

LA-UR-21-30153

Approved for public release; distribution is unlimited.

Title: Sensitivity/Uncertainty Comparison Study Involving IRSN, LANL, and ORNL Tools to Support Validation

Author(s): Alwin, Jennifer Louise
Clarity, Justin
Fernex, Frederic
Leal, Luiz
Leclaire, Nicolas
Marshall, B.J.
Rising, Michael Evan
Spencer, Kristina
MacQuigg, Michael Robert
Saylor, Ellen

Intended for: ANS Nuclear Criticality Safety Division Topical Meeting, 2022-06-12
(Anaheim, California, United States)

Issued: 2021-10-13 (Draft)

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Sensitivity/Uncertainty Comparison Study Involving IRSN, LANL, and ORNL Tools to Support Validation

Jennifer Alwin¹, Justin Clarity³, Frédéric Fernex², Luiz Leal², Nicolas Leclaire², Robbie Macquigg¹, B.J. Marshall³, Michael Rising¹, Ellen Saylor³, Kristina Spencer^{1,4}

¹*Los Alamos National Laboratory, Los Alamos, NM, USA, jalwin@lanl.gov*

²*Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France,
nicolas.leclaire@irsn.fr*

³*Oak Ridge National Laboratory, Oak Ridge, TN, USA, saylorem@ornl.gov*

⁴*Currently at Idaho National Laboratory, Idaho Falls, ID, USA, Kristina.Spencer@inl.gov*

Under a DOE Nuclear Criticality Safety Program (NCSP) task involving Analytical Methods [1], three Laboratories collaborated in a comparison of results obtained from Sensitivity/Uncertainty (S/U) packages relevant to validation of transport codes. The task involves Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Los Alamos National Laboratory (LANL), and Oak Ridge National Laboratory (ORNL) comparing results of MORET 5/MACSENS V3.0, MCNP6.2/Whisper-1.1, and SCALE 6.2.3/TSUNAMI/USLSTATS respectively. All Monte Carlo transport code results utilize nuclear data from ENDF/B-VII.1 evaluation.

This study examines five cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) [2] selected as application models: IEU-MET-FAST-002-001, LEU-COMP-THERM-001-001, LEU-SOL-THERM-004-001, MIX-COMP-THERM-001-001, and U233-SOL-THERM-001-001. This is a continuation of a previous study [3] to examine Pu and HEU cases: HEU-MET-FAST-013-001, HEU-SOL-THERM-001-008, PU-MET-FAST-022-001, and PU-SOL-THERM-001-001. Ultimately, comparison is made between Upper Subcritical Limits (USLs) obtained using each code package for each application case. Since differences exist in whether packages take into account margin of subcriticality (MOS), the USL is computed using only bias and bias uncertainty, also known as the calculational margin (CM) in ANSI/ANS-8.24 [4]. Results comparison appears to show that benchmark selection has a greater influence on the USL than the method used for calculation of bias and bias uncertainty.

- [1] The Mission and Vision of the United States Department of Energy Nuclear Criticality Safety Program, <https://ncsp.llnl.gov>
- [2] International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03/I, Volume I, 2020 edition.
- [3] J. Alwin, et al., “S/U Comparison Study with a Focus on USLs”, American Nuclear Society Transactions V123, N1, pp. 780-783, (2019).
- [4] ANSI/ANS-8.24-2017, “Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations,” American Nuclear Society. La Grange Park, Illinois (2017).