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Kokkos Core: C.R. Trott, N. Ellingwood,  D. Ibanez, V. Dang, Jan Ciesko, L. Cannada,
N. Liber, D. Lebrun-Grandie, B. Turcksin, J. Madsen, D. Arndt, R. Gayatri
former: H.C. Edwards, D. Labreche, G. Mackey, S. Bova, D. Sunderland, J. Miles, D. Hollman, J. Wilke

Kokkos Kernels: S. Rajamanickam, L. Berger, V. Dang, N. Ellingwood, E. Harvey, B. Kelley, K. Kim, C.R. Trott, J. Wilke, S. Acer
Kokkos Tools: D. Poliakoff, S. Hammond, C.R. Trott, D. Ibanez, S. Moore, L. Cannada
Kokkos Support: C.R. Trott, G. Shipman, G. Lopez, G. Womeldorff, 

former: H.C. Edwards, D. Labreche, Fernanda Foertter

 

• Kokkos Core: 12 Developers (6 SNL)
– Trying to fill some recent gaps

• More code contributions from non-SNL
– >50% of commits from non-Sandians

• Sandia leads API design

• Other labs lead backend implementations

• Other subprojects largely by Sandia so far

Developer Team



5  

ECP Critical Dependencies
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• 560 registered users
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• Every continent

• (-Antarctica)

Kokkos Slack Users
MPI 60
LLVM 57
C++ 41
OpenMP 34
LAPACK 24
CUDA 22
Fortran 21
HDF5 21
BLAS 21
Kokkos 18
C 14
ALPINE 12

hypre 11
DAV-SDK 11
VTK-m 11
Trilinos 10
ADIOS 8
SPACK 8
SCALAPACK 8
FFT 7
OpenACC 7
MPI-IO 6
PnetCDF 6
Tau 6
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Kokkos: The Lectures
• 8 lectures covering most aspects of 

Kokkos

• 15 hours of recordings

• > 500 slides

• >20 exercises

• Extensive Wiki
– API Reference
– Programming Guide

• Slack as primary direct support

• Module 1: Introduction
• Introduction, Basic Parallelism, Build System

• Module 2: Views and Spaces 
• Execution and Memory Spaces, Data Layout

• Module 3: Data Structures and MDRangePolicy
• Tightly Nested Loops, Subviews, ScatterView,…

• Module 4: Hierarchical Parallelism
• Nested Parallelism, Scratch Pads, Unique Token

• Module 5: Advanced Optimizations
• Streams, Tasking and SIMD 

• Module 6: Language Interoperability
• Fortran, Python, MPI and PGAS

• Module 7: Tools
• Profiling, Tuning , Debugging, Static Analysis

• Module 8: Kokkos Kernels
• Dense LA, Sparse LA, Solvers, Graph Kernels

https://kokkos.link/the-lectures 

https://kokkos.link/the-lectures


Kokkos Core 
Backend Status
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Name Perlmutter Frontier Aurora ElCapitan Crossroads Fugaku

Facility NERSC ORNL ANL LLNL LANL RIKEN

Year 2021 2021 2022 2023 2022 2020

Hardware NVIDIA GPU + 
AMD CPU

AMD GPU + 
AMD CPU

Intel GPU + 
Intel CPU

AMD GPU + 
AMD CPU

Intel CPU ARM CPU

Toolchain NVCC, NVC++ ROCM, Cray Intel OneAPI ROCM, Cray Intel OneAPI, 
Cray, GCC

Fujitsu, GCC, 
ARM Clang

CUDA

OpenMP

DPC++/SYCL

HIP

Why OpenMP too?
- Fallback in case of compiler issues
- Interoperability with OpenMP libraries

Platform Strategy
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Kokkos HIP backend
• HIP: 

– native language of AMD’s GPU
– very similar to CUDA
– supports both Nvidia and AMD’s GPU
– Still compiler issues -> tracking latest release very closely

• Primary backend for AMD GPUs
– Do not support NVIDIA GPUs (use CUDA backend instead)

• Introduced in Kokkos-3.1(released in Apr’20)

• Feature complete except for dynamic tasking
– Focus so far has been on adding feature, now moving to performance 

• We require ROCm 3.8, we will require 4.1 soon
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Performance Comparison: V100 vs MI100

MI100 results are from our own system (lascaux02), not Tulip

 Launch Latency Benchmark
(Batch Size = # of kernels before fence)

AXPBY and DOT
M
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V1
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Performance Comparison: V100 vs MI100 (ArborX)

BVH construction

BVH query (radius search)
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Kokkos SYCL backend

• SYCL
– Open standard (Khronos group)
– Parallel heterogeneous computing
– Intel implementation called DPC++

• Hardware support
– Targeting Intel GPUs
– CI running on NVIDIA V100

• Introduced in Kokkos-3.3 (released in Dec’20)

• Near feature complete in Kokkos-3.4 (Apr’21)

• Using DPC++ extensions of SYCL – may not work 
with other SYCL implementations

• Not yet implemented
– atomics for types larger than 64bits
– WorkGraphPolicy
– Dynamic Task Graphs

• Future work will focus on performance

• Known to work with SYCL backend: ArborX, 
Cabana, LAMMPS 
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Kokkos SYCL backend – Performance on V100

parallel_for, AXPY parallel_reduce, DOT

AXPBY
(double scalar type)

DOT
(double scalar type)
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OpenMPTarget Backend

• Secondary backend for all GPU platforms

• Majority of features are available

• Started working with applications to test the backend

Architecture clang icpx  rocm nvhpc cce

NVIDIA (V100)

AMD (MI60/MI100)

Intel (Gen9)

support partial support

Compiler/Architecture Support Matrix
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OpenMPTarget: Performance Fragility

• OpenMP Offload Compilers still fragile in performance
– Small changes can have dramatic impacts
– Have not finetuned Kokkos backend yet, since this rapidly changes

• Example: AXPBY
– No Functor, Raw Ptrs, Loop Bound local
– No Functor, Raw Ptrs, Loop Bound member
– Functor, Raw Ptrs, Loop Bound local
– Functor, Views, Loop Bound Local
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Native OMP OMP-Member-N OMP-Functor OMP-Views

struct AXPY {
  template <class ExecutionSpace, class View>
  AXPY(ExecutionSpace const &s, View x, View y) {
    using T     = typename View::value_type;
    T const a   = 2;
    auto xp     = x.data();
    auto yp     = y.data();
    int N       = x.extent(0);
#pragma omp target teams distribute parallel \
        for is_device_ptr(xp, yp)
    for (int i = 0; i < N; ++i) {
      yp[i] = a * xp[i] + yp[i];
    }
    s.fence();
  }
};
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OpenMPTarget: What’s Next?

• Reductions
– Mandatory `shared` clauses on reduction items makes hierarchical reduction a challenge
– Declare reductions support non-uniform

• Non-Uniform Support of SIMD
– Causes performance issues for 3-level hierarchical parallelism in Kokkos
– Intel supports SIMD, but many other compilers don’t on GPUs.

• Work with ECP apps to build with OpenMPTarget backend
– Already started in particular for Aurora

• Optimize implementation

• Work with compiler vendors to support Unified Memory and SIMD

• Work to support more compilers fully (GCC, NVHPC, CCE)N
ex
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Backend Feature Support Matrix
Feature HIP SYCL OMPT

Range par_for X X X
Range par_red X X X
Range par_scan X X X
MDRange par_for X X X
MDRange par_red X X X
Team par_for X X X
Team par_red X X X
TeamThread par_for X X X
TeamThread par_red X X X
ThreadVector par_for X X X
ThreadVector par_red X X X
WorkGraphPolicy X -- --
Graphs X X X

Feature HIP SYCL OMPT

Team Scratch X X X
Reducers Build-In X X X
Reducers Custom X X --
Reducers Multiple X X --
Reducers Team Nested X X X
Atomics 32/64bit build-in X X X
Atomics 32/64bit custom X X X
Atomics arbitrary size X -- --
Unique Token Global X X X
Unique Token Instance X X --
Dynamic Tasking -- -- --
Tools: Profiling Hooks X X X
Tools: Tuning Hooks X X X



Kokkos Graphs
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View<double*> x, y, z;
View<double, CudaHostPinnedSpace> x_dot_z;
double alpha, beta, gamma, threshold;
DefaultExecutionSpace ex();

auto graph = create_graph(ex, [&](auto root) {
    auto f_xpy = root.then_parallel_for(N, axpby_func{alpha,x,beta,y});
    auto f_zpy  = root.then_parallel_for(N, axpby_func{gamma,z,beta,y});

    //----------------------------------------
    auto ready = when_all(f_xpy, f_zpy);

    //----------------------------------------
    ready.then_parallel_reduce(N, dot_func{x,z}, x_dot_z);
};

while(x_dot_z()<threshold) { graph.submit(); Kokkos::fence(); }

• Kokkos Graphs in Release 3.3 (January 2021) expose CUDA Graphs
– One Design Principle: less foot guns then CUDA Graphs

• API Design: Scoped creation/Explicit dependencies/no implicit capture

CUDA Graphs & Kokkos Graphs 
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Repetitions
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Dashed: Simple Dispatch

50k-Graph 50k 200k-Graph 200k 1M-Graph 1M

Throughput Improvement:
- 50K     78%
- 200k    49%
- 1M       15%

Can reuse graph:
- In solver iterations
- Between solves if matrix structure 

unchanged
>100 reuses could be realistic

Next: look at reducing graph 
creation time

Kokkos Graphs Benchmark



Remote Spaces
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Kokkos Remote Spaces

22

 Add support for distributed memory spaces to 
facilitate software development for multi-node and 
multi-GPU executions.

 Allow code reuse to scale across multiple 
memory address spaces at minimal development 
effort

 Adds distributed View support through templating 
on a remote memory space

 Several remote memory space back-ends are 
support: MPI One-sided, SHMEM and 
NVSHMEM

 Underlying implementation allocates data on the 
symmetric heap (all participants allocate the 
same size)

 In development
◦ Data shaping (subviews), block transfers (local_deep_copy) and 

memory access traits
◦ Performance optimizations (aggregation and caching)
◦ Support for other RMA implementations

 Examples: First dimension describes PE*. Note: This 
is a current design choice but subject to change as the 
PE can be deduced at runtime (at a small cost).  
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Example: Sparse Matvec

23

Q: How to support remote 
accesses to the vector x?

 y = A ∗ x
◦ A is a sparse matrix in Compressed Row Storage 

(CRS): 
◦ Two implementations: Kokkos single- and multi 

memory spaces with KRS
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Example: CGSolve

24

 Initial results with CGSolve: (relative 
to reference implementation 
with MPI+Cuda)​

◦ 76% perf (1 NUMA)​
◦ 20% perf (2 NUMA) ​
◦ Reduction in LOC: 5x 

 GPU can hide latency of fine-grained 
remote operations within a NUMA 
(GPU complex), but not across 
NIC/interconnect.​

 Important:
◦ Packing, reuse and overlapping 

required
◦ Implicit Caching and Buffering
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Caching and Buffering
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40X improvement 
over original 
NVSHMEM baseline

~60% of peak 
memory throughput 
for memory-bound 
kernels

 RDMA Scatter-Gather Engine
◦ Problem: All  threads participating  in  remote memory accesses eliminate  potential  for 

latency  hiding  and  thus  compromise  a  fundamental  requirement  for  efficient  GPU 
execution.

◦ Idea:  The  RDMA  engine  redirects  accesses  to  caches.  Cache  misses  result  in   
submitting a request to a op-queue and block caller.

◦ A  subset  of  resources  process  the  op-queue  and  assembles  ops  into  aggregate, 
coarse-grained  RDMA  accesses  thus  eliminating  fine-grained,  high  latency  remote 
accesses. 

◦ New back-end called RDMA (not released yet)



26  

Checkout more here

26

https://bit.ly/kokkos-lecture-wiki
https://www.youtube.com/watch?v=1J3JQ3d3cRc

https://github.com/kokkos/kokkos-remote-spaces

 The Kokkos Lecture Series, 2020

https://bit.ly/kokkos-lecture-wiki
https://bit.ly/kokkos-lecture-wiki
https://github.com/kokkos/kokkos-remote-spaces

