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Challenges in Compressible Turbulence Simulations

Growing computational power => Higher engineering fidelity simulations possible
• Large-Eddy Simulations
• Direct Numerical Simulations

Challenges
• Resolving turbulence in under-resolved mesh
• Shock capturing
• Explicit time integration
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Why Entropy Stable Scheme

For nonlinear governing equations

• Generalized Summation-by-Parts operators1 for conservation

• Provable stability
• Two-point entropy stable inviscid flux
• Entropy stable viscous flux
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1. DCCRey Fernandez, JCP 2014



Entropy Stable Schemes

Entropy stable high-order finite difference

• Summation-by-Parts (SBP) method

• Multi-block structured mesh

• Generalized SBP operator 
• Cell-centered scheme
• Offers stronger inter-block coupling

• Node-centered scheme

• Dissipation mechanisms for shock 
capturing
• Hybrid WENO scheme
• Artificial viscosity
• Artificial dissipation
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Entropy stable spectral collocation method

• Summation-by-Parts (SBP) method

• Unstructured mesh 

• Tensor product elements
• Legendre-Gauss 
• Legendre-Gauss-Lobatto solution points

• Dissipation mechanisms for shock 
capturing
• Inter-element penalty
• Artificial viscosity



Taylor Green Vortex 5

3D incompressible (M=0.1) Taylor Green vortex

• Turbulent kinetic energy dissipation comparison 
by discretization

• DOF
• SCCFV and CCHOFD: 128^3 elements
• DG p1: 64^3 elements
• DG p3: 32^3 elements
• DG p7: 16^3 elements
• Reference solution: DNS 512^3 spectral method



Shock Capturing Scheme

Entropy stable shock capturing scheme

• Entropy stable high-order finite difference scheme
• Weighted Essentially Non-Oscillatory (WENO) scheme
• Artificial viscosity

• Entropy stable spectral collocation scheme
• Artificial viscosity

Finite volume scheme

• Low-dissipation Subbareddy Candler scheme
• 2nd order TVD limiter
• 4th order central dissipation with various switches
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Shock Capturing Scheme

Entropy stable WENO high-order finite difference scheme1

• WENO across multi-block interface for generalized HOFD

• Cell-centered SBP operator gives a strong coupling between blocks
• WENO target flux, weight, candidate stencil based on non-dissipative interface operator
• Need a different biasing due to larger stencil width
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1. “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite 
domains”, T. Fisher, M. Carpenter. JCP 2013



Shock Capturing Scheme

Hybrid entropy stable scheme
• Dilatation based shock sensor1 for detecting compressible region

• Entropy stable artificial dissipation
• Entropy stable HOFD is non-dissipative
• May require dissipation for flows with discontinuities and/or under-resolved flows
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1. “Wall-modeled Large-Eddy Simulations of the HIFiRE-2 Scramjet”, I. Bermejo-Moreno, J. 
Larsson, J. Bodart, R. Vicquelin, CTR 2013



Shock Capturing Scheme

Entropy stable artificial viscosity1

• Computes artificial viscosity based on linearized and nonlinearized residual differences
• Used in both entropy stable schemes
• Additional tuning for different flow regions
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1. A new finite element formulation for computational fluid dynamics: X. The compressible Euler 
and Navier-Stokes equations, F. Shakib, TJR. Hughes, Z. Johan CM 1991



Entropy Stable Shock Capturing Schemes - Assessment

1D Sod shock tube problem

• HOFD Hybrid WENO, WENO and DG AV resolves all flow features

• HOFD AV without artificial dissipation can cause unwanted oscillations
• Further tuning of AD & AV can alleviate
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242 HOFD-N512
DG P3-N128



Entropy Stable Shock Capturing Schemes - Assessment

1D Shu Osher problem

• Trade-offs
• HOFD WENO captures shocks well at the expense of 

reduced resolution in shock-entropy wave interaction
• Both HOFD AV and DG AV exhibit some oscillation with 

increased resolution in shock-entropy wave interaction 
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242 HOFD-N512
DG P3-N128



3D Compressible Mixing Layer

Compressible mixing layer simulation

• Assess implicit LES with various discretization schemes

Problem setup

• Flow configuration: convective Mach 0.46
• Primary flow Mach 1.91
• Secondary flow Mach 1.36

• Synthetic turbulence inflow
• For inflow, SST RANS precursor provides:
• Reynolds stress tensor
• Mean flow velocity
• Length scale

• Mesh
• Domain: [500, 48, 6] mm
• Mesh dimension 
• Fine: [513, 213, 17]
• Coarse: [257, 107, 11]
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3D Compressible Mixing Layer – Qualitative Assessment

Turbulence simulation with various schemes

• Contour: Q criterion 1e9, colored by vorticity magnitude

• Hybrid WENO HOFD with AD
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3D Compressible Mixing Layer – Mean Velocity and Stresses14

Mean velocity profile

• Converged for all discretization



3D Compressible Mixing Layer – Mean Velocity and Stresses15

SCCFV CCHOFD 
Hybrid WENO

DG LG P2

Normal 
stress

Shear 
stress

Stresses

• Accurate prediction of turbulent statistics varies



3D Compressible Mixing Layer – Turbulent Spectra

Comparison by discretization

• For ILES, both cell-centered methods capture inertial subrange well

• DG resolves spectra well in high-frequency range

• While DG holds up well up to 40%, both cell-centered schemes fail to accurately predict turbulent kinetic 
energy spectra past 30% of domain
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3D Compressible Mixing Layer – Turbulent Spectra

Comparison of CCHOFD dissipation methods, x = 10%

• WENO
• Higher wave number range is 

well not resolved

• Hybrid WENO and AV 
• As mesh resolution increases

spectra captures inertial subrange
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Fine mesh



3D Compressible Mixing Layer – Turbulent Spectra

Comparison of DG spatial order, x = 10%

• Resolvable wave number
• Lower order resolution lacks

resolution in inertial subrange 
• Higher order resolves higher

spectrum range better
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Summary

For compressible turbulent scale-resolving simulations

• Entropy stable schemes can provide a few options for shock capturing 
• WENO, Hybrid WENO, AV

• Varying nature of problems can decide the choice of nonlinear stabilization
• Tuning can affect shock capturing and turbulence resolution
• Further parametric study is needed to fully assess 

• Simulating compressible turbulent flows
• Low dissipation finite volume scheme suitable for ILES 
• However increase in grid resolution may be needed

• High-order finite difference WENO appropriate for ILES 
• Other methods of stabilization exhibit energy pile up

• Spectral collocation scheme can resolve inertial subrange for all orders
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Challenges and Future Work

Various nonlinear stabilization methods are available for HO methods

• Tuning makes HO schemes challenging

Implicit LES with HOFD needs more numerical evaluation

• Further research of appropriate dissipation scheme for turbulent flows

Entropy stable spectral collocation’s bottleneck 

• With increased tensor product order comes greater cost of time-step restriction
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Entropy Stable Shock Capturing Schemes - Assessment

1D Blast wave problem

• Two strong shock wave interaction

• HOFD AV and DG AV issues
• Shock sensing
• AV regularization
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242 HOFD-N512
DG P1-N256



Cell-Centered Framework via Generalized Summation-by-
Parts
Nonlinear conservation laws

Generalized summation-by-parts (SBP) operator (Del Rey Fernandez, JCP 2014)
 Discrete analogue of integration-by-parts

 Generalization of boundary solution points



Entropy Stable Cell-Centered High-Order Finite Difference

Complementary grid enables us to recast gradient form to flux form
 Important for entropy stable WENO flux (Fisher, JCP 2013)

Entropy stable two-point nonlinear flux

Benefits of cell-centered approach
 Similar to finite volume and satisfies telescoping flux property
 Stronger coupling across multi-block interface
 Better shock capturing 



Generalized Entropy Stable Interface Penalty

 Two-domain finite difference in flux form

 

 Generalized entropy stable interface penalty

Conventional Cell-centered



Shock Capturing with Weighted Essentially Non-Oscillatory 

Entropy stable WENO  (Fisher and Carpenter, JCP 2013)

 Entropy stability condition is satisfied with entropy stable WENO

WENO across multi-block interface

 Cell-centered SBP operator gives a strong coupling between blocks
 WENO target flux, weight, candidate stencil based on non-dissipative interface operator
 Need a different biasing due to larger stencil width



Multi-Block Shock Capturing WENO: 1D Shock Examples

N=512, tf = 0.25
Three-block 

N=512, tf = 1.8, Nref = 2000
Two-block



Strong Shock Across Interface: Woodward Colella

N=512, tf = 0.04, Nref = 2000
Two-block

Initial condition



SSWENO for HOFD

Entropy stable WENO [6]

 Entropy stability condition is satisfied with entropy stable WENO

 Provably stable in conventional SBP HOFD 
 Not so much for generalized SBP

 Hybridization requires AD
 Because SSHOFD is nondissipative

29



Artificial Dissipation for HOFD

HOFD is non-dissipative

Extend Mattsson’s AD operators [5] using entropy variables
 4th order

 We also have one for 6th order 
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Entropy Stable Artificial Viscosity

Formulation from Shakib [7] using entropy variables

 Artificial viscosity is tuned for shock and non-shock regions
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Idea 1: Adaptive Artificial Dissipation

Improve AD operator

 Smoothness of key primitive variables
 Modify wave speed

 Has potential for improving hybrid HOFD-SSWENO
 Not so sure if it can be extended to AV application
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Idea 2: Pressure-Based Shock Sensor

Based on HPCMP CREATE-AV COFFE solver’s artificial diffusion flux [3]

 Shock sensor is passive if grid resolution can support pressure gradient
 Otherwise switch activates the artificial diffusion flux in SUPG

Easy to implement in current SPARC
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Idea 3: Characteristics-Based Modal Shock Sensor [1,2]

Characteristics convey information about waves
 Entropy and acoustic waves

Under-resolved region can be identified by modal energy decay
 Attractive for high-order methods, particularly DG

High-risk high-reward (potentially)
 None of the previous sensors utilize high-order contents of solution
 However, using physical information can be robust and makes sense
 E.g. Dilatation, pressure, vorticity, enstrophy, etc.
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Idea 3: Characteristics-Based Modal Shock Sensor [1,2]

Characteristics in k direction

Modes of characteristics using Vandermonde matrix of Legendre polynomial

Shock sensor
 Choose entropic and acoustic wave components based on interest
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