 0 and w € (0,1) are fixed, n < min{n;,1 — 1} and r, \, 0, can be applied with
little change to the theory!

This condition was used for unconstrained problems in

Kouri, et al., Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization
under uncertainty, SISC, 2014.
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13| Spectral Projected Gradient Subproblem Solver

Spectral Projected Gradient: A first-order method that approximates second-order
information using a Barzilai-Borwein (spectral) step length.

Applied to our original optimization problem

min f(x) subject to xeC,
xe€H

the SPG method produces feasible iterations
Xk+1 = Xk + OySk where Sk 1= (Pc (xk — )\ka(xk)) — xk).

The step length a4 > 0 is computed using a nonmonotone line search and the spectral
step length \; > 0 is computed as

s o g )

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
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14 | Spectral Projected Gradient Subproblem Solver
Model: For our trust-region method, we consider the quadratic model
my(x) = 5 (Bi(x — xi), (x — xx)) + (8, % — %) + fi(xi),

where By : H — H is linear operator that approximates the Hessian V2f(xy).

Feasible Set: The trust-region subproblem feasible set is
Co:={xeC||lx— x| <A}

SPG Iteration: Xk 041 = Xk,0 + QeSe where s, = Pe, (xk}g — )\ngk(xk)g)) — Xk,0
1. Start with x o = x + s°F to ensure fraction of Caucy decrease;
2. Use exact line search to determine «, step length;
3. Spectral step length simplifies to

A¢ := max {/\min, min {/\max, W}} .

(Bkse—1,5¢0-1)
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15 | Spectral Projected Gradient Subproblem Solver

Projection onto C;: The projecton of x € H onto C; is given by

Pe(x + #*(x — x¢)) if ||Pe(x) — x| > Ag

e = { 5o i [Pe(x) — x| < A

where t* € [0,1] is any t € [0, 1] that satisfies

o(t) = [|Pe(xx + t(x — x¢)) — x|l — Ax = 0.

Here, ¢ is nondecreasing and continuous on [0, 1] with ¢(0) = —A, and ¢(1) > 0.

Can compute P¢, (x) by applying, e.g., Brent’s method to ¢(t).
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16 | Numerical Results Algorithmic Comparison

>

TRSPG: Convex-constrained trust-region method that uses the SPG subproblem solver.

Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Optimization
Online, 2021.

LMTR: Linearly-constrained trust-region method that uses truncated CG to approximately solve
the subproblem. TRON is a popular implementation for bound-constrained problems.

Lin and Moré, Newton’s method for large bound-constrained optimization problems, SIOPT, 1999.
PON: Line-search BFGS method that uses SPG to compute the projected quasi-Newton step.

Schmidt et al., Optimizing costly functions with simple constraints: A limited-memory projected
quasi-Newton algorithms, Proceedings of the 12th International Conference on AISTATS, 2009.

SpG: The nonmonotone spectral projected gradient method as previously described.
Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.

AL-TRSPG/AL-LMTR: Augmented Lagrangian using TRSPG and LMTR, respectively.

All methods are implemented in the Rapid Optimization Library!
https://trilinos.github.io/rol.html
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171 Numerical Results Experimental Setup

Constraint Set: The set C has the same form for all examples:
C={xecl?*Q)|a<x<b ae., (c,x)=d},
where Q C R" forn =2o0r3,a,b,c € L*(2),a<bae.,andd € R,
Projection Algorithm: Apply a secant method to the dual optimality conditions:
Find AeR such that (c,Ppp(x—Ac)) =d.

Dai and Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper
bounds, Math Programming, 2006.
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181 Numerical Results Elastic Topology Optimization

Let @ = (0,2) x (0,1) and v = 0.4, and consider

min [ T (5())c0)

pELX(Q)

subject to / plx)dx =102, 0<p<1 ae,
Q

T where S(p)) = u € (H'(2))? solves
-V -(K(p):e)=0 in Q
€= %(WJFWT) in Q
K(p) :en=T on T
u=20 only
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191 Numerical Results

Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s)
TRSPG 9 10 10 236 1200 16.49
LMTR 33 34 31 418 391 32.42
PON 126 235 127 -—— 4972 164.49
SPG 84 90 85 —-——= 170 52.36
AL-TRSPG 9 52 51 1153 ——= 61.98
AL-LMTR 11 276 263 4368 - 280.77
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20 | Numerical Results Elastic Topology Optimization

We now consider the 3D domain 2 = (0,2) x (0,1) x (0,1).
Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
» Helmbholtz Filter: Requires ~8 iterations to achieve the relative error of ~ 10712
— Considered to be exact.

> Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k f(x) [|de(1)]] [l — xe—1]| Ay fval grad hess proj obj tol grad tol
0 1.0000 4.017e-2 - 20 1 1 0 4 1.000e-2 1.000e-2
1 0.7156 1.771e-2 2.000el 50 2 2 28 96 1.000e-2 1.000e-2
2 0.4393 6.788e-3 5.000el 50 3 3 55 204 1.000e-2 1.000e-2
3 0.3168 2.853e-3 5.000el 125 4 4 82 405 1.000e-2 1.000e-2
4 0.1654 8.805e-4 1.250e2 125 5 5 109 639 1.000e-2 8.802e-3
5 0.1255 2.066e-5 1.250e2 125 6 6 143 707 1.000e-2 2.066e-4
6 0.1247 2.713e-6 6.272el 312.5 7 7 171 765 1.461le-4 2.713e-5

Recall: dk(t) = Pc(xk — i’gk) — Xk

Drew Kouri Sandia National Laboratories Convex-Constrained Trust-Region Newton



Numerical Results Elastic Topology Optimization

Filtered Density: 0.9 Countour

-06

0.5y Axis
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Numerical Results Diffuser Design
Let © = (0,1)? and v = 0.4, and consider

min / (V5u(p) - VSu(p) + a(p)Sulp) - Sulp)} d

pEL2(Q)

subject to / px)dx =92, 0<p<1 ae,
Q

l_‘wall

r_ where (Su(p), Sy(p)) = (u,p) € (H'(2))*> x L*(Q) solves

out

—vAu+u-Vu+ Vp = —a(p)u in Q
V-u=0 in
U = Uin on ',
u=20 on I'yan
vVi-n—pn=0 on Loyt
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23 Numerical ReSUItS Diffuser Design

Formulation: RAMP material model with @ = 2.5 x 10%, @ =2.5 x 10~* and g = 0.1, i.e.,

) p(L+q)
g+p
Discretization: Q2-Q1 FEM for state variables and piecewise constant for density.

Problem Size: 30,720 density degrees of freedom.

method iter fval grad hess proj time(s)
TRSPG 11 12 12 306 1600 724.76
LMTR 22 23 20 709 296 1487.11
PQON 84 85 85 --— 3076 1884.58
SPG 139 353 140 —-——= 280 4799.63
AL-TRSPG 5 22 22 437 -—— 1021.85
AL-LMTR 4 33 33 1151 --— 2302.32
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24
Conclusions:
» Numerical solution of infinite-dimensional problems requires expensive approximations

Often, the objective function and its gradient can only be computed inexactly
Convex-constrained trust region is provably convergent even with inexact computations
We can efficiently compute a trial step using the spectral projected gradient method
SPG trust-region subproblem solver is matrix free, but may require many projections onto C
Can we incorporate inexact projections (a la Garreis, Ulbrich, Birgin, et al.)?
SPG trust-region method outperforms existing derivative-based methods:

» Qutperforms SPG and PQN because it uses second-order information

> Outperforms LMTR because CG can terminate early, producing gradient-like steps

» QOutperforms AL-TRSPG/AL-LMTR methods by avoiding penalty function iterations

vVvyy
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