

Sandia
National
Laboratories

Addressing Challenges on Compressible Turbulence Simulations using Entropy Stable Scheme

J. Brad Maeng, Travis Fisher, Mike Hansen, Jerry
Watkins, Jared Crean, Wyatt Horne

ICOSAHOM 2020

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

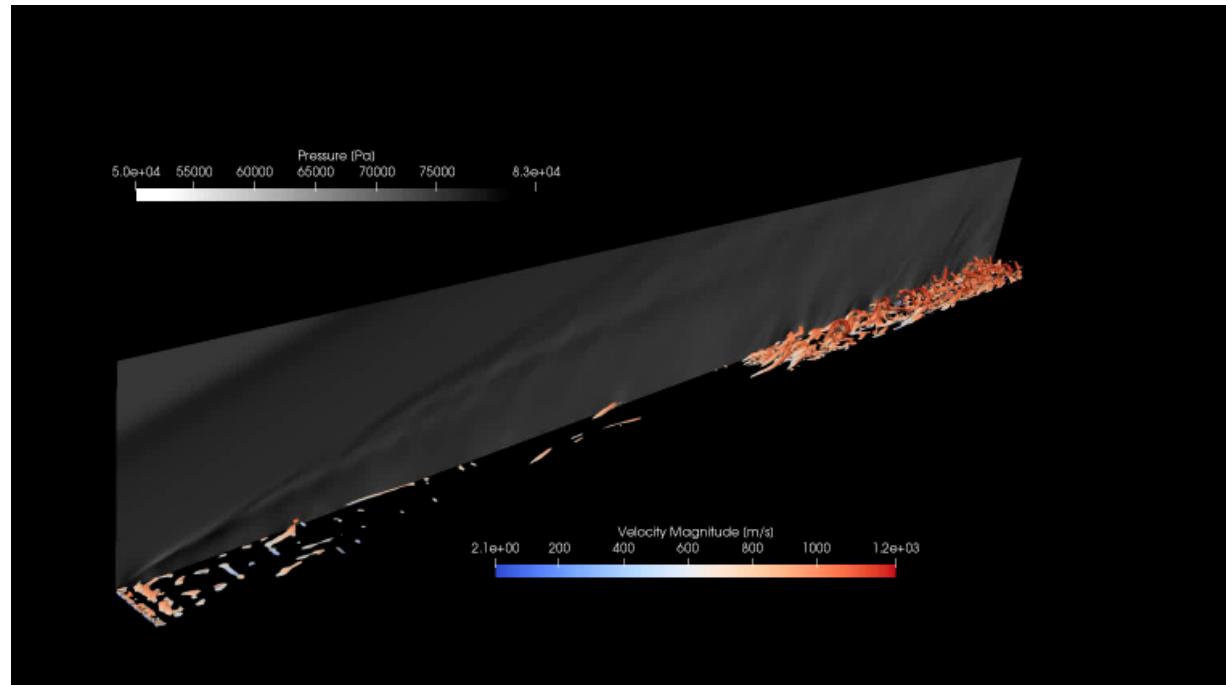
Challenges in Compressible Turbulence Simulations

Growing computational power => Higher engineering fidelity simulations possible

- Large-Eddy Simulations
- Direct Numerical Simulations

Challenges

- Resolving turbulence in under-resolved mesh
- Shock capturing
- Explicit time integration



Why Entropy Stable Scheme

For nonlinear governing equations

$$(\mathbf{u})_t + (\mathbf{f})_{x_k} = (\mathbf{f}^V)_{x_k}, x_k \in \Omega$$

- Generalized Summation-by-Parts operators¹ for conservation

$$\mathbf{u}_t + \mathcal{P}_k^{-1} \mathcal{Q}_k \mathbf{f}_k(\mathbf{u}) = \mathcal{P}_k^{-1} \mathbf{g}_k^{Int} + \mathcal{P}_k^{-1} \mathbf{g}_k^{Bnd} + \mathcal{P}_k^{-1} \mathcal{Q}_k c_{kj} \mathcal{Q}_j \mathbf{u}$$

$$\mathbf{u}_t + \mathcal{P}^{-1} [2\mathcal{Q} \circ \mathcal{F}] \mathbf{1} = \mathcal{P}^{-1} \mathbf{g}^{Int} + \mathcal{P}^{-1} \mathbf{g}^{Bnd} + \mathcal{P}^{-1} \mathcal{Q}_k c_{kj} \mathcal{Q}_j \mathbf{u}$$

$$\mathcal{D} = \mathcal{P}^{-1} \mathcal{Q}, \quad \mathcal{P} = \mathcal{P}^T, \quad \boldsymbol{\xi}^T \mathcal{P} \boldsymbol{\xi} > 0, \quad \boldsymbol{\xi} \neq 0$$

$$\mathcal{Q}^T = \mathcal{B} - \mathcal{Q}. \quad \mathcal{B} = \mathbf{b}_1 \mathbf{b}_1^T - \mathbf{b}_{-1} \mathbf{b}_{-1}^T,$$

- Provable stability
 - Two-point entropy stable inviscid flux
 - Entropy stable viscous flux

Entropy Stable Schemes

Entropy stable high-order finite difference

- Summation-by-Parts (SBP) method
- Multi-block structured mesh
- Generalized SBP operator
 - Cell-centered scheme
 - Offers stronger inter-block coupling
 - Node-centered scheme
- Dissipation mechanisms for shock capturing
 - Hybrid WENO scheme
 - Artificial viscosity
 - Artificial dissipation

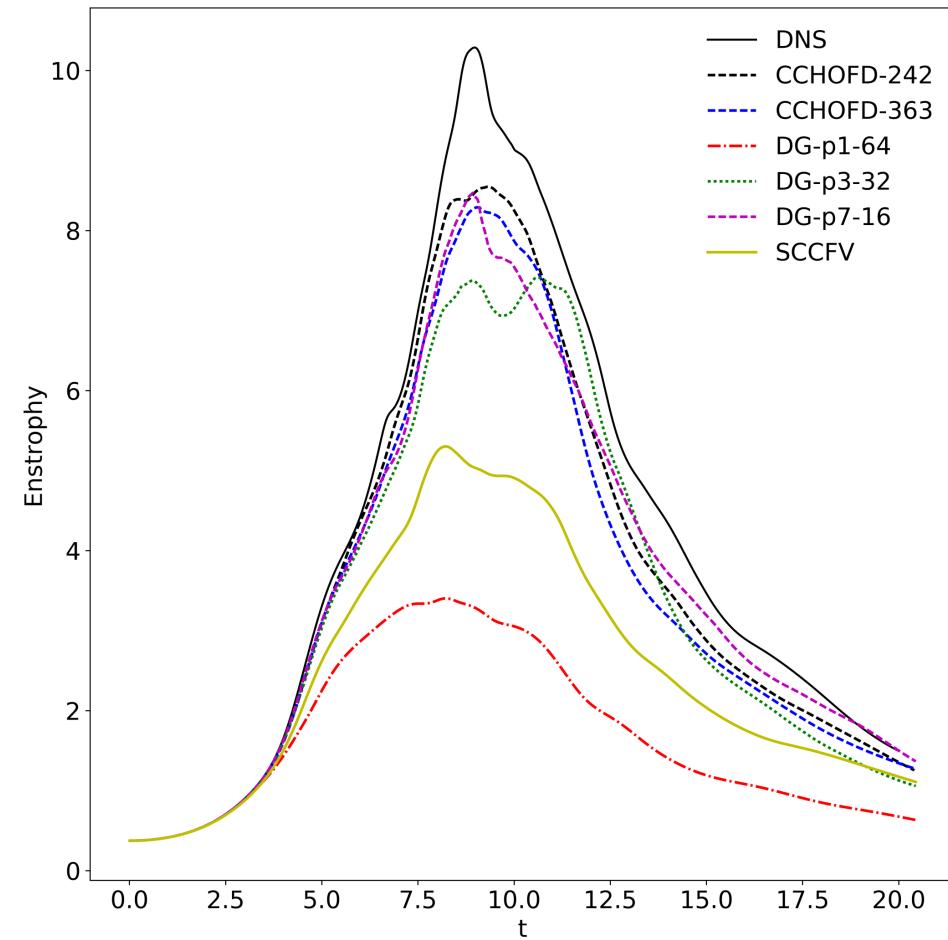
Entropy stable spectral collocation method

- Summation-by-Parts (SBP) method
- Unstructured mesh
- Tensor product elements
 - Legendre-Gauss
 - Legendre-Gauss-Lobatto solution points
- Dissipation mechanisms for shock capturing
 - Inter-element penalty
 - Artificial viscosity

Taylor Green Vortex

3D incompressible ($M=0.1$) Taylor Green vortex

- Turbulent kinetic energy dissipation comparison by discretization
- DOF
 - SCCFV and CCHOFD: 128^3 elements
 - DG p1: 64^3 elements
 - DG p3: 32^3 elements
 - DG p7: 16^3 elements
 - Reference solution: DNS 512^3 spectral method



Shock Capturing Scheme

Entropy stable shock capturing scheme

- Entropy stable high-order finite difference scheme
 - Weighted Essentially Non-Oscillatory (WENO) scheme
 - Artificial viscosity
- Entropy stable spectral collocation scheme
 - Artificial viscosity

Finite volume scheme

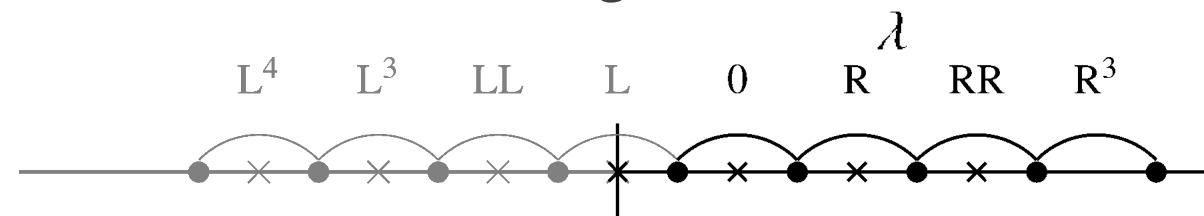
- Low-dissipation Subbareddy Candler scheme
 - 2nd order TVD limiter
 - 4th order central dissipation with various switches

Shock Capturing Scheme

Entropy stable WENO high-order finite difference scheme¹

$$\begin{aligned}\bar{f}_i^W &= \sum_{l=1}^{n_s} \bar{\omega}_i^l \bar{f}_i^{S_l}, & \bar{\omega}_i^l &= \frac{\bar{\alpha}_i^l}{\sum_j \bar{\alpha}_i^j}, & \bar{\alpha}_i^l &= \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), & l &= 1, \dots, n_s \\ \bar{f}_i^{SSW} &= \bar{f}_i^W + \delta(\bar{f}_i^S - \bar{f}_i^W), & \delta &= \frac{\sqrt{b^2 + c^2} - b}{\sqrt{b^2 + c^2}}, & b &= (w_{i+1} - w_i)^T (\bar{f}_i^S - \bar{f}_i^W), & c &= 10^{-12} \\ (w_{i+1} - w_i)^T (\bar{f}_i^{SSW} - \bar{f}_i^S) &\leq 0, & 0 \leq i \leq N-1,\end{aligned}$$

- WENO across multi-block interface for generalized HOFD



- Cell-centered SBP operator gives a strong coupling between blocks
- WENO target flux, weight, candidate stencil based on non-dissipative interface operator
- Need a different biasing due to larger stencil width

$$\bar{a}_i^l = \begin{cases} \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), & \text{if } l \in [0, R, RR, R^3] \\ \gamma \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), & \text{if } l \in [L, LL, L^3, L^4] \end{cases}, \quad l = 1, \dots, n_s,$$

1. "High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains", T. Fisher, M. Carpenter. JCP 2013

Shock Capturing Scheme

Hybrid entropy stable scheme

- Dilatation based shock sensor¹ for detecting compressible region

$$\epsilon_{ss} = -\nabla \cdot \mathbf{v} - \max \left(5\sqrt{\omega \cdot \omega}, \alpha_{fs} \frac{c}{h} \right) > 0$$

- Entropy stable artificial dissipation
 - Entropy stable HOFD is non-dissipative
 - May require dissipation for flows with discontinuities and/or under-resolved flows

$$\mathbf{u}_t + \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k = \mathcal{P}_k^{-1} \mathbf{g}_k^{int} + \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{ad}$$

$$\mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{ad} = \mathcal{D}_2 |\Lambda| \frac{\partial \mathbf{u}}{\partial \mathbf{w}} \mathcal{D}_2 \mathbf{w} \quad \text{where } \mathcal{D}_2 = \Lambda \Lambda^T$$

1. "Wall-modeled Large-Eddy Simulations of the HIFiRE-2 Scramjet", I. Bermejo-Moreno, J. Larsson, J. Bodart, R. Vicquelin, CTR 2013

Shock Capturing Scheme

Entropy stable artificial viscosity¹

$$\begin{aligned}
 \mathbf{u}_t + \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k &= \mathcal{P}_k^{-1} \mathbf{g}_k^{int} + \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{ad} + \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{av} \\
 \mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{av} &= \mathcal{D}_i g_{ij} \frac{\partial \mathbf{u}}{\partial \mathbf{w}} \hat{\mu} \mathcal{D}_j \mathbf{w} \\
 \hat{\mu} &= \max \left[\left(\frac{(\mathbf{L}\mathbf{u})^T \mathbf{w}_u (\mathbf{L}\mathbf{u})}{\phi + (\mathbf{w}_{x_i})^T g_{ij} \mathbf{u}_w (\mathbf{w}_{x_j})} \right)^{1/2}, c_{ref} \frac{|u| + c}{h} \right], \quad \mathbf{L}\mathbf{u} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial x_k} - \frac{\partial \mathbf{f}_k}{\partial x_k}
 \end{aligned}$$

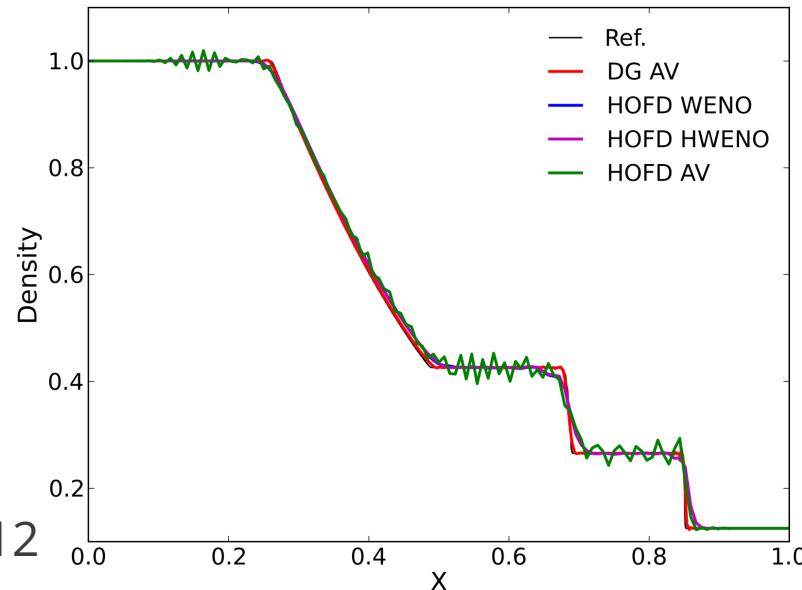
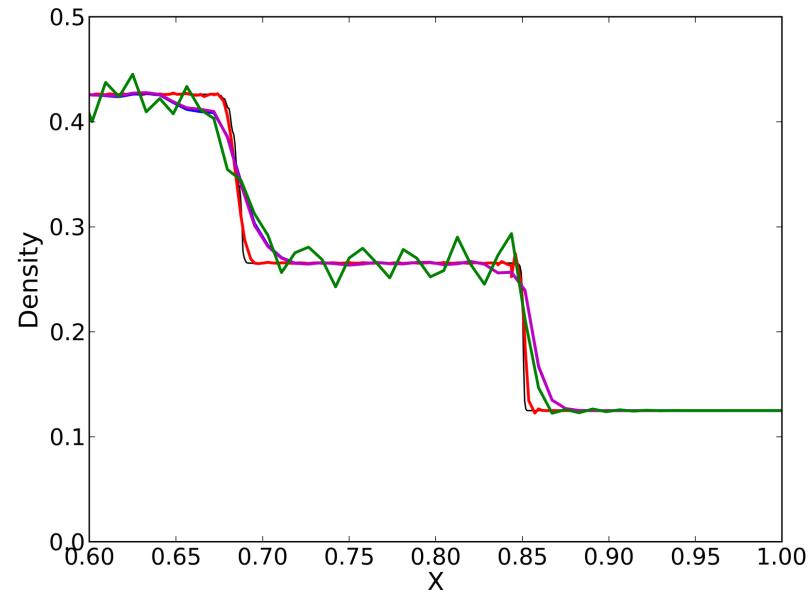
- Computes artificial viscosity based on linearized and nonlinearized residual differences
- Used in both entropy stable schemes
- Additional tuning for different flow regions

$$\mu_{\text{tuned}} = \alpha_{\text{shock}} \epsilon_{\text{ss}} \mu + \alpha_{\text{non-shock}} (1 - \epsilon_{\text{ss}}) \mu$$

Entropy Stable Shock Capturing Schemes - Assessment

1D Sod shock tube problem

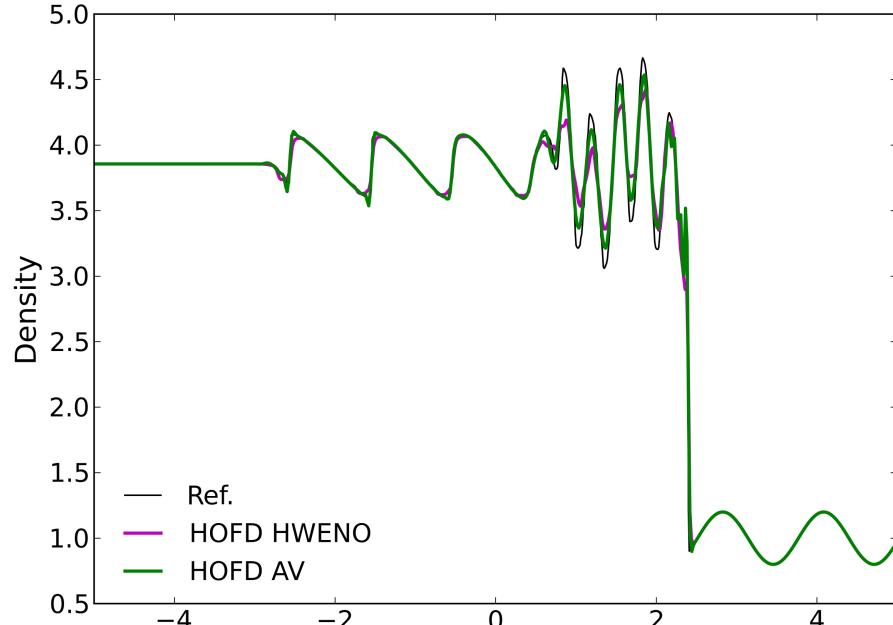
- HOFD Hybrid WENO, WENO and DG AV resolves all flow features
- HOFD AV without artificial dissipation can cause unwanted oscillations
 - Further tuning of AD & AV can alleviate



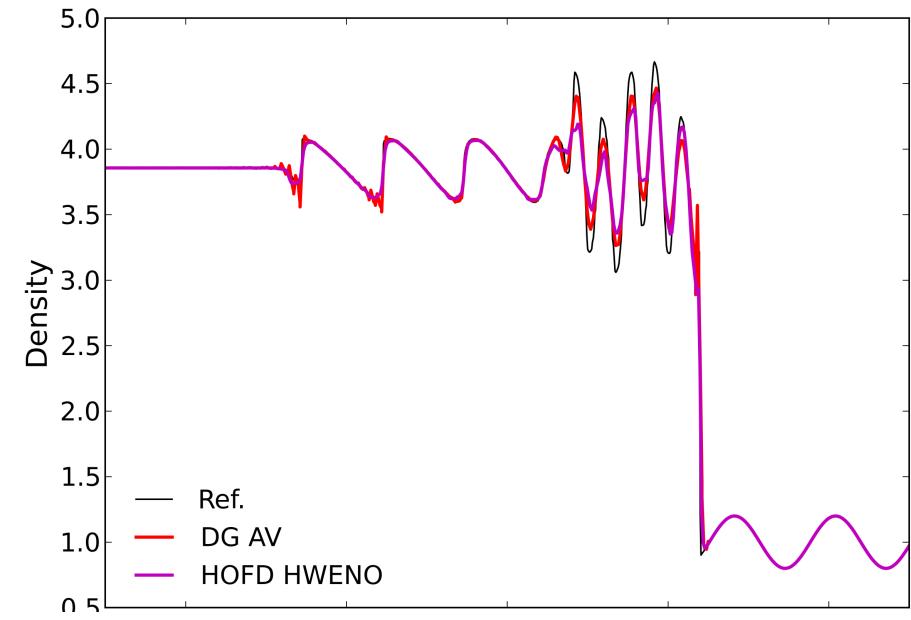
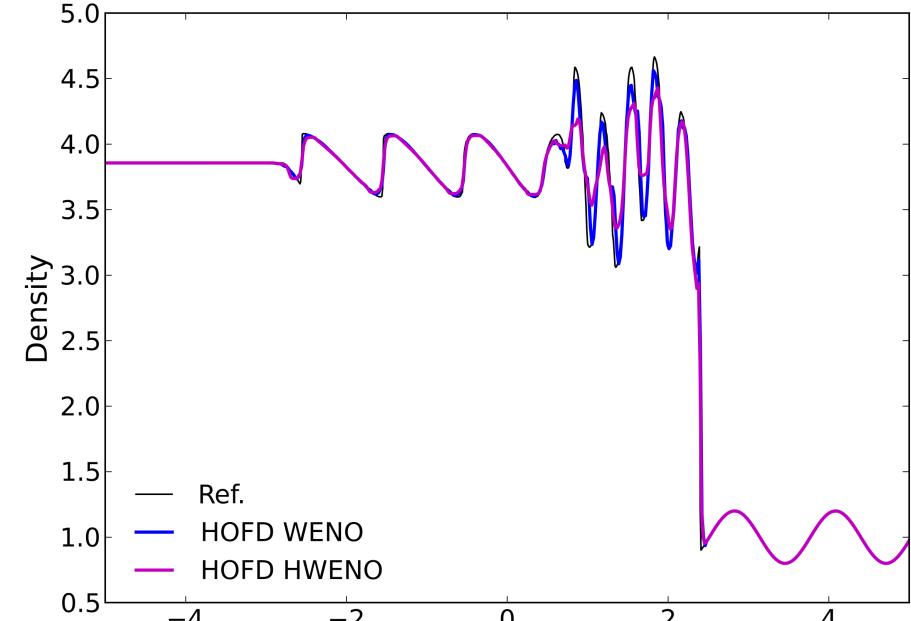
Entropy Stable Shock Capturing Schemes - Assessment

1D Shu Osher problem

- Trade-offs
 - HOFD WENO captures shocks well at the expense of reduced resolution in shock-entropy wave interaction
 - Both HOFD AV and DG AV exhibit some oscillation with increased resolution in shock-entropy wave interaction



242 HOFD-N512
DG P3-N128



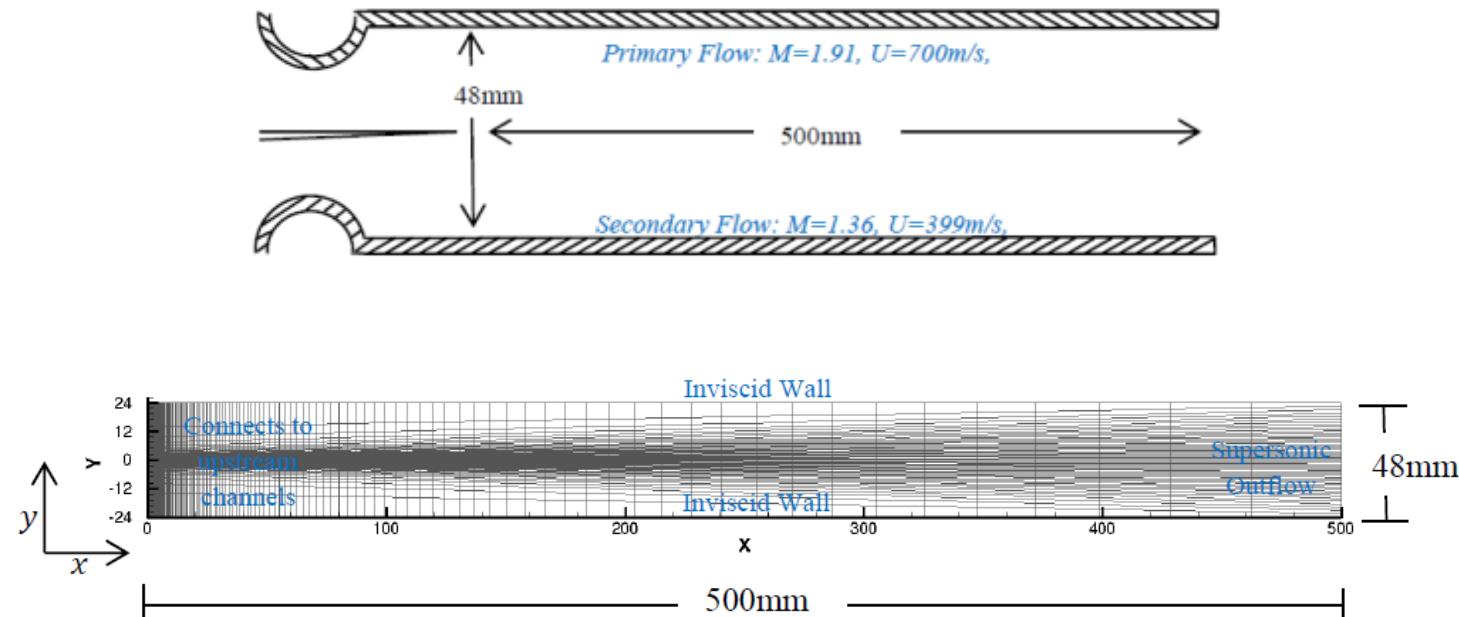
3D Compressible Mixing Layer

Compressible mixing layer simulation

- Assess implicit LES with various discretization schemes

Problem setup

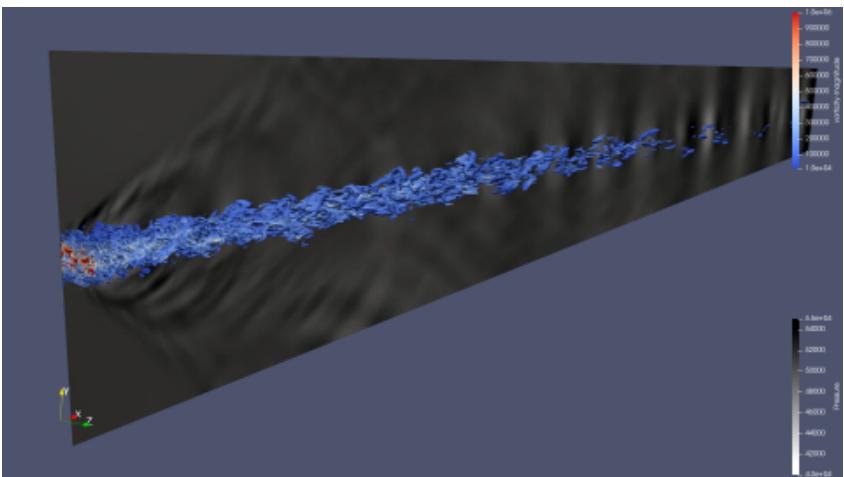
- Flow configuration: convective Mach 0.46
 - Primary flow Mach 1.91
 - Secondary flow Mach 1.36
- Synthetic turbulence inflow
 - For inflow, SST RANS precursor provides:
 - Reynolds stress tensor
 - Mean flow velocity
 - Length scale
- Mesh
 - Domain: [500, 48, 6] mm
 - Mesh dimension
 - Fine: [513, 213, 17]
 - Coarse: [257, 107, 11]



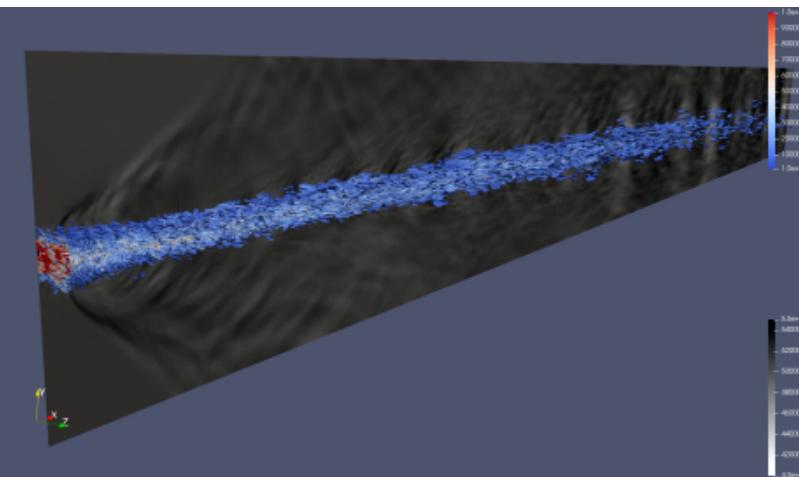
3D Compressible Mixing Layer – Qualitative Assessment

Turbulence simulation with various schemes

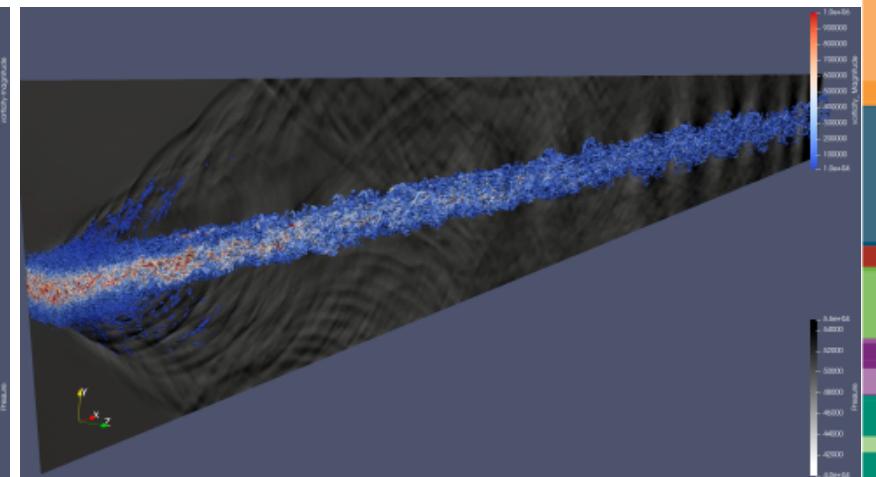
- Contour: Q criterion 1e9, colored by vorticity magnitude
- Hybrid WENO HOFD with AD



Low dissipation
SCCFV



Hybrid WENO
HOFD

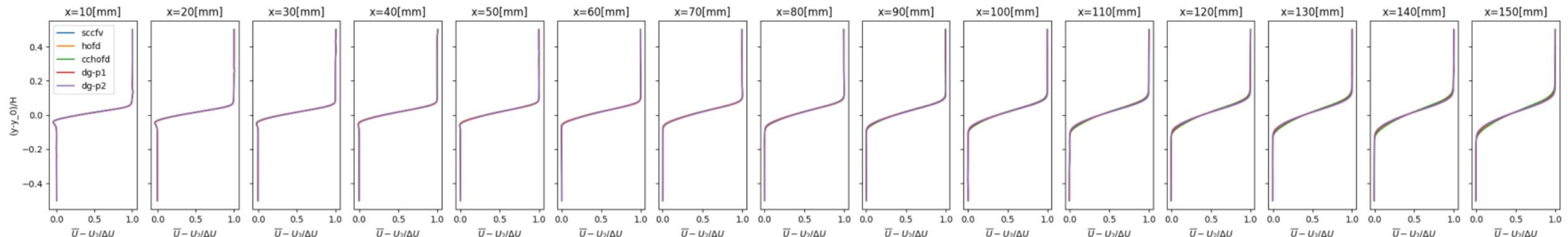


DG LG p2 AV

3D Compressible Mixing Layer – Mean Velocity and Stresses

Mean velocity profile

- Converged for all discretization

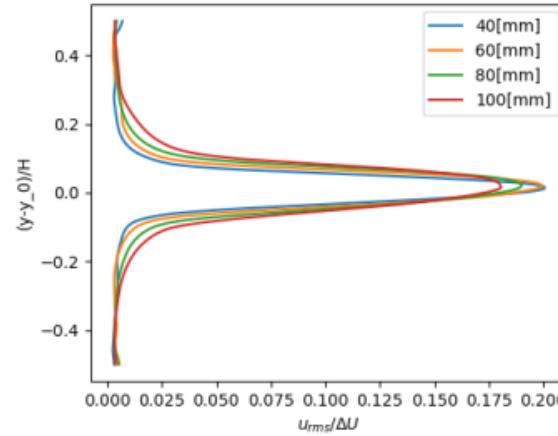


3D Compressible Mixing Layer – Mean Velocity and Stresses

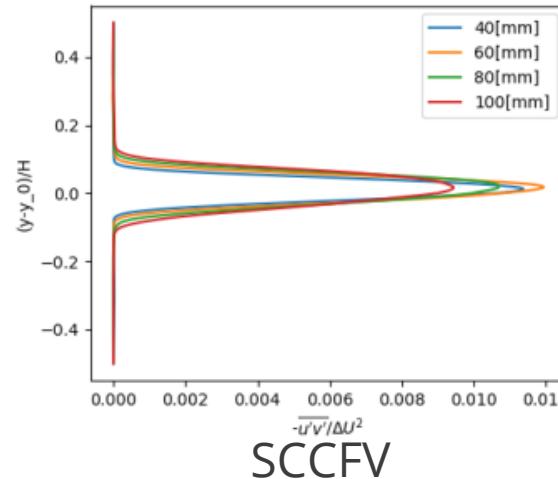
Stresses

- Accurate prediction of turbulent statistics varies

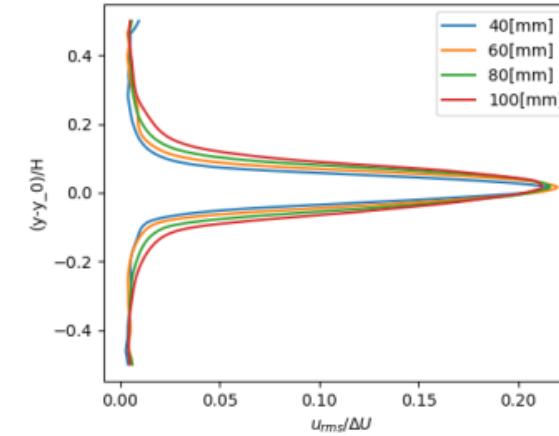
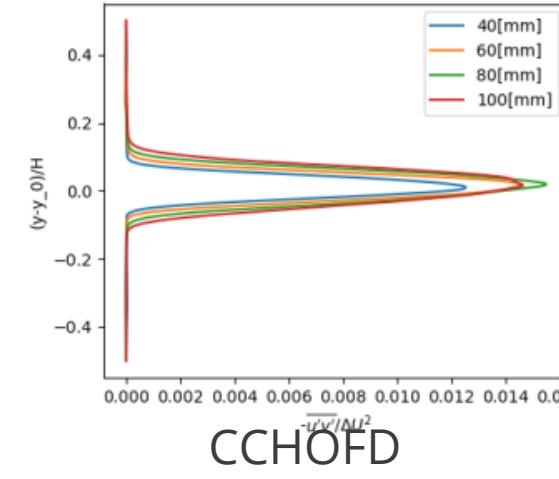
Normal stress



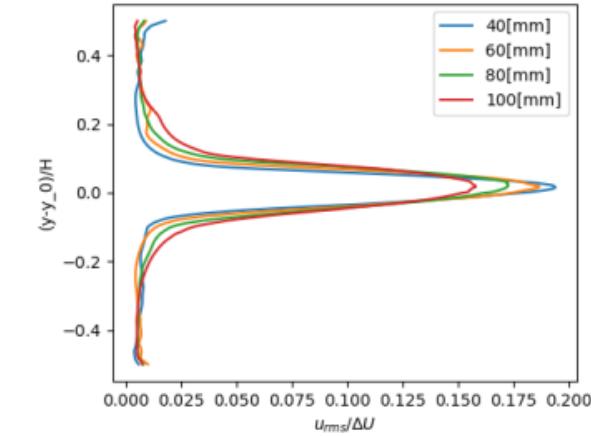
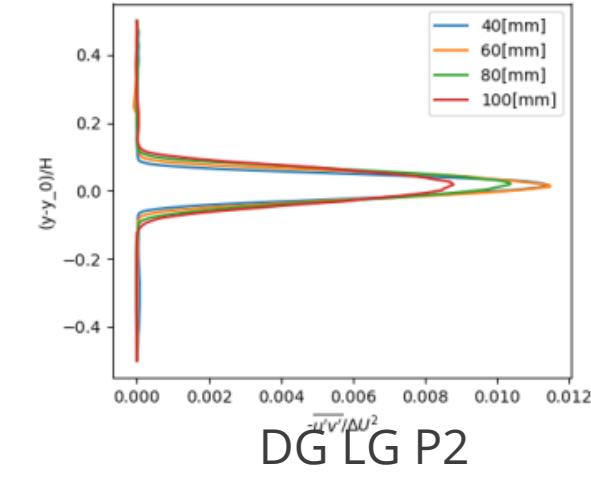
Shear stress



SCCFV



CCHOFD
Hybrid WENO

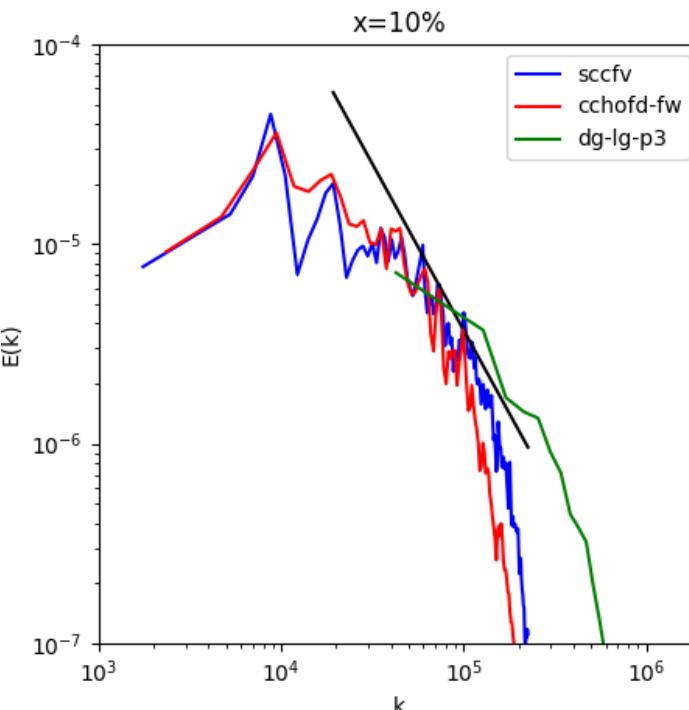
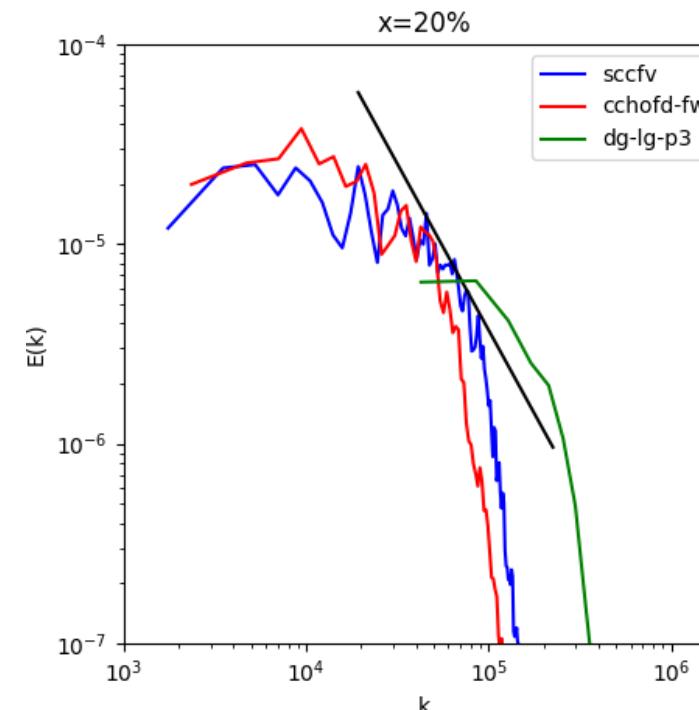
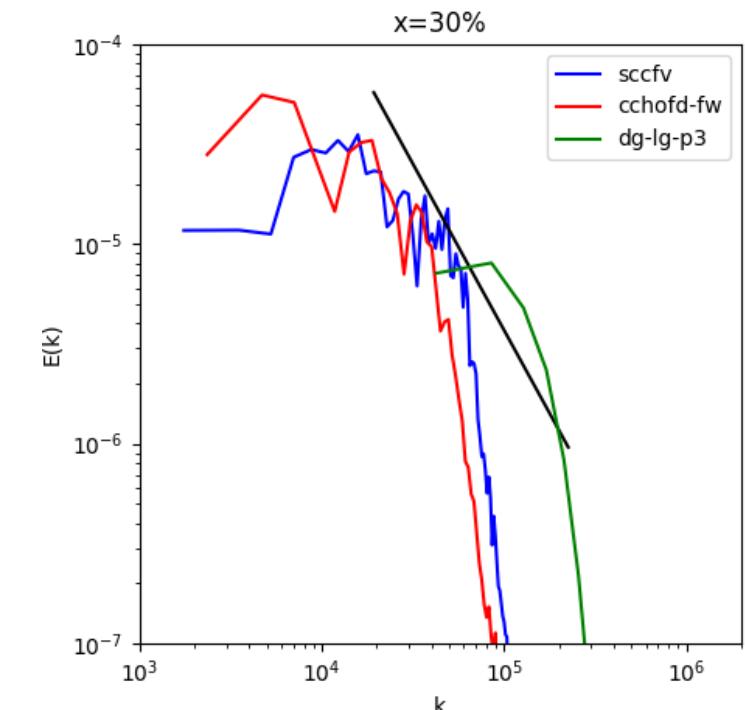


DG LG P2

3D Compressible Mixing Layer – Turbulent Spectra

Comparison by discretization

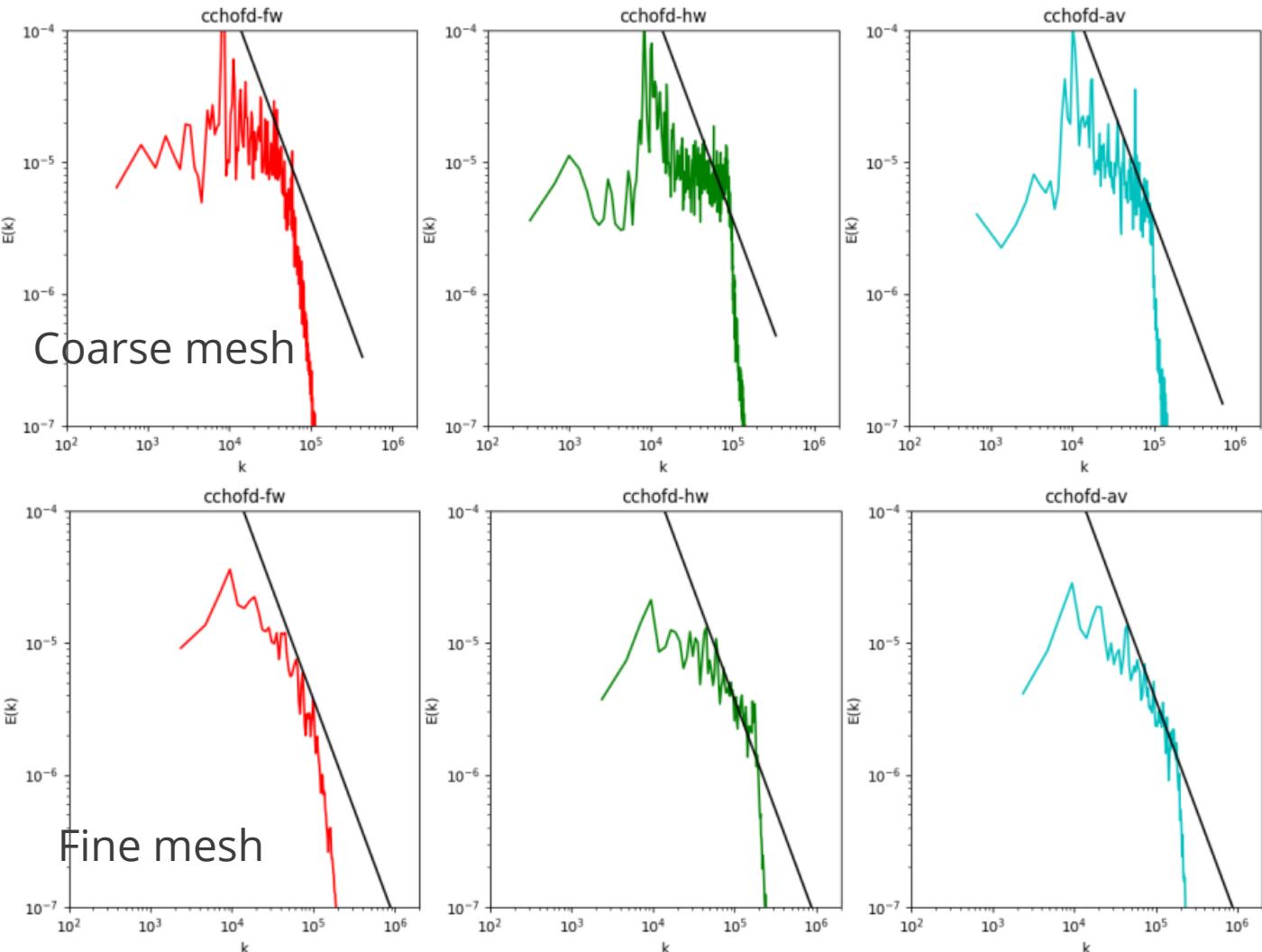
- For ILES, both cell-centered methods capture inertial subrange well
- DG resolves spectra well in high-frequency range
- While DG holds up well up to 40%, both cell-centered schemes fail to accurately predict turbulent kinetic energy spectra past 30% of domain



3D Compressible Mixing Layer – Turbulent Spectra

Comparison of CCHOFD dissipation methods, $x = 10\%$

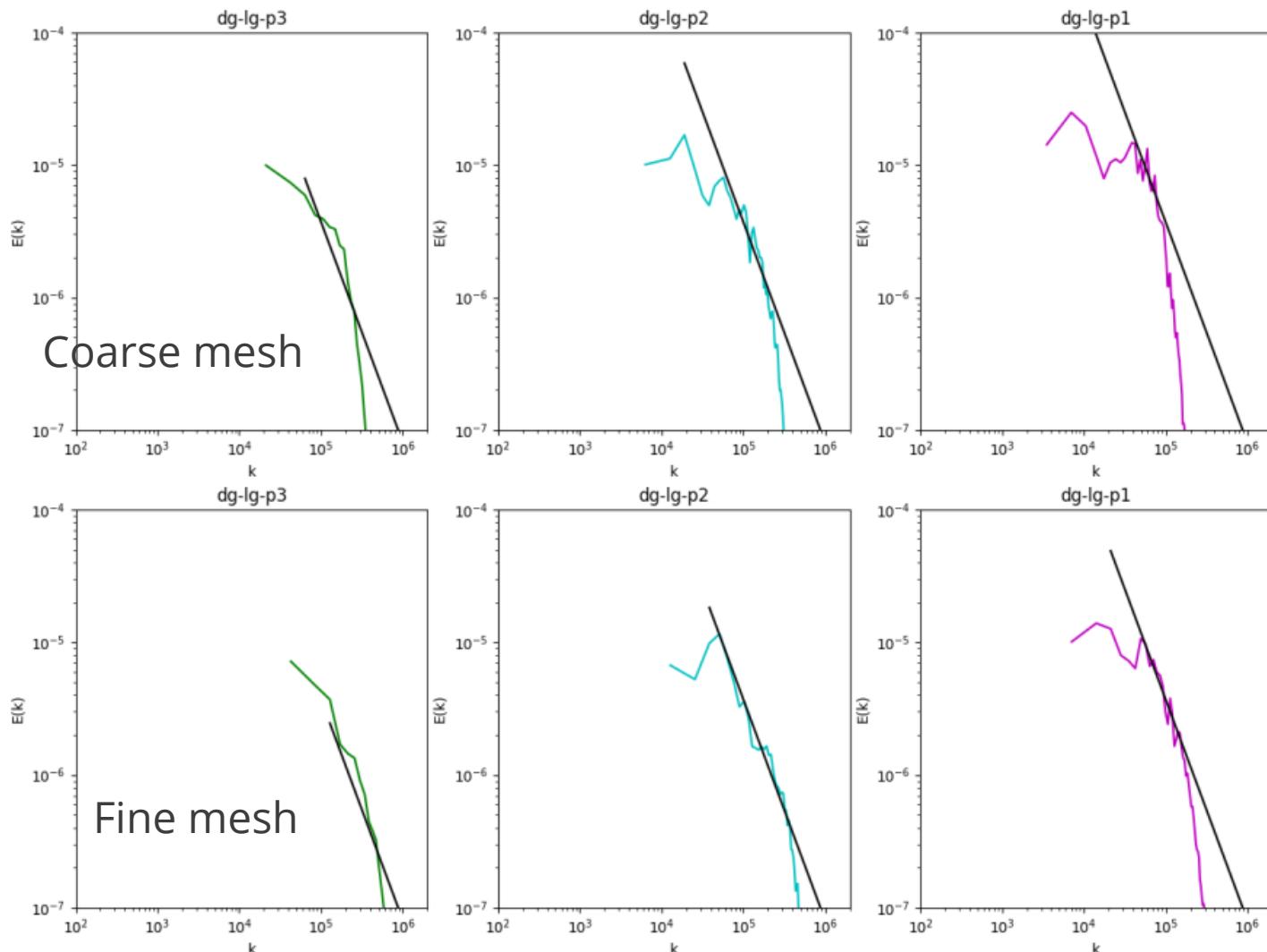
- WENO
 - Higher wave number range is well not resolved
- Hybrid WENO and AV
 - As mesh resolution increases spectra captures inertial subrange



3D Compressible Mixing Layer – Turbulent Spectra

Comparison of DG spatial order, $x = 10\%$

- Resolvable wave number
 - Lower order resolution lacks resolution in inertial subrange
 - Higher order resolves higher spectrum range better



Summary

For compressible turbulent scale-resolving simulations

- Entropy stable schemes can provide a few options for shock capturing
 - WENO, Hybrid WENO, AV
- Varying nature of problems can decide the choice of nonlinear stabilization
 - Tuning can affect shock capturing and turbulence resolution
 - Further parametric study is needed to fully assess
- Simulating compressible turbulent flows
 - Low dissipation finite volume scheme suitable for ILES
 - However increase in grid resolution may be needed
 - High-order finite difference WENO appropriate for ILES
 - Other methods of stabilization exhibit energy pile up
 - Spectral collocation scheme can resolve inertial subrange for all orders

Challenges and Future Work

Various nonlinear stabilization methods are available for HO methods

- Tuning makes HO schemes challenging

Implicit LES with HOFD needs more numerical evaluation

- Further research of appropriate dissipation scheme for turbulent flows

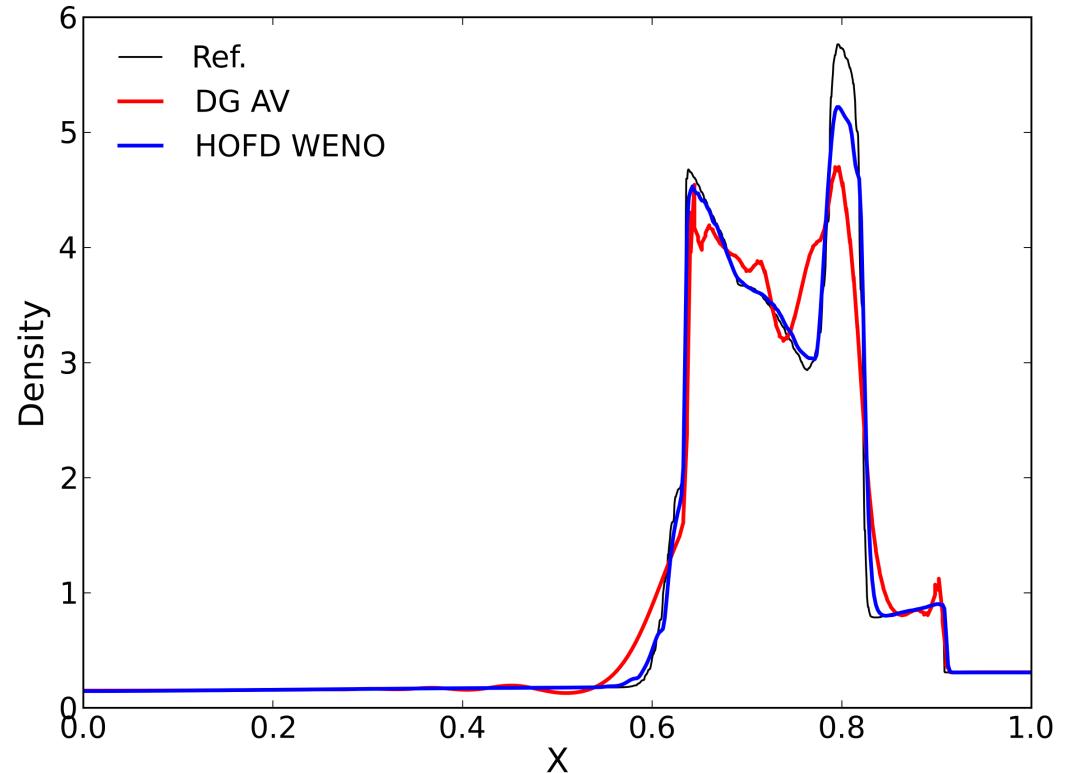
Entropy stable spectral collocation's bottleneck

- With increased tensor product order comes greater cost of time-step restriction

Entropy Stable Shock Capturing Schemes - Assessment

1D Blast wave problem

- Two strong shock wave interaction
- HOFD AV and DG AV issues
 - Shock sensing
 - AV regularization



242 HOFD-N512
DG P1-N256

Cell-Centered Framework via Generalized Summation-by-Parts

Nonlinear conservation laws

$$\mathbf{u}_t + (\mathbf{f}_k)_{x_k} = 0, \quad x_k \in \Omega, \quad t \in [0, \infty),$$

$$\mathbb{B}(\mathbf{u}) = \mathbf{g}^{bnd}, \quad x_k \in \partial\Omega, \quad t \in [0, \infty),$$

$$\mathbf{u}(x, 0) = \mathbf{g}_0(x_k), \quad x_k \in \Omega,$$

$$\mathbf{u}_t + \mathcal{D}_k \mathbf{f}_k = \mathcal{P}_k^{-1} \mathbf{g}_k^{int} + \mathcal{P}_k^{-1} \mathbf{g}_k^{bnd}, \quad k = 1, 2, 3$$

Generalized summation-by-parts (SBP) operator (Del Rey Fernandez, JCP 2014)

- Discrete analogue of **integration-by-parts**

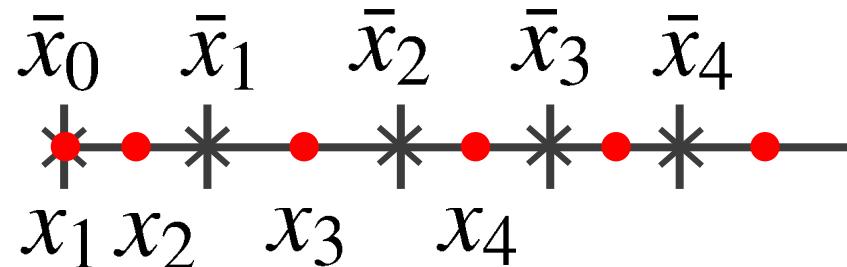
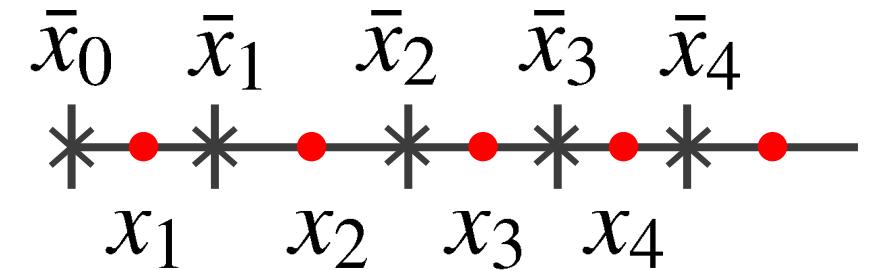
$$\mathcal{D} = \mathcal{P}^{-1} Q, \quad \mathcal{P} = \mathcal{P}^T, \quad \xi^T \mathcal{P} \xi > 0, \quad \xi \neq 0$$

$$Q^T = \mathcal{B} - Q. \quad \mathcal{B} = \mathbf{b}_1 \mathbf{b}_1^T - \mathbf{b}_{-1} \mathbf{b}_{-1}^T,$$

- Generalization of boundary solution points

$$\mathbf{b}_{-1} = (1, 0, 0, \dots, 0)^T$$

$$\mathbf{b}_{-1} = \left(\frac{35}{16}, -\frac{35}{16}, \frac{21}{16}, -\frac{5}{16}, 0, \dots, 0 \right)^T$$



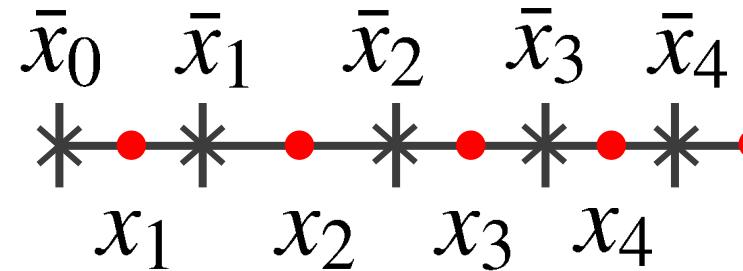
Entropy Stable Cell-Centered High-Order Finite Difference

$$\mathbf{u}_t + \mathcal{P}^{-1}[2Q \circ \mathcal{F}]\mathbf{1} = \mathcal{P}^{-1}\mathbf{g}^{int}$$

Complementary grid enables us to recast gradient form to **flux form**

- Important for entropy stable WENO flux (Fisher, JCP 2013)

$$\mathbf{f}(\mathbf{u})_x = \mathcal{P}^{-1}[2Q \circ \mathcal{F}]\mathbf{1} = \mathcal{P}^{-1}\Delta\bar{\mathbf{f}} \quad \rightarrow \quad \mathbf{u}_t + \mathcal{P}^{-1}\Delta\bar{\mathbf{f}} = \mathcal{P}^{-1}\mathbf{g}^{int}$$



Entropy stable two-point nonlinear flux

$$\frac{d}{dt} \mathbf{1}^T \mathcal{P} S + \sum_{k=1}^N \sum_{l=1}^N b_{1,k} b_{1,l} \bar{F}(u_l, u_k) - b_{-1,k} b_{-1,l} \bar{F}(u_l, u_k) = 0$$

$$\frac{d}{dt} \mathbf{1}^T \mathcal{P} S + \bar{F}|_1 - \bar{F}|_{-1} = 0$$

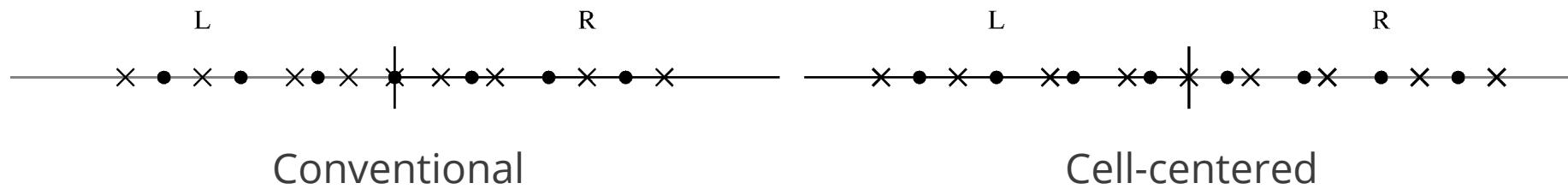
$$\bar{f}_i^S = \sum_{k=i}^N \sum_{l=1}^i 2\hat{q}_{(l,k)} \bar{f}(u_l, u_k) + \sum_{k=i+1}^N \sum_{l=1}^N -b_{-1,l} b_{-1,k} \bar{f}(u_l, u_k) + \sum_{k=1}^i \sum_{l=1}^N b_{1,l} b_{1,k} \bar{f}(u_l, u_k), \quad 1 \leq i \leq N-1,$$

$$\mathcal{P}_{ii} = \bar{x}_{i+1} - \bar{x}_i$$

Benefits of cell-centered approach

- Similar to finite volume and satisfies telescoping flux property
- Stronger coupling across multi-block interface
- Better shock capturing

Generalized Entropy Stable Interface Penalty



Two-domain finite difference in flux form

$$\mathbf{u}_t + \mathcal{P}^{-1} \Delta \bar{\mathbf{f}} = \mathcal{P}^{-1} \mathbf{g}^{int}$$

$$\Delta \bar{\mathbf{f}} = (\mathcal{Q} + \mathcal{G}) \begin{bmatrix} \mathbf{f}_L \\ \mathbf{f}_R \end{bmatrix} \quad \mathcal{Q} = \begin{bmatrix} \mathcal{Q}_L & 0 \\ 0 & \mathcal{Q}_R \end{bmatrix} \quad \mathcal{G} = \begin{bmatrix} -\frac{1}{2} \mathbf{b}_1^L \mathbf{b}_1^{L^T} & \frac{1}{2} \mathbf{b}_1^L \mathbf{b}_{-1}^{R^T} \\ -\frac{1}{2} \mathbf{b}_{-1}^R \mathbf{b}_1^{L^T} & \frac{1}{2} \mathbf{b}_{-1}^R \mathbf{b}_{-1}^{R^T} \end{bmatrix}$$

Generalized entropy stable interface penalty

$$\begin{aligned} \mathbf{g}^{int} = & \left\{ \left(\mathbf{b}_1^L \mathbf{b}_1^{L^T} \circ \mathbf{f}(\mathbf{u}, \mathbf{u}) - \mathbf{b}_1^L \mathbf{b}_{-1}^{R^T} \circ \mathbf{f}(\mathbf{u}, \mathbf{u}) \right) \right. \\ & - \frac{1}{2} \mathbf{b}_1^L \mathbf{R} |\Lambda| \mathbf{R}^T \left(\mathbf{b}_1^{L^T} \mathbf{w} - \mathbf{b}_{-1}^{R^T} \mathbf{w} \right) \Big\} \\ & - \left\{ \left(-\mathbf{b}_{-1}^R \mathbf{b}_1^{L^T} \circ \mathbf{f}(\mathbf{u}, \mathbf{u}) + \mathbf{b}_{-1}^R \mathbf{b}_{-1}^{R^T} \circ \mathbf{f}(\mathbf{u}, \mathbf{u}) \right) \right. \\ & \left. \left. - \frac{1}{2} \mathbf{b}_{-1}^R \mathbf{R} |\Lambda| \mathbf{R}^T \left(\mathbf{b}_{-1}^{R^T} \mathbf{w} - \mathbf{b}_1^{L^T} \mathbf{w} \right) \right\} \right. \end{aligned}$$

Shock Capturing with Weighted Essentially Non-Oscillatory

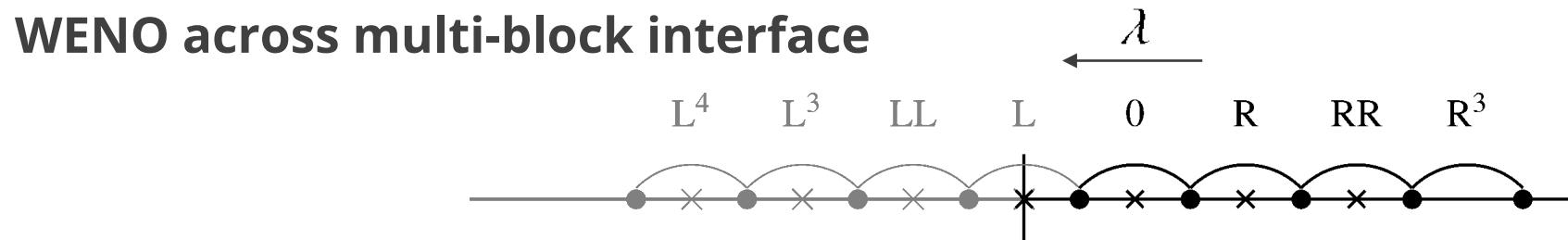
Entropy stable WENO (Fisher and Carpenter, JCP 2013)

$$\bar{f}_i^W = \sum_{l=1}^{n_s} \bar{\omega}_i^l \bar{f}_i^{S_l}. \quad \bar{\omega}_i^l = \frac{\bar{a}_i^l}{\sum_j \bar{a}_i^j}, \quad \bar{a}_i^l = \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), \quad l = 1, \dots, n_s$$

$$\bar{f}_i^{SSW} = \bar{f}_i^W + \delta(\bar{f}_i^S - \bar{f}_i^W), \quad \delta = \frac{\sqrt{b^2 + c^2} - b}{\sqrt{b^2 + c^2}}, \quad b = (w_{i+1} - w_i)^T (\bar{f}_i^S - \bar{f}_i^W), \quad c = 10^{-12}$$

- Entropy stability condition is satisfied with entropy stable WENO

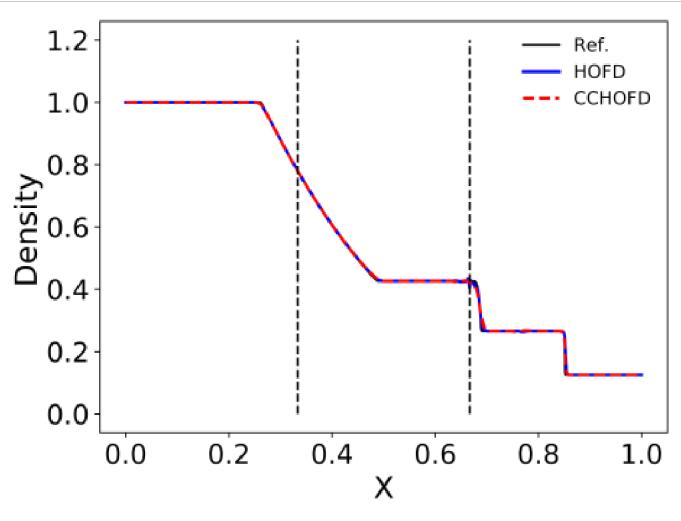
$$(w_{i+1} - w_i)^T (\bar{f}_i^{SSW} - \bar{f}_i^S) \leq 0, \quad 0 \leq i \leq N-1,$$



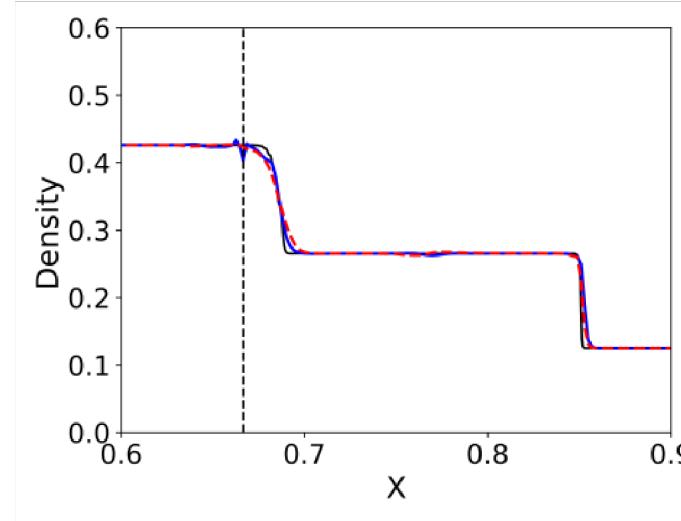
- Cell-centered SBP operator gives a strong coupling between blocks
- WENO target flux, weight, candidate stencil based on non-dissipative interface operator
- Need a different biasing due to larger stencil width

$$\bar{a}_i^l = \begin{cases} \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), & \text{if } l \in [0, R, RR, R^3] \\ \gamma \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), & \text{if } l \in [L, LL, L^3, L^4] \end{cases}, \quad l = 1, \dots, n_s,$$

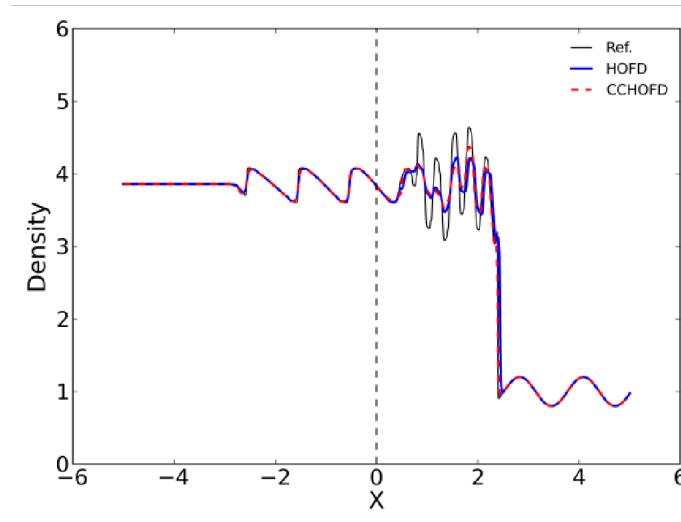
Multi-Block Shock Capturing WENO: 1D Shock Examples



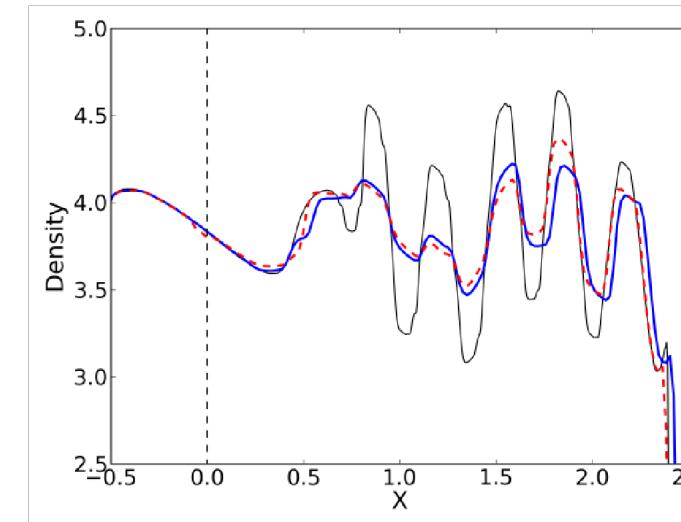
(a) Density



(b) Density close up near the contact discontinuity



(a) Density



(b) Density close up

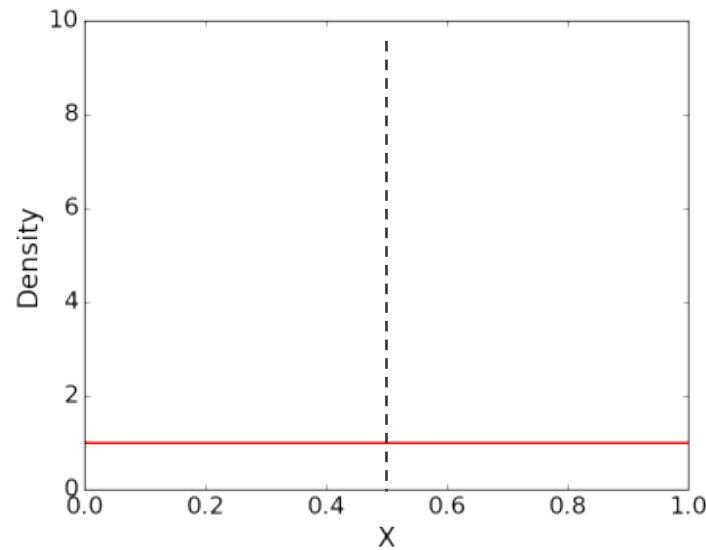
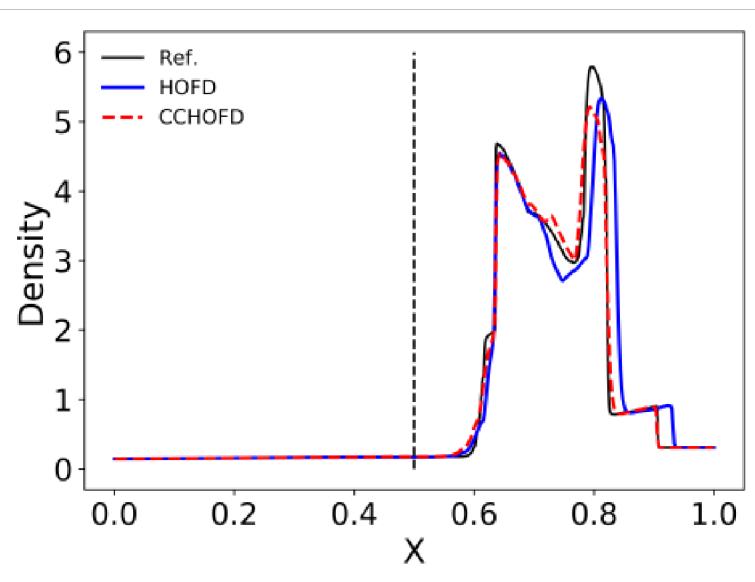
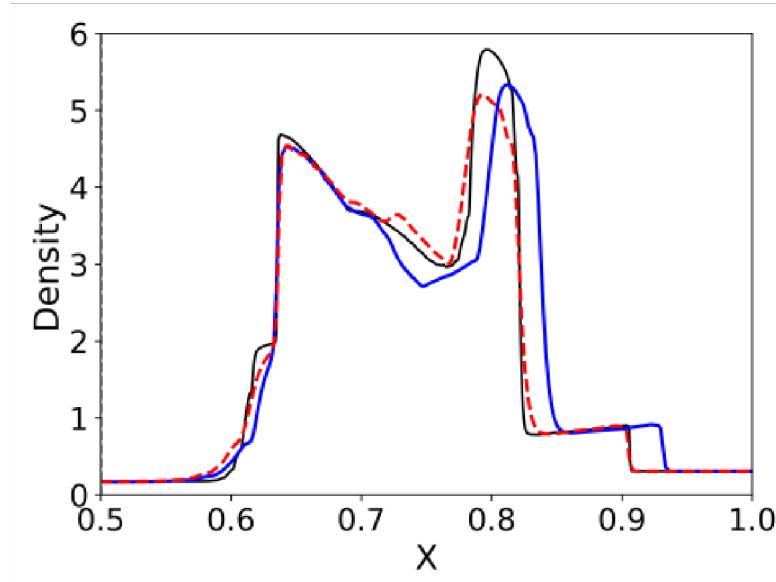
$$(\rho, u, p) = \begin{cases} (1, 0, 1), & \text{if } x < 0.5 \\ (0.125, 0, 0.1), & \text{if } x \geq 0.5, \end{cases}$$

$N=512, t_f = 0.25$
Three-block

$$(\rho, u, p) = \begin{cases} (3.857143, 2.629369, 10.3333), & \text{if } x < -4.0 \\ (1 + 0.2 \sin(5x), 0, 1), & \text{if } x \geq -4.0. \end{cases}$$

$N=512, t_f = 1.8, N_{\text{ref}} = 2000$
Two-block

Strong Shock Across Interface: Woodward Colella



$N=512, t_f = 0.04, N_{\text{ref}} = 2000$
Two-block

Entropy stable WENO [6]

$$\bar{f}_i^W = \sum_{l=1}^{n_s} \bar{\omega}_i^l \bar{f}_i^{S_l}. \quad \bar{\omega}_i^l = \frac{\bar{\alpha}_i^l}{\sum_j \bar{\alpha}_i^j}, \quad \bar{\alpha}_i^l = \bar{d}_i^l \left(1 + \frac{\bar{\tau}_i^l}{\bar{\beta}_i^l + \bar{\epsilon}_i} \right), \quad l = 1, \dots, n_s$$

$$\bar{f}_i^{SSW} = \bar{f}_i^W + \delta(\bar{f}_i^S - \bar{f}_i^W), \quad \delta = \frac{\sqrt{b^2 + c^2} - b}{\sqrt{b^2 + c^2}}, \quad b = (w_{i+1} - w_i)^T (\bar{f}_i^S - \bar{f}_i^W), \quad c = 10^{-12}$$

- Entropy stability condition is satisfied with entropy stable WENO

$$(w_{i+1} - w_i)^T (\bar{f}_i^{SSW} - \bar{f}_i^S) \leq 0, \quad 0 \leq i \leq N-1,$$

- Provably stable in conventional SBP HOFD
- Not so much for generalized SBP
- Hybridization requires AD
 - Because SSHOFD is nondissipative

HOFD is non-dissipative

Extend Mattsson's AD operators [5] using entropy variables

- 4th order

$$\mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{ad} = \mathcal{D}_2 |\Lambda| \frac{\partial \mathbf{u}}{\partial \mathbf{w}} \mathcal{D}_2 \mathbf{w} \quad \text{where} \quad \mathcal{D}_2 = \Delta \Delta^T$$

- We also have one for 6th order

Entropy Stable Artificial Viscosity

Formulation from Shakib [7] using entropy variables

$$\hat{\mu} = \max \left[\mu, \alpha_{\text{ref}} \frac{|u| + c}{\sqrt{g_{ij}g_{ji}}} \right] \quad \text{where} \quad \mu = \left(\frac{(L\mathbf{u})^T \mathbf{w}_u (L\mathbf{u})}{\phi + (\mathbf{w}_{x_i})^T g_{ij} \mathbf{u}_w (\mathbf{w}_{x_j})} \right)^{1/2}, \quad L\mathbf{u} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{v}} \frac{\partial \mathbf{v}}{\partial x_k} - \frac{\partial \mathbf{f}_k}{\partial x_k}$$

$$\mathcal{P}_k^{-1} \Delta_k \tilde{\mathbf{f}}_k^{av} = \mathcal{D}_i g_{ij} \frac{\partial \mathbf{u}}{\partial \mathbf{w}} \hat{\mu} \mathcal{D}_j \mathbf{w}$$

- Artificial viscosity is *tuned* for shock and non-shock regions

$$\mu_{\text{tuned}} = \alpha_{\text{shock}} \epsilon_{\text{ss}} \mu + \alpha_{\text{non-shock}} (1 - \epsilon_{\text{ss}}) \mu$$

Idea 1: Adaptive Artificial Dissipation

Improve AD operator

$$\mathcal{P}_k^{-1} \Delta_k \bar{\mathbf{f}}_k^{ad} = \mathcal{D}_2 |\Lambda| \frac{\partial \mathbf{u}}{\partial \mathbf{w}} \mathcal{D}_2 \mathbf{w} \quad \text{where} \quad \mathcal{D}_2 = \Delta \Delta^T$$

- Smoothness of key primitive variables
 - Modify wave speed
- $\Lambda = \alpha_u |u| + \alpha_c c$
- Has potential for improving hybrid HOFD-SSWENO
 - Not so sure if it can be extended to AV application

Idea 2: Pressure-Based Shock Sensor

Based on HPCMP CREATE-AV COFFE solver's artificial diffusion flux [3]

$$\epsilon_{ss} = \psi \tanh(10\psi) \text{ where } \psi = \frac{\xi}{\xi + \kappa \tilde{p}} \text{ and } \xi = \sqrt{\nabla \tilde{p}^T (g_{ij} g_{ji}) \nabla \tilde{p}}, \quad \tilde{p} = \frac{p}{0.5 \rho \mathbf{u}^2}$$

- Shock sensor is passive if grid resolution can support pressure gradient
- Otherwise switch activates the artificial diffusion flux in SUPG

Easy to implement in current SPARC

Idea 3: Characteristics-Based Modal Shock Sensor [1,2]

Characteristics convey information about waves

- Entropy and acoustic waves

Under-resolved region can be identified by modal energy decay

- Attractive for high-order methods, particularly DG

High-risk high-reward (potentially)

- None of the previous sensors utilize *high-order* contents of solution
- However, using physical information can be robust and makes sense
 - E.g. Dilatation, pressure, vorticity, enstrophy, etc.

Idea 3: Characteristics-Based Modal Shock Sensor [1,2]

Characteristics in k direction

$$[\hat{\mathbf{w}}]^i = \mathbf{R}^{-1}(\bar{\mathbf{u}}) \mathbf{u}_k, \quad i = 1, \dots, n$$

Modes of characteristics using Vandermonde matrix of Legendre polynomial

$$[\hat{\mathbf{w}}]^m = \sum_{i=1}^n V_{mi}^p [\hat{\mathbf{w}}]^i, \quad m = 1, \dots, n$$

Shock sensor

- Choose entropic and acoustic wave components based on interest

$$\epsilon_{ss}([\hat{\mathbf{w}}_\alpha]) = \log \left(\frac{[\hat{\mathbf{w}}_\alpha^2]^n}{\sum_{m=1}^n [\hat{\mathbf{w}}_\alpha^2]^m} \right), \quad \alpha = 1, \dots, 5$$