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3 Problem Formulation Inifinite-Dimensional Convex-Constrained Optimization

We consider the optimization problem

min
x∈H

f (x) subject to x ∈ C,

where:
I H is a Hilbert space;
I C ⊂ H is a nonempty, closed, and convex set;
I f : H→ R is a Fréchet differentiable function with Lipschitz continuous gradient.

Assumption: There exists γ ∈ R such that the level set Lγ is bounded, where

Lγ := {x ∈ C | f (x) ≤ γ}.

=⇒ The problem has a solution and we can replace C by the closed convex hull of Lγ .

Notation: PC(x) is the (unique) projection of x ∈ H onto C and is given by

PC(x) := arg min
y∈C

‖x− y‖H.
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4 Motivating Application Elastic Topology Optimization

  

u=0

K(ρ):εn=T

Given a domain Ω ⊂ Rd and a volume fraction v ∈ (0, 1),

min
ρ∈L2(Ω)

∫
Γt

T(x) · [S(ρ)](x) dx

subject to

∫
Ω

ρ(x) dx ≤ v|Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ)) = u ∈ (H1(Ω))d solves

−∇ · (K(ρ) : ε) = 0 in Ω

ε =
1
2

(∇u +∇u>) in Ω

K(ρ) : εn = T on Γt

u = 0 on Γd

Goal: Determine a binary ρ that is maximally stiff and that satisfies the volume constraint.
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5 Motivating Application Elastic Topology Optimization

Challenges:
1. Binary solutions are difficult to compute (i.e., mixed integer PDE-constrained

optimization);
2. Continuous (grey) solutions can be challenging to interpret (i.e., micro-structure,

alloys, etc.);
3. PDE can be extremely expensive to solve—difficult to prove convergence to

infinite-dimensional problem.

Common Solution: Solid Isotropic Material with Penalization

K(ρ) := K0 + (K1 − K0)ρ p for p > 1.

SIMP problem is highly nonconvex and has infinitely many solutions!

After discretization, SIMP can lead to checkerboard (i.e., mesh-dependent) designs!

Filtering: To enforce a length scale in the design, it is common to filter ρ← F(ρ),
where F : L2(Ω)→ L2(Ω) is a compact operator that perserves volume.
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6 Motivating Application An Illustrative Example

Consider the optimization problem

min
ρ∈R2

T[S(ρ)](1) subject to 1
2 (ρ1 + ρ2) ≤ v, 0 ≤ ρ1, ρ2 ≤ 1,

where S(ρ) = u solves

[K(ρ)u′]′ = 0 in (0, 1), u(0) = 0, [K(ρ)u′](1) = T,

and

[K(ρ)](x) =

{
k0 + (1− k0)ρ

p
1 if x < 0.5

k0 + (1− k0)ρ
p
2 if x > 0.5

.

For this problem, S(ρ) can be computed analytically as

[S(ρ)](x) =

{ Tx
k0+(1−k0)ρ

p
1

if x < 0.5
0.5T

k0+(1−k0)ρ
p
1
− T(x−0.5)

k0+(1−k0)ρ
p
2

if x < 0.5
.
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7 Motivating Application An Illustrative Example

Substituting the PDE solution into the objective function yields the optimization problem

min
ρ∈R2

T2

2

(
1

k0 + (1− k0)ρ
p
1

+
1

k0 + (1− k0)ρ
p
2

)
subject to 1

2 (ρ1+ρ2) ≤ v, 0 ≤ ρ1, ρ2 ≤ 1.

p = 1 p = 3

p = 1 is convex — p = 3 produces multiple local minima!
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8 Motivating Application Existing Methods

1. Optimality Criterion Method: A heuristic fixed-point iteration that is related to a
projected gradient method.
Bendsøe and Kikuchi, Generating optimal topologies in structural design using a homogenization method,
CMAME, 1988.

2. Method of Moving Asymptotes: A sequential convex optimization approach that
uses rational approximations of the objective and constraints. The dual subproblem is
commonly solved using nonlinear CG. This method is inherently finite dimensional.
Svanberg, The method of moving asymptotes—A new method for structural optimization, IJNME, 1987.

3. Augmented Lagrangian: Robust, yet minimizing the penalty function at each
iteration can be expensive.

4. Interior Points: Primal-dual line-search methods have been used succesfully.
However, nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!
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9 Trust-Regions for Convex Constraints Subproblem

Trust-Region Subproblem: At each iteration, we approximately solve

min
x∈H

mk(x) subject to x ∈ C, ‖x− xk‖ ≤ ∆k,

where ∆k > 0 is the radius and mk : H→ R is a model of the f near the iterate xk.

Generalized Cauchy Point: A point along the projected gradient path

sGCP
k := dk(tk) where dk(t) := PC(xk − tgk)− xk

and gk := ∇mk(xk), that satisfies both
1. Trust-Region Feasibility: ‖sGCP

k ‖ ≤ ν1∆k

2. Sufficient Model Decrease: mk(sGCP
k )−mk(xk) ≤ µ1(gk, sGCP

k )

and at least one of the following conditions
1. Sufficient Step Length: tk ≥ ν2t′k with mk(xk + dk(t′k))−mk(xk) ≥ µ2(gk, dk(t′k))
2. Sufficient Step Length: tk ≥ min{ν3∆k/‖gk‖, ν4}.
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10 Trust-Regions for Convex Constraints Algorithm

Require: An initial guess x0 ∈ C, initial trust-region radius ∆0 > 0, 0 < η1 < η2 < 1 and
0 < γ1 ≤ γ2 < 1

1: for k = 1, 2, . . . do
2: Cauchy Point Computation: Compute a generalized Cauchy point xGCP

k ∈ C
3: Step Computation: Compute a trial step xk+1 ∈ C that satisfies

mk(xk)−mk(xk+1) ≥ µ3(mk(xk)−mk(xGCP
k ))

4: Step Acceptance: Compute ratio of actual and predicted reduction:

ρk :=
f (xk)− f (xk+1)

mk(xk)−mk(xk+1)
< η1 =⇒ xk+1 ← xk

5: Update Trust-Region Radius: ∆k+1 ∈


[γ1∆k, γ2∆k] if ρk < η1

[γ2∆k,∆k] if ρk ∈ [η1, η2)

[∆k,∞) if ρk ≥ η2
6: end for
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11 Trust-Regions for Convex Constraints Convergence Theory and Inexactness

Convergence of the form

lim inf
k→∞

‖PC(xk −∇f (xk))− xk‖ = 0

was proved in Theorem 10 of
Toint, Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space, IMA
Journal of Numerical Analysis, 1988.

This theory permits inexact model gradients that satisfy, e.g., ∃κ > 0 such that

‖∇f (xk)− gk‖ ≤ κmin{‖PC(xk − gk)− xk‖,∆k}.

However, it does not account for inexact objective function evaluations!
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12 Trust-Regions for Convex Constraints Convergence Theory and Inexactness

In many applications, we can only hope to compute

fk(x) ≈ f (x) and ρk =
fk(xk)− fk(xk+1)

mk(xk)−mk(xk+1)
.

Fortunately, the inexact objective function criteria

|(f (xk)− f (xk+1))− (fk(xk)− fk(xk+1))| ≤ K(ηmin{mk(xk)−mk(xk+1), rk})1/ω,

where K > 0 and ω ∈ (0, 1) are fixed, η < min{η1, 1− η2} and rk ↘ 0, can be applied with
little change to the theory!

This condition was used for unconstrained problems in
Kouri, et al., Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization
under uncertainty, SISC, 2014.
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13 Spectral Projected Gradient Subproblem Solver
Spectral Projected Gradient: A first-order method that approximates second-order
information using a Barzilai-Borwein (spectral) step length.

Applied to our original optimization problem

min
x∈H

f (x) subject to x ∈ C,

the SPG method produces feasible iterations

xk+1 = xk + αksk where sk := (PC(xk − λk∇f (xk))− xk).

The step length αk > 0 is computed using a nonmonotone line search and the spectral
step length λk > 0 is computed as

λk := max

{
λmin,min

{
λmax,

αk(sk−1, sk−1)

(∇f (xk)−∇f (xk−1), sk−1)

}}
.

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.
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14 Spectral Projected Gradient Subproblem Solver
Model: For our trust-region method, we consider the quadratic model

mk(x) := 1
2 (Bk(x− xk), (x− xk)) + (gk, x− xk) + fk(xk),

where Bk : H→ H is linear operator that approximates the Hessian ∇2f (xk).

Feasible Set: The trust-region subproblem feasible set is

Ck := {x ∈ C | ‖x− xk‖ ≤ ∆k}.

SPG Iteration: xk,`+1 = xk,` + α`s` where s` = PCk (xk,` − λ`∇mk(xk,`))− xk,`

1. Start with xk,0 = xk + sGCP
k to ensure fraction of Caucy decrease;

2. Use exact line search to determine α` step length;
3. Spectral step length simplifies to

λ` := max

{
λmin,min

{
λmax,

(s`−1, s`−1)

(Bks`−1, s`−1)

}}
.
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15 Spectral Projected Gradient Subproblem Solver

Projection onto Ck: The projecton of x ∈ H onto Ck is given by

PCk (x) =

{
PC(x) if ‖PC(x)− xk‖ ≤ ∆k
PC(xk + t?(x− xk)) if ‖PC(x)− xk‖ > ∆k

,

where t? ∈ [0, 1] is any t ∈ [0, 1] that satisfies

φ(t) := ‖PC(xk + t(x− xk))− xk‖ −∆k = 0.

Here, φ is nondecreasing and continuous on [0, 1] with φ(0) = −∆k and φ(1) > 0.

Can compute PCk (x) by applying, e.g., Brent’s method to φ(t).
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16 Numerical Results Algorithmic Comparison

I TRSPG: Convex-constrained trust-region method that uses the SPG subproblem solver.

Kouri, A matrix-free trust-region Newton algorithm for convex-constrained optimization, Optimization
Online, 2021.

I LMTR: Linearly-constrained trust-region method that uses truncated CG to approximately solve
the subproblem. TRON is a popular implementation for bound-constrained problems.

Lin and Moré, Newton’s method for large bound-constrained optimization problems, SIOPT, 1999.

I PQN: Line-search BFGS method that uses SPG to compute the projected quasi-Newton step.

Schmidt et al., Optimizing costly functions with simple constraints: A limited-memory projected
quasi-Newton algorithms, Proceedings of the 12th International Conference on AISTATS, 2009.

I SPG: The nonmonotone spectral projected gradient method as previously described.

Birgin, et al., Nonmonotone spectral projected gradient methods on convex sets, SIOPT, 2000.

I AL-TRSPG/AL-LMTR: Augmented Lagrangian using TRSPG and LMTR, respectively.

All methods are implemented in the Rapid Optimization Library!
https://trilinos.github.io/rol.html
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17 Numerical Results Experimental Setup

Constraint Set: The set C has the same form for all examples:

C = {x ∈ L2(Ω) | a ≤ x ≤ b a.e., (c, x) = d},

where Ω ⊂ Rn for n = 2 or 3, a, b, c ∈ L2(Ω), a ≤ b a.e., and d ∈ R.

Projection Algorithm: Apply a secant method to the dual optimality conditions:

Find λ ∈ R such that (c,P[a,b](x− λc)) = d.

Dai and Fletcher, New algorithms for singly linearly constrained quadratic programs subject to lower and upper
bounds, Math Programming, 2006.
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18 Numerical Results Elastic Topology Optimization

  

Ω Γt

Γd

Let Ω = (0, 2)× (0, 1) and v = 0.4, and consider

min
ρ∈L2(Ω)

∫
Γt

T(x) · [S(ρ)](x) dx

subject to

∫
Ω

ρ(x) dx = v|Ω|, 0 ≤ ρ ≤ 1 a.e.,

where S(ρ)) = u ∈ (H1(Ω))2 solves

−∇ · (K(ρ) : ε) = 0 in Ω

ε =
1
2

(∇u +∇u>) in Ω

K(ρ) : εn = T on Γt

u = 0 on Γd
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19 Numerical Results Elastic Topology Optimization

Formulation: SIMP power p = 3 with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method iter fval grad hess proj time(s)
TRSPG 9 10 10 236 1200 16.49
LMTR 33 34 31 418 391 32.42
PQN 126 235 127 --- 4972 164.49
SPG 84 90 85 --- 170 52.36
AL-TRSPG 9 52 51 1153 --- 61.98
AL-LMTR 11 276 263 4368 --- 280.77
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20 Numerical Results Elastic Topology Optimization

We now consider the 3D domain Ω = (0, 2)× (0, 1)× (0, 1).

Problem Size: 221,184 density degrees of freedom.

Inexact Solves: Solve using CG with AMG preconditioning.
I Helmholtz Filter: Requires ∼8 iterations to achieve the relative error of ∼ 10−12

— Considered to be exact.

I Elasticity Equations: Trust-region algorithm controls accuracy of linear solver.

k f (xk) ‖dk(1)‖ ‖xk − xk−1‖ ∆k fval grad hess proj obj tol grad tol
0 1.0000 4.017e-2 --- 20 1 1 0 4 1.000e-2 1.000e-2
1 0.7156 1.771e-2 2.000e1 50 2 2 28 96 1.000e-2 1.000e-2
2 0.4393 6.788e-3 5.000e1 50 3 3 55 204 1.000e-2 1.000e-2
3 0.3168 2.853e-3 5.000e1 125 4 4 82 405 1.000e-2 1.000e-2
4 0.1654 8.805e-4 1.250e2 125 5 5 109 639 1.000e-2 8.802e-3
5 0.1255 2.066e-5 1.250e2 125 6 6 143 707 1.000e-2 2.066e-4
6 0.1247 2.713e-6 6.272e1 312.5 7 7 171 765 1.461e-4 2.713e-5

Recall: dk(t) := PC(xk − tgk)− xk
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21 Numerical Results Elastic Topology Optimization

Filtered Density: 0.9 Countour
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22 Numerical Results Diffuser Design

  

Ω ΓoutΓin

Γwall

Let Ω = (0, 1)2 and v = 0.4, and consider

min
ρ∈L2(Ω)

∫
Ω

{∇Su(ρ) · ∇Su(ρ) + α(ρ)Su(ρ) · Su(ρ)}dx

subject to

∫
Ω

ρ(x) dx = v|Ω|, 0 ≤ ρ ≤ 1 a.e.,

where (Su(ρ),Sp(ρ)) = (u, p) ∈ (H1(Ω))2 × L2(Ω) solves

−ν∆u + u · ∇u +∇p = −α(ρ)u in Ω

∇ · u = 0 in Ω

u = uin on Γin

u = 0 on Γwall

ν∇u · n− pn = 0 on Γout
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23 Numerical Results Diffuser Design

Formulation: RAMP material model with α = 2.5× 104, α = 2.5× 10−4 and q = 0.1, i.e.,

α(ρ) = α+ (α− α)
ρ(1 + q)

q + ρ
.

Discretization: Q2–Q1 FEM for state variables and piecewise constant for density.

Problem Size: 30,720 density degrees of freedom.

method iter fval grad hess proj time(s)
TRSPG 11 12 12 306 1600 724.76
LMTR 22 23 20 709 296 1487.11
PQN 84 85 85 --- 3076 1884.58
SPG 139 353 140 --- 280 4799.63
AL-TRSPG 5 22 22 437 --- 1021.85
AL-LMTR 4 33 33 1151 --- 2302.32
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24

Conclusions:
I Numerical solution of infinite-dimensional problems requires expensive approximations
I Often, the objective function and its gradient can only be computed inexactly
I Convex-constrained trust region is provably convergent even with inexact computations
I We can efficiently compute a trial step using the spectral projected gradient method
I SPG trust-region subproblem solver is matrix free, but may require many projections onto C

Can we incorporate inexact projections (à la Garreis, Ulbrich, Birgin, et al.)?
I SPG trust-region method outperforms existing derivative-based methods:

I Outperforms SPG and PQN because it uses second-order information
I Outperforms LMTR because CG can terminate early, producing gradient-like steps
I Outperforms AL-TRSPG/AL-LMTR methods by avoiding penalty function iterations
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