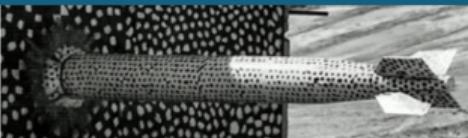


National
Laboratories

An Inexact Trust-Region Newton Method for Large-Scale Convex-Constrained Optimization



Drew P. Kouri

SIAM Conference on Optimization

Virtual

1. Problem Formulation
2. Motivating Application
3. Trust-Regions for Convex Constraints
4. Spectral Projected Gradient Subproblem Solver
5. Numerical Results

3 Problem Formulation

We consider the optimization problem

$$\min_{x \in H} f(x) \quad \text{subject to} \quad x \in \mathcal{C},$$

where:

- ▶ H is a Hilbert space;
- ▶ $\mathcal{C} \subset H$ is a nonempty, closed, and convex set;
- ▶ $f : H \rightarrow \mathbb{R}$ is a Fréchet differentiable function with Lipschitz continuous gradient.

Assumption: There exists $\gamma \in \mathbb{R}$ such that the level set L_γ is bounded, where

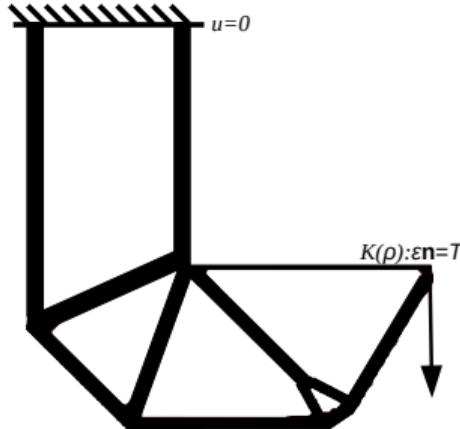
$$L_\gamma := \{x \in \mathcal{C} \mid f(x) \leq \gamma\}.$$

⇒ The problem has a solution and we can replace \mathcal{C} by the closed convex hull of L_γ .

Notation: $\mathbf{P}_{\mathcal{C}}(x)$ is the (unique) projection of $x \in H$ onto \mathcal{C} and is given by

$$\mathbf{P}_{\mathcal{C}}(x) := \arg \min_{y \in \mathcal{C}} \|x - y\|_H.$$

Given a domain $\Omega \subset \mathbb{R}^d$ and a volume fraction $v \in (0, 1)$,



$$\begin{aligned} & \min_{\rho \in L^2(\Omega)} \int_{\Gamma_t} T(x) \cdot [S(\rho)](x) \, dx \\ & \text{subject to} \quad \int_{\Omega} \rho(x) \, dx \leq v|\Omega|, \quad 0 \leq \rho \leq 1 \text{ a.e.}, \end{aligned}$$

where $S(\rho) = u \in (H^1(\Omega))^d$ solves

$$\begin{aligned} -\nabla \cdot (K(\rho) : \varepsilon) &= 0 && \text{in } \Omega \\ \varepsilon &= \frac{1}{2}(\nabla u + \nabla u^\top) && \text{in } \Omega \\ K(\rho) : \varepsilon \mathbf{n} &= T && \text{on } \Gamma_t \\ u &= 0 && \text{on } \Gamma_d \end{aligned}$$

Goal: Determine a **binary** ρ that is maximally stiff and that satisfies the volume constraint.

Challenges:

1. Binary solutions are difficult to compute (i.e., mixed integer PDE-constrained optimization);
2. Continuous (grey) solutions can be challenging to interpret (i.e., micro-structure, alloys, etc.);
3. PDE can be extremely expensive to solve—difficult to prove convergence to infinite-dimensional problem.

Common Solution: Solid Isotropic Material with Penalization

$$K(\rho) := K_0 + (K_1 - K_0)\rho^p \quad \text{for } p > 1.$$

SIMP problem is **highly nonconvex** and has **infinitely many solutions!**

After discretization, SIMP can lead to **checkerboard (i.e., mesh-dependent) designs!**

Filtering: To enforce a length scale in the design, it is common to filter $\rho \leftarrow F(\rho)$, where $F : L^2(\Omega) \rightarrow L^2(\Omega)$ is a compact operator that preserves volume.

Consider the optimization problem

$$\min_{\rho \in \mathbb{R}^2} T[S(\rho)](1) \quad \text{subject to} \quad \frac{1}{2}(\rho_1 + \rho_2) \leq v, \quad 0 \leq \rho_1, \rho_2 \leq 1,$$

where $S(\rho) = u$ solves

$$[K(\rho)u']' = 0 \quad \text{in } (0, 1), \quad u(0) = 0, \quad [K(\rho)u'](1) = T,$$

and

$$[K(\rho)](x) = \begin{cases} k_0 + (1 - k_0)\rho_1^p & \text{if } x < 0.5 \\ k_0 + (1 - k_0)\rho_2^p & \text{if } x > 0.5 \end{cases}.$$

For this problem, $S(\rho)$ can be computed analytically as

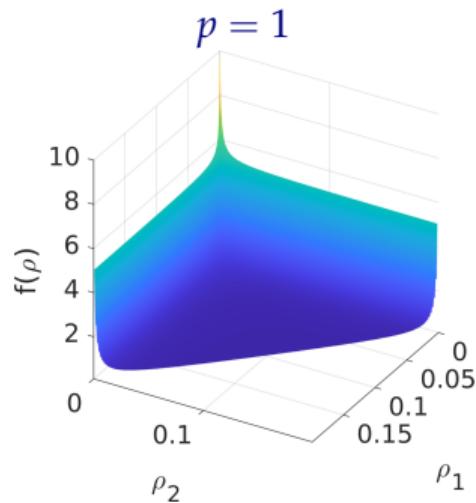
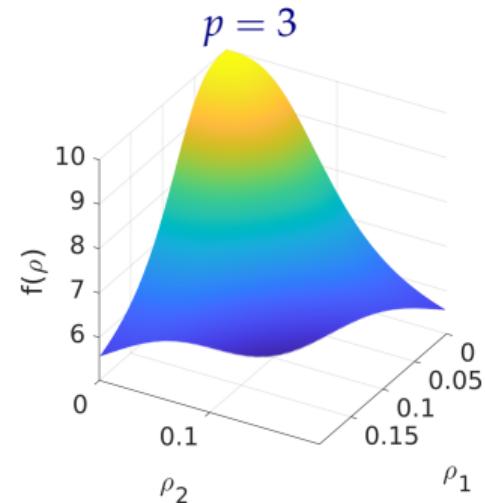
$$[S(\rho)](x) = \begin{cases} \frac{Tx}{k_0 + (1 - k_0)\rho_1^p} & \text{if } x < 0.5 \\ \frac{0.5T}{k_0 + (1 - k_0)\rho_1^p} - \frac{T(x-0.5)}{k_0 + (1 - k_0)\rho_2^p} & \text{if } x < 0.5 \end{cases}.$$

Motivating Application

An Illustrative Example

Substituting the PDE solution into the objective function yields the optimization problem

$$\min_{\rho \in \mathbb{R}^2} \frac{T^2}{2} \left(\frac{1}{k_0 + (1 - k_0)\rho_1^p} + \frac{1}{k_0 + (1 - k_0)\rho_2^p} \right) \quad \text{subject to} \quad \frac{1}{2}(\rho_1 + \rho_2) \leq v, \quad 0 \leq \rho_1, \rho_2 \leq 1.$$



$p = 1$ is convex — $p = 3$ produces multiple local minima!

1. **Optimality Criterion Method:** A **heuristic** fixed-point iteration that is related to a projected gradient method.
Bendsøe and Kikuchi, [Generating optimal topologies in structural design using a homogenization method, CMAME, 1988.](#)
2. **Method of Moving Asymptotes:** A sequential convex optimization approach that uses rational approximations of the objective and constraints. The dual subproblem is commonly solved using nonlinear CG. This method is inherently **finite dimensional**.
Svanberg, [The method of moving asymptotes—A new method for structural optimization, IJNME, 1987.](#)
3. **Augmented Lagrangian:** Robust, yet minimizing the penalty function at each iteration can be expensive.
4. **Interior Points:** Primal-dual line-search methods have been used successfully. However, nonconvexity can lead to expensive inertia correction.

It can be extremely difficult to incorporate inexactness in these methods!

Trust-Region Subproblem: At each iteration, we approximately solve

$$\min_{x \in H} m_k(x) \quad \text{subject to} \quad x \in \mathcal{C}, \quad \|x - x_k\| \leq \Delta_k,$$

where $\Delta_k > 0$ is the radius and $m_k : H \rightarrow \mathbb{R}$ is a model of the f near the iterate x_k .

Generalized Cauchy Point: A point along the projected gradient path

$$s_k^{\text{GCP}} := d_k(t_k) \quad \text{where} \quad d_k(t) := \mathbf{P}_{\mathcal{C}}(x_k - tg_k) - x_k$$

and $g_k := \nabla m_k(x_k)$, that satisfies both

1. **Trust-Region Feasibility:** $\|s_k^{\text{GCP}}\| \leq \nu_1 \Delta_k$
2. **Sufficient Model Decrease:** $m_k(s_k^{\text{GCP}}) - m_k(x_k) \leq \mu_1(g_k, s_k^{\text{GCP}})$

and at least one of the following conditions

1. **Sufficient Step Length:** $t_k \geq \nu_2 t'_k$ with $m_k(x_k + d_k(t'_k)) - m_k(x_k) \geq \mu_2(g_k, d_k(t'_k))$
2. **Sufficient Step Length:** $t_k \geq \min\{\nu_3 \Delta_k / \|g_k\|, \nu_4\}$.

Trust-Regions for Convex Constraints

Require: An initial guess $x_0 \in \mathcal{C}$, initial trust-region radius $\Delta_0 > 0$, $0 < \eta_1 < \eta_2 < 1$ and $0 < \gamma_1 \leq \gamma_2 < 1$

1: **for** $k = 1, 2, \dots$ **do**

2: **Cauchy Point Computation:** Compute a generalized Cauchy point $x_k^{\text{GCP}} \in \mathcal{C}$

3: **Step Computation:** Compute a trial step $x_{k+1} \in \mathcal{C}$ that satisfies

$$m_k(x_k) - m_k(x_{k+1}) \geq \mu_3(m_k(x_k) - m_k(x_k^{\text{GCP}}))$$

4: **Step Acceptance:** Compute ratio of actual and predicted reduction:

$$\rho_k := \frac{f(x_k) - f(x_{k+1})}{m_k(x_k) - m_k(x_{k+1})} < \eta_1 \quad \implies \quad x_{k+1} \leftarrow x_k$$

5: **Update Trust-Region Radius:** $\Delta_{k+1} \in \begin{cases} [\gamma_1 \Delta_k, \gamma_2 \Delta_k] & \text{if } \rho_k < \eta_1 \\ [\gamma_2 \Delta_k, \Delta_k] & \text{if } \rho_k \in [\eta_1, \eta_2) \\ [\Delta_k, \infty) & \text{if } \rho_k \geq \eta_2 \end{cases}$

6: **end for**

Convergence of the form

$$\liminf_{k \rightarrow \infty} \|\mathbf{P}_{\mathcal{C}}(x_k - \nabla f(x_k)) - x_k\| = 0$$

was proved in Theorem 10 of

Toint, [Global convergence of a class of trust-region methods for nonconvex minimization in Hilbert space](#), IMA Journal of Numerical Analysis, 1988.

This theory permits **inexact model gradients** that satisfy, e.g., $\exists \kappa > 0$ such that

$$\|\nabla f(x_k) - g_k\| \leq \kappa \min\{\|\mathbf{P}_{\mathcal{C}}(x_k - g_k) - x_k\|, \Delta_k\}.$$

However, it does not account for **inexact objective function evaluations!**

In many applications, we can only hope to compute

$$f_k(x) \approx f(x) \quad \text{and} \quad \rho_k = \frac{f_k(x_k) - f_k(x_{k+1})}{m_k(x_k) - m_k(x_{k+1})}.$$

Fortunately, the **inexact objective function** criteria

$$|(f(x_k) - f(x_{k+1})) - (f_k(x_k) - f_k(x_{k+1}))| \leq K(\eta \min\{m_k(x_k) - m_k(x_{k+1}), r_k\})^{1/\omega},$$

where $K > 0$ and $\omega \in (0, 1)$ are fixed, $\eta < \min\{\eta_1, 1 - \eta_2\}$ and $r_k \searrow 0$, can be applied with **little change to the theory!**

This condition was used for unconstrained problems in

Kouri, et al., **Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty**, SISC, 2014.

Spectral Projected Gradient Subproblem Solver

Spectral Projected Gradient: A first-order method that approximates second-order information using a Barzilai-Borwein (spectral) step length.

Applied to our original optimization problem

$$\min_{x \in H} f(x) \quad \text{subject to} \quad x \in \mathcal{C},$$

the SPG method produces feasible iterations

$$x_{k+1} = x_k + \alpha_k s_k \quad \text{where} \quad s_k := (\mathbf{P}_{\mathcal{C}}(x_k - \lambda_k \nabla f(x_k)) - x_k).$$

The step length $\alpha_k > 0$ is computed using a nonmonotone line search and the spectral step length $\lambda_k > 0$ is computed as

$$\lambda_k := \max \left\{ \lambda_{\min}, \min \left\{ \lambda_{\max}, \frac{\alpha_k(s_{k-1}, s_{k-1})}{(\nabla f(x_k) - \nabla f(x_{k-1}), s_{k-1})} \right\} \right\}.$$

Birgin, et al., [Nonmonotone spectral projected gradient methods on convex sets](#), SIOPT, 2000.

Spectral Projected Gradient Subproblem Solver

Model: For our trust-region method, we consider the quadratic model

$$m_k(x) := \frac{1}{2}(B_k(x - x_k), (x - x_k)) + (g_k, x - x_k) + f_k(x_k),$$

where $B_k : H \rightarrow H$ is linear operator that approximates the Hessian $\nabla^2 f(x_k)$.

Feasible Set: The trust-region subproblem feasible set is

$$\mathcal{C}_k := \{x \in \mathcal{C} \mid \|x - x_k\| \leq \Delta_k\}.$$

SPG Iteration: $x_{k,\ell+1} = x_{k,\ell} + \alpha_\ell s_\ell$ where $s_\ell = \mathbf{P}_{\mathcal{C}_k}(x_{k,\ell} - \lambda_\ell \nabla m_k(x_{k,\ell})) - x_{k,\ell}$

1. Start with $x_{k,0} = x_k + s_k^{\text{GCP}}$ to ensure fraction of Cauchy decrease;
2. Use exact line search to determine α_ℓ step length;
3. Spectral step length simplifies to

$$\lambda_\ell := \max \left\{ \lambda_{\min}, \min \left\{ \lambda_{\max}, \frac{(s_{\ell-1}, s_{\ell-1})}{(B_k s_{\ell-1}, s_{\ell-1})} \right\} \right\}.$$

Spectral Projected Gradient Subproblem Solver

Projection onto \mathcal{C}_k : The projector of $x \in H$ onto \mathcal{C}_k is given by

$$\mathbf{P}_{\mathcal{C}_k}(x) = \begin{cases} \mathbf{P}_{\mathcal{C}}(x) & \text{if } \|\mathbf{P}_{\mathcal{C}}(x) - x_k\| \leq \Delta_k \\ \mathbf{P}_{\mathcal{C}}(x_k + t^*(x - x_k)) & \text{if } \|\mathbf{P}_{\mathcal{C}}(x) - x_k\| > \Delta_k \end{cases},$$

where $t^* \in [0, 1]$ is any $t \in [0, 1]$ that satisfies

$$\phi(t) := \|\mathbf{P}_{\mathcal{C}}(x_k + t(x - x_k)) - x_k\| - \Delta_k = 0.$$

Here, ϕ is nondecreasing and continuous on $[0, 1]$ with $\phi(0) = -\Delta_k$ and $\phi(1) > 0$.

Can compute $\mathbf{P}_{\mathcal{C}_k}(x)$ by applying, e.g., Brent's method to $\phi(t)$.

- ▶ TRSPG: Convex-constrained trust-region method that uses the SPG subproblem solver.
Kouri, [A matrix-free trust-region Newton algorithm for convex-constrained optimization](#), Optimization Online, 2021.
- ▶ LMTR: Linearly-constrained trust-region method that uses truncated CG to approximately solve the subproblem. TRON is a popular implementation for bound-constrained problems.
Lin and Moré, [Newton's method for large bound-constrained optimization problems](#), SIOPT, 1999.
- ▶ PQN: Line-search BFGS method that uses SPG to compute the projected quasi-Newton step.
Schmidt et al., [Optimizing costly functions with simple constraints: A limited-memory projected quasi-Newton algorithms](#), Proceedings of the 12th International Conference on AISTATS, 2009.
- ▶ SPG: The nonmonotone spectral projected gradient method as previously described.
Birgin, et al., [Nonmonotone spectral projected gradient methods on convex sets](#), SIOPT, 2000.
- ▶ AL-TRSPG/AL-LMTR: Augmented Lagrangian using TRSPG and LMTR, respectively.

All methods are implemented in the Rapid Optimization Library!

<https://trilinos.github.io/rol.html>

Constraint Set: The set \mathcal{C} has the same form for all examples:

$$\mathcal{C} = \{x \in L^2(\Omega) \mid a \leq x \leq b \text{ a.e., } (c, x) = d\},$$

where $\Omega \subset \mathbb{R}^n$ for $n = 2$ or 3 , $a, b, c \in L^2(\Omega)$, $a \leq b$ a.e., and $d \in \mathbb{R}$.

Projection Algorithm: Apply a *secant* method to the dual optimality conditions:

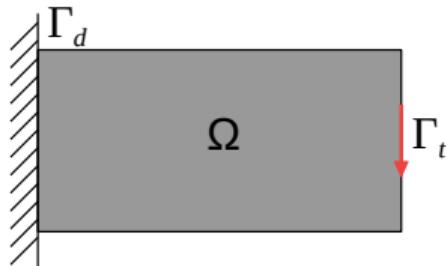
$$\text{Find } \lambda \in \mathbb{R} \text{ such that } (c, \mathbf{P}_{[a,b]}(x - \lambda c)) = d.$$

Dai and Fletcher, [New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds](#), Math Programming, 2006.

Let $\Omega = (0, 2) \times (0, 1)$ and $v = 0.4$, and consider

$$\min_{\rho \in L^2(\Omega)} \int_{\Gamma_t} T(x) \cdot [S(\rho)](x) \, dx$$

subject to $\int_{\Omega} \rho(x) \, dx = v|\Omega|, \quad 0 \leq \rho \leq 1 \text{ a.e.},$



where $S(\rho) = u \in (H^1(\Omega))^2$ solves

$$-\nabla \cdot (K(\rho) : \varepsilon) = 0 \quad \text{in } \Omega$$

$$\varepsilon = \frac{1}{2}(\nabla u + \nabla u^\top) \quad \text{in } \Omega$$

$$K(\rho) : \varepsilon \mathbf{n} = T \quad \text{on } \Gamma_t$$

$$u = 0 \quad \text{on } \Gamma_d$$

Formulation: SIMP power $p = 3$ with Helmholtz filtering (radius= 0.1).

Discretization: Q1 FEM for displacement variables and piecewise constant for density.

Problem Size: 26,880 density degrees of freedom.

method	iter	fval	grad	hess	proj	time (s)
TRSPG	9	10	10	236	1200	16.49
LMTR	33	34	31	418	391	32.42
PQN	126	235	127	---	4972	164.49
SPG	84	90	85	---	170	52.36
AL-TRSPG	9	52	51	1153	---	61.98
AL-LMTR	11	276	263	4368	---	280.77

We now consider the 3D domain $\Omega = (0, 2) \times (0, 1) \times (0, 1)$.

Problem Size: 221,184 density degrees of freedom.

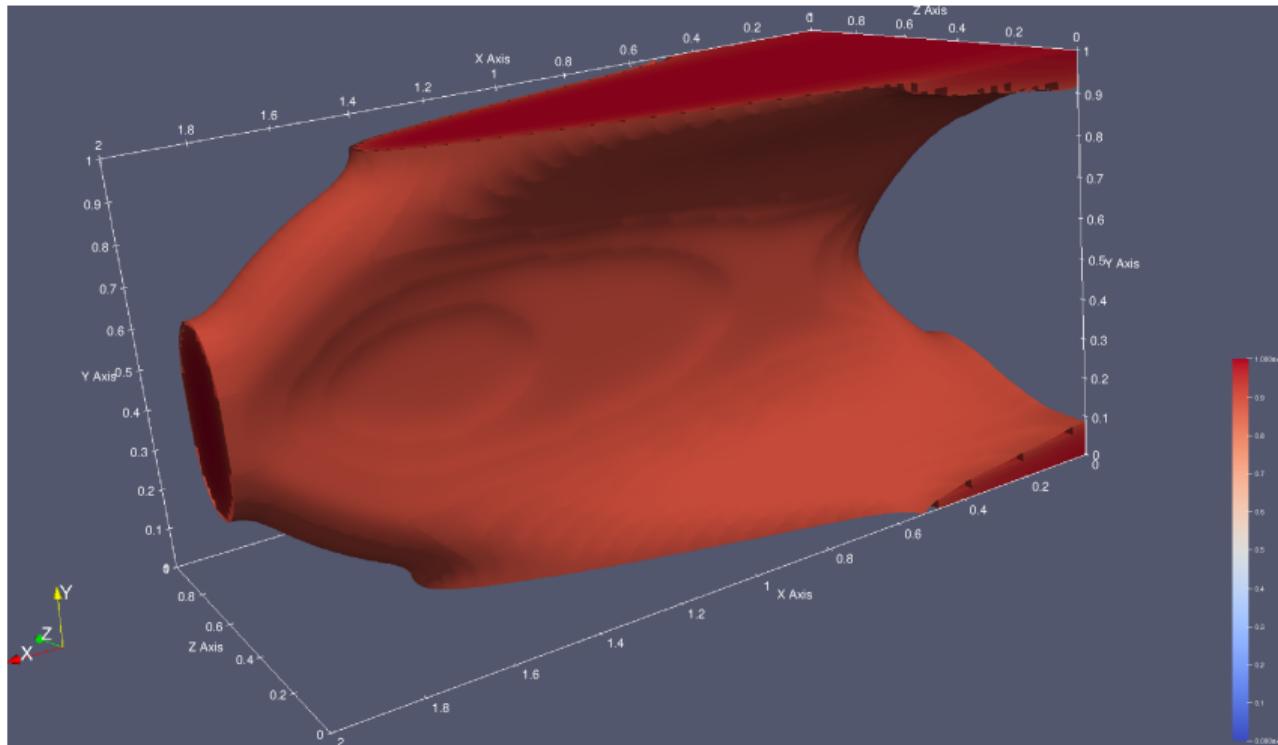
Inexact Solves: Solve using CG with AMG preconditioning.

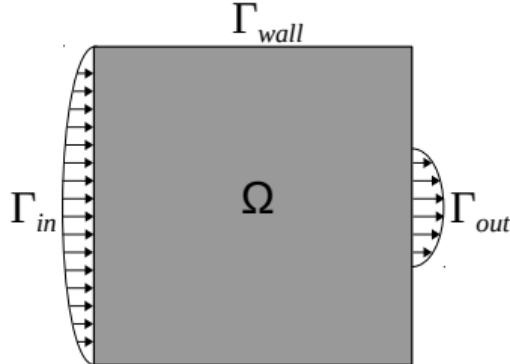
- ▶ **Helmholtz Filter:** Requires ~ 8 iterations to achieve the relative error of $\sim 10^{-12}$
 - Considered to be **exact**.
- ▶ **Elasticity Equations:** Trust-region algorithm controls accuracy of linear solver.

k	$f(x_k)$	$\ d_k(1)\ $	$\ x_k - x_{k-1}\ $	Δ_k	fval	grad	hess	proj	obj tol	grad tol
0	1.0000	4.017e-2	---	20	1	1	0	4	1.000e-2	1.000e-2
1	0.7156	1.771e-2	2.000e1	50	2	2	28	96	1.000e-2	1.000e-2
2	0.4393	6.788e-3	5.000e1	50	3	3	55	204	1.000e-2	1.000e-2
3	0.3168	2.853e-3	5.000e1	125	4	4	82	405	1.000e-2	1.000e-2
4	0.1654	8.805e-4	1.250e2	125	5	5	109	639	1.000e-2	8.802e-3
5	0.1255	2.066e-5	1.250e2	125	6	6	143	707	1.000e-2	2.066e-4
6	0.1247	2.713e-6	6.272e1	312.5	7	7	171	765	1.461e-4	2.713e-5

Recall: $d_k(t) := \mathbf{P}_C(x_k - tg_k) - x_k$

Filtered Density: 0.9 Contour





Let $\Omega = (0, 1)^2$ and $v = 0.4$, and consider

$$\begin{aligned} & \min_{\rho \in L^2(\Omega)} \int_{\Omega} \{ \nabla S_u(\rho) \cdot \nabla S_u(\rho) + \alpha(\rho) S_u(\rho) \cdot S_u(\rho) \} \, dx \\ & \text{subject to} \quad \int_{\Omega} \rho(x) \, dx = v|\Omega|, \quad 0 \leq \rho \leq 1 \text{ a.e.}, \end{aligned}$$

where $(S_u(\rho), S_p(\rho)) = (u, p) \in (H^1(\Omega))^2 \times L^2(\Omega)$ solves

$$\begin{aligned} -\nu \Delta u + u \cdot \nabla u + \nabla p &= -\alpha(\rho)u && \text{in } \Omega \\ \nabla \cdot u &= 0 && \text{in } \Omega \\ u &= u_{\text{in}} && \text{on } \Gamma_{\text{in}} \\ u &= 0 && \text{on } \Gamma_{\text{wall}} \\ \nu \nabla u \cdot \mathbf{n} - p \mathbf{n} &= 0 && \text{on } \Gamma_{\text{out}} \end{aligned}$$

Formulation: RAMP material model with $\bar{\alpha} = 2.5 \times 10^4$, $\underline{\alpha} = 2.5 \times 10^{-4}$ and $q = 0.1$, i.e.,

$$\alpha(\rho) = \bar{\alpha} + (\underline{\alpha} - \bar{\alpha}) \frac{\rho(1+q)}{q+\rho}.$$

Discretization: Q2–Q1 FEM for state variables and piecewise constant for density.

Problem Size: 30,720 density degrees of freedom.

method	iter	fval	grad	hess	proj	time (s)
TRSPG	11	12	12	306	1600	724.76
LMTR	22	23	20	709	296	1487.11
PQN	84	85	85	---	3076	1884.58
SPG	139	353	140	---	280	4799.63
AL-TRSPG	5	22	22	437	---	1021.85
AL-LMTR	4	33	33	1151	---	2302.32

Conclusions:

- ▶ **Numerical solution** of infinite-dimensional problems requires **expensive approximations**
- ▶ Often, the objective function and its gradient can only be computed **inexactly**
- ▶ Convex-constrained trust region is **provably convergent** even with **inexact computations**
- ▶ **We can efficiently compute a trial step using the spectral projected gradient method**
- ▶ SPG trust-region subproblem solver is **matrix free**, but may **require** many projections onto \mathcal{C}
Can we incorporate inexact projections (à la Garreis, Ulbrich, Birgin, et al.)?
- ▶ SPG trust-region method **outperforms** existing derivative-based methods:
 - ▶ Outperforms SPG and PQN because it uses second-order information
 - ▶ Outperforms LMTR because CG can terminate early, producing gradient-like steps
 - ▶ Outperforms AL-TRSPG/AL-LMTR methods by avoiding penalty function iterations

References:

- ▶ D. P. Kouri, **A matrix-free trust-region Newton algorithm for convex-constrained optimization**, Optimization Online, 2021.
- ▶ D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, **Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty**, SISC, 2014.