
Kokkos EcoSystem Update

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Kokkos Core: C.R. Trott, N. Ellingwood, D. Ibanez, V. Dang, Jan Ciesko, L. Cannada,
N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, R. Gayatri

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley,
K. Kim, C.R. Trott, J. Wilke, S. Acer

Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada
Kokkos Support: C.R. Trott, G. Shipman, G. Womeldorff, All of the above!
pyKokkos: M. Gligoric, N. Al Awar, S. Zhu, J. Madsen

SAND2021-4700CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Kokkos EcoSystem

• EcoSystem
• Core Backend Status
• Core Graphs
• Remote Spaces
• Kernels
• Tools
• Resilience
• pyKokkos

3

Kokkos Core

Parallel Execution Parallel Data Structures

Kokkos Kernels

Linear Algebra Graph Kernels

Kokkos Tools

Profiling Tuning Debugging

Kokkos Remote Spaces

Global Arrays

Kokkos Resilience
Redundant Exe Checkpoints

Kokkos Interop
Fortran Python

Kokkos Support
Documentation Tutorials Bootcamps Support

M
at

ur
e

Ea
rly

 U
se

rs

Compilers

Kokkos EcoSystem

4

Kokkos Core: C.R. Trott, N. Ellingwood, D. Ibanez, V. Dang, Jan Ciesko, L. Cannada,
N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, R. Gayatri
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland, J. Miles, D. Hollman, J. Wilke

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer
Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff,

former: H.C. Edwards, D. Labreche, Fernanda Foertter

• Kokkos Core: 12 Developers (6 SNL)
– Trying to fill some recent gaps

• More code contributions from non-SNL
– >50% of commits from non-Sandians

• Sandia leads API design

• Other labs lead backend implementations

• Other subprojects largely by Sandia so far

Developer Team

5

ECP Critical Dependencies

2120191817
0

100

200

300

400

Total membership Weekly active members

• 560 registered users
• 90 Institutions
• Every continent

• (-Antarctica)

Kokkos Slack Users
MPI 60
LLVM 57
C++ 41
OpenMP 34
LAPACK 24
CUDA 22
Fortran 21
HDF5 21
BLAS 21
Kokkos 18
C 14
ALPINE 12

hypre 11
DAV-SDK 11
VTK-m 11
Trilinos 10
ADIOS 8
SPACK 8
SCALAPACK 8
FFT 7
OpenACC 7
MPI-IO 6
PnetCDF 6
Tau 6

SNL

DOE
(not
SNL)Universities

Other

Users and Uptake

6

Kokkos: The Lectures
• 8 lectures covering most aspects of

Kokkos

• 15 hours of recordings

• > 500 slides

• >20 exercises

• Extensive Wiki
– API Reference
– Programming Guide

• Slack as primary direct support

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,…

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD

• Module 6: Language Interoperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://kokkos.link/the-lectures

https://kokkos.link/the-lectures

Kokkos Core
Backend Status

8

Name Perlmutter Frontier Aurora ElCapitan Crossroads Fugaku

Facility NERSC ORNL ANL LLNL LANL RIKEN

Year 2021 2021 2022 2023 2022 2020

Hardware NVIDIA GPU +
AMD CPU

AMD GPU +
AMD CPU

Intel GPU +
Intel CPU

AMD GPU +
AMD CPU

Intel CPU ARM CPU

Toolchain NVCC, NVC++ ROCM, Cray Intel OneAPI ROCM, Cray Intel OneAPI,
Cray, GCC

Fujitsu, GCC,
ARM Clang

CUDA

OpenMP

DPC++/SYCL

HIP

Why OpenMP too?
- Fallback in case of compiler issues
- Interoperability with OpenMP libraries

Platform Strategy

9

Kokkos HIP backend
• HIP:

– native language of AMD’s GPU
– very similar to CUDA
– supports both Nvidia and AMD’s GPU
– Still compiler issues -> tracking latest release very closely

• Primary backend for AMD GPUs
– Do not support NVIDIA GPUs (use CUDA backend instead)

• Introduced in Kokkos-3.1(released in Apr’20)

• Feature complete except for dynamic tasking
– Focus so far has been on adding feature, now moving to performance

• We require ROCm 3.8, we will require 4.1 soon

10

Performance Comparison: V100 vs MI100

MI100 results are from our own system (lascaux02), not Tulip

 Launch Latency Benchmark
(Batch Size = # of kernels before fence)

AXPBY and DOT
M

I1
00

V1
00

11

Performance Comparison: V100 vs MI100 (ArborX)

BVH construction

BVH query (radius search)

12

Kokkos SYCL backend

• SYCL
– Open standard (Khronos group)
– Parallel heterogeneous computing
– Intel implementation called DPC++

• Hardware support
– Targeting Intel GPUs
– CI running on NVIDIA V100

• Introduced in Kokkos-3.3 (released in Dec’20)

• Near feature complete in Kokkos-3.4 (Apr’21)

• Using DPC++ extensions of SYCL – may not work
with other SYCL implementations

• Not yet implemented
– atomics for types larger than 64bits
– WorkGraphPolicy
– Dynamic Task Graphs

• Future work will focus on performance

• Known to work with SYCL backend: ArborX,
Cabana, LAMMPS

13

Kokkos SYCL backend – Performance on V100

parallel_for, AXPY parallel_reduce, DOT

AXPBY
(double scalar type)

DOT
(double scalar type)

14

OpenMPTarget Backend

• Secondary backend for all GPU platforms

• Majority of features are available

• Started working with applications to test the backend

Architecture clang icpx rocm nvhpc cce

NVIDIA (V100)

AMD (MI60/MI100)

Intel (Gen9)

support partial support

Compiler/Architecture Support Matrix

15

OpenMPTarget: Performance Fragility

• OpenMP Offload Compilers still fragile in performance
– Small changes can have dramatic impacts
– Have not finetuned Kokkos backend yet, since this rapidly changes

• Example: AXPBY
– No Functor, Raw Ptrs, Loop Bound local
– No Functor, Raw Ptrs, Loop Bound member
– Functor, Raw Ptrs, Loop Bound local
– Functor, Views, Loop Bound Local

Ba
nd

w
id

th
 G

B/
s

Clang 11 (V100) Clang 12rc (V100) ROCM 4.1 (MI100)
0

200

400

600

800 655 655

398350 344
479

43

493

9643

334

153
43

335

134

AXPBY 1M doubles

Native OMP OMP-Member-N OMP-Functor OMP-Views

struct AXPY {
 template <class ExecutionSpace, class View>
 AXPY(ExecutionSpace const &s, View x, View y) {
 using T = typename View::value_type;
 T const a = 2;
 auto xp = x.data();
 auto yp = y.data();
 int N = x.extent(0);
#pragma omp target teams distribute parallel \
 for is_device_ptr(xp, yp)
 for (int i = 0; i < N; ++i) {
 yp[i] = a * xp[i] + yp[i];
 }
 s.fence();
 }
};

16

OpenMPTarget: What’s Next?

• Reductions
– Mandatory `shared` clauses on reduction items makes hierarchical reduction a challenge
– Declare reductions support non-uniform

• Non-Uniform Support of SIMD
– Causes performance issues for 3-level hierarchical parallelism in Kokkos
– Intel supports SIMD, but many other compilers don’t on GPUs.

• Work with ECP apps to build with OpenMPTarget backend
– Already started in particular for Aurora

• Optimize implementation

• Work with compiler vendors to support Unified Memory and SIMD

• Work to support more compilers fully (GCC, NVHPC, CCE)N
ex

t S
te

ps
Ch

al
le

ng
es

17

Backend Feature Support Matrix
Feature HIP SYCL OMPT

Range par_for X X X
Range par_red X X X
Range par_scan X X X
MDRange par_for X X X
MDRange par_red X X X
Team par_for X X X
Team par_red X X X
TeamThread par_for X X X
TeamThread par_red X X X
ThreadVector par_for X X X
ThreadVector par_red X X X
WorkGraphPolicy X -- --
Graphs X X X

Feature HIP SYCL OMPT

Team Scratch X X X
Reducers Build-In X X X
Reducers Custom X X --
Reducers Multiple X X --
Reducers Team Nested X X X
Atomics 32/64bit build-in X X X
Atomics 32/64bit custom X X X
Atomics arbitrary size X -- --
Unique Token Global X X X
Unique Token Instance X X --
Dynamic Tasking -- -- --
Tools: Profiling Hooks X X X
Tools: Tuning Hooks X X X

Kokkos Graphs

19

View<double*> x, y, z;
View<double, CudaHostPinnedSpace> x_dot_z;
double alpha, beta, gamma, threshold;
DefaultExecutionSpace ex();

auto graph = create_graph(ex, [&](auto root) {
 auto f_xpy = root.then_parallel_for(N, axpby_func{alpha,x,beta,y});
 auto f_zpy = root.then_parallel_for(N, axpby_func{gamma,z,beta,y});

 //--
 auto ready = when_all(f_xpy, f_zpy);

 //--
 ready.then_parallel_reduce(N, dot_func{x,z}, x_dot_z);
};

while(x_dot_z()<threshold) { graph.submit(); Kokkos::fence(); }

• Kokkos Graphs in Release 3.3 (January 2021) expose CUDA Graphs
– One Design Principle: less foot guns then CUDA Graphs

• API Design: Scoped creation/Explicit dependencies/no implicit capture

CUDA Graphs & Kokkos Graphs

20

Repetitions

Ti
m

e
pe

r k
er

ne
l i

n
us

1 4 16 64 128 256 512

60

50

40

30

20

10

0

Solid: Graphs
Dashed: Simple Dispatch

50k-Graph 50k 200k-Graph 200k 1M-Graph 1M

Throughput Improvement:
- 50K 78%
- 200k 49%
- 1M 15%

Can reuse graph:
- In solver iterations
- Between solves if matrix structure

unchanged
>100 reuses could be realistic

Next: look at reducing graph
creation time

Kokkos Graphs Benchmark

Remote Spaces

22

Kokkos Remote Spaces

22

 Add support for distributed memory spaces to
facilitate software development for multi-node and
multi-GPU executions.

 Allow code reuse to scale across multiple
memory address spaces at minimal development
effort

 Adds distributed View support through templating
on a remote memory space

 Several remote memory space back-ends are
support: MPI One-sided, SHMEM and
NVSHMEM

 Underlying implementation allocates data on the
symmetric heap (all participants allocate the
same size)

 In development
◦ Data shaping (subviews), block transfers (local_deep_copy) and

memory access traits
◦ Performance optimizations (aggregation and caching)
◦ Support for other RMA implementations

 Examples: First dimension describes PE*. Note: This
is a current design choice but subject to change as the
PE can be deduced at runtime (at a small cost).

23

Example: Sparse Matvec

23

Q: How to support remote
accesses to the vector x?

 y = A ∗ x
◦ A is a sparse matrix in Compressed Row Storage

(CRS):
◦ Two implementations: Kokkos single- and multi

memory spaces with KRS

24

Example: CGSolve

24

 Initial results with CGSolve: (relative
to reference implementation
with MPI+Cuda)​

◦ 76% perf (1 NUMA)​
◦ 20% perf (2 NUMA) ​
◦ Reduction in LOC: 5x

 GPU can hide latency of fine-grained
remote operations within a NUMA
(GPU complex), but not across
NIC/interconnect.​

 Important:
◦ Packing, reuse and overlapping

required
◦ Implicit Caching and Buffering

25

Caching and Buffering

25

40X improvement
over original
NVSHMEM baseline

~60% of peak
memory throughput
for memory-bound
kernels

 RDMA Scatter-Gather Engine
◦ Problem: All threads participating in remote memory accesses eliminate potential for

latency hiding and thus compromise a fundamental requirement for efficient GPU
execution.

◦ Idea: The RDMA engine redirects accesses to caches. Cache misses result in
submitting a request to a op-queue and block caller.

◦ A subset of resources process the op-queue and assembles ops into aggregate,
coarse-grained RDMA accesses thus eliminating fine-grained, high latency remote
accesses.

◦ New back-end called RDMA (not released yet)

26

Checkout more here

26

https://bit.ly/kokkos-lecture-wiki
https://www.youtube.com/watch?v=1J3JQ3d3cRc

https://github.com/kokkos/kokkos-remote-spaces

 The Kokkos Lecture Series, 2020

https://bit.ly/kokkos-lecture-wiki
https://bit.ly/kokkos-lecture-wiki
https://github.com/kokkos/kokkos-remote-spaces

